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ON SOLVING MATHEMATICAL PROGRAMS WITH
COMPLEMENTARITY CONSTRAINTS AS NONLINEAR
PROGRAMS

MIHAI ANITESCU*

Abstract. We investigate the possibility of solving mathematical programs with complemen-
tarity constraints (MPCCs) using algorithms and procedures of smooth nonlinear programming.
Although MPCCs do not satisfy a constraint qualification, we establish sufficient conditions for their
Lagrange multiplier set to be nonempty. MPCCs that have nonempty Lagrange multiplier sets and
that satisfy the quadratic growth condition can be approached by the elastic mode with a bounded
penalty parameter. In this context, the elastic mode transforms MPCC into a nonlinear program
with additional variables that has an isolated stationary point and local minimum at the solution
of the original problem, which in turn makes it approachable by sequential quadratic programming
algorithms. We also prove that a modified version of the elastic mode exhibits global convergence to
C-stationary points when applied to the optimization of parametric mixed P variational inequalities.
The robustness of the elastic mode when applied to MPCCs is demonstrated by several numerical
examples.

1. Introduction. Complementarity constraints can be used to model numerous
economics or engineering applications [24, 31]. Solving optimization problems with
complementarity constraints may prove difficult for classical nonlinear optimization,
however, given that, at a solution z*, such problems cannot satisfy a constraint quali-
fication [24]. As a result, algorithms based on the linearization of the feasible set, such
as sequential quadratic programming (SQP) algorithms, may fail because feasibility
of the linearization can no longer be guaranteed in a neighborhood of the solution
[24].

Several methods have been recently proposed to accommodate such problems.
For example, a nondifferentiable penalty term in the objective function can be used
to replace the complementarity constraints [25], while maintaining the same solution
set. Although the new problem may now satisfy the constraint qualification the non-
differentiability of the objective function is an obstacle to the efficient computation
of an optimal point. Another method is the disjunctive nonlinear programming (dis-
junctive NLP) approach [24], though this may lead to a large number of subcases
to account for the alternatives involving degenerate complementarity constraints. If
all constraint functions, with the exception of the complementarity constraints, are
linear, then efficient active set approaches can be defined, if the linear independence
constraint qualification holds [16]. Still other approaches have been defined for prob-
lems whose complementarity constraints originate in equilibrium conditions [24].

A nonsmooth approach has been proposed in [31] for MPCCs in which the un-
derlying complementarity constraints originate in a variational inequality with strong
regularity properties. A bundle trust-region algorithm is defined in which each ele-
ment of the bundle is generated from the generalized gradient of the reduced objective
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function. The key step is to produce an element of the generalized gradient [31, Equa-
tions (7.24), (7.25)], which may be quite costly for general cases at points where there
are a substantial number of degenerate complementarity constraints.

In this work we investigate the possibility of solving MPCCs by applying cer-
tain SQP algorithms to their nonlinear programming formulation. This endeavor is
important because it allows one to extend the considerable body of analytical and
computational expertise of smooth nonlinear programming to this new class of prob-
lems. The advantage of such an approach over disjunctive programming, for example,
is that it considers simultaneously all the alternatives involving degenerate comple-
mentarity constraints. The disadvantage is that the description of the constraint set
is considerably less well behaved.

Recognizing that the potential infeasibility of the subproblems with linearized
constraints may prevent normal termination of SQP algorithms, we discuss their use
in conjunction with the elastic mode [18]. The elastic mode is a standard technique of
approaching infeasible subproblems by relaxing the constraints and introducing a dif-
ferentiable penalty term in the objective function. To show that such an approach can
accommodate a large class of MPCCs, we use the framework from [33] to determine
sufficient conditions for MPCCs to have nonempty Lagrange multiplier sets.

As in [33], the first- and second-order optimality properties of an MPCC are
compared with the similar properties of two nonlinear programs that involve no com-
plementarity constraints and may thus satisfy a constraint qualification. Here, how-
ever, we consider the optimality properties of an MPCC formulated as a nonlinear
program with differentiable data. In [33] MPCC is equivalently described with the
complementarity constraints replaced by an equality involving the nondifferentiable
function min{x1,22}. The two formulations will ultimately have similar properties,
but the smooth description is important in anticipation of the use of a standard non-
linear programming algorithm to solve MPCCs.

