
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439
AUTOMATIC DIFFERENTIATION TOOLS IN OPTIMIZATIONSOFTWAREJorge J. Mor�eMathematics and Computer Science DivisionPreprint ANL/MCS-P859-1100November 2000

This work was supported by the Mathematical, Information, and Computational SciencesDivision subprogram of the O�ce of Advanced Scienti�c Computing, U.S. Department ofEnergy, under Contract W-31-109-Eng-38, and by the the National Science Foundation(Information Technology Research) grant CCR-0082807.





Automatic Di�erentiation Tools in Optimization SoftwareJorge J. Mor�eAbstractWe discuss the role of automatic di�erentiation tools in optimization software. Weemphasize issues that are important to large-scale optimization and that have proveduseful in the installation of nonlinear solvers in the NEOS Server. Our discussion centerson the computation of the gradient and Hessian matrix for partially separable functionsand shows that the gradient and Hessian matrix can be computed with guaranteedbounds in time and memory requirements.1 IntroductionDespite advances in automatic di�erentiation algorithms and software, researchers disagreeon the value of incorporating automatic di�erentiation tools in optimization software. Thereare various reasons for this state of a�airs. An important reason seems to be that littlepublished experience exists on the e�ect of automatic di�erentiation tools on realistic prob-lems, and thus users worry that automatic di�erentiations tools are not applicable to theirproblems or are too expensive in terms of time or memory. Whatever the reasons, fewoptimization codes incorporate automatic di�erentiation tools.Without question, incorporating automatic di�erentiation tools into optimization is notonly useful but, in many cases, essential in order to promote the widespread use of state-of-the-art optimization software. For example, a Newton method for the solution of largebound-constrained problems min ff(x) : xl � x � xug ;where f : Rn 7! R and xl and xu de�ne the bounds on the variables, requires that the userprovide procedures for evaluating the function f(x) and also the gradientrf(x), the sparsitypattern of the Hessian matrix r2f(x), and the Hessian matrix r2f(x). The demands onthe user increase for the constrained optimization problemmin ff(x) : xl � x � xu; cl � c(x) � cug ;where c : Rn 7! Rm are the nonlinear constraints. In this case the user must also providethe sparsity pattern and the Jacobian matrix c0(x) of the constraints. In some cases theuser may even be asked to provide the Hessian matrix of the LagrangianL(x; u) = f(x) + hu; c(x)i (1.1)Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue,Argonne, Illinois 60439 (more@mcs.anl.gov). This work was supported by the Mathematical, Information,and Computational Sciences Division subprogram of the O�ce of Advanced Scienti�c Computing, U.S.Department of Energy, under Contract W-31-109-Eng-38, and by the the National Science Foundation(Information Technology Research) grant CCR-0082807.1



of the optimization problem. The time and e�ort required to obtain this information andverify their correctness can be large even for simple problems. Clearly, any help in simpli-fying this e�ort would promote the use of the software.In spite of the advantages o�ered by automatic di�erentiation tools, relatively little ef-fort has been made to interface optimization software with automatic di�erentiation tools.Dixon [16, 15] was an early proponent of the integration of automatic di�erentiation withoptimization, but to our knowledge Liu and Tits [24] were the �rst to provide interfacesbetween a general nonlinear constrained optimization solver (FSQP) and automatic di�er-entiation tools (ADIFOR).Modeling languages for optimization (for example, AMPL [3] and GAMS [18]) pro-vide environments for solving optimization problems that deserve emulation. These envi-ronments package the ability to calculate derivatives, together with state-of-the-art opti-mization solvers and a language that facilitates modeling, to yield an extremely