
GENUINELY NONLINEAR MODELS FOR CONVECTION-DOMINATED PROBLEMS �TRAIAN ILIESCU yAbstract. This paper introduces a general, nonlinear subgrid-scale (SGS) model, having bounded arti�cial viscosity,for the numerical simulation of convection-dominated problems. We also present a numerical comparison (error analysis andnumerical experiments) between this model and the most common SGS model of Smagorinsky, which uses a p-Laplacianregularization. The numerical experiments for the 2-D convection-dominated convection-di�usion test problem show a clearimprovement in solution quality for the new SGS model. This improvement is consistent with the bounded amount of arti�cialviscosity introduced by the new SGS model in the sharp transition regions.Key words. subgrid-scale model, arti�cial viscosity, p-LaplacianAMS subject classi�cations. Primary 65N30; Secondary 76M101. Introduction. One of the fundamental di�culties in the numerical study of convection-dominatedproblems is that considerable information can be contained in small scales, below the level of the �nestmesh. To represent these e�ects on the larger scales, di�erent methodologies have been used in practicalcalculations. These methodologies have been successfully analyzed and implemented in the linear case ofconvection-di�usion problems (the streamline-di�usion method is probably the most successful in this class).For nonlinear problems (e.g., the Navier-Stokes equations), one of the most common methodologies is touse various subgrid-scale (SGS) models (see, e.g., [16], for a survey of these models). However, very littlerigorous mathematical analysis has been done validating the e�ects of these nonlinear SGS terms on theunderlying continuum model and on the discretization ultimately employed.The goal of this paper is twofold. First, we introduce a general, nonlinear SGS model, having boundedarti�cial viscosity. Then, we start a careful comparison of this new SGS model with the most commonSGS model of Smagorinsky [19], which uses a p-Laplacian regularization. Speci�cally, we present the erroranalysis for the corresponding �nite element method (FEM) discretizations of the two SGS models, as well asnumerical experiments for the 2-D convection-dominated convection-di�usion test problemwith homogeneousDirichlet boundary conditions: �"�u+ b � ru+ cu = f in 
; (1.1)u = 0 on @
; (1.2)where 
 is a polyhedral domain in IRd (d = 2, 3), b : 
! IRd, c : 
! IR, f : 
! IR, and 0 < "� 1. Thistest problem is a �rst and essential step in a careful numerical comparison of the two SGS models, in thatthere is little (if any) hope of understanding the e�ects of these SGS terms upon the discretization of moregeneral, nonlinear problems (as the Navier-Stokes equations), without studying these e�ects on (1.1){(1.2),�rst.The most common approach for the discretization of the linear problem (1.1){(1.2) is the streamline-di�usion �nite element method (SDFEM). SDFEM, introduced by Hughes and Brooks [9], and mainlyanalyzed by N�avert [17] and Eriksson and Johnson [6], is a great improvement of the common upwind typemethods and has been successfully implemented and tested on a wide variety of problems [10], [18]. SDFEMstabilizes (1.1){(1.2) in a consistent way, introducing a linear amount of arti�cial viscosity (AV) in thedirection of the ow, and reducing the need for extra stabilizing AV. Along these lines, a further way to�This work was supported in part by the Mathematical, Information, and Computational Sciences Division subprogram ofthe O�ce of Advanced Scienti�c Computing Research, U.S. Dept. of Energy, under Contract W-31-109-Eng-38, and by NSFgrants INT 9814115 and INT 9805563.yMathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439(iliescu@mcs.anl.gov). 1



2 T. ILIESCUreduce the need for extra stabilizing AV is to apply the AV locally, via a Smagorinsky-type SGS term of theform �r � (�h� j hruh jp�2 ruh) (1.3)added to the discretization of the left-hand side (LHS) of (1.1). In the above formula, j � j is the Euclidiannorm, h represents the meshwidth in the discretization of (1.1){(1.2), uh is the discretized solution, and�; �; and p are user-speci�ed parameters. This extra nonlinear term introduces the AV in a selective way:it introduces a negligible amount of AV in smooth regions (where jruhj is small), and a stabilizing amountof AV in the sharp transition regions (where j ruh j� O(h�1)). The p-Laplacian AV term (1.3) stabilizesthe discretization and also spreads the small (below the meshwidth) scales onto the computable mesh. Thisp-Laplacian AV term has been used in numerous challenging numerical applications; the Smagorinsky [19]model, which uses a p-Laplacian AV term, is one of the most popular models in the numerical simulation ofturbulent ows. However, very little rigorous analysis, mathematical or numerical, has been done validatingthe corresponding continuum and discretized models (see [5], [4], [11]).In Section 2, using the p-Laplacian's strong monotonicity, Minty's lemma [15], [13], and discrete inverseSobolev's inequalities, we prove existence, uniqueness, max-norm stability, and a priori error estimates foruh, the approximate solution of the discretization of (1.1){(1.2) including the nonlinear AV term (1.3). Thisanalysis follows the approach used by Layton in [11] and complements the one on the pure p-Laplacianproblem [1], [2].The p-Laplacian AV term (1.3), despite its well-known (see [11]) qualities, has the drawback of intro-ducing an unbounded amount of AV in sharp transition regions, whereas just O(h) AV is needed. Motivatedby this drawback, we introduce in Section 3 a general, nonlinear, bounded AV term of the form�r � (�h�a(j hruh j)ruh) (1.4)added to the discretization of the LHS of (1.1). The parameters in (1.4) are the same as those in (1.3).The function a(�), however, instead of being a power function (and thus unbounded) as in the p-LaplacianAV term (1.3), is a general bounded, smooth, nonnegative, real-valued function, whose derivative is alsobounded (see Figure 1.1).
