PETSC AND OVERTURE:
LESSONS LEARNED DEVELOPING AN INTERFACE
BETWEEN COMPONENTS *

Kristopher R. Buschelmdn

buschelm@mcs.anl.gov

William D. Gropp

gropp@mcs.anl.gov

Lois C. McInnes
curfman@mcs.anl.gov

Barry F. Smith

bsmith@mcs.anl.gov

Abstract

Keywords:

We consider two software packages that interact with eauér ats components:
Overture and PETSc. An interface between these two packamed be of
tremendous value to application developers in that Ovenuovides a simple
mechanism for generating the large, sparse systems of kogations that cor-
respond to discretizations of a PDE, and PETSc provides &ifolcollection
of methods for solving these systems. Two types of intesfare discussed: the
internal interface between components, and the extertefface for the appli-
cation developer. We compare three basic approaches togagthe internal
interface between Overture and PETSc, the final one of wisiehpeer-to-peer
model.

Components, Interface, PETSc, Overture, Peer-to-Pesalrtion

*This work was supported by the Mathematical, Informatiod @omputational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing ResedttB, Department of Energy, under Contract
W-31-109-Eng-38.

tAll four authors are affiliated with the Mathematics and Caiep Science Division, Argonne National
Laboratory, Argonne, IL, USA

2
1. INTRODUCTION

A complete application to numerically solve a partial diffietial equation
(PDE) and analyze the results typically involves: a medrarfor creating a
grid; a scheme for calculating spatial derivative apprations; a method for
time advancement, which may require use of linear algehran@s including
scalable linear and nonlinear equation solvers; anotheharésm for visual-
ization and analysis of the data; and, since the applicatiag be performed
on a parallel computer, routines for communicating dataveeh processors.
With our expectations of software rising as the capabdlitié computers in-
crease, writing a good implementation of any one of thedesteeguires sig-
nificant expertise. Indeed, the expectation that one pemane group, could
write an entire package for such a general-purpose toolrsagonable. To
create such an application, we must take advantage of treztesepof several
persons or groups, each focusing on one component of thapfplication. We
can then consider a framework in which these components edimied to-
gether. (In this paper, we shall use the terms “componerd”&amework”
in a general sense as opposed to the specific definitions dsrgeby the
Common Component Architecture Forum [1] and other orgaioias.)

Before creating such a framework, however, we must learnt wizkes a
good component. We can gain this insight by looking at susseand failures
of various projects that have attempted interaction betvgeéware packages.
In this paper, we shall consider two software packages tiatact in this
manner, Overture [5, 6] and the Portable Extensible To@kiScientific com-
putation, PETSc [2, 3, 4].

Overture is a collection of C++ classes that provide toots@ving PDES.
It contains a tool for generating composite grids (i.etslisf structured grids
that overlap) and a wide variety of operators of varying aacyfor computing
derivatives via finite difference, finite volume, and spakctmethods on these
grids. Overture is also extensible in that application tgwers can create their
own sets of operators. Furthermore, several equation rshibraries can be
used within Overture, and new equation solvers can be added.

PETSc is a scalable library for the solution of PDEs and edlgiroblems.
With PETSc, one can create complete applications, as onlet mvihin Over-
ture, but the emphasis has been on generating a collectiwwiars for linear
and nonlinear systems of equations as well as lower-le¥estructure for
managing the details of parallel programming.

An interface between these two packages could be of trenusneidue to
application developers in that Overture provides a simpetmanism for gen-
erating large, sparse systems of equations, and PETSdpsoaipowerful col-
lection of methods for solving these systems. From the Quereveloper’s
perspective, the obvious mechanism for this interfacedasaWETSc equation

Developing an Interface between Components3

solver class within Overture. The development of such adkastill ongoing,
but much can be learned about how to write useful componsntbberving
this work in progress.

Two types of interfaces shall be discussed: the internalfate between
components, and the external interface which the appdicadieveloper will
use. Three basic approaches toward developing the intetealace between
Overture and PETSc have been explored. The first approaohesve Over-
ture convert its native data structures into those that thertOre developers
expect to be appropriate for linear algebra purposes, amdquire any lin-
ear algebra solver to support these formats. The secondaesd® the linear
algebra solver (PETSc) to use the native Overture datatstescas vectors
and matrices. The third approach is to have both Overturdtentinear alge-
bra component work together to convert Overture’s nativa daucture into
whichever data structure the linear algebra componentmmgmnds. For the
external interface, one must balance simplicity with fldiip to allow the
user to develop high-performance applications withoudimegto learn new
interfaces for well-known tasks.