attractiveproblem-solving environment.The NEOS Server for Optimization [25] is another problem-solving environment thatintegrates automatic di�erentiation tools and state-of-the-art optimization solvers. Userschoose a solver and submit problems via the Web, email (neos@mcs.anl.gov), or a Java-enabled submission tool. When a submission arrives, NEOS parses the submission data andrelays that data to a computer associated with the solver. Once results are obtained, theyare sent to NEOS, which returns the results to the user. Submissions speci�ed in Fortranare processed by ADIFOR [6, 7], while C submissions are handled by ADOL-C [21]. Sincethe initial release in 1995, the NEOS Server has continued to add nonlinear optimizationsolvers with an emphasis on large-scale problems, and the current version contains morethan a dozen di�erent nonlinear optimization solvers.Users of a typical computing environment would like to solve optimization problemswhile only requiring that the user provide a speci�cation of the problem; all other quantitiesrequired by the software (for example, gradients, Hessians, and sparsity patterns) would begenerated automatically. Optimization modeling languages and the NEOS Server providethis ability, but as noted above, users of nonlinear optimization solvers are usually asked toprovide derivative information.Our goal in this paper is to discuss techniques for using automatic di�erentiation toolsin large-scale optimization software. We highlight issues that are relevant to solvers in theNEOS Server. For recent work on the interface between automatic di�erentiation tools andlarge-scale solvers, see [1, 23]. We pay particular attention to the computation of second-order (Hessian) information since there is evidence that the use of second-order informationis crucial to the solution of large-scale problems. The main concern is the cost of obtainingsecond-order information. See [2, 19, 20] for related work.We note that at present most optimization software for large-scale problems use only�rst-order derivatives. Indeed, of the nonlinear solvers available in the NEOS Server, onlyLANCELOT, LOQO, and TRON accept second-order information. We expect this situationto change, however, as automatic di�erentiation tools improve and provide second-orderinformation with the same reliability and e�ciency as are currently available for �rst-orderinformation. 2



2 Partially Separable FunctionsWe consider the computation of the gradient and Hessian matrix of a partially separablefunction, that is, a function f : Rn 7! R of the formf(x) = mXk=1 fk(x); (2.1)where the component functions fk : Rn 7! R are such that the extended functionfE(x) = 0B@ f1(x)...fm(x) 1CAhas a sparse Jacobian matrix. Our techniques are geared to the solution of large-scaleoptimization problems. For an extensive treatment of techniques for computing deriva-tives of general and partially separable functions with automatic di�erentiation tools, werecommend the recent book by Griewank [20].Partially separable functions were introduced by Griewank and Toint [22]. They showed,in particular, that f : Rn 7! R is partially separable if and only if the Hessian matrixr2f(x) is sparse. Partially separable functions also arise in systems of nonlinear equationsand nonlinear least squares problems. For example, if each component of the mappingr : Rn 7! Rm is partially separable, thenf(x) = 12kr(x)k2is also partially separable. As another example, consider the constrained optimizationproblem min ff(x) : xl � x � xu; cl � c(x) � cug ;where c : Rn 7! Rm speci�es the constraints. For this problem, the Lagrangian functionL(�; u) de�ned by (1.1) is partially separable if f and all the components of the mappingc are partially separable. For speci�c examples note that the functions f and c in theparameter estimation and optimal control optimization problems in the COPS [17] collectionare partially separable.We are interested in computing the gradient and the Hessian of a partially separablefunction with guaranteed bounds in terms of both computing time and memory require-ments. We require that the computing time be bounded by a multiple of the computingtime of the function, that is,Tfrf(x)g � 