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  fitted AVFig. 1.1. The graph of a(�); the horizontal axis represents j hruh j.The nonlinear AV term (1.4) introduces a bounded amount of AV in the sharp transition regions, andalmost no AV in the smooth regions.Since the nonlinear bounded AV term (1.4) has no monotonicity properties, the error analysis for thecorresponding model is much more challenging than the one for the p-Laplacian AV model. In Section 3, weprove existence, uniqueness, and a priori error estimates for uh, the approximate solution of the discretizationof (1.1){(1.2) including the nonlinear AV term (1.4).



GENUINELY NONLINEAR MODELS 3Numerical experiments reported in Section 4 show that, for problems exhibiting very sharp layers, thebounded AV model shows a visible improvement in solution quality versus the p-Laplacian AV model, whileboth can show a dramatic improvement over the common SDFEM method.These numerical experiments, supported by a careful mathematical and numerical analysis, which webegin here, make the bounded nonlinear AV SGS model a promising approach for the numerical study ofconvection-dominated problems.2. Error Analysis for the p-Laplacian AV Model. We begin by introducing the mathematicalstructures needed for the numerical analysis of the p-Laplacian AV model. Let �h(
) denote the �niteelement partition of 
 into face-to-face d-simplices (d=2,3) with meshwidth (maximum d-simplex diameter)h. The minimum angle in �h(
), �min, is assumed to be bounded away from zero uniformly in h. The normk � k denotes the usual L2(
) norm, and k � kLp denotes the Lp(
) norm. The norm on W�1;q, the dual ofthe Sobolev space W 1;p0 , is de�ned byjj�jjW�1;q := sup0 6=v2W1;p0 (�; v)jjrvjjLp ;where 1p + 1q = 1.Let X = H10 (
), its norm k � kX := k � k1;
, and (�; �) the L2(
) inner product. The usual weakformulation [7], [8], [10] of problem (1.1){(1.2) is to �nd u 2 X satisfying"(ru;rv) + (b � ru; v) + (cu; v) = (f; v) 8v 2 X : (2.1)We de�ne an energy-norm associated with (2.1):jjjvjjj := �"jjrvjj2+ jjvjj2�1=2 :The spaces Xh are associated conforming �nite element spaces, Xh � X, and B(�; �) represents the usualbilinear form associated with (2.1). Speci�cally, for u; v 2 XB(u; v) := "(ru;rv) + (b � ru; v) + (cu; v) : (2.2)Using the Riesz representation theorem, de�ne AVp :W 1;p0 ! (W 1;p0 )0 by(AVp(u); v) := �h�(j hru j)p�2ru;rv) 8u; v 2W 1;p0 ; (2.3)with � > 0; � > 0; and p � 2.Since AVp(�) is associated with the p-Laplacian, its monotonicity properties are documented in manyplaces (see, e.g., [15], [13]). We summarize them here:(AVp(u)� AVp(v); u � v) � �C1(p)h�+p�2kr(u� v)kpLp (2.4)kAVp(u) �AVp(v)kW�1;q � �C2(p)h�+p�2rp�2kr(u� v)kLp ; (2.5)where C1(p) and C2(p) are constants independent of h, r := maxfkrukLp; krvkLpg, and 1p + 1q = 1.By a coercivity argument [18], there exists a unique solution of (2.1), provided that there exists a constant~� such that infx2
�c(x)� 12(r �b)(x)� � ~� � 0 : (2.6)



4 T. ILIESCUWe now begin the study of the p-Laplacian AV model for the convection-dominated convection-di�usionproblem (1.1){(1.2), given by�h�(j hruh jp�2 ruh;rv) + "(ruh;rv) + (b � ruh; v) + (cuh; v) = (f; v) ; (2.7)8v 2 Xh :Since the above model is nonlinear, it is not altogether obvious that an approximate solution uh exists.The following lemma answers this question.Lemma 2.1. (Existence and uniqueness of uh) There exists a unique solution for (2.7).Proof. The proof follows from the coercivity of the bilinear form in (2.7), the strong monotonicity (2.4)of the p-Laplacian AV term, and Minty's lemma [15], [13].For the error analysis we will need to use discrete tools linking the L2(
) and Lp(
