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Abstract

The ADIC Application Server brings the accuracy and
efficiency of automatic differentiation to the World Wide
Web. Users of the ADIC Application Server can upload
source code written in ANSI-C, manage remote files, differ-
entiate selected functions, and download code augmented
with derivative computations. Using a simple driver and
linking to the appropriate libraries, the user can compile
and run the differentiated code locally. We discuss the
unique requirements for an automatic differentiation appli-
cation server and describe the implementation of the ADIC
Application Server.
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1. Introduction

Derivatives play an important role in a variety of scien-
tific computing applications, including optimization, solu-
tion of nonlinear equations, sensitivity analysis, and non-
linear inverse problems. Automatic, or algorithmic, differ-
entiation (AD) technology provides a mechanism for aug-
menting computer programs with statements for computing
derivatives [11, 12]. In general, given a codeC that com-
putes a functionf : x 2 Rn 7! y 2 Rm with n inputs
andm outputs, an AD tool produces codeC0 that computesf 0 = @y=@x, or the derivatives of some of the outputsy
with respect to some of the inputsx. In order to produce
derivative computations automatically, AD tools systemati-
cally apply the chain rule of differential calculus at the ele-
mentary operator level.

Compared with other methods, AD offers a number of
advantages. The performance of AD-generated code usu-
ally exceeds that of divided differences and often rivals that
of code developed by hand. Unlike divided difference ap-
proximations, derivatives computed via AD exhibit no trun-

cation error. AD also eliminates the time spent developing
and debugging derivative code by hand or experimenting
with step sizes for finite difference approximations.

To facilitate discussion, we define terms that are com-
monly used in the context of automatic differentiation:� Independent variablesare program input variables

with respect to which derivatives are desired.� Dependent variablesare program output variables
whose derivatives with respect to the independent
variables are to be computed.� A derivative objectis used to store derivative infor-
mation, such as a vector of partial derivatives of a
variabley with respect to a variable vectorx.� An active variableis any program variable with an
associated derivative object. Ideally, only variables
that may affect a dependent variable and are depen-
dent on an independent variable would be designated
as active. A more conservative approach is to con-
sider all floating-point variables active.� A driver routine is used for initializing derivative ob-
jects, specifying independent and/or dependent vari-
ables, and extracting the computed derivatives.

2. Our approach to AD

ADIC is a source transformation tool for the automatic
differentiation of ANSI C code [4, 5]. Source transfor-
mation AD tools extend the notion of a compiler by alter-
ing the functionality of the original program, augmenting it
with derivative computations. Given a set of C source files,
ADIC produces a new set of source code files augmented
with derivative computations. Some limited C++ support is
also available.

ADIC features a design that allows easy expansion of its
functionality through plug-in modules. A module specified
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at run time interacts with the rest of the system via machine-
and language-independent file interfaces. Language inde-
pendence is achieved through the use of an intermediate
representation, known as the AIF (Automatic differentiation
Interface Form) [1, 16]. The AIF is designed to abstract
AD-relevant information from the more general language
features. Although most modules target derivative compu-
tation by exploiting the chain rule, modules can be written
to perform any language-independent transformation. Each
module usually has a set of associated run-time libraries,
which must be linked with the differentiated code.

Other AD tools, such as ADOL-C [13], take a different
approach and compute derivatives via operator overloading,
rather than source transformation. This approach overloads
the basic arithmetic operators and intrinsic function calls
with special routines that propagate derivatives in addition
to performing the original operation [7]. The definition of
the class containing derivative computations is hidden from
the user, the user’s code is not affected by changes in the
implementation strategy of the tool, and there is full access
to run-time information [3]. However, in order to avoid the
generation of temporaries, special care must be taken by
using expression templates or a similar mechanism (which
may be difficult to implement). Tools based on operator
overloading are also more sensitive to the choice of com-
piler and compiler flags. Most significant for our purposes
here is the fact that an AD application server based on op-
erator overloading is not possible, since in this implementa-
tion approach the compiler handles the generation of object
code for derivative computations.

2.1. Example

In this section we present a small example of using ADIC
to augment a piece of code with derivative computations.
ADIC can be applied to ANSI-C code of arbitrary complex-
ity, but we limit the size of this example for clarity.

The function in Figure 1 takes fivedouble parameters
and returns adouble value. This function might be called
by some other functions that together form the source pro-
cessed by ADIC.

We apply ADIC to the code in Figure 1 to produce the
code augmented with first-derivative computations shown
in Figure 2. We have reformatted the code slightly, ex-
panded some macros, and added some comments for better
readability.