T;G Tff(x)g; Tfr2f(x)g � 
T;H Tff(x)g; (2.2)for constants 
T;G and 
T;H , where Tf�g is computing time. We also require thatMfrf(x)g � 
M;GMff(x)g; Mfr2f(x)g � 
M;H Mff(x)g (2.3)for constants 
M;G and 
M;H , where Mf�g is memory.3



These are important requirements for large-scale problems. In particular, if the constantsin these expressions are small and independent of the structure of the extended function fE ,then the computational requirements of an iteration of Newton's method are comparablewith those of a limited-memory Newton's method.The constants in (2.2) and (2.3) can be bounded in terms of a measure of the sparsityof the extended function. We use �M , where�M � maxf�ig;and �i is the number of nonzeros in the ith row of fE 0(x). We can also view �M as thelargest number of variables in any of the component functions.Decompositions (2.1) with the number m of element functions of order n, and with �Msmall and independent of n, are preferred. Since the number of nonzeros in the Hessianr2f(x) is no more than m�M , decompositions with these properties are guaranteed to havesparse Hessian matrices. Discretizations of parameter estimation and optimal control prob-lems, for example, have these properties because in these problems each element functionrepresents the contributions from an interval or an element in the discretization.One of the aims of this paper is to present numerical evidence that we can compute thegradient rf(x) and the Hessian matrix r2f(x) of a partially separable function with
T;G � �1�M ; 
T;H � �2�2M ; (2.4)where �1 and �2 are constants of modest size and independent of fE . We normalize 
T;G by�M because the techniques in Section 3 require at least �M functions evaluations to estimatethe gradient. Similarly, the number of gradient evaluations needed to estimate the Hessianmatrix by the techniques in Section 4 is at least �M . Thus, these techniques require at least�2M function evaluations to estimate the Hessian matrix.3 Computing GradientsWe now outline the techniques that we use for computing the gradients of partially separablefunctions. For additional information on the techniques in this section, see [5, 8].Computing the gradient of a partially separable function so that the bounds (2.2) and(2.3) are satis�ed is based on the observation, due to Andreas Griewank, that if f : Rn ! Ris partially separable, then f(x) = fE(x)Te;where e 2 Rm is the vector of all ones, and hencerf(x) = fE 0(x)Te: (3.1)We can then compute the gradient by computing the Jacobian matrix fE 0(x).At �rst sight the approach based on (3.1) does not look promising, since we need tocompute a Jacobian matrix and then obtain the gradient from a matrix-vector product.However, the key observation is that the Jacobian matrix is sparse, while the gradient isdense. Thus, we can use sparse techniques for the computation of the extended Jacobian.4



We could also use the reverse approach of automatic di�erentiation to compute thegradient of f . The reverse approach works directly on f and does not require the partialseparability structure of f . Moreover, for the reverse approach, (2.2) holds with 
T;G smalland independent of �M . Theoretically 
T;G � 5, but practical implementations may notsatisfy this bound. However, the memory requirements of the reverse approach dependon the number of oating point operations needed to compute f , and thus (2.3) can beviolated. A careful comparison between the reverse approach and the techniques describedbelow would be of interest.In this section we consider two methods for computing the gradient of a partially sep-arable function via (3.1). In the compressed AD approach, automatic di�erentiation toolsare used to compute a compressed form of the Jacobian matrix of the extended functionfE , while in the sparse AD approach, automatic di�erentiation tools are used to computea sparse representation of the Jacobian matrix of the