) norms. In particular,most commonly used �nite element spaces satisfy the following inverse inequality and Poincar�e inequality :C1hkrvk � kvk � C2krvk ; 8v 2 Xh; (2.8)where C1, C2 are constants independent of h.We will also need the following Lp � L2 -type inverse inequality [ [11], Lemma 2.1]:Lemma 2.2. Let �min be the minimum angle in the triangulation and Mk = fv(x) : v 2 C(�
); v jT2Pk(T ) 8T 2 �h(
)g, Pk being the polynomials of degree � k. Then, there is a C = C(�min; p; k) such thatfor 2 � p <1, d = 2; 3, and all v 2MkkrvkLp(
) � Ch d2 ( 2�pp )krvk: (2.9)A stability result of method (2.7) with p-Laplacian regularization is given by the following lemma.Lemma 2.3. If p > d, then kuhk � kfkC" + ~�; and (2.10)kuhkL1 � Ch��+p�2p�1 kfk 1p�1W�1;q ; (2.11)where C is a generic constant independent of h.Proof. Setting v = uh in (2.7), we get�h�+p�2kruhkpLp +B(uh; uh) = (f; uh) :Using (2.6), (2.8), the above equality, and H�older's inequality, we get(C�22 " + ~�)kuhk2 � kfkkuhk; and�h�+p�2kruhkpLp � kfkW�1;qkruhkLp ;where 1p + 1q = 1. Therefore, kuhk � kfkC�22 "+ ~� ;which proves (2.10), and �h�+p�2kruhkp�1Lp � kfkW�1;q ;



GENUINELY NONLINEAR MODELS 5which implies kruhkLp � �� 1p�1 h��+p�2p�1 kfk 1p�1W�1;q :By the Sobolev embedding theorem, we have that, for p > d,kuhkL1 < C(
)kruhkLp :From the above two inequalities, (2.11) now follows.2.1. A Priori Error Analysis. An a priori error estimate for method (2.7) is given by the followingtheorem.Theorem 2.4. Suppose that Xh satis�es estimate (2.9) and that infw2Xh jjrwjjLp � Cjjrujj. Then,�Ch�+p�2kr(u� uh)kpLp + "kr(u� uh)k2 + ku� uhk2 �C infw2Xhf ku� wk2 + "kr(u�w)k2 + kr(u�w)k2 + �h�+p�2kr(u� w)kpLp +�2"�1h2�+2(p�2)+d( 2�pp )kr(u� w)k2Lp jjrujj2(p�2)Lp g+ �2C"�1h2�+2(p�2)+d( 2�pp )kruk2p�2Lp ;where C is a generic constant independent of h.Proof. The error bound is proven by using Galerkin orthogonality and the monotonicity of AVp(�) (2.4).First, the error equation is derived. Subtracting (2.7) from (2.1), we get�(AVp(uh); v) +B(e; v) = 0 8v 2 Xh; (2.12)where e = u� uh. Let w 2 Xh be arbitrary and de�ne � = w � uh 2 Xh, � = u� w (note that e = � + �).Adding and subtracting terms as appropriate and using the bilinearity of B(�; �), we get(AVp(w); v) � (AVp(uh); v) +B(�; v) = (AVp(w); v) � (AVp(u); v)� B(�; v) + (AVp(u); v) 8v 2 Xh : (2.13)Using (2.5), we also have (AVp(u); v) = (AVp(u); v)� (AVp(0); v) (2.14)� kAVp(u) �AVp(0)kW�1;2krvk� �C2(p)h�+p�2krukp�1Lp krvk :If we set v = � (since � 2 Xh) and use the strong monotonicity of AVp(�) (2.4) and the coercivity of B(�; �) onthe LHS of (2.13), the local-Lipschitz continuity of AVp(�) (2.5) and the continuity of B(�; �) on the right-handside (RHS), and (2.14), we obtain�C1(p)h�+p�2kr�kpLp + "kr�k2 + ~�k�k2 � �C2(p)h�+p�2rp�2kr�kLpkr�kLp + "kr�kkr�k+ K1kr�kk�k+K2k�kk�k+ �C2(p)h�+p�2krukp�1Lp kr�kLp ;where r = maxfkrukLp; krwkLpg.Using Lemma 2.2 and the Cauchy-Schwarz inequality on the RHS yields�h�+p�2C1(p)kr�kpLp + C"kr�k2 +Ck�k2 � �2C(p)"�1r2(p�2)h2�+2(p�2)+d( 2�pp )kr�k2Lp+ �2C(p)"�1h2�+2(p�2)+d( 2�pp )kruk2p�2Lp+ C"kr�k2 +Ckr�k2 :



6 T. ILIESCUSince ku1 + u2kpLp � C(p)(ku1kpLp + ku2kpLp), and r � CkrukLp at in�mum, the result now follows takingthe in�mum over w 2 Xh of the above inequality and using the triangle inequality.Remark 2.1. Lp stability of the L2 projection into �nite element spaces is proven in [3].Remark 2.2. Theorem 2.4 also proves the convergence of uh. Indeed, since � > 0; p � 2; and d = 2; 3,we get 2� + 2(p� 2) + d(d�p)p > 0.Remark 2.3. The convergence of uh is not uniform in ". However, for many practical choices of theparameters � and p, the scaling between " and h is reasonable. For example, in 2-D (d = 2), for p � 3and � � 1, we have 2� + (p � 2)�2� 2p� � 103 , and thus " > O(h 103 ) in order to get convergence of uh. In3-D (d = 3), for p � 3 and � � 1, we have 2� + (p � 2)�2� 2p� � 3, and thus " > O(h3) in order to getconvergence of uh.3. Error Analysis for the General Bounded AV