A float objectcontains a floating-point value that resides
at a physical memory address. In C, float objects are cre-
ated either explicitly (variable declarations, dynamic mem-
ory allocation) or implicitly (return values or type cast-
ing). Automatic differentiation of C code works by as-
sociating a unique derivative object with each float ob-
ject in a computation. Within each assignment statement

double f (double a, double b, double c,
double d, double z) {

double y = 0.0;
if ((y = a * b * c * d) < 0 && z < 0)

y *= z;
return y;

}

Figure 1. A simple function to be differenti-
ated.y = func(x1; x2; : : : ; xn), where func is an expression in-

volving n variables, the partial derivatives@y=@xi, or ad-
joints, are computed. The intermediate computations of the
expression are saved in temporaries, and then the chain rule
is locally applied. The resulting quantities are then used
to accumulate the gradientry. In this example, we have
added a comment at the top of the code in Figure 2 showing
the definition of the derivative object type. Each gradientry is stored as an array ofdoubles.

The derivative code together with a driver is compiled
and linked to ADIC support libraries to produce the final
program. A driver for the example code is shown in Fig-
ure 3. In many cases, the user can slightly modify an ex-
isting routine, for example, the main function, in order to
obtain a driver. There are two ways of creating a driver:
writing it from scratch or using ADIC to do part of the
work. The code in Figure 3 shows the first approach. The
driver performs initializations, sets the independent vari-
ables, calls the differentiated function, and extracts there-
sults.

3. Objective

The ADIC Application Server aims to provide an easy-
to-use, highly accessible interface to ADIC and, potentially,
other AD tools. Our goals include developing and imple-
menting mechanisms for remote file management, fast re-
sponse to user requests, scheduling of requests in a dis-
tributed environment, and assistance with tasks the user
must perform after downloading differentiated files from
the server.

A typical user session with the server comprises the fol-
lowing steps:� The new user registers and requests an account. A

directory for remote storage of user files is created.
This step is required only for new users. Existing
users may be required to log in if a certain amount
of time has elapsed since their last login.� The user uploads files to his or her account.
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/* Disclaimer and copyright notice */
#include "ad_deriv.h"
/* ad_deriv.h includes the following definition of DERIV_TYPE:

typedef struct {
double value;
double grad[ad_GRAD_MAX];

} DERIV_TYPE;
*/
void ad_f(DERIV_TYPE *ad_var_ret, DERIV_TYPE a, DERIV_TYPE b,

DERIV_TYPE c, DERIV_TYPE d, DERIV_TYPE z) {
/* Return value is stored in ad_var_ret */
DERIV_TYPE y;
double ad_loc_0, ad_loc_1, ad_loc_2;
double ad_adj_0, ad_adj_1, ad_adj_2, ad_adj_3;

{ /* Clear the gradient of y */
int _ad_AD_ctr; double *gz = y.grad;
for (_ad_AD_ctr = 0 ; _ad_AD_ctr < ad_grad_size ; _ad_AD_ctr++)
gz[_ad_AD_ctr] = 0.0;

}
y.value = 0.0; /* double y = 0.0; */
/* Compute adjoints corresponding to a * b * c * d */
ad_loc_0 = a.value * b.value; ad_loc_1 = ad_loc_0 * c.value;
ad_loc_2 = ad_loc_1 * d.value; ad_adj_0 = ad_loc_0 * d.value;
ad_adj_1 = c.value * d.value;
ad_adj_2 = a.value * ad_adj_1;
ad_adj_3 = b.value * ad_adj_1;
{ /* Accumulate the gradient of y */

int _ad_AD_ctr;
double *gz = y.grad, *ga = a.grad, *gb = b.grad, *gc = c.grad, *gd = d.grad;
for (_ad_AD_ctr = 0; _ad_AD_ctr < ad_grad_size; _ad_AD_ctr++)
gz[_ad_AD_ctr] = + ad_adj_3 * ga[_ad_AD_ctr] + ad_adj_2 * gb[_ad_AD_ctr]

+ ad_adj_0 * gc[_ad_AD_ctr] + ad_loc_1 * gd[_ad_AD_ctr];
}
y.value = ad_loc_2;
if (y.value < 0 && z.value < 0) { /* if (y < 0 && z < 0) */

ad_loc_0 = y.value * z.value; /* y *= z; */
{ /* Accumulate the gradient of y */
int _ad_AD_ctr; double *gz = y.grad, *ga = y.grad, *gb = z.grad;
for (_ad_AD_ctr = 0; _ad_AD_ctr < ad_grad_size; _ad_AD_ctr++)

gz[_ad_AD_ctr] = + z.value * ga[_ad_AD_ctr] + y.value * gb[_ad_AD_ctr];
}
y.value = ad_loc_0;