extended function.In the compressed AD approach we assume that the sparsity pattern of the Jacobianmatrix fE 0(x) is known. Given the sparsity pattern, we partition the columns of the Jacobianmatrix into groups of structurally orthogonal columns, that is, columns that do not havea nonzero in the same row position. Given a partitioning of the columns into p groupsof structurally orthogonal columns, we determine the Jacobian matrix by computing thecompressed Jacobian matrix fE 0(x)V , where V 2 Rn�p. There is a column of V for eachgroup, and vi;j 6= 0 only if the ith column of fE 0(x) is in the j th group. Software for thispartitioning problem [11] de�nes the groups with an array ngrp that sets the group for eachcolumn.The extended Jacobian can be determined from the compressed Jacobian matrix fE 0(x)Vby noting that if column j is in group k, thenhei; fE 0(x)V eki = vi;j@i;jfE(x):Thus @i;jfE(x) can be recovered directly from the compressed Jacobian matrix.We note that for many sparsity patterns, the number of groups p needed to determineA 2 Rm�n with a partitioning of the columns is small and independent of n. In all casesthere is a lower bound of p � �M . We also know [13] that if a matrix A can be permutedto a matrix with bandwidth band(A), then p � band(A).The sparse AD approach uses a sparse data representation, usually in conjunction withdynamic memory allocation, to carry out all intermediate derivative computations. Atpresent, the SparsLinC library in ADIFOR [7] is the only automatic di�erentiation toolwith this capability. The main advantage of the sparse AD approach over the compressedAD approach is that no knowledge of the sparsity pattern is required. On the other hand,the sparse AD approach is almost always slower, and can be signi�cantly slower on vectormachines.In an optimization setting, a hybrid approach [9] is the best approach. With this strat-egy, the sparse AD approach is used to obtain the sparsity pattern of the Jacobian matrixof the extended function at the starting point. See Section 4 for additional information ontechniques for computing the sparsity pattern of the extended function. Once the sparsitypattern is determined, the compressed AD approach is used on all other iterations. The5



hybrid approach is currently the best approach to compute gradients of partially separablefunctions, and is used in all solvers installed on the NEOS Server.We conclude this section with some recent results on using the sparse AD approach tocompute the gradients of partially separable functions drawn from the MINPACK-2 [4] collec-tion of test problems. We selected ten problems; the �rst �ve problems are �nite elementformulations of variational problems, while the last �ve problems are systems of nonlin-ear equations derived from collocation or di�erence formulations of systems of di�erentialequations.Table 3.1 provides the value of �M for the ten problems in our performance results. Foreach of the problems we used three values of n, usually n 2 f1=4; 1; 4g � 104, to observethe trend in performance as the number of variables increases. The results were essentiallyindependent of the number of variables, so our results are indicative of the performancethat can be expected in large-scale problems.Table 3.1: Data for MINPACK-2 test problemspjb msa odc ssc gl2 fic sfd ier sfi fdc�M 5 4 4 4 5 9 14 17 5 13We want to show that the bounds (2.4) for 
T;G holds for these problems. For theseresults we used the sparse approach to compute the Jacobian matrix fE 0(x) of the extendedfunction, and then computed the gradient of f with (3.1). For each problem we computedthe ratio �1, where T frf(x)g = �1 �M maxTff(x)g:Table 3.2 presents the quartiles for �1 obtained on a Pentium 3 (500 MHz clock, 128 MBof memory) with the Linux operating system.Table 3.2: Quartiles for �1 on the MINPACK-2 problemsmin q1 q2 q3 max1.3 2.8 4.5 5.3 7.8The results in Table 3.2 show that the bound (2.4) for 