Model. In this section we study the general,bounded AV model used for the discretization of the convection-dominated convection-di�usion problem(1.1){(1.2): �h�(a(j hruh j)ruh;rv) + "(ruh;rv) + (b � ruh; v) + (cuh; v) = (f; v) ; (3.1)8v 2 Xh;We start with a very general AV model (i.e. a very general function a(�)), and then we impose restrictionson it in order to obtain existence, uniqueness, and convergence for the solution of the discretized problem.In particular, we prove an a priori error bound for uh, the approximate solution of (3.1).Here � > 0 and � > 0 are parameters to be determined, and a(�) is a smooth, bounded, nonnegativefunction whose graph looks like that in Figure 1.1.The shape of a(�) makes the AV term �h�(a(j hruh j)ruh;rv) �t the description we gave in theintroduction: the amount of AV introduced in the discretization (3.1) is negligible in the smooth regions(where the gradient is small) and bounded where the gradient is large:�h�(j hruh jp�2 ruh;rv) � � h�(ruh;rv) ; where j ruh j� O(h�1) ;hp+��2(ruh;rv) ; where j ruh j� O(1) :We now seek conditions upon a(�) and �, su�cient for the existence, uniqueness, and convergence of uh.Lemma 3.1. (Existence of uh) Assume that b(�) and c(�) are smooth enough functions and that (2.6) issatis�ed.Then, provided a(�) � 0, there exists a solution to (3.1), and we have the following a priori bound:kuhk1 � C(f; "; h) := kfk�1"1+C22 + ~�1+C�21 h�2 ; (3.2)where C1; C2 are constants independent of h.Remark 3.1. Condition (2.6) is a common condition that ensures existence and uniqueness of u, thesolution of the continuous problem (2.1).Proof. Since dim(Xh) < 1, existence will follow from Schauder's �xed point theorem once we haveproven an a priori bound on any possible solution uh.Using (2.8), we get kruhk2 � kuhk211 +C22 and kuhk2 � kuhk211 +C�21 h�2 ; (3.3)



GENUINELY NONLINEAR MODELS 7where C1; C2 are constants independent of h.Letting v = uh in (3.1) yields�h�(a(j hruh j)ruh;ruh) + "(ruh;ruh) + (b � ruh; uh) + (cuh; uh) = (f; uh) : (3.4)Since a(�) is nonnegative and � > 0, we have�h�(a(j hruh j)ruh;ruh) � 0 :Integrating by parts, using (2.6) and the above inequality on the LHS, and the Cauchy-Schwarz inequalityon the RHS of (3.4), we have "kruhk2 + ~�kuhk2 � kfk�1kuhk1 :Using (3.3) in the above inequality, we get� "1 +C22 + ~�1 + C�21 h�2�kuhk21 � kfk�1kuhk1;which yields (3.2). Estimate (3.2) and Schauder's �xed point theorem prove existence of uh, the solution to(3.1).Remark 3.2. Notice that for the existence of uh, we did not impose any new conditions on a(�) (otherthan those already imposed in the beginning of the section) or on �. Thus, any function a(�) whose graphresembles the one in Figure 1.1 is admissible.The following proposition proves the uniqueness of uh, with a very general condition on a(�). Note thatusually the uniqueness is proven by means of monotonicity arguments. These arguments fail in this case,and we have to use nontrivial nonlinear variational analysis arguments [13] instead.Lemma 3.2. (Uniqueness of uh) Assume that the conditions in Lemma 2.2 are satis�ed and thata0(x) � 0 ; 8x � 0: (3.5)Then, there exists a unique solution uh to (3.1).Proof. Assume there are two solutions uh1 ; uh2 in Xh. Subtracting the two corresponding equations, weget �h�(a(j hruh1 j)ruh1 � a(j hruh2 j)ruh2 ;rv) + "(ruh1 �ruh2;rv)+(b � ruh1 � b � ruh2 ; v) + (cuh1 � cuh2 ; v) = 0 8v 2 Xh :Letting v := uh1 � uh2 2 Xh , integrating by parts, and using (2.6) in the above equation, we have�h�(a(j hruh1 j)ruh1 � a(j hruh2 j)ruh2 ;r(uh1 � uh2)) (3.6)+"kr(uh1 � uh2 )k2 + ~�k(uh1 � uh2)k2 � 0The �rst term in the above inequality can be rewritten as�h�h2 (a(j hruh1 j)hruh1 � a(j hruh2 j)hruh2; hr(uh1 � uh2)) : (3.7)Consider now the following functional: I : H1(
)! IRI(U ) := Z
A(j rU (x) j)dx ;