}
{ /* Accumulate the gradient of the return value */

int _ad_AD_ctr; double *gz = (*ad_var_ret).grad, *gx = y.grad;
for (_ad_AD_ctr = 0; _ad_AD_ctr < ad_grad_size; _ad_AD_ctr++)
gz[_ad_AD_ctr] = gx[_ad_AD_ctr];

}
(*ad_var_ret).value = y.value;
return;

}

Figure 2. ADIC-generated code for function f .
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#include <stdio.h>

#define MAXLEN 4
double f(double, double, double, double, double);
int main() {

int i, n;
InactiveDouble grad[MAXLEN];
InactiveDouble tmp, val;
double x[MAXLEN], y, z = -1.0;

/* Initialize */
AD_Init(ad_GRAD_MAX);

/* Read in values*/
for (i = 0; i < MAXLEN; i++) {

scanf("%lf", &tmp);
x[i]= tmp;

}

/* Set independent variables */
AD_SetIndepArray(x, MAXLEN);
AD_SetIndepDone();

/* Invoke the function */
y = f(x[0], x[1], x[2], x[3], z);

/* Extract the result */
AD_ExtractVal(val, y);
AD_ExtractGrad(grad, y);

/* Print the result */
printf ("value = %le\n", val);
for (i = 0; i < n; i++) {

printf ("%le\n", grad[i]); /* Print partials */
}

}

Figure 3. Driver for ADIC-generated code.
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� The user selects files among the list of uploaded files,
optionally specifies ADIC options, and directs the
server to apply ADIC to them.� The user views or downloads the ADIC-generated
files containing derivative computations.� At any time during the interactive session, the user
can manipulate the files in the remote directory
(delete, copy, rename, download).

In any given session, the user can submit multiple re-
quests for differentiating different sets of files. Before in-
corporating the differentiated code into an application, the
user must follow the simple steps for downloading and un-
packing the ADIC libraries, which are available for a num-
ber of Unix platforms. No additional software is required
in order to use the code produced by the ADIC Application
Server.

4. Related work

The use of the Internet for scientific computations has
been increasing rapidly in recent years. Network-enabled
servers, such as NEOS [8] and NetSolve [6], aim to provide
access to hardware and software computational resources
through a variety of interfaces.

Various projects have considered the extension of this
paradigm to automatic differentiation. Hovland and Carle
developed a remote automatic differentiation tool (RAD-
tool) that provided limited access to ADIFOR [2] via the
Web. Roh developed a prototype of the ADIC Application
Server, noting the importance of file management capabil-
ities [15]. Recently, several European researchers have be-
gun discussing the development of a Network Enabled Sen-
sitivities System (NESSy) [14].

Research issues in the design of typical scientific ap-
plication servers include fault tolerance, load balancing,
high-performance computational servers, user interfaces,
and network-based computing. AD application servers have
somewhat different requirements, with a greater emphasis
on account creation, file management, and persistence of
state.

4.1. Other scientific application servers

Several principal approaches to network-enabled com-
puting exist. In one approach, the user’s program and data
are transferred from the user’s machine to a server, which
then runs the code on the data and transfers back the re-
sult. Another approach is to download the program from
the server to the user’s machine, where it operates on the
user’s data and generates the result locally. Finally, in a re-
mote computing environment, only the user’s data travels

to the server, where programs based on numerical libraries
operate on it and then return the result to the user. NetSolve
uses the third approach, whereas NEOS employs a hybrid
of the first and third approaches.

The Grid Portal Toolkit (GridPort) [10, 17] is a collection
of services, scripts, and tools that allow developers to con-
nect Web-based interfaces to distributed computational re-
sources. GridPort was originally developed for the informa-
tional NPACI HotPage, which allows NPACI users to access
resources through a Web interface. This functionality has
been extended to enable users to run codes, access data, and
communicate with NPACI’s Globus-ready systems. These
facilities more closely match the requirements for an AD
application server.

4.2. AD in the NEOS Server

In addition to providing the basic functionality behind
the ADIC Application Server, AD technologies have been
used successfully as part of other network-enabled compu-
tational servers [9]. The NEOS Server is an Internet-based
client-server application that provides access to a numberof
optimization solvers, eliminating the need for downloading
solver software, writing code to call the solver, or comput-
ing the derivatives for nonlinear problems. Given an input
format and a list of solvers, the NEOS user submits a prob-
lem description consisting of the dimensions of the prob-
lem, the source code for the function evaluation, bounds
and constraints routine (for constrained optimization), and
the starting point. NEOS employs automatic differentiation
to compute derivatives required by nonlinear solvers. In the
case of Fortran user code, the Jacobians or Hessians of non-
linear problems are determined by ADIFOR, and sparsity is
handled by the SparsLinC library. For C submissions, the
AD tools used are ADOL-C and ADIC.