T;G holds for theMINPACK-2 problems,with �1 small.These results are consistent with the results in [5], where it was shown that �1 2 [3; 15]on a SPARC-10 for another set of test problems drawn from the MINPACK-2 collection. Notethat in [5] the ratio �1 was computed with �M replaced by the number of columns p in thematrix V . Since p � �M , the ratios in Table 3.2 would decrease if we replaced �M by p. Theadvantage of using �M is that the ratio �1 is then dependent only on the structure of thefunction. 6



4 Computing Hessian MatricesWe have already shown how automatic di�erentiation tools can be used to compute thegradient of a partially separable function. We now discuss the tools that are needed tocompute the Hessian of a partially separable so that the requirements (2.2) on computingtime and (2.3) on memory are satis�ed.The techniques that we propose require the sparsity pattern of the Hessian matrixand that the Hessian-vector products r2f(x)v be available. In our numerical results weapproximate the Hessian-vector product with a di�erence of gradient values, but in futurework we expect to compute Hessian-vector products with ADIFOR.We now show how to compute the sparsity pattern of the Hessian matrix from thesparsity pattern of fE 0(x). We de�ne the sparsity pattern of a matrix-valued mappingA : Rn 7! Rn�n in a neighborhood N(x0) of a point x0 byS fA(x0)g � �(i; j) : ai;j(x) 6� 0; x 2 N(x0)�: (4.1)We are interested in the sparsity pattern of the extended Jacobian and the Hessian matrixof a partially separable function f : Rn 7! R in a region D of the formD = fx 2 Rn : xl � x � xug :Given x 2 D, we evaluate the sparsity pattern S �fE 0(x)	 by computing fE 0(�x0), where �x0is a random, small perturbation of x0, for example,�x0 = (1 + ")x0 + "; j"j 2 [10�6; 10�4]:Then we can reliably let S �fE 0(x)	 be the set of (i; j) such that @i;jfE(�x0) 6= 0. We shouldnot obtain the sparsity pattern of the Jacobian matrix by evaluating fE 0 at the startingpoint x0 of the optimization process because this point is invariably special, and thus thesparsity pattern of the Jacobian matrix is unlikely to be representative.The technique that we have outlined for determining the sparsity pattern is used bythe solvers in the NEOS Server and has proved to be quite reliable. The sign of " must bechosen so that �x0 2 D, and special care must be taken to handle the case when xl and xuagree in some component.Given the sparsity pattern of the Jacobian matrix of the extended function, we determinethe sparsity pattern for the Hessian r2f(x) of the partially separable function f viaS �r2f(x)	 � S �fE 0(x)TfE 0(x)	 : (4.2)Note that (4.2) is valid only in terms of the de�nition (4.1) for a sparsity pattern. Forexample, if f : R2 7! R is de�ned by f(x) = �(�1�2)for a function � such that �0(0) 6= 0, then @1;2f(0) 6= 0, but @1f(0) = @2f(0) = 0. However,(4.2) holds because @2f(x) 6� 0 and @1f(x) 6� 0 in a neighborhood of the origin.7



In most cases equality holds in (4.2). This happens, in particular, if f does not dependlinearly on the variables, and m[k=1S �r2fk(x)	 � S �r2f(x)	 : (4.3)If f depends linearly on some variables, say,f(x) = �1 + �(�2; : : : ; �n);then equality does not hold in (4.2). Assumption (4.3) implies that there is no cancellationin the computation of the Hessian r2f(x). This assumption can fail in some cases, forexample, when f1 � �f2, but holds in most cases.Since we are able to estimate the sparsity pattern of the Hessian matrix via (4.2), wecould use the compressed AD approach described in Section 3 to compute the Hessian matrixfrom a compressed Hessian r2f(x)V . However, these techniques ignore the symmetry ofthe Hessian matrix and thus may require an unnecessarily large number of columns p in thematrix V . For example, an arrowhead matrix requires p = n if symmetry is ignored, butp = 2 otherwise.Powell and Toint [26] were the �rst to show that symmetry can be used to reduce thenumber p of columns in the matrix V . They proposed two methods for determining asymmetric matrix A from a compressed matrix AV . In the direct method the unknownsin A are determined directly from the elements in the compressed matrix AV . In thismethod