2. THE INTERNAL INTERFACE

When working with multiple software components, the priratibarrier to-
ward interaction is related to the data structures invalvidte best data struc-
ture for one particular task, and component, is not the bast structure for
another. Clearly, all components cannot be expected tdessaime data struc-
ture. An interface must be generated to determine the ttierabetween the
components at the level of the data structures. This irgerfa one that, if
properly implemented, is used by component developers sandti essential
for the application developer to use directly. In this smctithree approaches
toward this internal interface are discussed.

2.1 OVERTURE CONVERTS DATA STRUCTURES TO
“‘STANDARD” VARIETIES

The first approach is for Overture to require linear algebteess to support
specific matrix and vector data structures that are commangtinear alge-
bra toolkits. In particular, contiguous one-dimensionaags are used to store
vectors. For storing matrices, the compressed and uncesgiesparse row
formats as well as their column-based counterparts aremilyrsupported.
Overture provides a mechanism for the conversion into anabihnese spe-
cific data structures. These data structures are createdestrayed by Over-
ture, but since they are supported by other components tmsponents are
free to manipulate them as they see fit.

From PETSc’s perspective, this approach is acceptableeftiors but has
only limited benefit for matrices. In particular, PETSc implents a (sequen-
tial) sparse matrix, which is entirely owned by one processduplicated
across all processes), using the compressed sparse roatfoBut, if this
matrix is to be distributed across several processors,dtegiructure must be
changed rather dramatically to achieve high performanamile8ly, if a cer-
tain block structure is present in the matrix, PETSc prefebtocked variant
of the compressed sparse row format. The use of this blocagdnt allows
for many fewer cache misses and register loads, resultingistly superior
performance. Neither of these two matrix formats is disestipported by
Overture, so to accommodate these data structures, a semovetsion would
be required.

From the Overture developer’s perspective, there is onégymocedure for
data conversion for vectors. This is quite easy to develapraaintain. Ma-
trices are another story, however. Overture currently sapgour data struc-
tures. PETSc supports nine matrix formats currently, wathr fmore under
development, but only one of these formats is supported lartOre. In fact,
a draft of the Basic Linear Algebra Subprogram (BLAS) stadgaoposed 13
sparse data structures to be supported, including thogmded by Overture,
and only four which are supported by PETSc [7]. One could eix@werture
to provide routines for conversion into and out of each oféhadditional vari-
eties, but where would the list end? Furthermore, as newaoftpackages are
developed, new data structures with increasing complexgybound to arise.
To deal with this problem, PETSc allows additional formdisttare user de-
fined; the user can provide new data structures and overt@abasic PETSc
functions with appropriate implementations. How would @wee deal with
these additional types?

2.2. PETSC SUPPORTS NATIVE OVERTURE DATA
STRUCTURES

The presence of a user-defined type within PETSc suggestteeedt ap-
proach to the interface. The PETSc matrix and vector oersitcould sim-
ply be overloaded to use the data structures for vectors aidaes that are
defined by Overture. This approach has been used succggsfiititerface
PETSc with the Structured Adaptive Mesh Refinement Appbcat Infras-
tructure (SAMRAI) [9, 10], and other packages. It has theaatizge that there
is no performance overhead associated with copying elenfsitveen data
structures in terms of memory or CPU usage.

Two sources of difficulty are associated with this approdchwever. First,
the linear equation solvers within PETSc are primarily base Krylov sub-
space methods. In these methods, the most fundamentaltiopebatween

Developing an Interface between Components

matrices and vectors is the matrix-vector product. Unfmataly, this oper-
ation is far less efficient when implemented using data &iras that have
not been optimized for linear algebraic operations as has bene with the
PETSc data structures. The Overture data structuresuglheell optimized
for PDE discretization, are not optimized for linear algabroperations. As
a result, the cost of copying the data into a PETSc data ateicince per so-
lution of a linear system of equations is far less than theteead associated
with using the Overture data structures for the matrix-egroduct. This
alone would be sufficient for not choosing this approach,tbete is another
challenge facing this approach.