8 T. ILIESCUwhere A : [0;1)! IRA(x) = Z x0 ta(t)dt :Notice that dI(U; V ) = Z
A0(j rU j) rUj rU j � rV dx= Z
 a(j rU j)rU � rV dx;where dI(U; V ) is the Gâteaux derivative of I at U in the direction V.Letting U1 := hu1; U2 := hu2, and V := U1 � U2, (3.7) reads�h�h2 (dI(U1; V ) � dI(U2; V )) ;which, by the Fundamental Theorem of Calculus, is equal to�h�h2 Z 10 ddtdI(U2 + t(U1 � U2); V )dt= �h�h2 Z 10 ddt Z
 a(j r(U2 + t(U1 � U2)) j)r(U2 + t(U1 � U2)) � rV dxdt= �h�h2 Z 10 Z
 a0(j r(U2 + t(U1 � U2)) j)r(U2 + t(U1 � U2)) � rVj r(U2 + t(U1 � U2)) j r(U2 + t(U1 � U2)) � rV+ a(j r(U2 + t(U1 � U2)) j) j rV j2 dxdtSince a0(x) � 0 8x � 0 by (3.5), and a(x) � 0 8x � 0, the above expression is nonnegative. Thus, (3.7)is nonnegative; nonnegativity of (3.7) and (3.6) imply"kr(uh1 � uh2)k2 + ~�k(uh1 � uh2)k2 � 0 :Therefore, since " > 0; ~� � 0, and uh1 � uh2 2 Xh � H10(
), we getuh1 = uh2 :Remark 3.3. Note that condition (3.5) is satis�ed by any function a(�) whose graph resembles the onein Figure 1.1.3.1. A Priori Error Analysis. In this subsection we present the a priori error analysis for the ap-proximate solution uh. For a very general function a(�), this a priori error analysis is summarized in thefollowing theorem:Theorem 3.3. Assume that a(�) is a positive, increasing function and that b(�) and c(�) are continuouson �
. Further suppose a(x) � 1 ; 8x � 0 : (3.8)



GENUINELY NONLINEAR MODELS 9Then, we have the following a priori estimate:"8kr(u� uh)k2 + ~�4 k(u� uh)k2 � infw2Xh ��3"4 + K1~� � kr(w� u)k2 + �K2~� + ~�2�kw � uk2�+1" ��h�jjf jj�1" + ~�C21h2�2 ;where C1; C2;K1;K2 are constants independent of h, and ~� is the constant given by (2.6).Proof. Subtracting (3.1) from (2.1), and using the fact that Xh � X, we get��h�(a(j hruh j)ruh;rv) + "(r(u � uh);rv) + (b � r(u� uh) + c(u� uh); v) = 0 ;8v 2 Xh:Let w 2 Xh. Set e := u� uh, � = w� u, ' = w� uh 2 Xh, and notice that e = '� �. Therefore, the aboveequation reads"(r';rv) + (b � r'+ c'; v) = "(r�;rv) + (b � r� + c�; v) + �h�(a(h j ruh j)ruh;rv) :Setting v = ' yields"kr'k2 + (b � r'+ c'; ') = "(r�;r') + (b � r� + c�; ') + �h�(a(j hruh j)ruh;r') :Integrating by parts and using (2.6) on the LHS, and the Cauchy Schwarz inequality on the RHS, we have"kr'k2 + ~�k'k2 � "2kr�k2 + "2kr'k2 + 1~�kb � r�k2 + ~�4 k'k2 + 1~�kc�k2 + ~�4 k'k2+ 1" (�2h2�a(j hruh j)kruhk2 + "4kr'k2Notice that the functions b(�) and c(�) are continuous on �
 (by hypothesis) and therefore bounded. Usingthis remark and (3.8), we have"kr'k2 + ~�k'k2 � "2kr�k2 + "2kr'k2 + K1~� kr�k2 + ~�4 k'k2 + K2~� k�k2 + ~�4 k'k2+ 1"�2h2�kruhk2 + "4kr'k2; (3.9)where K1;K2 are constants independent of h. Using (2.8) and (3.5) yieldskruhk � kfk�1" + ~�C21h2 :Thus, (3.9) becomes"4kr'k2 + ~�2 k'k2 � "2kr�k2 + K1~� kr�k2 + K2~� k�k2 + 1" ��h�jjf jj�1"+ ~�C21h2�2 :By the triangle inequality, we get12 �"4kr('� �)k2 + ~�2 k('� �)k2� � 3"4 kr�k2 + K1~� kr�k2 +�K2~� + ~�2�k�k2 + 1" ��h� jjf jj�1"+ ~�C21h2�2 :



10 T. ILIESCUNotice that e = ' � � = u� uh does not depend on w; thus, taking the in�mum on w of both sides of theabove inequality, proves the theorem.Remark 3.4. The a priori error estimate in Theorem 3.3 gives convergence of the approximate solutionuh to the exact solution u. The convergence is not uniform in ". However, by choosing a(�) suitably, thediscretization can be made to be exponentially �tted in all transition regions. Thus, an attempt to proveuniform in " convergence would be legitimate in this case.Remark 3.5. The inequality (3.8) is satis�ed by any function whose graph resembles the one in Figure1.1, and allows us to introduce only O(h�) AV in the sharp transition regions.Summarizing the results in this section, for any parameters � � 0 and � � 0, and for any smoothfunction a(�) satisfying 0 � a(x) � 1 8x � 00 � a0(x) 8x � 0;we proved existence, uniqueness, and convergence for