
Preprint ANL�MCS�P��������

ON SOLVING MATHEMATICAL PROGRAMS WITH
COMPLEMENTARITY CONSTRAINTS AS NONLINEAR

PROGRAMS

MIHAI ANITESCU�

Abstract� We investigate the possibility of solving mathematical programs with complemen�
tarity constraints �MPCCs� using algorithms and procedures of smooth nonlinear programming�
Although MPCCs do not satisfy a constraint quali�cation� we establish su�cient conditions for their
Lagrange multiplier set to be nonempty� MPCCs that have nonempty Lagrange multiplier sets and
that satisfy the quadratic growth condition can be approached by the elastic mode with a bounded
penalty parameter� In this context� the elastic mode transforms MPCC into a nonlinear program
with additional variables that has an isolated stationary point and local minimum at the solution
of the original problem� which in turn makes it approachable by sequential quadratic programming
algorithms� We also prove that a modi�ed version of the elastic mode exhibits global convergence to
C�stationary points when applied to the optimization of parametric mixed P variational inequalities�
The robustness of the elastic mode when applied to MPCCs is demonstrated by several numerical
examples�

�� Introduction� Complementarity constraints can be used to model numerous
economics or engineering applications ���� ���� Solving optimization problems with
complementarity constraints may prove di	cult for classical nonlinear optimization�
however� given that� at a solution x�� such problems cannot satisfy a constraint quali

�cation ����� As a result� algorithms based on the linearization of the feasible set� such
as sequential quadratic programming �SQP
 algorithms� may fail because feasibility
of the linearization can no longer be guaranteed in a neighborhood of the solution
�����

Several methods have been recently proposed to accommodate such problems�
For example� a nondi�erentiable penalty term in the objective function can be used
to replace the complementarity constraints ����� while maintaining the same solution
set� Although the new problem may now satisfy the constraint quali�cation the non

di�erentiability of the objective function is an obstacle to the e	cient computation
of an optimal point� Another method is the disjunctive nonlinear programming �dis

junctive NLP
 approach ����� though this may lead to a large number of subcases
to account for the alternatives involving degenerate complementarity constraints� If
all constraint functions� with the exception of the complementarity constraints� are
linear� then e	cient active set approaches can be de�ned� if the linear independence
constraint quali�cation holds ����� Still other approaches have been de�ned for prob

lems whose complementarity constraints originate in equilibrium conditions �����

A nonsmooth approach has been proposed in ���� for MPCCs in which the un

derlying complementarity constraints originate in a variational inequality with strong
regularity properties� A bundle trust
region algorithm is de�ned in which each ele

ment of the bundle is generated from the generalized gradient of the reduced objective

� Thackeray �	
� Department of Mathematics� University of Pittsburgh� Pittsburgh� PA 
��
	
�anitescu�math�pitt�edu�� This work was supported by the Mathematical� Information� and Com�
putational Sciences Division subprogram of the O�ce of Advanced Scienti�c Computing� U�S� De�
partment of Energy� under Contract W��
�
	��Eng���� This work was also supported by award
DMS�����	�
 of the National Science Foundation�






function� The key step is to produce an element of the generalized gradient ���� Equa

tions �����
� �����
�� which may be quite costly for general cases at points where there
are a substantial number of degenerate complementarity constraints�

In this work we investigate the possibility of solving MPCCs by applying cer

tain SQP algorithms to their nonlinear programming formulation� This endeavor is
important because it allows one to extend the considerable body of analytical and
computational expertise of smooth nonlinear programming to this new class of prob

lems� The advantage of such an approach over disjunctive programming� for example�
is that it considers simultaneously all the alternatives involving degenerate comple

mentarity constraints� The disadvantage is that the description of the constraint set
is considerably less well behaved�

Recognizing that the potential infeasibility of the subproblems with linearized
constraints may prevent normal termination of SQP algorithms� we discuss their use
in conjunction with the elastic mode ����� The elastic mode is a standard technique of
approaching infeasible subproblems by relaxing the constraints and introducing a dif

ferentiable penalty term in the objective function� To show that such an approach can
accommodate a large class of MPCCs� we use the framework from ���� to determine
su	cient conditions for MPCCs to have nonempty Lagrange multiplier sets�

As in ����� the �rst
 and second
order optimality properties of an MPCC are
compared with the similar properties of two nonlinear programs that involve no com

plementarity constraints and may thus satisfy a constraint quali�cation� Here� how

ever� we consider the optimality properties of an MPCC formulated as a nonlinear
program with di�erentiable data� In ���� MPCC is equivalently described with the
complementarity constraints replaced by an equality involving the nondi�erentiable
function minfx�� x�g� The two formulations will ultimately have similar properties�
but the smooth description is important in anticipation of the use of a standard non

linear programming algorithm to solve MPCCs�

The elastic mode approach we present here is di�erent from other nonlinear pro

gramming approaches for MPCC in the following important respect� Virtually all
smooth nonlinear programming approaches currently described in the literature for
�nding a solution x� of MPCC consist of transforming it into another nonlinear pro

gram depending on a parameter p� MPCC�p
 and then �nding the solution xp of the
modi�ed problem ���� ��� ���� The problem MPCC�p
 will have enough constraint
regularity for xp to be found reasonably e	ciently� The solution x� is then obtained
in the limit as p � �� and xp �� x� for any p� The program MPCC��
 is unde�ned�
or does not satisfy a constraint quali�cation �if the parameter is a penalty parameter
c� the same observation is valid by choosing p � �

c

�

For the elastic mode� under conditions to be speci�ed in the body of this work�
MPCC is transformed into a problem MPCC�c
 that satis�es a constraint quali�ca

tion and has x� as a local solution for all c su	ciently large but �nite� So MPCC is
transformed by a �nite procedure in a nonlinear program with the same solution that
satis�es a constraint quali�cation� which does not happen for the other approaches�
To our knowledge� the developments presented here are the �rst systematic approach
of this type that is valid for a generic instance of mathematical programs with com

plementarity constrains�

The paper is structured as follows� In the remainder of Section � we review the
relevant nonlinear programming concepts� In Section � we discuss su	cient condi

tions for MPCC to have a nonempty Lagrange multiplier set� in spite of not satisfying
a constraint quali�cation at any point� This allows us to argue in Section � that

�



the elastic mode applied to an instance of the MPCC class will retrieve a local so

lution of the problem for a �nite value of the penalty parameter� a point which is
supported by several numerical examples� In Section � we show that an adaptive
elastic mode approach can be guaranteed to retrieve a feasible C
stationary point
of an optimization problem whose complementarity constraints originate in a mixed
P variational inequality� To achieve this global convergence result we will allow the
penalty parameter to grow to �� if necessary�

���� Optimality Conditions for General Nonlinear Programming� We
review the optimality conditions for a general nonlinear program

min
x

�f �x
 subject to �g�x
 � �� �h�x
 � ������


Here �g � Rn �Rm� �h � Rn �Rr � We assume that �f � �g� and �h are twice continuously
di�erentiable�

In this work we will denote quantities connected to nonlinear programs such as
����
 by the superscript�� since f � g� and h will later denote the objective value and
constraints of MPCC�

We call x a stationary point of ����
 if the Fritz
John condition holds� There exist
multipliers � �� �� � ����� ���� � � � � ��m�r
 � Rm�r�� � such that

rxL�x� ��
 � �� �h�x
 � �� ��i � �� �gi�x
 � �� for i � �� �� � � ��m�
mX
i��

��i�gi�x
 � ��

����

Here L is the Lagrangian function

L�x� ��
 � ��� �f �x
 �
mX
i��

��i�gi�x
 �
rX

j��

��m�j
�hj�x
�����


A local solution x� of ����
 is a stationary point ����� We introduce the sets of
generalized Lagrange multipliers

�g�x
 �
n
� �� �� � Rm�r�� j �� satis�es ����
 at x

o
�����


�g
��x
 �

n
�� � �g�x
 j ��� � �

o
�����


The active set at a stationary point x is

�A�x
 � fi � f�� �� � � � �mg j �gi�x
 � �g �����


The inactive set at x is the complement of �A�x
�
�Ac�x
 � f�� �� � � � �mg� �A�x
�����


With this notation� the complementarity condition from ����
�
Pm

i��
��igi�x
 � ��

becomes �� �Ac�x� � ��

If certain regularity conditions hold at a stationary point x �discussed below
�
there exist �� � ����� ���� � � � � ��m�r
 � Rm�r that satisfy the Karush
Kuhn
Tucker
�KKT
 conditions ��� �� ����

rx
�f �x
 �

Pm

i�� ��irx�gi�x
 �
Pr

j�� ��m�jrx
�hj�x
 � �� �h�x
 � ��

��i � �� �gi�x
 � �� ��i�gi�x
 � �� for i � �� �� � � � �m�
����


�



In this case� �� are referred to as the Lagrange multipliers� and x is called a Karush

Kuhn
Tucker �KKT
 point� We denote the set of Lagrange multipliers by

��x
 �
�
�� � Rm�r j �� satis�es ����
 at x

�
�����


A simple inspection of the de�nitions of ��x
 and �g
��x
 reveals that

�� � ��x
� ��� ��
 � �g
��x
�

Also� because of the �rst
order homogeneity of the conditions ����
� and from ����
�
it immediately follows that

��x
 �� � � �g
��x
 �� � � 	�� � �g�x
� such that ��� �� �������


The regularity condition� or constraint quali�cation� ensures that a linear approx

imation of the feasible set in the neighborhood of a stationary point x captures the
geometry of the feasible set� The regularity condition that we will use at times at
a stationary point x is the Mangasarian
Fromovitz constraint quali�cation �MFCQ

���� ����

�MFCQ


�� rx
�hj�x
� j � �� �� � � � � r� are linearly independent and

�� 	p �� � such that rx
�hj�x
T p � �� j � �� �� � � � � r

and rx�gi�x
Tp � �� i � �A�x
�

It is well known ���� that MFCQ is equivalent to the fact that the set ��x
 of Lagrange
multipliers of ����
 is not empty and bounded at a stationary point x of ����
� Note
that ��x
 is certainly polyhedral in any case�

It is useful to extend this constraint quali�cation for points that are not stationary
or even feasible� We say that the Mangasarian
Fromovitz constraint quali�cation
holds at a possibly infeasible point x of ����
 if MFCQ holds at x where the active set
is now de�ned as

�A�x
 � fi � f�� �� � � � �mg j �gi�x
 � �g ������


We call x a generalized �possibly infeasible
 Fritz
John point if

	� �� �� � Rm�r � ��i � �� i � �� �� � � � �m such thatP
i� �A�x� ��irx�gi�x
 �

Pr

j�� ��m�jrx
�hj�x
 � ��

�����


By the alternative theorem�

�����
 holds � MFCQ does not hold at x������


Another condition that we will use on occasion is the strict Mangasarian

Fromovitz constraint quali�cation �SMFCQ
� We say that this condition is satis�ed
by ����
 at a KKT point x if

�SMFCQ

�
 MFCQ is satis�ed at x and

�
 the Lagrange multiplier set ��x
 contains exactly one element�

�



The critical cone at a stationary point x is ���� ���

C�x
 �
n
u � Rn j rx

�hj�x
Tu � �� j � �� �� � � � � r�

rx�gi�x
Tu � �� i � �A�x
� rx
�f �x
Tu � �

o
�

�����


We now review the conditions for a point x� to be a solution of ����
� The
second
order necessary conditions for x� to be a local minimum are that �g�x�
 �� �
and ����


u � C�x�
� 	��� � �g�x�
� such that uTr�
xxL�x�� ���
u � �������


The second
order su	cient conditions for x� to be a local minimum are that
�g�x�
 �� � and ����


u � C�x�
� u �� �� 	��� � �g�x�
� such that uTr�
xxL�x�� ���
u � �������


���� Notation� For a mapping q � Rn �Rl� we de�ne

q��x
 �

�
BBB�

maxfq��x
� �g
maxfq��x
� �g

���
maxfql�x
� �g

�
CCCA and q��x
 �

�
BBB�

maxf�q��x
� �g
maxf�q��x
� �g

���
maxf�ql�x
� �g

�
CCCA �

With this de�nition� it immediately follows that q�x
 � q��x
 � q��x
 and that
jqi�x
j � q�i �x
 � q�i �x
� i � �� �� � � � � l�

We denote the L� nondi�erentiable penalty function by

�P��x
 � max
n
�g��x
� �g��x
� �����gm�x
�

����h��x
��� � ����h��x
��� � � � � � ����hr�x
��� � �o ������


We also de�ne the L� penalty function as

�P��x
 �
mX
i��

�g�i �x
 �
rX

j��

����hj�x
��� ������


It is immediate that

� � �P��x
 � �P��x
 � �m � r
 �P��x
�

An obvious consequence of �����
 and �����
 is that x is a feasible point of ����
 if
and only if �P��x
 � �P��x
 � ��

We say that the nonlinear program ����
 satis�es the quadratic growth condition
with a parameter �� at x� if

max
n
�f �x
� �f �x�
� �P��x


o
� �� jjx� x�jj������


holds for some �� � � and all x in a neighborhood of x�� The quadratic growth
condition is equivalent to the second
order su	cient conditions �����
 ��� �� ��� ��� ����

�



For the case in which MFCQ holds at a solution x� of ����
� the quadratic growth
condition at x� is equivalent to ���

�f �x
� �f �x�
 � �� �f jjx� x�jj������


for some �� �f � � and all x feasible in a neighborhood of x��

If �F � Rn �Rm is a di�erentiable mapping we denote its Jacobian by

rx
�F �x
 �

�
����	

� �F�
�x�

� �F�
�x�

� � � � �Fm
�x�

� �F�
�x�

� �F�
�x�

� � � � �Fm
�x�

���
���

���
���

� �F�
�xn

� �F�
�xn

� � � � �Fm
�xn



����� �

We use this convention since now gradients of scalar valued maps become column
vectors� which is the usual setup in the optimization literature� For vector valued
maps �F � this de�nition of the Jacobian is the transpose of the one used� for example�
in �����

���� Exact Penalty Conditions for Degenerate Nonlinear Program�
ming� We now assume that at a solution x� of the nonlinear program ����
 the
following conditions hold�

�� The Lagrange multiplier set at x�� ��x�
� is not empty�
�� The quadratic growth condition �����
 is satis�ed�

Then there exists a neighborhood V�x�
� some penalty parameters �c� � �� �c� � �
and some growth parameters �� � � and �� � � such that ��� Theorem ������


x � V�x�
� ���x
 � �f�x
 � �c� �P��x
 � �f �x�
 � �� jjx� x�jj�
� ���x

�
 � �� jjx� x�jj� ������



x � V�x�
� ���x
 � �f �x
 � �c� �P��x
 � �f �x�
 � �� jjx� x�jj�
� ���x�
 � �� jjx� x�jj� ������


Therefore� x� becomes an unconstrained strict local minimumfor the nondi�erentiable
functions ���x
 and ���x
� Such functions are called nondi�erentiable exact merit
functions for the nonlinear program ����
 ��� �� ���� If �����
 and �����
 are satis�ed
then we say that the functions ���x
 and ���x
 satisfy a quadratic growth condition
near x��

The minimal values of �c� and �c� that result in �����
 and �����
 holding depend on
both �rst and second
order properties of the nonlinear program ����
 at x�� However�
in order for x� to be a stationary point for ���x
 and ���x
 the parameters �c� and
�c� must satisfy ��� �� ���

�c� � min
���	�x��

jj��jj�� �c� � min
���	�x��

jj��jj�������


Therefore the size of the penalty parameters �c� and �c� that makes the corresponding
merit function exact is connected to the minimal size of the Lagrange multipliers of
����
�






���� Nonlinear programming algorithms with global convergence safe�
guards� A desirable feature of nonlinear programming algorithms is that any of their
accumulation points should be meaningful for the original nonlinear program ����
�
Since one possible outcome is that the nonlinear program is infeasible� one should
de�ne meaningful in this context�

We construct the following nonlinear program which is associated with the con

straints of ����


minx�u�v�w eTmu� eTr �v �w

subject to �gi�x
 � ui� i � �� �� � � � �m�

�vj � �hj�x
 � wj � j � �� �� � � � � r
u� v� w � ��

�����


where em and er are vectors whose entries are all ones� of dimension m and r� re

spectively� The nonlinear program �����
 is closely related to the unconstrained min

imization of �P��x
� and is also related to the feasibility restoration phase of the Filter
SQP algorithm ����� The nonlinear program �����
 satis�es MFCQ everywhere and
has two types of stationary points�

�� Stationary points �x� u� v� w
 at which the objective function is �� The com

ponent x of such stationary points is a feasible point for ����
�

�� Stationary points �x� u� v� w
 at which the objective function is not �� The
component x of such points is an infeasible point for ����
� From the sta

tionarity conditions ����
 applied to �����
 it is immediate that such points
x must be infeasible Fritz
John points �����
 of ����
 at which� from �����
�
MFCQ cannot hold�

If� while attempting to solve ����
� an algorithm encounters a point of the second
type then� based on �rst
order information alone� the objective function of �����
 and
�P��x
 cannot be locally reduced�

We say that an algorithm is globally convergent to a local stationary point of
����
� or that it has a global convergence safeguard� if any accumulation point of the
algorithm is either

A
 an infeasible Fritz
John point �MFCQ does not hold
�
B
 a feasible Fritz
John point �MFCQ does not hold
� or
C
 a KKT point�

An algorithm with this property is FilterSQP ���� ���� The algorithm does not
use a merit function� and when a linearized version of ����
 becomes infeasible� the
algorithm enters a feasibility restoration phase which is based on a nonlinear program
that is essentially �����
 ����� If the algorithm does not exit the feasibility restoration
phase� then it will end up in either case A
 or B
�

���� Formulation of Mathematical Programs with Complementarity
Constraints� We use notation similar to the one in ���� to de�ne a mathematical
program with complementarity constraints �MPCC
�

�MPCC
 minx f�x

subject to gi�x
 � �� i � �� �� � � � � ni

hj�x
 � �� j � �� �� � � � � ne
Fk���x
 � �� k � �� �� � � � � nc
Fk���x
 � �� k � �� �� � � � � nc

Fk���x
Fk���x
 � �� k � �� �� � � � � nc�

�



In this work we assume that the data of �MPCC
 �f�x
� h�x
� g�x
 and Fk�i�x
� for
k � �� �� � � � � nc� and i � �� �
 are twice continuously di�erentiable�

For a given k� the constraints Fk���x
 � �� Fk���x
 � � imply that Fk���x
Fk���x

� � is equivalent to Fk���x
Fk���x
 � �� The constraints Fk���x
Fk���x
 � � are
therefore called complementarity constraints and are active at any feasible point of
�MPCC
�

Since we cannot have Fk���x
 � �� Fk���x
 � �� and Fk���x
Fk���x
 � � simulta

neously� it follows that MFCQ cannot hold at any feasible point x ���� ����

���� MPCC Notation� If i is one of �� � we de�ne i � � � i � �� Therefore
i � � 
 i � �� and i � � 
 i � �� The complementarity constraints can thus be
written as Fk�i�x
Fk�i�x
 � �� k � �� �� � � �� nc� We use the notation

F �x
 � �F���x
� F���x
� F���x
� F���x
� � � � � Fnc��x
� Fnc��x


T
������


The active set of the inequality constraints gi�x
 � �� � � i � m� at a feasible point
x is

A�x
 � fi � f�� �� � � � � nig j gi�x
 � �g ������


We use the following notation�

I�x
 �
n
�k� i
 � f�� �� � � � � ncg � f�� �g j Fk�i�x
 � �

o
������


I�x
 � f�k� i
 � f�� �� � � �� ncg � f�� �g j Fk�i�x
 � �g ������


D�x
 �
n
�k� i
 � f�� �� � � � � ncg � f�� �g j Fk�i�x
 � F

k�i
�x
 � �

o
������


Ic�x
 � f�� �� � � � � ncg � f�� �g � I�x
������


K�x
 � fk � f�� �� � � �� ncg j �k� �
 � I�x
 or �k� �
 � I�x
g ������


K�x
 � fk � f�� �� � � �� ncg j Fk���x
 � Fk���x
 � �g � f�� �� � � � � ncg � K�x
������


There are two cases for the constraints involved in the complementarity con

straints at a feasible point x�

�� Fk���x
�Fk���x
 � �� In this case there is an i�k
 � f�� �g such that Fk�i�k� � �
and Fk�i�k� � �� Therefore� with our notation k � K�x
� �k� i�k

 � I�x

and �k� i�k

 � I�x
� We call Fk���x
� Fk���x
 a nondegenerate �or strictly
complementary
 pair� In the rest of the paper i�k
 and i�k
 will have the
meaning de�ned in this paragraph� whenever k � K�

�� Fk���x
 � Fk���x
 � �� or Fk���x
 � Fk���x
 � �� In this case k � K�x
�
�k� �
 � D�x
 and �k� �
 � D�x
� We call Fk���x
� Fk���x
 a degenerate pair�

Therefore I�x
 contains the indices of the active constraints at which strict com

plementarity occurs� whereas D�x
 contains the indices of the constraints that are
degenerate at x from the point of view of complementarity� The set K�x
 represents
the indices k at which strict complementarity occurs and K�x
 the indices k at which
complementarity degeneracy occurs�

Since we are interested in the behavior of �MPCC
 at a solution point x�� we
may avoid the dependence of these index sets on x� Therefore we denote I � I�x�
�
D � D�x�
� K � K�x�
� and A � A�x�
� At x� we denote by nI and nD the number
of elements in I and D� respectively�

For a set of pairs J � f�� �� � � � � ncg � f�� �g we denote by FJ a map whose
components are Fk�i with �k� i
 � J �

�



��	� Associated Nonlinear Programs at x�� In this section we associate two
nonlinear programs to �MPCC
� This will help with characterizing the stationarity
conditions for �MPCC
� The notation is from �����

At x� we associate the relaxed nonlinear program �RNLP
 to �MPCC
�

�RNLP
 minx f�x

subject to gi�x
 � �� i � �� �� � � � � ni

hj�x
 � �� j � �� �� � � �� ne
FD�x
 � ��
FI�x
 � ��

As it can be seen� �RNLP
 is obtained from �MPCC
 by dropping the elements from
F �x
 that are inactive at x�� as well as the complementarity constraints� but enforcing
the complements of inactive constraints as equality constraints�

We also associate at x� the tightened nonlinear program �TNLP
� in which all
the complementarity constraints in �MPCC
 are dropped and all active constraints
at x� connected to complementarity constraints are replaced by equality constraints�

�TNLP
 minx f�x

subject to gi�x
 � �� i � �� �� � � � � ni

hj�x
 � �� j � �� �� � � � � ne
FD�x
 � ��
FI�x
 � ��

We immediately see that� near x�� �TNLP
 is a more constrained problem than
�MPCC
� which in turn is more constrained than �RNLP
� and all three programs
have the same objective function� As a result� if x� is a local solution of �RNLP
�
then it must be a local solution of �MPCC
� Also� if x� is a local solution of �MPCC
�
then it will be a local solution of �TNLP
� None of the reverse implications hold in
general for either local solutions or stationary points�

However� if �TNLP
 satis�es SMFCQ at a solution x� of �MPCC
� then x� is a
Karush
Kuhn
Tucker point of �TNLP
 and �RNLP
 �����

�� The Lagrange Multiplier Set of 
MPCC�� In this section we analyze the
relationship between the relevant mathematical objects of �MPCC
 and �RNLP
 at a
solution x�� The �RNLP
 formulation does not immediately violate MFCQ� the way
�MPCC
 does� By establishing a correspondence between the Lagrange multiplier
sets of �RNLP
 and �MPCC
 we ensure that� under certain conditions� �MPCC

has a nonempty Lagrange multiplier set� although it does not satisfy a constraint
quali�cation�

���� Critical Cones� In this section we compare the critical cones of �MPCC

and �RNLP
� The active sets play a structural part in the de�nition of the critical
cones� We have that
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We distinguish two cases�
�� If k � K� we have that Fk���x

�
 � Fk���x
�
 � �� and� as a result�

k � K 
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Therefore� if k � K� the constraint Fk���x
Fk���x
 � �� which is active at x��
has no bearing on the de�nition �����
 of the critical cone �it would just add
the constraint � � �
�

�



�� If k � K� then there exist an i�k
 such that �k� i�k

 � I and �k� i�k

 � I�
The constraints Fk�i�k��x
 � � and Fk�i�k��x
Fk�i�k��x
 � � are active at x��
whereas Fk�i�k��x

�
 � � and the corresponding constraint is inactive at x��
Therefore we have that
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and thus the constraints connected to k that enter the de�nition of the critical
cone �����
 are
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for u an element of the critical cone�
Using the de�nition �����
 we get that the critical cone of �MPCC
 is

CMPCC � fu � Rn j rxf�x�
Tu � ��
rxgi�x
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We use �����
 again to determine the critical cone of the relaxed nonlinear pro

gram� It is immediate from the de�nition of the index sets I�K� and D that all
constraints involving components of F �x
 are active at x� for �RNLP
� It thus follows
that the critical cone of �RNLP
 is

CRNLP � fu � Rn j rxf�x�
Tu � ��
rxgi�x�
Tu � �� i � A
rxhj�x�
Tu � �� j � �� �� � � � � ne
rxFk���x
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Tu � �� k � K
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Lemma ���� CMPCC � CRNLP�
Proof The conclusion is immediate� by noting that all the constraints involving

the critical cones are the same with the exception of the ones involving indices k for
which �k� i�k

 � I� For these k� from the de�nition �����
 of the index sets it follows
that Fk�i�k��x

�
 � �� We therefore have that

rxFk�i�k��x
�
Tu � � and F

k�i�k��x
�
rxFk�i�k��x

�
Tu � ��
rxFk�i�k��x

�
Tu � � and rxFk�i�k��x
�
Tu � ��

rxFk�i�k��x
�
Tu � ��

Since the remaining constraints of �RNLP
 and �MPCC
 are the same this equivalence
proves the claim� �

���� Generalized Lagrange Multipliers� The set of generalized Lagrange
multipliers of �MPCC
 at x� is a set of multiples

� �� �	� 
� �� �� �
 � R�Rni �Rne �R�nc �Rnc


	



that satis�es the Fritz
John conditions ����
� Since � are the multipliers corresponding
to the components of F �x
� we will index them by elements in ��� �� � � �� nc
 � ��� �
�
The Fritz
John conditions for �MPCC
 at x� are that x� is feasible for �MPCC
 and
that
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From our de�nition of the index sets it follows that FI�x
�
 � � and gAc�x�
 � ��

Therefore� from the complementarity conditions ����
� it follows that �I � � and

Ac � ��

We can also determine the relations satis�ed by the generalized Lagrange multi

pliers of �RNLP
� As discussed above� the index sets that de�ne �RNLP
 have been
chosen such that all constraints involving components of F �x
 are active� Therefore
the generalized Lagrange multipliers are

� �� ��	� �
� ��� ��� ��
 � R �Rni �Rne �RnD �RnI

that satisfy the Fritz
John conditions�
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Here �� is a vector that is indexed by elements of D� and �� is indexed by elements of
I�

������ Other types of stationary points of 
MPCC�� In the analysis of
�MPCC
� other useful types of stationarity at a solution x� can be de�ned� based on
the interpretation of �MPCC
 as a problem with nonsmooth constraints ���� ����

� C�stationary points of �MPCC
 are points x� that� together with an appropri

ate set of multipliers �	� 
� �� �� �
� with 	 � �� satisfy ����
 and ����
� except
for the conditions �k�� � � and �k�� � �� for k � K� which are now relaxed
to �k���k�� � �� for k � K�







� M�stationary points of �MPCC
 are points x� that� together with an appro

priate set of multipliers �	� 
� �� �� �
� with 	 � �� satisfy ����
 and ����
�
except for the conditions �k�� � � and �k�� � �� for k � K� which are now
relaxed to

for k � K� either �k�� � �� �k�� � �� or �k���k�� � ��

� B�stationary points of �MPCC
 are points x� that� together with an appro

priate set of multipliers �	� 
� �� �� �
� with 	 � �� satisfy ����
 and ����
� The
last type of points coincide with the notion of a KKT point�

���� Relations between the generalized Lagrange Multiplier Sets of

MPCC� and 
RNLP�� Take �� � ��	� �
� ��� ��� ��
 � �g

RNLP
� We construct from

the generalized multiplier �� of �RNLP
 a generalized multiplier �� of �MPCC
� We
de�ne the following types of components of ���

�� Components that correspond to the objective function or the inequality con

straints gi�x
 � � and equality constraints hj�x
 � �

	� � �	� 
� � �
� �� � �������


�� Components connected to the pairwise degenerate constraints� For these we
have k � K and �k� �
� �k� �
 � D or Fk���x

�
 � Fk���x
�
 � �� We de�ne

��k�i � ��k�i� �k� i
 � D� ��k � �� k � K������


Similar to the equation ����
 we have that
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�� Components connected to pairwise strictly complementary constraints� In this
case we have k � K� �k� i�k

 � I� and �k� i�k

 � I� Therefore Fk�i�k��x

�
 � ��

Fk�i�k��x
�
 � �� and we thus de�ne the multipliers
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It is immediate from these de�nitions that ��k�i�k� � � and ��k � �� Since� for �xed k�

��k�i�k� is the only multiplier of �RNLP
 involved in de�nition �����
� we obtain using
����
 that
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After we compare the terms that� following �����
 and �����
� are equal in ����

and ����
� we get that �� � �	�� 
�� ��� ��� ��
 satis�es ����
 as well as ����
� By
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tracing the de�nition of �� we also have that �� �� � 
 �� �� �� Therefore �� is a
generalized Lagrange multiplier of �MPCC
 or

�� � �	�� 
�� ��� ��� ��
 � �g

MPCC
������


where 	� � �	 from ����
�
Theorem ���� If the set of Lagrange multipliers of �RNLP� is not empty� then

the set of Lagrange multipliers of �MPCC� is not empty�
Proof Since the Lagrange multiplier set of �RNLP
 is not empty� we can choose

�� � ��� �
� ��� ��� ��
 � �g

�� RNLP
� From �����
 it follows that �� � ��� 
�� ��� ��� ��
 �

�g

��MPCC
is a generalized multiplier of �MPCC
� From �����
 it follows that the La


grange multiplier set of �MPCC
 is not empty� �
Corollary ���� Assume that �TNLP� satis�es SMFCQ at a solution x� of

�MPCC�� i�e�
�� rxFD�x�
� rxFI�x�
� and rxh�x�
 are linearly independent�
�� There exists p �� � such that rxF

T
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p �
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p � �� for i � A�x�
�
	� The Lagrange multiplier set of �TNLP� at x� has a unique element�

Then the Lagrange multiplier set of �MPCC� is not empty�
Proof From ���� Theorem ��� since �TNLP
 satis�es SMFCQ at x�� the Lagrange

multiplier set of �RNLP
 is not empty� Following Theorem ���� we obtain that the
Lagrange multiplier set of �MPCC
 is not empty� which proves the claim� �

Unfortunately� the reverse statement of Theorem ��� does not hold in the absence
of SMFCQ� as is shown in ����� Indeed� consider the following example�

miny�x y � x
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y � x � �
y�y � x
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The unique minimumof this problem is ��� �
� However� if we construct the associated
�RNLP
 formulation� we obtain

miny�x y � x
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The point �y� �
 is feasible for y � � for the now
linear program �����
� Thus �����
 is
unbounded and cannot have ��� �
 as a stationary point� Therefore Theorem ��� can

not be applied� since the Lagrange multiplier set of �����
 is empty� In this situation
�TNLP
 associated to �����
 of �����
 does not satisfy either MFCQ or SMFCQ�

���� An alternative formulation� We also investigate the following equivalent
formulation of �MPCC
� where the complementarity constraints have been replaced
by one constraint�
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At a feasible point of the above program� we must have that
Pnc

k��Fk���x
Fk���x
 � �
and the equivalence between �����
 and �MPCC
 follows immediately� This formula

tion is of interest in computations because it has less constraints than �MPCC
�

Lemma ���� If the Lagrange multiplier set of �MPCC� is not empty� there exists
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MPCC
such that �k � ��� k � �� �� � � �� nc�
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If k corresponds to strict complementarity constraints� k � K� we have that
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Since �� satis�es ����
 and ����
� it follows from the preceding equation and �����
� in
a manner similar to the proof of the Theorem ���� that �� � ��� 
�� ��� ��� ��
 satis�es
����
 and ����
 and thus �� � �g

MPCC
for any � � d � Rnc where �� � �� � d� The

conclusion is immediate� since we can always choose a vector d � � such that ��k � ����
k � �� �� � � � � nc� One such choice� for example� is d � jj��jj� ��� �� � � � � �
T � ��� �

We now describe the Lagrange multiplier set of the alternative formulation �����
�
We denote mathematical objects connected to �����
 by the subscript MPCC�� We
write the Fritz
John conditions ����
 for �����
 at the point x�� and we obtain
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and ��� � � � R� A generalized multiplier of �����
 is thus

�� � �	�� 
�� ��� ��� ���
 � �g
MPCC� � R�Rni �Rne �R�nc �R�

where �� satis�es the Fritz
John conditions �����
� �����
�
Theorem ���� The formulation ����
� has a nonempty Lagrange multiplier set

if and only if �MPCC� has a nonempty Lagrange multiplier set�
Proof If the Lagrange multiplier set of �����
 is not empty� then there exists

�� � ��� 
�� ��� ��� ���
 � R�Rni �Rne �R�nc �R that satis�es ����������
� De�ne
�� � ���� � �

�
�� � � � � �

�
�

T � Rnc and �� � ��� 
�� ��� ��� ��
� It follows by inspection

that �� satis�es ����
� ����
 at x�� Therefore �� is a generalized Lagrange multiplier
of �MPCC
� which means that �
�� ��� ��� ��
 is a Lagrange multiplier of �MPCC
�
Thus the Lagrange multiplier set of �MPCC
 is not empty� Conversely� applying
Lemma ���� if the Lagrange multiplier set of �MPCC
 is not empty� there exists the
generalized Lagrange multiplier � � ��� 
� �� �� �
 of �MPCC
 that satis�es �k � ���
for k � �� �� � � �� nc� It immediately follows that� since � satis�es ����
 and ����
�
��� 
� �� �� ��
 satis�es �����
 and �����
 and is thus a generalized Lagrange multiplier
of �����
� Therefore �
� �� �� ��
 is a Lagrange multiplier of �����
 at x�� The proof is
complete� �

Theorems ��� and ��� give su	cient conditions for �MPCC
 and �����
 to have a
nonempty Lagrange multiplier set in spite of the fact that neither satisfy a constraint
quali�cation at any point in the usual sense of nonlinear programming� In Section
� these conditions will imply that a relaxed version of either �MPCC
 or �����
 will
have the same solution as �MPCC
 and will satisfy MFCQ� which makes either ap

proachable by SQP algorithms�

�� The Elastic Mode� An important class of techniques for solving nonlinear
programs ����
 is sequential quadratic programming� The main step in an algorithm
of this type is solving the quadratic program

mind rx
�f �x
Td� dTWd�

subject to �gi�x
 �rx�gi�x

Td � �� i � �� �� � � � �m

�hj�x
 �rx
�hj�x
Td � �� j � �� �� � � �� r�
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The matrix W can be the Hessian of the Lagrangian ����
 at x ����� or a positive
de�nite matrix that approximates the Hessian of the Lagrangian on a certain subspace
���� ��� ���� A trust
region type constraint may be added to ����
 for the case in which
W is not positive de�nite ����� The solution d of ����
 is then used in conjunction
with a merit function and�or line search to determine a new iterate� We give here
only a brief description of SQP algorithms� since our interest is solely in showing how
the di	culties regarding the potential infeasibility of ����
 when applied to �MPCC

can be circumvented� For more details about SQP methods see ���� ��� ��� ����

If a nonlinear program satis�es MFCQ at x� then the quadratic program will
be feasible in a neighborhood of x�� If MFCQ does not hold at x�� however� the
possibility exists that ����
 is infeasible� no matter how close to x� ���� ��� ���� This
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If the Quadratic Program �	��� is infeasible or its Lagrange multipliers are too large then

NLPC� Find the solution �xc� � uc�� vc� � wc�
 of the relaxed NLP �	�	� by SQP�
If jj�uc� � vc� � wc�
jj � �� then xc� solves ������ Stop�

otherwise update c�� c� � c� �K and return to NLPC�
Table ���

An adaptive L� elastic mode approach

is an issue in the context of this paper because �MPCC
 does not satisfy the MFCQ
at a solution x��

In the case of infeasible subproblems some of the SQP algorithms initiate the
elastic mode ����� This consists of modifying the nonlinear program ����
 by relaxing
the constraints and adding a penalty term to the objective function� First we consider
the case in which the added penalty term is of the L� type�

minx�� �f �x
 � c�

subject to �gi�x
 � 
� i � �� �� � � � �m�

�
 � �hj�x
 � 
� j � �� �� � � � � r

 � ��

����


An alternative elastic mode strategy consists of using an L� approach� The mod

i�ed nonlinear program becomes

minx�u�v�w �f�x
 � c�


eTmu� eTr �v � w


�
subject to �gi�x
 � ui� i � �� �� � � � �m�

�vj � �hj�x
 � wj� j � �� �� � � � � r
u� v� w � ��

����


where em and er are vectors whose entries are all ones� of dimension m and r� respec

tively� We call c� and c� the penalty parameters� Note that a point x is a stationary
point of ����
 and ����
 if and only if it is a stationary point of ���x
 and� respectively�
���x
� for �c� � c� and �c� � c� ��� ���

All the constraints are now inequality constraints� A quadratic program analogous
to ����
 is constructed for ����
 or ����
� which now satis�es MFCQ at any feasible
point� A feasible point of ����
 or ����
� respectively� can be immediately obtained by
choosing 
 and u� v� w� respectively� to be su	ciently large�

An adaptive elastic mode strategy is presented in Table ��� when an L� approach
is used� The elastic mode subproblem ����
 is solved successively for increasing values
of the penalty parameter� in an attempt to �nd its appropriate value� An equivalent
strategy exists when the L� approach ����
 is used� The quantityK is a �xed positive
parameter� We present here only the essential characteristics of the elastic mode� For
more details about an adaptive elastic mode setup and the way it can be incorporated
in an SQP framework� see �����

For �xed penalty parameter c�� the problem ����
 can be solved by SQP as argued
above� The possibility exists� however� that c� may have to be increased inde�nitely
in Table ��� before a solution of ����
 is obtained� In the following theorem we discuss
su	cient conditions that ensure that the elastic mode relaxations ����
 and ����
 have
x� as a component of the solution for su	ciently large but �nite penalty parameter�

Theorem ���� Assume that� at a solution x� of ������ we have that







� the Lagrange multiplier set of ����� is not empty�
� the quadratic growth condition ������ is satis�ed at x�� and
� the data of ����� are twice continuously di
erentiable�

Then�
�� For su�ciently large but �nite values of the penalty parameter c� and� respec�

tively� c�� we have that the points �x�� �
 and� respectively� �x�� �m� �n� �n
�
are local minima of �	��� and �	�	� at which both MFCQ and the quadratic
growth condition ������ are satis�ed�

�� For the same values c� and� respectively� c� we have that the points �x�� �

and �x�� �m� �n� �n
 are isolated stationary points of �	��� and �	�	�� There�
fore� any SQP algorithm with global convergence safeguards that does not leave
a su�ciently small neighborhood of these points will in fact converge to them�

	� If initialized su�ciently close to x� and with su�ciently large penalty param�
eter� the adaptive elastic mode strategy from Table 	�� will recover x� for a
�nite value of the penalty parameter�

Proof We will prove part � of the Theorem only for the L� case� the L�

case following in the same manner� If �x� 

 is a feasible point of ����
� it immediately
follows from the de�nition �����
 of the L� penalty function� �P��x
� that 
 � �P��x
�
From �����
� under the assumptions stated in this Theorem� we have that there exists
�c� � � such that the penalty function ���x
 satis�es a quadratic growth condition
at x�� Choose now

c� � �c� � ��

Using �����
� we obtain that� in a su	ciently small neighborhood of x�� we must have

�f �x
 � �c�
 � �f�x
 � �c� �P��x
 � �� jjx� x�jj� �
Whenever 
 � �

��
� we will have that ��
� � 
� Therefore� in a su	ciently small

neighborhood of �x�� �
� for all �x� 

 feasible� we will have that

�f�x
 � c�
 � �f �x
 � �c�
 � 
 � ��

�
jjx� x�jj� � 
�

�
�

Therefore� for our choice of c� we have that ����
 satis�es the quadratic growth
condition for feasible points �x� 

� Since ����
 clearly satis�es MFCQ everywhere�
this is equivalent to the quadratic growth condition �����
 holding for all �x� 

 in a
neighborhood of �x�� �
 ��� ��� The proof of part � of the theorem is complete�

From the conclusion of part � we have that� since MFCQ and the quadratic
growth condition holds for ����
 and� respectively� ����
� at �x�� �
 and� respectively�
�x�� �m� �n� �n
� these points must be isolated stationary points of the respective non

linear programs ���� Therefore any algorithm with global convergence safeguards that
does not leave their neighborhood� will converge to them� This concludes the proof
of part ��

Part � immediately follows since� if the initial c� is chosen larger than the c�
obtained in part �� the update rule will not even need to be triggered� provided that
we start in a su	ciently small neighborhood of �x�� �m� �n� �m
� �

Discussion
� Note that the conditions used in the Theorem are fairly weak� The quadratic
growth is the weakest possible second
order su	cient condition� Relaxing
our Lagrange multiplier requirement would result in a problem with an empty
Lagrange multiplier set� for which few regularity results are known that could
be algorithmically useful�


�



� The proof of part � will work for any choice c� � �c�� for a possibly di�erent
neighborhood of �x�� �
� When we discuss the stationarity conditions of ����

and ����
 in connection to c� and c� we will still use the lower bound �����
�

� For part �� an SQP algorithm with a global convergence safeguard is� for
example� FilterSQP ����� For ����
 and ����
 other SQP algorithms using the
merit functions ���x
 and ���x
 will always accumulate at KKT stationary
points ��� ��� Obtaining that an algorithm will not leave a neighborhood
of a solution point depends on the properties of the merit function used�
Near a point that satis�es the quadratic growth condition and MFCQ� this is
achievable for certain SQP algorithms that use nondi�erentiable exact merit
functions� such as the one described in ����

� The adaptive elastic mode presented in Table ��� has the potential of choosing
an appropriate value of the penalty parameter c� without input from the user�
However� determining the appropriate initial range of the penalty parameter
is a function of the problem� In particular� it depends on the behavior of
the solution of ����
 when c� is smaller than the critical value that makes
�x�� �m� �n� �n
 a local solution� It may be possible that an excessively low
initial choice of the penalty parameter will push the solution in a region
where subsequent increases of the penalty parameter may not even result in
a feasible point� In this work we do not discuss the appropriate initial range�
we merely prove that it exists�

We now apply Theorem ��� for the case of interest in this work� MPCC� The
following corollary is a simple restatement of Theorem ��� for �MPCC
�

Corollary ���� Assume that �MPCC� satis�es the following conditions� at a
solution x��

� The Lagrange multiplier set of �MPCC� not empty� From Theorem ���� SM�
FCQ holding for �TNLP� is a su�cient condition for this assumption to hold�

� The quadratic growth condition ������ is satis�ed at x��
� The data of �MPCC� are twice continuously di
erentiable�

Then the conclusions of Theorem 	�� hold for �MPCC��

Consequently� when started su	ciently close to a solution and with a su	ciently
large penalty parameter� the adaptive elastic mode strategy presented in Table ���
applied to �MPCC
 will end with a �nite c� as soon as �MPCC
 satis�es the quadratic
growth condition and has a nonempty Lagrange multiplier set at a solution x�� Since
SMFCQ is a generic condition for �MPCC
 and holds with probability � for instances
of problems in the MPCC class ���� and the quadratic growth condition is the weakest
second
order su	cient condition� the elastic mode can be expected to locally solve
�MPCC
 for a �nite value of the parameter c��

As for the elastic mode nonlinear program ����
 itself� Theorem ��� part �� gives
su	cient conditions for an algorithm to converge to its solution for a �nite value of
the penalty parameter c�� The fact that� for the conditions stated� the solution is
an isolated stationary point� makes it very likely for most algorithms of nonlinear
programming to converge to x��

Some rate of convergence results can also be extended to the class of problems
discussed here� If the matrix W of ����
 is positive de�nite� then an SQP algorithm
using an Armijo search in the direction d applied to either ����
 or ����
 will induce
at least R
linear convergence of the iterates to �x�� �
 and �x�� �m� �n� �n
� when used
in conjunction with an L� penalty function under the assumptions stated above ����
An algorithm that is superlinearly convergent under the conditions stated here can


�



Table ���

Results obtained with MINOS

Problem Var
Con
CC Value Status Feval Infeas
gnash�� ��
��
� 
������� Optimal �� ���
gnash�� ��
��
� 
������� Infeasible ��� ���E�
gnash�� ��
��
� 
������� Infeasible ��� ���E�
gnash�� ��
��
� 
������� Infeasible ��� ���E�
gne ��
��
�� � Infeasible ��� ���E�
pack
rig�
� ��
��
� �������� Optimal ��� ���E�
pack
rig�
�� ���
���
� �������� Optimal ���� ���E�
pack
rig�
�� ����
����
� N�A Interrupted N�A N�A

Table ���

Results obtained with SNOPT

Problem Var
Con
CC Value Status Feval Elastic
gnash�� ��
��
� 
������� Optimal �� Yes
gnash�� ��
��
� 
������� Optimal �� None
gnash�� ��
��
� 
������� Optimal � None
gnash�� ��
��
� 
������� Optimal � None
gne ��
��
�� � Optimal �� Yes
pack
rig�
� ��
��
� �������� Optimal �� None
pack
rig�
�� ���
���
� �������� Optimal �� None
pack
rig�
�� ����
����
� �������� Optimal �� None

be used to solve ����
� The algorithm solves� at each step� a quadratically constrained
quadratic subproblem ���� Under stronger second
order assumptions� a superlinear
rate of convergence is achievable for SQP algorithms ��� ��� ��� ��� ��� ����

���� Numerical Experiments� We conducted some numerical experiments on
MPCCs from the collection MacMPEC of Sven Ley�er� To validate the conclusions
of this work� we used two widely employed nonlinear solvers MINOS ���� and SNOPT
����� SNOPT implements an adaptive L� elastic mode approach�

We considered three types of problem� all of which appear in ����

�� Stackelberg games ���� Section ������ which characterize market complemen

tarity problems in which one of the players has a temporal advantage over
the others� In our table these are the gnash problems�

�� Generalized Nash complementarity points ���� Section ������ In our table
this is the gne problem� an instance of the problem ����� in ����� This is a
restricted market complementarity problem�

�� Optimum packaging problem� The problem involves designing the support
of a membrane such that the area of contact between the membrane and a
speci�ed rigid obstacle is minimized� subject to the constraint that a certain
region must be in contact ���� Chapter ���� The underlying variational in

equality is de�ned by a two
dimensional elliptic operator� which is discretized
on a grid of � � �� �� � ��� and �� � �� elements� which are the problems
pack�rig followed by the discretization index in our table�

With the exception of gne� all the problems have the complementarity constraints
lumped together as one inequality� as in the formulation �����
�


�



In the tables showing the results for MINOS and SNOPT� we indicate the number
of variables� constraints� and complementarity constraints ��Var
Con
CC� in the �rst
column
� the �nal value of the objective function� the number of function evaluations
and the �nal status of the run� The runs for both MINOS and SNOPT were done
on the NEOS server ���� at Argonne National Laboratory� All the runs except one
completed� the exception was pack�rigid�	�� in MINOS� which we were forced to
interrupt after it had been running on the World Wide Web interface of NEOS for
about � hours�

The fact that �MPCC
 does not satisfy MFCQ does not immediately result in the
algorithm�s running into an infeasible QP and failure� But it suggests a signi�cant
expectation that this would occur� Indeed� it can be seen that MINOS fails in more
than half of the instances of MPCCs with an �infeasible� message and a large value
of the measure of infeasibility� SNOPT� by contrast� solves all the problems presented
in a reasonable number of iterations� needing to initiate the elastic mode for two
problems as shown in the table�

We have not determined any immediate correspondence between initiating the
elastic mode in SNOPT and �nal infeasibility of MINOS� but that is to be expected
because the two algorithms are not completely equivalent in the absence of the elastic
mode� However� the use of the elastic mode considerably increases the robustness
of sequential quadratic programs and is guaranteed to succeed for a �nite penalty
parameter under the conditions discussed in this paper�

���� Convergence e�ects of the penalty parameter� An important issue
when using a penalty approach is the choice of the penalty parameter� In this subsec

tion we investigate the e�ect of large penalty parameters in the relaxed formulations
����
 and ����
� associated with �MPCC
� over the region of convergence of SQP al

gorithms�

Consider a local minimum x� of �MPCC
� We make the following assumptions
�refer to Section � for a description of the notation


�B�
 The �rst pair of constraints is strictly complementary� or F����x�
 � � and
F����x�
 � � �the �rst pair can eventually be relabeled to make the second
constraint inactive at x�
� To continue using the aggregate notation� while
referring separately to the �rst pair of constraints� we de�ne the following
sets of indices at x�� derived from the ones introduced in Subsection ����

bI � I � f��� �
gbI � I � f��� �
gbK � K � f�g �
����


The other index sets de�ned in Subsection ��� do not change their meaning
and we will therefore use the same notation�

�B�
 We assume that F��x
�
 � �cF � for � � bI� where cF � �� Therefore� with the

exception of the �rst pair of constraints� all inactive constraints are �strongly�
inactive�

�B�
 The minimal singular value of

J �
h
rxg�x
 rxh�x
 rxFD�x
 rxFbI�x
 rxF����x
 rxF����x


i
�

is bounded bellow by �m� for any x� This implies that� for vectors u�v of

�	



appropriate dimensions we must have

Ju � v 
 jjujj � �

�m
jjvjj �

In particular� the same property must hold for any matrix made of a subset
of the columns of J �

�B�
 The values of the norms of the �rst and second derivatives of the data of
�MPCC
 are bounded above by cD for any x�

�B�
 De�ne the set

P � fx jg�x
 � ��
h�x
 � ��

FD�x
 � ��
FbI�x
 � ��

F����x
 � ��
F����x
 � ��

F��x
 � � cF
� � � � bIo �

We assume that P is feasible and that there exists �x � P such that

jjx� � �xjj � �cPF����x�
�����


for some parameter cP � ��
�B�
 The linear independence of the columns of J implies that there exists �u that

satis�es the following constraints at �x�

rxgi��x
T �u � �� i � Ag��x

rxgi��x
T �u � ��� i �� Ag��x

rxh��x
T �u � ��

rxFD��x
T �u � ��
rxFbI��x
T �u � ��
rxF�����x


T �u � ���
rxF�����x


T �u � ��

Here Ag��x
 contains the indices of components of g that are active at �x� From
Assumption �B�
 we must have that

jj�ujj �
p
ni � �

�m
�

We assume that there exists �
 � � and a twice continuously di�erentiable
arc x�t
 that is feasible for �MPCC
 for � � t � �
 and that satis�es x��
 � �x

and dx�t�
dt

���
t��

� �u� We denote by

c
 � max
t�������

max

�����
����dx�t
dt

����
���� �
����
����d�x�t
dt�

����
����
�

We will now analyze the subclass of �MPCC
 problems that satis�es the above
assumptions for �xed values of cF � cD� �m� cP� c
� �
� We investigate the dependence
of the relevant optimality quantities with respect to F����x�
� The case of interest in
this analysis is F����x

�
 � � �almost degeneracy
�

�




The assumptions above can be easily relaxed by considering them valid only on
suitable neighborhoods of x�� Assumptions �B�
��B�
 describe the complementarity
situation at x� for �MPCC
� and state that� with exception of F����x
� all other inac

tive constraints are strongly inactive� for all feasible points near x� only F����x
 can
switch from inactive to active� Assumption �B�
 is essentially a uniform linear inde

pendence property for the �TNLP
 program associated to �MPCC
� It can be relaxed
to include only the gradients of the components of g�x
 that can be active in a certain
neighborhood of x�� Assumption �B�
 immediately follows from Assumption �B�
 for
jF����x�
j su	ciently small and cP then depends on cD� �m and cF � Note that� if all
involved mappings were linear then Assumption �B�
 is a simple corollary to Ho�

man�s Lemma ��� Theorem ������� Assumption �B�
 is also implied by Assumptions
�B�
� �B�
� �B�
 and �B�
 and �
 and c
 depend on cD� �m and cF � However� to
simplify the presentation we will consider cF � cD� �m� cP � �
 and c
 to be the primary
parameters and we will ignore their interdependence�

Since from our assumptions� the linear independence constraint quali�cation holds
for �TNLP
 at x�� then� from Corollary ���� there will exist the Lagrange multipliers

 � �� �� � � � and � � � of �MPCC
� such that 
Tg�x�
 � � and

� � rxf�x�
 �rxg�x�

 �rxh�x�
� �rxFD�x�
�D�

P
k�bKrxFk�i�k��x

�


��k�i�k�z �� �
��k�i�k� � �kFk�i�k��x

�

 �rxF����x�


�����z �� �
����� � ��F����x

�

 �
����

In this relation� we ignore multipliers �k� for k � K� because in the previous equation
they would multiply rx �Fk��Fk��
 �x�
 which is � for degenerate pairs�

We can immediately see that the above equation implies that �
� �� �D� ��
 are
Lagrange multipliers of �TNLP
 and �RNLP
� Here we de�ne �� �



��k�i�k� jk � K

�
�

The �rst component of �� is ������ Due to our linear independence assumption �B�
�
the associated nonlinear programs �RNLP
 and �TNLP
 have a unique Lagrange mul

tiplier at x� which is the same for both nonlinear programs ����� From Assumptions
�B�
 and �B�
 we must have that

jj�
� �� �D� ��
jj � �

�m
jjrxf�x

�
jj � cD
�m

�����


We now analyze the way in which the Lagrange multipliers of �MPCC
 of mini

mum � or � norm can be obtained from the Lagrange multipliers of �TNLP
 in this
particular situation�

If k � K then �k� �
� �k� �
 � D� and we can choose� same as in Section �� �k � ��
The multipliers �k�� and �k�� are components of �D and are the same for �TNLP
�
�RNLP
 and �MPCC
�

If k � K� then we have that either ��k�i�k� � � and then we can take �k�i�k� �
��k�i�k� � �� �k�i�k� � � and �k � �� or ��k�i�k� � � and then we take �k�i�k� � ��

�k�i�k� � � and � � �k �
��k�i�k�

F
k�i�k�

�x�� �
j��k�i�k�j

cF
� The multiplier �k�i�k� is always �

because it corresponds to an inactive constraint of MPCC� since Fk�i�k��x
�
 � ��

Either way� we obtain

� � �k� �k��� �k�� � ����k�i�k���max

�
�

cF
� �

�
� k � �� � � � � nc�����


��



It can be immediately seen from ����
 that our choices for �k�i�k� � � and �k � � are
not unique in order to satisfy ��k�i�k� � �k�i�k�� Fk�i�k��x

�
�k� However� it is obvious
that the multiplier vector �
� �� �� �
 has a minimal ���� or � norm only if one of
�k�i�k� and �k are ��

We now have two di�erent cases� according to the value of ������ the multiplier
corresponding to the almost degenerate pair�

�� ����� � �� In this case we can choose ���� � ����� � � and �� � �� Using ����

and ����
 we obtain that

jj�
� �� �� �
jj � max
n

�
cF
� �
o
jj�
� �� �D� ��
jj � cD

�m
max

n
�
cF
� �
o
�����


Using the inequality �����
 and the inequalities between the�� � and � norms
we get that whenever

�c�� �c� � �ni � ne � �nc
 cD
�m

max

�
�

cF
� �

�
� jj�
� �� �� �
jj� ������


the solution x� of �MPCC
 will be a stationary point of the penalty functions
���x
 and ���x
� In light of the discussion following Theorem ��� concerning
the connection between �c� and �c� and the penalty parameters c� and c� of
the elastic mode� if cF and �m are large� then the penalty parameter of
the elastic mode need not take very large values before convergence to x� is
observed�

�� ����� � �� In this case we must have that ���� � � and �� � �����
F����x��

� Using

the equation �����
 we get that in order for the solution x� of �MPCC
 to be
a stationary point of ����
 and ����
� or equivalently� of the penalty functions
���x
 and ���x
 with �c� � c� and �c� � c� ��� ��� we must have at least
that

c�� c� � �� �
�����

F����x�

������


If� in addition� we have that

c�� c� � �����
F����x�


�
cD �ni � ne � �nc


�m
max

�
�

cF
� �

�
� jj
� �� �� �jj� �

then the solution x� of �MPCC
 will be a stationary point of the penalty
functions ���x
 and ���x
� and thus of the nonlinear programs ����
 and
����
�

Note that here we discuss only necessary bounds on c� and c� for stationarity�
because they will also be necessary for optimality� We then see that� in the second
case� the minimal value of either penalty parameters necessary for the elastic mode to
end with x� must exceed �����

F����x��
� If jF����x�
j is very small� this means that c� and

c� must have exceedingly large values before the elastic mode approach ends with a
solution� This is an undesirable e�ect because problems with large penalty parameters
may take longer to solve� It is also perhaps surprising because� due to Assumption
�B�
� any �TNLP
 associated to �MPCC
 at a feasible point x in a neighborhood of
x� will be in fact very well conditioned� at least as far as constraints are concerned�
In this sense we could talk of a well conditioned �MPCC
�

However� in this case we argue that� although x� is a local minimum� it cannot
be a minimum in a su	ciently large neighborhood�

��



Theorem ���� Assume that at a local minimum x� of �MPCC� assumptions
�B����B�� hold� Further� assume that ����� � �� De�ne

a� � cPcD � � and a� � cPcD

�p
ne � ni � �nc

cD
�m

� �

� p
ni � �

�m
� ��

Also de�ne

t
 � min

�
�
�

������
�c
cD �c
 � �


�
� tb �

a�
�
�
�� � a�

�

Here �� is the minimal multiplier corresponding to the �rst complementarity constraint
of �MPCC�� �� �

�����
F����x��

� If � � tb � t
� then we must have that

f�x�t�

� f�x�
 � ��

where t� � tb�t�
� �

Proof This follows from investigating the behavior of the objective function

f�x
 along x�t
� We therefore estimate df�x�t��
dt

���
t��

� rxf��x
T �u� We get

rxf��x
T �u � rxf�x�
T �u� cD jj�ujj jjx� � �xjj �
rxf�x�
T �u� cDcP

p
ni��
�m

F����x�
�
�����


Using ����
 and the de�nition of �u we obtain that

�uTrxf�x�
 � ��uTrxg�x�

 � �uTrxh�x�
� � �uTrxFD�x�
�D �
�uTrxFbI�x�
��bI � �uTrxF����x�
����� �

��uTrxg��x

 � �uTrxh��x
� � �uTrxFD��x
�D �
�uTrxFbI��x
��bI � �uTrxF�����x
����� � cD jj�
� �� �D� ��
jj� jj�ujj jjx� � �xjj �

����� � cD jj�
� �� �D� ��
jj� jj�ujj jjx� � �xjj �
����� �

p
ni��
�m

cPcD jj�
� �� �D� ��
jj�F����x�
�

�����


On the other hand� from the intermediate value theorem we have that

f��x
� f�x�
 � cD jjx� � �xjj � �cDcPF����x�
�
Using now the last inequality� as well as ����
� ����
� �����
 and �����
 we obtain that

f��x
 � f�x�
 � �a�F����x�

�rxf��x



T �u � ����� � a�F����x
�
�

where a� � � and a� � � are de�ned in the body of the theorem� Here we used
that jj
� �� �D� ��jj� �

p
ne � ni � �nc

cD
�m

� which follows from applying the inequality
between the � and � norms in ����
�

Therefore� we obtain that for � � t � �
 and for some  t � ��� �
� we must have

f��x
 � f�x�
 � �a�F����x�

f�x�t

 � f��x
 �

�
rxf�x�t



T d�x�t��
dt

���
t��

�
t�

�
�

�
d�x�t�T �

dt
r�
xxf�x�t



d�x�t��
dt

� d��x�t�T �
dt�

rxf�x�t


����

t�
t
t�

� t ������ � a�F����x
�

 � t�c
cD �c
 � �
 �

��



which� by adding the two inequalities� implies that

f�x�t

 � f�x�
 � �
� t����� � F����x

�
 �a� � ta�
 �
�
� t����� � t�c
cD �c
 � �
 �

� �F����x�


��

� t�� � a� � ta�
�
� t



�
� ����� � tc
cD �c
 � �


�
�

�����


Recall� we work under the assumption that ����� � � and F����x�
 � �� Using the
de�nitions of t
 and tb from the statement of the Theorem� it follows that� if � � tb �
t � t
� then we have that both terms on the right of �����
 are negative and thus

f�x�t

 � f�x�
 � ��

Since t� � tb�t�
� satis�es tb � t� � t
� the conclusion follows� �

As we argued in �����
� we need at least that c�� c� � �� in order for x� to be a
stationary point of ���x�
 and ���x�
� and thus of ����
 and ����
� and the elastic
mode to converge to x� locally� This may lead to an exceedingly large value of c� and
c� when �� is large� However� if �� is large and ����� is bounded away from �� then we
will have that tb is positive and small and � � tb � t
� In turn Theorem ��� implies
that there exists t� such that x�t�
 is feasible and for which f�x�t�

 � f�x�
� in spite
of the fact that x� is a local minimum of �MPCC
�

We therefore get that� if the penalty parameters c� and c� need to be large under
the assumptions set forth at the beginning of this section� then there exist feasible
points �MPCC
 of lower value than f�x�
 in a neighborhood of x� whose size is about
the order of jF����x�
j ����
�

This shows that choosing very large parameters c� and c� of the elastic mode
may result in convergence towards an otherwise shallow local minimum x� in nearly
degenerate cases� By strictly local standards x� need not be a shallow minimum� as
measured by the quadratic growth parameter� However� the nonsmooth nature of the
complementarity constraint allows for a feasible arc x�t
 that starts at �x close to x�

and on which a signi�cant decrease of the objective function can be obtained�
If �MPCC
 is otherwise well conditioned� in the sense that all associated �TNLP


are well conditioned in a neighborhood of x�� then smaller values of c� and c� will
avoid x� �which cannot be a stationary point of the relaxed NLP for small values of
the penalty parameters
 and will instead converge to better minima� The equations
����
 and �����
 suggest that appropriate initial values of the penalty parameters�
which will avoid convergence to such shallow minima x�� should be of the order of the
norm of the Lagrange multiplier of �TNLP
�

������ Example of shallow minimum convergence for large penalty pa�
rameter� Consider the following mathematical program with complementarity con

straints

min z
subject to F��y� z
 � z � y� � �

F��y� z
 � z � �� �� �y � �
� � �
F��y� z
F��y� z
 � �

The feasible region consists of one piece of each of the curves F��y� z
 � � and
F��y� z
 � � and is presented in Figure ��� for � � ��� in the �y� z
 space� The
two curves intersect at the point �x � ������ ������
� The problem has a local shallow
minimum x� � ��� �
 and a global minimum ��� �� �
� The point x� can be brought
closer to degeneracy� thus needing larger penalty parameters for the elastic mode to
converge to it� by taking � � � closer to �� The Figure ��� also illustrates the point

��
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Fig� ���� Example of a shallow minimum that needs a large penalty parameter

made by and after equation �����
 that the increase in the objective function that is
encountered by going from x� to �x on F��y� z
 � � is followed by a sharp decrease
as we switch to F��y� z
 � �� Note that the quadratic growth parameter at x� is ��
independent of � � ��

We solve this example with SNOPT� but instead of using the elastic mode� we
use directly the relaxed nonlinear program ����
� We use � � ��� and the starting
point ������� ������
� For c� � ���� we observed that the algorithm converges to
the shallow minimum x�� whereas for c� � �� the algorithm converges to ��� �� �
�
This validates the above observation that using a smaller penalty parameter will avoid
convergence to the shallow minimum�

�� Global convergence of an elastic mode approach applied to opti�
mization of parametric mixed P nonlinear complementarity problems� In
Section � we proved that the adaptive elastic mode approach� described in Table ����
applied to �MPCC
� will retrieve a solution x�� provided that it is started su	ciently
close to x� and with a su	ciently large penalty parameter c�� As we argued before�
the latter requirement cannot be relaxed in general since starting with an exceedingly
low c� may induce the drift of the algorithm to a point from which feasibility cannot
be recovered once c� is increased� In a special though quite important case we now
show that a variation of the elastic mode can be guaranteed to retrieve a feasible
C
stationary point of �MPCC
�

���� The mixed P property� The key notion used in this section is the mixed
P property ���� pg������ Before describing the special class of MPCCs to be solved�
we de�ne and prove some useful properties of partitions with the mixed P property�
These will allow us� in turn� to prove a global convergence result for a special type
of adaptive elastic mode approach applied to the optimization of parametric mixed P
nonlinear complementarity problems�

Let A � R�m�l��m � B � R�m�l��m and C � R�m�l��l � We say that the partition
�A B C� satis�es the mixed P property if

� �� �y� w� z
 � R�m�l� Ay �Bw �Cz � �

	i� � � i � m� such that yiwi � ��

����


�




Lemma ���� Assume �A B C� satis�es the mixed P property� Let D � Rm�m

be a diagonal matrix such that all its diagonal entries satisfy di �� �� i � �� �� � � � �m�
Then the partition �AD BD C� also satis�es the mixed P property�

Proof Let � �� �y� w� z
 � R�m�l such that ADy �BDw�Cz � �� Let �y � Dy
and �w � Dw� We then have that � �� ��y� �w� z
 and A�y � B �w � Cz � �� From ����

we obtain that 	i� � � i � m� such that � � �yi �wi � d�iyiwi� which in turns implies
that yiwi � �� The proof is complete� �

Lemma ���� Assume that �A B C� satis�es the mixed P property� The system of
linear constraints

AT � � �� BT � � �� CT � � �

has the unique feasible point � � ��
Proof Let � �� y � Rm� An immediate consequence of the fact that �A B C�

satis�es the mixed P property is that the matrix �B C� is invertible ���� Prop��������
We de�ne w � Rm and z � Rl by

w � ��Im ���B C���Ay

z � ��� Il��B C���Ay�

Here we denote by Ik the k�k identity block� It can immediately be seen that �y� w� z

satis�es Ay � Bw � Cz � �� Using the mixed P property of �A B C� we obtain that
	i� � � i � m� such that yiwi � �� Let Q � ��Im ���B C���A� Since w � Qy this
means that 
y �� �� there 	i� � � i � m� such that yi �Qy
i � � and thus Q is a P
matrix ��� Thm�������b
��c
�� Therefore QT is also a P matrix ��� Thm�������a
�c
��
where

QT � �AT

�
BT

CT

��� �
Im
�

�
�

Let now � be a feasible point of the linear constraints in the statement of the
theorem� There exist ��� �� � Rm� �� � �� �� � � such that

AT � � �� � �� BT � � �� � �� CT � � ��

We can solve for � from the last � equations to obtain that

� � �
�
BT

CT

��� �
Im
�

�
�������


Substituting in the remaining equation we get that

� � �� �AT

�
BT

CT

��� �
Im
�

�
���

which� using our de�nition for Q and QT � can be rewritten as

��� � QT���

From the de�nition of a P matrix� it follows that� if �� �� � there exists i� where
� � i � m� such that ����i���i � �� or ���i���i � �� This would contradict the fact
that �� � � and �� � �� The only alternative remains �� � �� � �� From ����
 this
results in � � � which proves our claim� �

��



���� Optimization of parameterized mixed P variational inequalities�
We now de�ne the following mathematical program with complementarity constraints
together with its relaxed version

�MPEC

minx�y�w�z f�x� y� w� z


sbj� to g�x
 � �
h�x
 � �

F �x� y� w� z
 � �
y� w � �

�yTw � �
 yTw � �

�MPEC�c


minx�y�w�z�� f�x� y� w� z
 � c


sbj� to g�x
 � �
h�x
 � �

F �x� y� w� z
 � �
y� w � �
yTw � 


 � ��

����


The last constraint of �MPEC
 can be formulated as either an equality or an inequality
constraint without altering the feasible set�

Here x � Rn� y� w � Rm� z � Rl� f � Rn��m�l � R� h � Rn � Rnh � g � Rn �
Rng � F � Rn��m�l � Rm�l � In �MPEC�c

 we relax only the complementarity
constraints yTw � �� This approach is di�erent from the one in Section � where all
constraints are relaxed�

For �xed x� the system of generalized equations

F �x� y� w� z
 � �� y � �� w � �� wT y � �����


de�nes a mixed nonlinear complementarity problem� We can therefore interpret y� w� z
as the state variables and x as the parameters of the parameterized nonlinear com

plementarity problem ����
� Due to this particular structure of the constraints the
�rst problem from ����
 is called mathematical problem with equilibrium constraints
or MPEC �����

For the remainder of this section we make the following assumptions�

�A�
 The mappings f� g� h� F are twice continuously di�erentiable�
�A�
 The constraints involving only the parameters x satisfy an MFCQ type con


dition�

rxh�x
 has full column rank and 	p � Rn such that
rxh�x


Tp � � and rgi�x
Tp � �� 
i such that gi�x
 � ��

�A�
 The partitioned matrix
�ryF

T �rwF
T �rzF

T
�
satis�es the mixed P property

����
�
An instance of the problem ����
 which satis�es this assumptions consists of the

packaging problems with rigid or !exible obstacles after the additional state con

straints have been replaced by a penalty term ���� Section ����

Note that �MPEC
 is identical with the problem studied in ���� except for

�� The marginally weaker mixed P� property is assumed in ����� In that case
that was possible because strict feasibility was maintained at all times in a
penalty interior point algorithm� Here we discuss the behavior of sequential
quadratic programming algorithms which may approach the solution through
the infeasible region�

�� The stronger assumption is made in ���� that the set of feasible parameters
x can be described by a �nite set of linear equalities and inequalities�

��



Theorem ���� The nonlinear program �MPEC�c�� satis�es MFCQ at any point
�x� y� z� w� 

 and for any value c of the penalty parameter�

Proof We denote by

A�x
 � fi � f�� �� � � �� ngg jgi�x
 � �g �

If MFCQ doesn�t hold for �MPEC�c

 at �x� y� w� z� 

 then� by �����
� there exist the
multipliers � � Rnh � �i � R for i � A�x
� � � R�m�l� � �y � Rm� �w � Rm� �� � R�
�� � R not all of them � such that �i � � for i � A�x
� �y � �� �w � �� �� � � and
�� � � which satisfy

rxh�x
��
P

i�A�x� �irxgi�x
 �rxF �x� y� w� z
� � �

�y � ��w �ryF �x� y� w� z
� � �
�w � ��y �rwF �x� y� w� z
� � �

rzF �x� y� w� z
� � �
�� � �� � ��

����


Since ��� �� � �� the last equation implies that �� � �� � �� Replacing �� � � in the
other equations� and using that �w� �y � �� we obtain that � must satisfy

ryF �x� y� w� z
� � �
rwF �x� y� w� z
� � �
rzF �x� y� w� z
� � ��

Using assumption �A�
 and Lemma ��� we obtain that � � �� Replacing � � � in
����
 we get that �w � �y � � and that

rxh�x
��
X

i�A�x�
�irxgi�x
 � �

where � and �i for i � A�x
 cannot all be equal to �� which contradicts assumption
�A�
� by �����
� This completes the proof of the result� �

Theorem ���� Let �xn� yn� wn� zn� 
n
 be a stationary point of �MPEC�cn���
If limn�� cn � � then any accumulation point �x�� y�� w�� z�� 
�
 of the sequence
�xn� yn� wn� zn� 
n
 must satisfy 
� � � and �x�� y�� w�� z�
 is a feasible C�stationary
point of �MPCC��

Proof
 Feasibility� From our assumption� �xn� yn� zn� wn� 
n
 is a stationary
point of �MPEC�cn

� which� by Theorem ���� satis�es MFCQ everywhere� There
must exist the Lagrange multipliers �n � Rnh � �n � Rng � �n � R�m�l� � �ny � Rm�
�nw � Rm� 	n� � 	

n
� � R such that �n � �� �ny � �� �nw � � and 	n� � 	

n
� � �� that� together

with �xn� yn� wn� zn� 
n
� satisfy the KKT conditions ����
� part of which include the
following equations

rxf�xn� yn� wn� zn
 �rxh�xn
�n �
rxg�xn
�

n �rxF �xn� yn� wn� zn
�
n � �

ryf�xn� yn� wn� zn
 � 	n�wn � �ny �ryF �xn� yn� wn� zn
�
n � �

rwf�xn� yn� wn� zn
 � 	n�yn � �nw �rwF �xn� yn� wn� zn
�n � �
rzf�xn� yn� wn� zn
 �rzF �xn� yn� wn� zn
�

n � �
	n� � 	n� � cn

g�xn
 � �� yn � �� wn � �� �wT
nyn � 
n
 � �� 
n � �

g�xn
T�n � �� yTn �
n
y � �� wT

n�
n
w � �� 	n� �w

T
nyn � 
n
 � �� 	n�
n � ��

����


��



Let now

e�n �


�n� �n� �n� �ny � �

n
w� 	

n
� � 	

n
�

�
Since 	n� � 	n� � cn� and cn � � we must have that

��������n������
�
� � as n � ��

Therefore the sequence e�n����e�n����
�

� admits an accumulation point

e�� � 

��� ��� ��� ��y� �

�
w� 	

�
�� 	

�
�

�
that satis�es

������e��������
�

� � and �� � �� ��y � �� ��w � �� 	�� � � and 	�� � �� We can

assume without loss of generality �after eventually restricting the respective sequences
to subsequences
 that

e�n������e�n������
�

� e�� and �xn� yn� wn� zn� 
n
� �x�� y�� w�� z�� 
�
�

We now divide ����
 by
��������n������

�
and take the limit as n��� to obtain

rxh�x�
�� �rxg�x�
�� �rxF �x�� y�� w�� z�
�� � �
	��w

� � ��y �ryF �x�� y�� w�� z�
�� � �
	��y

� � ��w �rwF �x�� y�� w�� z�
�� � �
rzF �x�� y�� w�� z�
�� � �

g�x�
 � �� y� � �� w� � �� �w�
T

y� � 
�
 � �� 
� � �

g�x�
T�� � �� y�
T

��y � �� w�
T

��w � �� 	���w
�T y� � 
�
 � �� 	��


� � ��

����


Obviously� �� � �� g�x�
 � � and g�x�
T�� � � imply that ��i � � whenever � � i �
ng and i �� A�x�
�

Take now an index j such that � � j � m� Since 	�� � �� w�j � �� y�j � ��
��w�j � �� and ��y�j � �� we must have that

��y�j � 	��w
�
j � � 
 ��y�j � �

����

�
 y�j � �
 ��w�j � 	��y

�
j � ��

Similarly ��w�j � 	��y
�
j � � 
 ��y�j � 	��w

�
j � �� We therefore conclude that for

j � �� �� � � � �m we must have that

��w�j � 	��y

�
j

� 

��y�j � 	��w

�
j

� � ������


We can therefore de�ne for j � �� �� � � � �m the quantities

dj �

��
�

� if


��w�j � 	��y

�
j

�
� � or



��y�j � 	��w

�
j

�
� �

�� if


��w�j � 	��y

�
j

�
� � or



��y�j � 	��w

�
j

�
� �

� if


��y�j � 	��w

�
j

�
�


��w�j � 	��y

�
j

�
� ��

From our observation and the de�nition of dj we must have

dj


��y�j � 	��w

�
j

� � �� dj


��w�j � 	��y

�
j

� � �� j � �� �� � � ��m�

�	



Denote now by D � Rm�m the matrix whose diagonal elements are dj� j �
�� �� � � � �m� The middle equations from ����
 and our de�nition of D imply that

DryF �x�� y�� w�� z�
�� � ��
DrwF �x�� y�� w�� z�
�� � ��
rzF �x�� y�� w�� z�
�� � ��

Using now assumption �A�
� and Lemmas ��� and ��� this implies that �� � ��
Replacing this in ����
� we obtain that

rxh�x
�
�� �

X
i�A�x��

��irxgi�x
�
 � ��

which� using assumption �A�
 implies that �� � � and �� � �� The fact that �� � �
also implies from ����
 that

��y � 	��w
� � �� ��w � 	��y

� � ������


Multiplying the �rst relation with y�
T

and the second one with w�
T

and using the

complementarity relations y�
T

��y � � and w�
T

��w � � from ����
 we obtain that

	��y
�T w� � �������


We have the following cases�

�� 	�� � �� Then �����
 implies that y�
T

w� � �� From the equation 	���w
�T y� �


�
 � � of ����
 we get that 
� � y�
T

w� � ��
�� 	�� � �� Then from ����
 we get that ��y � ��w � �� It then follows that the

only nonzero component of ��� is 	�� which must then satisfy 	�� �
���������������

�
� ��

The complementarity condition 	��

� � � from ����
 now implies 
� � ��

In either case we obtain 
� � � which shows that the limit point �x�� y�� w�� z�
 must
be feasible�

Proof
 C�stationarity� We return to the equation ����
� We de�ne

b�ny � �ny � 	n�wn� b�nw � �nw � 	n�yn������


Following the same argument that led to ����
� we obtain that

b�ny�jb�nw�j � �� j � �� �� � � � �m������


De�ne now

b�n �


�n� �n� �n� b�ny � b�nw� �

The components of b�n satisfy a set of equations derived from ����
�

rxf�xn� yn� wn� zn
 �rxh�xn
�
n �

rxg�xn
�
n �rxF �xn� yn� wn� zn
�

n � �
ryf�xn� yn� wn� zn
 � b�ny �ryF �xn� yn� wn� zn
�n � �
rwf�xn� yn� wn� zn
 � b�nw �rwF �xn� yn� wn� zn
�n � �

rzf�xn� yn� wn� zn
 �rzF �xn� yn� wn� zn
�n � �
g�xn
 � �� g�xn
T�n � �� yn � �� wn � ��

�����


�




Assume now that b�n admits a subsequence that diverges to �� We can assume
without loss of generality that the entire sequence itself diverges to �� De�ne now
the sequence

eb�n �
b�n������b�n������

�

�

which� being bounded� must admit a convergent subsequence� We assume� again

without loss of generality� that the sequence
eb�n is itself convergent to

eb�� � �e��� e��� e��� e��y� e��w� �
with

����
����eb��

����
����
�

� �� From the construction of b�n we must have that e�� � �� whereas

from �����
 we must have that

e��y�je��w�j � �� j � �� �� � � � �m������


Dividing now all equations involving multipliers of �����
 by
������b�n������

�
and taking the

limit as n��� we obtain that

rxh�x
�
e�� �rxg�x

�
e�� �rxF �x�� y�� w�� z�
e�� � �e��y �ryF �x�� y�� w�� z�
e�� � �e��w �rwF �x�� y�� w�� z�
e�� � �

rzF �x�� y�� w�� z�
e�� � �
g�x�
 � �� g�x�
T e�� � �� y� � �� w� � ��

�����


Using now the exact same argument that we applied to ����
� and which led to the
conclusion that �� � � and� subsequently� 
� � �� we get that �����
� �����
 and

Assumption �A�
 imply that e�� � �� In turn� this implies that e��y � e��w � � and� from
Assumption �A�
 and using the complementarity relation on the last line of �����
�

that e�� � �� e�� � � and thus
eb�� � �� which is a contradiction with

����
����eb��

����
����
�

� �� This

implies that the sequence b�n must be bounded� Let

b�� � 

��� ��� ��� b��y� b��w�

be a limit point of this sequence� We assume without loss of generality that it is the
unique limit point� From �����
 we must have that

b��y�jb��w�j � �� j � �� �� � � � �m������


From our de�nition of b�nw and b�ny �����
� it does not immediately follow that the
corresponding limitpoint satisfy a complementarity relation with w� and� respectively�
y�� Although we have that �nw�jwn�j � � and �ny�jyn�j � �� for j � �� �� � � � �m from
����
� the additional terms 	�yn�j and 	�wn�j may potentially prevent a corresponding
complementarity relation from holding for b�nw and b�ny � or the respective limits� since
	n� may diverge to �� In the following we prove that that is not the case�

We are going to show that� if y�j � �� for some j among �� �� � � � �m� then b��y�j � ��
Due to the fact that �x�� y�� w�� z�
 is feasible for �MPEC
� as we proved in the �rst

��



part of this Theorem� we must have that w�jy
�
j � � and thus w�j � �� We also must

have that yn�j � � for all n su	ciently large� and thus� from the complementarity
constraints in ����
 we also have that �ny�j � �� We have the following cases�

�� The sequence wn�j has a nonzero sequence wnk�j � �� k � �� �� � � �� The com

plementarity constraints in ����
 imply that �nkw�j � �� and thus� from �����

we get that b�nkw�j � 	nk� ynk�j � Since� per our assumption� b�nkw is convergent� it
follows that the subsequence b�nkw�j � 	nk� ynk�j must be bounded� We therefore
get that

��b�nky�j�� � j	nk� wnk�jj � j	nk� ynk�jj
wnk�j

ynk�j
�
��b�nkw�j�� wnk�j

ynk�j

k���� ��b��w�j�� w�jy�j � ��

Since b�ny is a convergent sequence this means that b��y�j � ��
�� For all n su	ciently large we must have wn�j � �� From �����
 this implies

that b�ny�j � �� which in turn implies that b��y�j � ��
Either way� we see that the conclusion becomes that b��y�j��� We reach a similar
conclusion that if w�j � � for some j � �� �� � � � �m� then b��w�j � �� We therefore obtain
that for any j among �� �� � � � �m we must have that

w�j � �
 b��w�j � �� y�j � �
 b��y�j � �������


Taking now the limit in �����
 as n�� we obtain that �x�� y�� w�� z�
 is feasible
from the �rst part of the proof and that� together with b��� it satis�es the equations

rxf�x�� y�� w�� z�
 �rxh�x�
�� �
rxg�x�
�� �rxF �x�� y�� w�� z�
�� � �

ryf�x�� y�� w�� z�
 � b��y �ryF �x�� y�� w�� z�
�� � �
rwf�x

�� y�� w�� z�
 � b��w �rwF �x�� y�� w�� z�
�� � �
rzf�x

�� y�� w�� z�
 �rzF �x�� y�� w�� z�
�� � ��
g�x�
 � �� �� � �� g�x�
T�� � ��

�����


The last line of equations and inequalities implies that ��i � � whenever i �� A�x�
�
From equations �����
� �����
 and �����
� and using the conclusion of the feasibility

part of the proof� we get that the point �x�� y�� w�� z�
 is a C
stationary point ����

with associated multiplier b�� �


��� ��� ��� b��y� b��w�� It satis�es ����
 and ����
 with

	 � � and where the requirements �k�� � �� �k�� � �� for k � K have been relaxed to
�k���k�� � �� for k � K � �

The preceding result also allows us to characterize all local solutions of MPEC�
Corollary ���� Assume that �MPEC� satis�es assumptions �A��� �A�� and

�A	� everywhere and that �x�� y�� w�� z�
 is a strict local minimum of �MPEC�� Then
�x�� y�� w�� z�
 is a C�stationary point of �MPEC��

Proof It is immediate from the de�nition of �MPEC�c

 that �xc� yc� wc� zc� 
c

is a local solution of �MPEC�c

 if and only if �xc� yc� wc� zc
 is a local solution of

�MPEC��c



minx�y�w�z f�x� y� w� z
 � cyTw
sbj� to g�x
 � �

h�x
 � �
F �x� y� w� z
 � �

y� w � ��

��



Choose some c� � �� n � �
MPEC�� Find a solution �stationary point� �xcn � ycn � wcn� zcn � 
cn
 of �MPEC�cn���
If 
cn � �� then �xcn � ycn � wcn� zcn
 solves �MPEC�� Stop�

otherwise update c� cn�� � cn �K and n� n � n� � and return to MPEC��
Table ���

An adaptive L� modi�ed elastic mode approach

If bx � �x�� y�� w�� z�
 is a strict local minimum of �MPEC
� then there exist � � �
and a ball B�bx� �
� whose boundary we denote by "� such that for any �x� y� w� z
 � "�
a feasible point of �MPEC��c

� we must have that

maxff�x� y� w� z
� f�x�� y�� w�� z�
� yTwg � ��

This implies that there exists bc such that� for all � � bc we have that for any
�x� y� w� z
� a feasible point of �MPEC��c

 on the boundary " of B�bx� �
� we must
have that

f�x� y� w� z
� f�x�� y�� w�� z�
 � �yTw � ��

If this were not true� then for any n there exists �n � n such that� for some
�x��n� y��n� w��n� z��n
 � "� a feasible point of �MPEC��c

� we have that

f�x��n� y��n� w��n� z��n
 � f�x�� y�� w�� z�
 � �ny
��nTw��n � �������


Since " is compact� the sequence �x��n� y��n� w��n� z��n
 has an accumulation point
�x�� y�� w�� z�
 � " that must be feasible for �MPEC��c

� Dividing �����
 by �n and

taking the limit as n��� we get that y�
T

w� � �� or that �x�� y�� w�� z�
 is in e�ect
feasible for �MPEC
� But �����
 also implies that� for all n�

f�x��n� y��n� w��n� z��n
 � f�x�� y�� w�� z�
 � ��

Taking the limit in the last inequality we obtain that

f�x�� y�� w�� z�
 � f�x�� y�� w�� z�
 � ��

which contradict our choice of ��
Therefore� bc with the properties speci�ed above must exist� This shows that�

for c � bc� �MPEC��c

 will have a local solution inside of B�bx� �
� For all n � bc
let �xn� yn� wn� zn
 be the local solution of �MPEC��n

 in B�bx� �
 with the lowest
value� By an argument similar to the one that lead to the existence of bc it follows
that �xn� yn� wn� zn
 � �x�� y�� w�� z�
� It also follows from the observation at the

beginning of the proof that �xn� yn� wn� zn� yn
T

wn
 is a local solution� and thus a
stationary point� of �MPEC�n

� FromTheorem ��� it thus follows that �x�� y�� w�� z�

is a C
stationary point of �MPEC
� The proof is complete� �

���� A globally convergent modi�ed elastic mode for the optimization
of parameterizedmixed P variational inequalities� The results from Subsection
��� allow us to de�ne a modi�ed elastic mode approach with good global convergence
properties for the optimization of parameterized mixed P variational inequalities� The
modi�cation is described in Table ����

��



Theorem ���� Consider the algorithm described in Table ���� Assume that�
for a �xed cn� the subproblem �MPEC�cn�� is solved with a nonlinear programming
algorithm with global convergence safeguards which does not diverge to� and produces
�xcn � ycn � wcn� zcn � 
cn
� Then either

�� the algorithm stops at a �nite n with 
cn � � and �xcn � ycn � wcn� zcn
 is a
B�stationary �KKT� point of �MPEC�� or

�� 
cn � �� 
n and any accumulation point �x�� y�� w�� z�
 of �xcn � ycn � wcn � zcn

is a C�stationary point of �MPEC��

Proof Since� for a �xed value cn� the NLP algorithm does not diverge� it will
have an accumulation point �xcn � ycn � wcn � zcn� 
cn
� Since� from Theorem ���� MFCQ
holds at every point of �MPEC�cn

 and the NLP algorithm has global convergence
safeguards� it follows that cases A
 and B
 in Subsection ��� cannot occur� and thus
�xcn � ycn � wcn� zcn � 
cn
 is a KKT point of �MPEC�cn

�

If the algorithm ends with a �nite n and� thus� a �nite value of the penalty cn
and 
cn � �� from the fact that �xcn � ycn � wcn� zcn � �
 is a KKT point of �MPEC�cn


it follows that �xcn � ycn � wcn� zcn
 is in e�ect a KKT point of MPEC� which proves
part ��

If 
cn � � for any n� then cn is increased to�� and� by applying Theorem ���� we
get that any accumulation point �x�� y�� w�� z�
 of �xcn � ycn � wcn� zcn
 is a C
stationary
point of �MPEC
� The proof is complete�

�
We can therefore claim that the adaptive modi�ed elastic mode in Table ��� is

globally convergent� Any accumulation point produced by this algorithm is at least
a C
stationary point of the problem �MPEC
� It is true that the desirable global
convergence result would require that any limit point be a B
stationary point� Note�
however� that the example �����
 satis�es the assumptions �A�
� �A�
 and �A�
 at
��� �� �
 �after introducing the slack variable w � y�x
� but ��� �� �
 cannot be a KKT
and thus a B
stationary point� So global convergence to B
stationary points cannot
be guaranteed� in general�

�� Conclusions� A class of mathematical models� mathematical programs with
complementarity constraints �MPCCs
� which describe a wide variety of problems in
economics and engineering cannot satisfy the Mangasarian
Fromovitz constraint qual

i�cation �MFCQ
 at a solution point� Therefore� sequential quadratic programming
algorithms may encounter infeasible quadratic program subproblems arbitrarily close
to a solution x��

In this work we determine su	cient conditions for �MPCC
 to have a nonempty
Lagrange multiplier set� Based on results from ����� we establish that having the
strict MFCQ hold for the tightened nonlinear program �TNLP
 results in the MPCC�s
having a nonempty Lagrange multiplier set�

As a result� the strict Mangasarian
Fromovitz constraint quali�cation �SMFCQ

for �TNLP
 and the quadratic growth condition near a solution x� of �MPCC
 imply
that the adaptive elastic mode strategy as presented in Table ��� will terminate with a
solution of the original problem for a su	ciently large but �nite value of the penalty
parameter� c�� provided that it is initiated su	ciently close to the solution� For
this value of c� the modi�ed nonlinear program ����
 satis�es MFCQ at all feasible
points and the quadratic growth at the solution and can thus be locally solved by
certain sequential quadratic programming algorithms ���� In addition ����
 has now an
isolated stationary point at the point corresponding to the solution of �MPCC
� which
means that any sequential quadratic programming algorithm with global convergence

��



safeguards that does not leave a neighborhood of the solution will in e�ect converge to
it� We demonstrate this point by applying the adaptive elastic mode implemented in
SNOPT ���� to several problems� As has been argued elsewhere ����� SMFCQ can be
expected to hold at the solution of almost all MPCCs �in a measure theoretic sense
�
Also� the quadratic growth condition is the weakest su	cient second
order condition�
and is thus the most general possible� We can therefore claim that the elastic mode
approach will locally solve a generic instance of the MPCC class for a �nite value of
the penalty parameter�

An important issue� whenever a relaxation
penalty approach is applied� concerns
the choice of the penalty parameter� In particular� the penalty parameter� though
�nite� may have to be very large for the relaxed problem to have the same solution as
the original problem� If this happens near a local solution x� of an MPCC we show
that� under certain assumptions� there will be feasible points of MPCC that have
lower objective values than x�� This makes x� an undesirable end point which can be
avoided if the penalty parameter is not aggressively increased�

We also show that any accumulation point of an adaptive elastic mode type
approach� presented in Table ���� is a C
stationary point of an optimization problem
whose complementarity constraints originate in a parameterized mixed P variational
inequality� if the penalty parameter of the elastic mode is allowed to increase to ��
A corollary to this observation is that any strict local minimum of such problem must
be a C
stationary point� Although the desirable result should involve B
stationarity�
we show by an example that there exist such optimization problems that do not have
B
stationary local minima�

The elastic mode therefore provides a framework for solving mathematical pro

grams with complementarity constraints by using sequential quadratic programming
algorithms� The bene�t of this perspective is that a large class of algorithms� whose
behavior and properties have been amply analyzed and for which sophisticated �nely
tuned implementations already exist� can be used to solve mathematical programs
with complementarity constraints�
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