unknowns are determined independently of each other. In the substitution methodthe unknowns are determined in a given order, either directly or as a linear combination ofelements that have been previously determined.These de�nitions of direct and substitution methods are precise but do not readily yieldalgorithms for determining symmetric matrices. Coleman and Mor�e [14] and Coleman andCai [10] extended [26] by interpreting the problem of determining symmetric matrices interms of special graph coloring problems. This work led to new algorithms and a deeperunderstanding of the estimation problem.Software for the symmetric graph coloring problem is available [12] for both direct andsubstitution methods. Numerical results in [14] suggest that a direct method yields a 20%improvement over methods that disregard symmetry, and that the substitution methodyields about a 30% reduction over the direct method.We use Algorithm 4.1 to compute the Hessian matrix from a user-supplied extendedfunction fE . This algorithm uses static memory allocation so that it is �rst necessary todetermine the number of nonzeros in fE 0(x0) by computing fE 0(x0) by rows, but not storingthe entries. Once this is done, we allocate space for fE 0(x0) and compute fE 0(x0) andthe sparsity pattern. Another interesting aspect of Algorithm 4.1 is that we compute thenumber of nonzeros in fE 0(x0)TfE 0(x0) directly from the sparsity pattern of fE 0(x0). Inview of (4.2), we then have an accurate idea of the amount of memory needed to store theHessian matrix. The �nal step is to compute the Hessian matrix from the the compressedHessian matrix r2f(x0)V by either a direct or a substitution method.8



� Evaluate fE(x0) and obtain m = sizefE(x0).� Compute nnzffE 0(x0)g.� Allocate space for fE 0(x0).� Compute the sparsity pattern SffE 0(x0)g.� Compute nnzffE 0(x0)TfE 0(x0)g.� Allocate space for r2f(x0)� Compute r2f(x0) from the compressed Hessian matrix r2f(x0)V .Algorithm 4.1: Computing the Hessian matrix for a partially separable function.We consider both direct and substitution methods to determine the Hessian matrix fromthe compressed Hessian. In both cases we are interested in the ratio �2, whereT �r2f(x)	 = �2�2MTff(x)g;since this provides a measure of the cost of evaluating the Hessian matrix relative to thecost of the function. The �2 quartiles for both direct and substitution methods on theMINPACK-2 problems used in Section 3 appear in Table 4.1.Table 4.1: Quartiles for �2 on MINPACK-2 problemsMethod min q1 q2 q3 maxDirect 1.6 5.1 11.2 15.2 46.4Subsitution 1.5 4.1 9.0 12.5 30.2Direct and substitution methods usually require more than �M gradient evaluations todetermine the Hessian matrix, and thus the increase in the value of �2 relative to �1 inTable 3.2 was expected. Still, it is reassuring that the median value of �2 is reasonablysmall. The largest values of �2 are due to one of the problems; if this problem is eliminated,then the maximal value drops by at least a factor of two. In general, problems with thelongest computing times yield the smallest values of �2 since these problems tend to maskthe overhead in the automatic di�erentiation tools and in determining the Hessian matrix.Moreover, these results are based on using a gradient evaluation that relies on sparse au-tomatic di�erentiation tools; the use of the hybrid approach mentioned in Section 3 shouldreduce �2 substantially.AcknowledgmentsPaul Hovland merits special mention for sharing his considerable knowledge of automaticdi�erentiation tools. Liz Dolan used a preliminary implementation of the techniques in thispaper to install TRON on the NEOS Server, and in the process sharpened these techniques.Gail Pieper provided the �nal touches on the paper with her careful editing.9