the solution uh of (3.1). Notice that, although ourresults hold true for a more general function a(�) satisfying the above relations, in practice we use a functionwhose graph resembles the one in Figure 1.1, introducing a negligible amount of AV in the smooth regions,and only O(h�) in the sharp transition regions.4. Numerical Experiments. In this section we present numerical tests for the SDFEM method, thep-Laplacian AV SGS method, and the bounded AV SGS method. All three methods are applied to twochallenging problems with sharp layers. These problems are catastrophically structurally unstable (smallperturbations in the data result in dramatic unphysical oscillations, overshooting, and undershooting in theapproximate solution), a characteristic feature of more general nonlinear ows (e.g., turbulent ows).The boundary value problem (1.1){(1.2) is solved on the unit square 
 = (0; 1)� (0; 1) by using a �niteelement discretization with conforming piecewise linears on a uniform mesh of isosceles right-angled trian-gles, with meshwidth h. However, the same qualitative results have been obtained when using conformingpiecewise quadratics. The nonlinear problems (2.7) and (3.1) were solved by using a Picard-type iterativeprocess (at each iteration we lagged the nonlinear term). All the matrices and the corresponding right-handsides were assembled by using a second-order quadrature rule, and the resulting linear systems were solvedby using the conjugate gradient squared (CGS) method [14].Example 1. This problem is a slight modi�cation of the one used as a benchmark in a study of non-conforming SDFEM [10] and has as the exact solution a circular blob (see Figure 4.1) with extremely sharplayers. We made the following parameter choices in (1.1){(1.2): " = 10�3; b = (3; 2); c = 2. The right-handside and the boundary conditions were chosen such thatu(x; y) = 12 + arctan[1000(r20 � (x� x0)2 � (y � y0)2)]� ;with x0 = y0 = 0:5 and r0 = 0:25, be the exact solution of (1.1){(1.2). Note that, even though our analysisconsiders the homogeneous problem (1.1){(1.2), the same analysis carries over in a straightforward way tothe nonhomogeneous case.First, we apply the usual SDFEM method to problem (1.1){(1.2) [18]:"(ruh;rv) + (b � ruh; v) + (cuh; v) + XT2�h �(�"�uh + b � ruh + cuh;b � rv)T = (4.1)(f; v) + XT2�h �(f;b � rv)T ; 8v 2 Xh;



GENUINELY NONLINEAR MODELS 11where � is a user-speci�ed parameter. In our calculations, we used � = h, which is probably the most popularchoice in SDFEM. Note also that, when using conforming linears, the Laplacian term �uh on the LHS ofthe above relation is zero on each element T .The graph (surface plot and contour lines) of the corresponding approximation uh is given in Figure 4.2.Note the poor solution quality: dramatic overshooting and undershooting, especially in the direction of theow.Next, we apply the p-Laplacian AV SGS method (2.7) to (1.1){(1.2). Here, we used the following valuesfor the user-speci�ed parameters: � = 10; � = 1; p = 3. The graph (surface plot and contour lines) ofthe corresponding approximation uh is given in Figure 4.3. As expected, the approximate solution given bythe p-Laplacian AV model is more accurate than the one given by the SDFEM method, since the formerintroduces a nonnegligible amount of AV only in the sharp transition layers, whereas the latter introducesthe same amount of AV everywhere. Speci�cally, the fact that the p-Laplacian AV model introduces AV ina selective way (only in the sharp transition regions) is reected in a dramatic reduction of the amount ofovershooting and undershooting and in a visible improvement in solution quality.The last model tested is the general, bounded AV SGS model (3.1). For the user-speci�ed parameterswe made the following choices: � = 1; � = 1; a(t) = �0:001 + 1=(1 + 999 � e�100�t). The