Overture recognizes two basic linear algebra classespngeahd matrices.
In PETSc however, there is a third basic class, precon@itionin order to
achieve high performance when solving the large, sparsalisystems of
equations generated by the discretization of PDEs withd&ryhethods, pre-
conditioners are essential. Since Overture has deleghtedréation of pre-
conditioners to the linear algebra component, if this agpinois to be used,
the mechanisms for interoperation of PETSc preconditmeth vectors and
matrices defined by non-PETSc data structures must be toders

To achieve high performance when solving systems of lingaiagons,
many of the PETSc preconditioners place certain functipnegéquirements
on matrix and vector data types. These attributes includalility to extract
the diagonal (block) elements of the matrix and to solveesystof equations
with the locally owned portion of the matrix. Furthermoreisiassumed that
one can obtain a pointer to a (locally owned) contiguous datay for each
vector type. Since the Overture data structures are nadstocally as a con-
tiguous array, the vector data must be copied into this fofaraise with many
of the PETSc preconditioners. As a result, if PETSc usersigeatheir own
storage formats for matrices and vectors, they often peothéir own precon-
ditioners. As this is not an option for the Overture devetppe return to the
concept of conversion between data structures.

2.3. PEER TO PEER INTERACTION

No developer can learn every possible data structure thdd & used for
matrix and vector storage and then provide all possible @i routines. As
a result, a two-step conversion process was used in eagigses of Overture.
However, since the Overture developer knows its data streicand the linear
algebra component has intimate familiarity with its owmhaits, the two pack-
ages should be able to cooperate and together carry outitlkers@mn process
in a more direct manner, despite the complexity of the examtgss involved.
To do so, we employ nontraditional approach.

The tradition in scientific computing software has been tihvgagroups of
developers together and have them discuss data strucnaestarfaces. The
intended result is a standard that other software packagesse; eventually,
high-performance implementations based upon these stidauld be de-
veloped and used by all. This is the model that was used wheeragng the
BLAS and LAPACK standards. In the realm of dense linear algethe re-
sulting implementations have enjoyed a great deal of sscdast this is not
the case for large, sparse systems generated from thetidiatiom of PDEs
as the sparse matrix standard has yet to be finalized. Fomtiney the current
draft of the BLAS Standard for sparse matrices does not fspiba underlying
implementation of the sparse matrix, leaving that decisiote author of the
particular BLAS implementation [8].

Instead of relying on the existence of a standard data sheica generic
converter can be created. To do so, one must remove the sgsiibnfor gen-
erating the matrix and vector data structure from Overtargl share it with
the linear algebra component. However, this linear algebraponent can-
not be expected to know how to properly traverse a data steithat it does
not know. A compromise must be found; each component can pected
to perform only the tasks it knows how to perform. This medra tluring
the conversion between the two data structures, Overtutgdwarovide two
services: size information and traversal path; and thatimdgebra compo-
nent would provide two additional services: new data stmgctllocation and
element definition.

In particular, Overture would provide generic linear algemformation
such as the global and local matrix dimensions and a boundh@mumber
of nonzero elements in each row of the matrix. This infororativould then
get passed to the equation solver component via a routitedcallocateM-
atrix. PETSc and other components would then provide a pétiplemen-
tation of AllocateMatrix that uses this information to gesite an empty matrix
data structure. Overture would also provide a mechaniswétking through
its data structures while making calls to another routirdled SetMatrixEle-
ment, and each component would implement this routine inrtbst suitable
manner. The implementation is quite simple in C++. Each ggjugolver sub-
class is derived from a base class that has the two requiretidas declared
as virtual.