5. The ADIC Application Server

Like other types of scientific computing server, the
ADIC Application Server is concerned with research issues
involving user interface design and access to remote hard-
ware and software resources. Unlike conventional computa-
tional servers, however, the ADIC Application Server must
be concerned also with source transformation issues. The
source code supplied by the user is treated as data by the
ADIC software. After processing the user-supplied source
code remotely, the resulting derivative-augmented source
code is downloaded by the user and becomes the new pro-
gram, to be compiled and executed locally on the user’s ma-
chine.

Although not usually an important part of scientific
servers, the account and file management capabilities of the
ADIC Application Server are an essential part of the user
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Figure 4. ADIC Application Server main page.

interface. Important issues include account creation and
maintenance policies, security, file manipulation options,
and persistence of state. In some ways the needs of the
ADIC Application Server are more closely related to those
of business application service providers (ASPs), including
access to server hardware, file management capabilities, and
ability to run applications remotely, in this case ADIC.

6. Server implementation

The ADIC Application Server comprises two main com-
ponents: the Web-based user interface (Figure 4) and the
server daemon. The user interface is implemented by us-
ing mainly Perl CGI scripts. In order to minimize response
time for certain actions, JavaScript is used for some of the
file management functionality, as well as for error checking
of user input. We use browser cookies to store some user
information and eliminate the need for frequent authentica-
tion.

The server daemon is separate from the user interface
and can run in a distributed environment. At present, the
only requirement is that the Web server and the ADIC server
daemon reside on a shared file system. When the user se-
lects files and pushes the “Run ADIC” button, a CGI script
generates a job file containing user identification and a de-

scription of the user’s request, including names of source
files and ADIC options. The server daemon periodically
scans for new job files and processes them in a first-come
first-served fashion. The server then assembles the correct
call to ADIC and spawns a process to execute the user re-
quest. Job files have unique IDs, allowing multiple users to
submit requests simultaneously to the same server.

Figure 5 shows the output from a user submission with
the options illustrated in Figure 4. The Web page showing
the output from the server is dynamically updated as the job
execution progresses.

7. Future work

The ADIC Application Server is under active develop-
ment. In particular, extensions are under way or planned
for the near future in the following four areas:� File management. We are working on perfecting and

extending the file management capabilities, including
adding restrictions to the type and size of files that
users can upload. One possibility is to add WebDAV
support to the server, allowing third-party tools (e.g.,
Microsoft Explorer in Windows systems) to be used
to transfer files between the server and the user’s local
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Figure 5. ADIC Application Server job output.

machine.� Scheduler. At present, the ADIC Application Server
uses a simple FCFS scheduling strategy. Multiple
servers can be started on different machines, but there
is no distributed scheduling strategy in place yet. We
will implement a scheduler that will effectively utilize
a number of networked computers, aiming to maxi-
mize response time, while performing some load bal-
ancing of requests.� Automated driver generation. To use the code pro-
duced by ADIC, the user must write a driver to per-
form initialization, call the differentiated routine(s),
and extract the gradient. This task can be made easier
by supplying the user with a driver prototype routine,
which may require only minor adjustments before it
can be incorporated into the user’s application.� ADIFOR Application Server. We have begun devel-
opment of the ADIFOR Application Server. Most of
the implementation of the ADIC Application Server
can be reused, because of the many shared features of
the two servers. There is also potential for developing
servers for similar types of transformation systems,
including Java bytecode optimizers.

Less essential features we are planning to implement in-
clude enabling the Web server to determine whether a server
daemon and/or scheduler is running somewhere on the net-
work, providing additional formats for archives of files the
user wishes to download, and providing locking mecha-
nisms so that multiple requests operating on the same user
files can be served.

8. Conclusions

The need for accurate and fast derivatives for models
implemented as computer code is ubiquitous in computa-
tional science. Automatic differentiation provides a mecha-
nism for computing these derivatives accurately with mini-
mum programming effort. In this article, we introduced the
ADIC Application Server, which provides a highly acces-
sible, easy-to-use interface to AD technology. The server
eliminates the need to install the ADIC software, configure
it correctly, and learn how to use it. The URL for the ADIC
Application Server is www.mcs.anl.gov/autodiff/adicserver.
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