choice of a(�)needs explanation. As mentioned at the end of Section 3, an \admissible" function a(�) should resemblethe \S-shaped" graph in Figure 1.1 and should also introduce a nonnegligible amount of AV only wherej ruh j� O(h�1). Thus, the user has to decide when exactly the gradient is \large," that is, for what valueof jhruhj the value of a(�) should become nonnegligible. For this test problem, our choice was motivated bythe parameter choice for the p-Laplacian AV term. For clarity, for the above parameter choices, we presentin Figure 4.4 the graph of a(�) against the graph of the corresponding term in the p-Laplacian AV term (i.e.,10 � jhruhj).The graph (surface plot and contour lines) of the approximation uh of the general, bounded AV model(3.1) is given in Figure 4.5. The solution quality is better than the one in Figure 4.3, in that the amountof overshooting and undershooting is visibly decreased, whereas the contour lines are much tighter. Thisincreased sharpness of the layers is more obvious if we count the number of elements inside the layer in thesurface plots: roughly two elements for the exact solution (Figure 4.1), four elements for the p-Laplacian AVSGS model (Figure 4.3), and two elements for the bounded AV SGS model (Figure 4.5). This improvementis due to the bounded amount of AV introduced by (3.1) in the sharp transition regions, just enough tospread the small scales on the resolvable mesh.Since we know the exact solution, we can make more precise the above discussion and calculate the normof the error in the three discretizations. In Table 4.1, for di�erent meshwidths (h = 1=16; h = 1=32; h =1=64; h = 1=128), we present the L2-norm of the error (denoted by jjEjjL2), the energy-norm of the error(denoted by jjjEjjj), the l2-norm of the undershoots (denoted by jjUjjl2), and the l2-norm of the overshoots(denoted by jjOjjl2). Here, the overshoots are considered the values larger than one and are calculated asthe di�erence from one, and the undershoots are considered the values less than zero and are calculated asthe di�erence from zero.The most important piece of information in Table 4.1 is that the L2-norm of the error for the twononlinear AV models is consistently better (except for h = 1=16, when the mesh is too coarse) than thecorresponding error for the SDFEM. This improvement is quite dramatic as we re�ne the mesh: for h = 1=128,the L2-norm of the error is decreased by three and four times, respectively. We have the same dramaticimprovement (one order of magnitude) in the l2-norm of the undershoots. The l2-norm of the overshoots andthe energy-norm of the error are also better for the two nonlinear AV models, even though not as dramatic.Comparing the two nonlinear AV models, we see that the bounded AV model is consistently better. Themost dramatic improvement is in the L2-norm of the error (roughly, by 35%).Example 2. This problem, known as the \skew-step" problem, is a slight modi�cation of the benchmark



12 T. ILIESCUused in [12] for the study of oscillation absorption FEM. It has steep internal and boundary layers, whichmake it numerically unstable. In (1.1){(1.2), we made the following parameter choices: " = 10�3; b(x; y) =(cos �(1 � cos � x); sin �(1 � sin � y)); � = 0:8; c = 0; f = 0: The homogeneous boundary conditions (1.2)were changed to u(x; y) = g(x; y) on @