This approach raises several issues related to the effjoidice conversion
process. The SetMatrixElement method would need to be alimsert an ele-
ment into any location in the matrix. This might require andigant amount of
alteration to the data structure or might involve commuinicebetween pro-
cessors. Clearly, some sort of aggregation process sheuwdtidwed, in which
case a SetMatrixRow could help. But, this would not be of fiska matrix
were stored in a column-based format. A generic SetMateixteints would

Developing an Interface between Components/

clearly be prefered. To allow for greater aggregation, tiragonent developer
might also employ a stash based approach toward the sett@henoent values.
In this approach, the elements initially get set into a pewstash (perhaps a
linked list), which would then get manipulated and conwiteo the final for-
mat. As a result, another virtual operation, Assemblykzealshould be added
to the base equation solver class to facilitate this sectapd s

This has introduced a second non-traditional charadteéithis conver-
sion process. In many linear algebra libraries, there isomeept of an invalid
matrix. That is to say, once a matrix is created, it can be.uBkd stash based
approach to setting elements in a matrix requires that thtivoa the case. By
setting a single element, the matrix data structure becaonvedid, since in-
formation about the matrix itself is located in the tempgrstash. The matrix
is then made valid by performing an AssemblyFinalize stégrafdditions to
the stash are complete. It would be possible to hide the @iphll to As-
semblyFinalize from the end user by placing this call witeach operation
that requires a valid matrix data structure, but there isralpe for such an
approach.

In PETSc, when adding elements to a matrix, a stash is used a2}
parallel matrix formats this provides one particularly mmant benefit, ele-
ments can be added in one process that are to be stored ad ffeetlocal
matrix in a different process. To allow the application deper to over-
lap the required communication with computation, PETSd¢des the pro-
cess into two stages: MatAssemblyBegin, which initiatesdbmmunication,
and MatAssemblyEnd which terminates communication antbpes the fi-
nal data structure assembly. If there were no concept of\alidhmatrix in
PETSc, or if this concept were hidden from the applicatiovetigper, the idle
time that occurs during these communication stages couldenased for use-
ful computation.

This mechanism is quite useful for achieving high perforogeand could be
incorporated not only by dividing the Assembly Finalizeoimvo pieces, but
by dividing the entire conversion process into two parts.triM&onversion-
Begin would contain allocation of memory for the matrix dstaucture in the
equation solver, and traversal of the Overture data streetthile setting each
element (or row/column) of the matrix, making the matrixal. MatrixCon-
versionEnd would assemble the valid matrix and perhapsgemome useful
debugging options to verify that the valid matrix was asdehiproperly.

3. THE EXTERNAL INTERFACE

Finally, we must determine how to appropriately encapsulla¢ interface
information to generate a well-defined minimum interfageetaas well as ad-
ditional convenience layers. The question to be addressedd of exposure:

8

How much is enough? Should an application developer be &géo know
the entire application-programming interface (API) focleandividual com-
ponent involved? That is to say, should an Overture user pected to know
all the details of how to use PETSc? Clearly, the answer idabthe same
question should be asked about a PETSc user. Furthermare/ddgeable
PETSc users should not feel as though they are restricted wdieg Overture
to generate their systems of equations, nor should they dpéreel to learn
a completely new API for the PETSc aspects of their appbcatiThe mini-
mum layer of interface must be found and adequately destrivhile other
convenience layers may be provided so that multiple APIsatneed to be
learned.

In this area, a “least common denominator” interface ma&agessense. An
Overture user with no experience with PETSc, or other egnatblvers, would
have access to a very basic set of commands: BuildMatriXxdBtHSANnd-
SolutionVector, and Solve. A common interface for selgctmarious linear
equation solvers such as GMRES and CG and preconditionebs asulLU
and Jacobi would provided, as well as mechanisms for setgttie different
data structure conversion options. But, this alone would lgeoss limitation
for expert users of PETSc who wish to use their own advancealtiemn solvers
and preconditioners built within PETSc.

Similarly, the Overture user is primarily interested in fimgla numerical
solution to a PDE subject to a certain discretization. Maegtrads for solving
time dependent PDEs do not require solving a system of liegaations but
do require solution of a nonlinear system of equations. Mamar algebra
components do not provide a mechanism for this, but PETSs doeould be
a great disservice to application developers if this addéi capability within
PETSc could not be exploited.

To achieve this end, the PETSc matrix and vector data stes@re public
members of the class PETScEquationSolver. In this manneg the Build-
Matrix and BuildRHSAndSolutionVector routines have bealed, these data
structures can be extracted, and the full PETSc API can ke wibout lim-
itation, if desired. Furthermore, an Overture-enhancedior of the PETSc
API for solving nonlinear systems has also been generatsidhaify this pro-
cess, which may be incorporated into a PETScNonlineartamgolver class
in future versions of the PETSc-Overture interface.