References[1] J. Abate, S. Benson, L. Grignon, P. Hovland, L. McInnes, and B. Norris,Integrating automatic di�erentiation with object-oriented toolkits for high-performancescienti�c computing, in Automatic Di�erentiation: From Simulation to Optimization,2000.[2] J. Abate, C. Bischof, A. Carle, and L. Roh, Algorithms and design for a second-order automatic di�erentiation module, in International Symposium on Symbolic andAlgebraic Computing (ISSAC), SIAM, 1997, pp. 149{155.[3] AMPL. See http://www.ampl.com/.[4] B. M. Averick and J. J. Mor�e, User guide for the MINPACK-2 test problem col-lection, Technical Memorandum ANL/MCS-TM-157, Argonne National Laboratory,Argonne, Illinois, 1991. Also issued as Preprint 91-101 of the Army High PerformanceComputing Research Center at the University of Minnesota.[5] C. Bischof, A. Bouaricha, P. Khademi, and J. J. Mor�e, Computing gradientsin large-scale optimization using automatic di�erentiation, INFORMS J. Computing,9 (1997), pp. 185{194.[6] C. Bischof, A. Carle, P. Khademi, and A. Mauer, ADIFOR 2.0: Automaticdi�erentiation of Fortran 77 programs, IEEE Computational Science & Engineering, 3(1996), pp. 18{32.[7] C. Bischof, A. Carle, P. Khademi, A. Mauer, and P. Hovland, ADIFOR 2.0user's guide (Revision C), Technical Report ANL/MCS-TM-192, Argonne NationalLaboratory, Argonne, Illinois, 1995.[8] C. Bischof, P. Khademi, A. Bouaricha, and A. Carle, E�cient computationof gradients and Jacobians by dynamic exploitation of sparsity in automatic di�erenti-ation, Optim. Methods Software, 7 (1996), pp. 1{39.[9] A. Bouaricha and J. J. Mor�e, Impact of partial separability on large-scale opti-mization, Comp. Optim. Appl., 7 (1997), pp. 27{40.[10] T. F. Coleman and J.-Y. Cai, The cyclic coloring problem and estimation of sparseHessian amtrices, SIAM J. Alg. Disc. Meth., 7 (1986), pp. 221{235.[11] T. F. Coleman, B. S. Garbow, and J. J. Mor�e, Software for estimating sparseJacobian matrices, ACM Trans. Math. Software, 10 (1984), pp. 329{345.[12] , Software for estimating sparse Hessian matrices, ACM Trans. Math. Software,11 (1985), pp. 363{377.[13] T. F. Coleman and J. J. Mor�e, Estimation of sparse Jacobian matrices and graphcoloring problems, SIAM J. Numer. Anal., 20 (1983), pp. 187{209.10



[14] , Estimation of sparse Hessian matrices and graph coloring problems, Math. Pro-gramming, 28 (1984), pp. 243{270.[15] L. C. W. Dixon, On the impact of automatic di�erentiation on the relative perfor-mance of parallel truncated Newton and variable metric algorithms, SIAM J. Optim.,1 (1991), pp. 475{486.[16] L. C. W. Dixon, Use of automatic di�erentiation for calculating Hessians and New-ton steps, in Automatic Di�erentiation of Algorithms: Theory, Implementation, andApplication, A. Griewank and G. F. Corliss, eds., SIAM, Philadelphia, Penn., 1991,pp. 114{125.[17] E. D. Dolan and J. J. Mor�e, Benchmarking optimization software with COPS,Technical Memorandum ANL/MCS-TM-246, Argonne National Laboratory, Argonne,Illinois, 2000.[18] GAMS. See http://www.gams.com/.[19] R. Giering and T. Kaminski, On the performance of derivative code generated byTAMC, manuscript, FastOpt, Hamburg, Germany, 2000.[20] A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Dif-ferentiation, SIAM, 2000.[21] A. Griewank, D. Juedes, and J. Utke, ADOL-C: A package for the automatic dif-ferentiation of algorithms written in C/C++, ACM Trans. Math. Software, 22 (1996),pp. 131{167.[22] A. Griewank and P. L. Toint, On the unconstrained optimization of partially sepa-rable functions, in Nonlinear Optimization 1981, M. J. D. Powell, ed., Academic Press,1982.[23] P. D. Hovland, D. E. Keyes, L. C. McInnes, and W. Samyono, Using au-tomatic di�erentiation for second-order methods in PDE-constrained optimization, inAutomatic Di�erentiation: From Simulation to Optimization, 2000.[24] M. D. Liu and A. L. Tits, User's guide for ADIFFSQP Version 0.9: A utility pro-gram that allows the user of the FFSQP constrained nonlinear optimization routines toconveniently invoke the computational di�erentiation preprocessor ADIFOR 2.0, tech-nical report, University of Maryland, Systems Research Center, College Park, MD,USA, 1997.[25] NEOS Server for Optimization Problems. See http://neos.mcs.anl.gov/.[26] M. J. D. Powell and P. L. Toint, On the estimation of sparse Hessian matrices,SIAM J. Numer. Anal., 16 (1979), pp. 1060{1074.11