, where g(x; y) = 1; if 12y � 5x � 0:3; g(x; y) = 0 otherwise. Notethat r � b = �1, so that condition (2.6) is satis�ed.First, as in Example 1, we apply the usual SDFEM method (4.1) to (1.1){(1.2), with � = h. Next, weapply the p-Laplacian AV SGS method (2.7) to (1.1){(1.2), with � = 0:1; � = 1; p = 3. Finally, we applythe bounded AV SGS model (3.1), with � = 0:3; � = 1; a(t) = �0:02 + 1=(1 + 49 � e�5:7�t). The parameterchoices for the two nonlinear AV methods have the same motivation as the corresponding ones in Example1. The numerical results corresponding to the three discretizations are summarized in Table 4.2. Fordi�erent meshwidths (h = 1=16; h = 1=32; h = 1=64; h = 1=128), Table 4.2 presents the l2-norm of theerror away from the layers (denoted by jjEjjl2), the l2-norm of the undershoots (denoted by jjUjjl2), and thel2-norm of the overshoots (denoted by jjOjjl2). The overshoots and undershoots are calculated the same wayas in Example 1. The error away from the layers is calculated as the di�erence from 1 on the subdomainy � x+ 0:15 and as the di�erence from 0 on the subdomain y � x� 0:15 and 0:15 � x � 0:9.The numerical results in Table 4.2 are consistent with the corresponding ones in Table 4.1. Indeed,the l2-norm of the overshoots and the l2-norm of the undershoots for the two nonlinear AV methods areconsistently better than the corresponding errors for the SDFEM: as we re�ne the mesh, the l2-norm of theovershoots is decreased by approximately three and four times. The l2-norm of the error away from thelayers is usually better for the two nonlinear AV methods as well, except for h = 1=16, when the mesh is toocoarse, and h = 1=128. However, since we do not know the exact solution for our test problem, we can onlymake rough approximations of the error. Comparing the two nonlinear AV models, we see that the boundedAV model is consistently better.
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Fig. 4.1. Example 1, the exact solution: surface plot and contour lines; h = 1=64.
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Fig. 4.2. Example 1, the usual SDFEM method: surface plot and contour lines; � = h; h = 1=64. Note the poor solutionquality (smearing, overshooting, and undershooting).
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Fig. 4.3. Example 1, the p-Laplacian AV SGS method: surface plot and contour lines; � = 10; � = 1; p = 3; h = 1=64:Note the dramatic improvement in solution quality over Figure 4.2 (much smaller overshooting and undershooting).
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Fig. 4.4. The graphs of a(jhruhj) and 10 � jhruhj; the horizontal axis represents j hruh j.
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Fig. 4.5. Example 1, the improved AV SGS method: surface plot and contour lines; � = 1; � = 1; a(t) = �0:001+1=(1+999 � e�100�t); h = 1=64: Note the visible improvement over Figure 4.3 (sharper layer, less undershooting).



GENUINELY NONLINEAR MODELS 15Table 4.1Example 1, norms of the errors for the three di�erent discretizations. \E" represents the error, \U" represents theundershoots, and \O" represents the overshoots.h Norm SDFEM p-Laplacian AV Bounded AV1=16 jjEjjL2 .297+0 .328+0 .249+0jjjEjjj .464+0 .496+0 .445+0jjUjjl2 .241+0 .164+0 .178+0jjOjjl2 .010+0 .000+0 .025+01=32 jjEjjL2 .231+0 .207+0 .161+0jjjEjjj .359+0 .353+0 .337+0jjUjjl2 .142+0 .503-1 .664-1jjOjjl2 .391-2 .000+0 .993-21=64 jjEjjL2 .234+0 .126+0 .901-1jjjEjjj .391+0 .375+0 .350+0jjUjjl2 .206+0 .354-1 .281-1jjOjjl2 .311-1 .194-1 .333-11=128 jjEjjL2 .225+0 .750-1 .511-1jjjEjjj .329+0 .297+0 .265+0jjUjjl2 .206+0 .177-1 .144-1jjOjjl2 .472-3 .000+0 .560-3Table 4.2Example 2, norms of the errors for the three di�erent discretizations. \E" represents the error away from the layers, \U"represents the undershoots, and \O" represents the overshoots.h Norm SDFEM p-Laplacian AV Bounded AV1=16 jjEjjl2 .117-1 .735-2 .138-1jjUjjl2 .269-1 .542-2 .126-1jjOjjl2 .787-2 .485-2 .576-21=32 jjEjjl2 .765-2 .368-2 .325-2jjUjjl2 .185-1 .139-1 .141-1jjOjjl2 .506-2 .199-2 .207-21=64 jjEjjl2 .171-2 .129-2 .100-2jjUjjl2 .444-2 .412-2 .374-2jjOjjl2 .174-2 .437-3 .434-31=128 jjEjjl2 .732-3 .883-3 .817-3jjUjjl2 .133-2 .964-3 .747-3jjOjjl2 .284-3 .551-4 .540-4
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