4. LESSONS LEARNED

From this work, we have identified various guidelines thabmponent de-
veloper should follow. For a component to be used, it mustaut with other
components. Common approaches to enable this interacianlbeen to man-
date adherence to a standard data structure or to providsingle data struc-

Developing an Interface between Components9

ture for all to use. For the solution of large, sparse systefifinear equations,
these approaches do not allow the user sufficient flexiliditgbtain high per-
formance. This limitation in turn discourages the use of temponent. One
must accept the fact that data structures as well as thathlgsrthat use those
data structures determine performance. To allow for theofisewide variety
of data structures, a data conversion process is require@dcdaversion pro-
cesses to be successful, both sides in the conversion proeed to cooperate.
An appropriate division of tasks and assignment of resjbditgiis essential.
In general, this division of tasks must allow each comportenrovide the
services and information that it can, and must not requiawedge beyond
the scope of the component. By specifying methods to be usgdat imple-
mentations, we allow component writers the freedom to imglet the highest
performance data structures for their specific task, witiptacing limitations
on the interaction with other components.

When making a component, two aspects to the interface eeatiiention:
the external interface detailing what it can accomplistd @re internal inter-
face to other components. It is easy to neglect the seconié Yduusing on
the first. But, doing so can make the component much less fawer

Ultimately the success of the component lies in the answen&oquestion:
Do people use it with other components?

Acknowledgments

We express our thanks for the invaluable assistance off32ditsly who helped us overcome
many of the technical problems associated with softwaegaation and software development.

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, Lcihhes,
S. Parker, and B. Smolinski. Toward a Common Component fachi
ture for High-Performance Parallel Computing. Rroceedings of High
Performance Distributed Computingages 115-124, 1999.

Satish Balay, William D. Gropp, Lois Curfman Mcinnes,daBarry F.
Smith. Efficient Management of Parallelism in Object OreshNumeri-
cal Software Libraries. In E. Arge, A. M. Bruaset, and H. mag&ngen,
editors,Modern Software Tools in Scientific Computipgges 163—-202.
Birkhauser Press, 1997.

Satish Balay, William D. Gropp, Lois Curfman Mclnnes,daBarry F.
Smith. PETSc 2.0 Users Manual. Technical Report ANL-95/REevi-
sion 2.0.29, Argonne National Laboratory, 2000.

Satish Balay, William D. Gropp, Lois Curfman Mclnnes,daBarry F.
Smith. PETSc Home Page. http://www.mcs.anl.gov/pets@020

D. Brown, W. Henshaw, and D. Quinlan. Overture: An Obj€rtented
Framework for Solving Partial Differential Equations on éapping
Grids. InProceedings of the SIAM Workshop on Object Oriented Meth-
ods for Inter-operable Scientific and Engineering Commytpages 215—
224. SIAM, 1999.

D. Brown, W. Henshaw, and D. Quinlan. Overture: Objecte@ted Tools
for Solving CFD and Combustion Problems in Complex Movingfae
etry. http://www.lInl.gov/CASC/Overture, 1999.

Basic Linear Algebra Subprograms Technical Forum. DRAMcument
for the Basic Linear Algebra Subprograms Standard, AuglistL297:
Sparse BLAS. http://www.netlib.org/utk/papers/spgrsg1997.

Basic Linear Algebra Subprograms Technical Forum. DRAMcument
for the Basic Linear Algebra Subprograms Standard, May 8002

11

12

Sparse BLAS. http://www.netlib.org/cgi-bin/checkoug4t/blast.pl,
2000.

[9] R. Hornung and S. Kohn. The Use of Object-Oriented DeSligtterns in
the SAMRAI Structured AMR Framework. IRroceedings of the SIAM
Workshop on Object Oriented Methods for Inter-operablee@dic and
Engineering Computingrages 235-244. SIAM, 1999.

[10] S. Kohn, X. Garaizar, R. Hornung, and S. Smith. SAMRAI®Page.
http://www.lInl.gov/ICASC/SAMRAI, 1999.