The elastic mode approach we present here is different from other nonlinear pro-
gramming approaches for MPCC in the following important respect. Virtually all
smooth nonlinear programming approaches currently described in the literature for
finding a solution z* of MPCC consist of transforming it into another nonlinear pro-
gram depending on a parameter p, MPCC(p) and then finding the solution # of the
modified problem [21, 24, 34]. The problem MPCC(p) will have enough constraint
regularity for P to be found reasonably efficiently. The solution z* i1s then obtained
in the limit as p — 0, and 2P # 2* for any p. The program MPCC(0) is undefined,
or does not satisfy a constraint qualification (if the parameter is a penalty parameter
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¢, the same observation is valid by choosing p = ).

For the elastic mode, under conditions to be specified in the body of this work,
MPCC is transformed into a problem MPCC(c) that satisfies a constraint qualifica-
tion and has z* as a local solution for all ¢ sufficiently large but finite. So MPCC is
transformed by a finite procedure in a nonlinear program with the same solution that
satisfies a constraint qualification, which does not happen for the other approaches.
To our knowledge, the developments presented here are the first systematic approach
of this type that is valid for a generic instance of mathematical programs with com-
plementarity constrains.

The paper is structured as follows. In the remainder of Section 1 we review the
relevant nonlinear programming concepts. In Section 2 we discuss sufficient condi-
tions for MPCC to have a nonempty Lagrange multiplier set, in spite of not satisfying
a constraint qualification at any point. This allows us to argue in Section 3 that
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the elastic mode applied to an instance of the MPCC class will retrieve a local so-
lution of the problem for a finite value of the penalty parameter, a point which 1s
supported by several numerical examples. In Section 4 we show that an adaptive
elastic mode approach can be guaranteed to retrieve a feasible C-stationary point
of an optimization problem whose complementarity constraints originate in a mixed
P variational inequality. To achieve this global convergence result we will allow the
penalty parameter to grow to oo, if necessary.

1.1. Optimality Conditions for General Nonlinear Programming. We
review the optimality conditions for a general nonlinear program

(1.1) min f(x) subject to g(x) <0, /Nz(x) =0.

Here g : R™ — R™, h:R™ = R". We assume that f, g, and h are twice continuously
differentiable.

In this work we will denote quantities connected to nonlinear programs such as
(1.1) by the superscript 7, since f, g, and h will later denote the objective value and
constraints of MPCC.

We call  a stationary point of (1.1) if the Fritz-John condition holds: There exist
multipliers 0 # A= (/\0, /\1, .. /\m+r) € R™++L such that

Vel(w,X) =0, h(z)=0; A >0, Gi(x) <0, fori=1,2,....m; > Nfs(w) =

(1.2)

Here £ is the Lagrangian function

r

(1.3) L(x,A) = o f(x) Z Z:\m+jﬁj(x)'

A local solution #* of (1.1) is a stationary point [30]. We introduce the sets of
generalized Lagrange multipliers

(1.4) A(z) = {0 £ X e R X satisfies (1.2) at },
(1.5) M) ={de (@) =1},

The active set at a stationary point x 1s

(1.6) A(x)={ie{1,2,...,m}| gi(x) = 0}.

The inactive set at x is the complement of .%I(x)

(1.7) A(z)=1{1,2,... . m}— A(z).

With this notation, the complementarity condition from (1.2), > /%, /\igi(x) =0,
becomes /N\jc(x) =0.

If certain regularity conditions hold at a stationary point z (discussed below),
there exist g = (1, fio, .., fimtr) € R™T" that satisfy the Karush-Kuhn-Tucker
(KKT) conditions [4, 5, 12]:

(1.8) Vo f (#) + 0 i Vagi() + 3252y A Vahy () = 0, h(x) = 0;
A >0, §i(x) <0, figi(x) =0, fori=1,2,...,m.
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In this case, i are referred to as the Lagrange multipliers, and z is called a Karush-
Kuhn-Tucker (KKT) point. We denote the set of Lagrange multipliers by

(1.9) A(z) = {ji € R™*"| [i satisfies (1.8) at = } .
A simple inspection of the definitions of A(z) and Af(z) reveals that
feA@) & (1L7) € Al(2).

Also, because of the first-order homogeneity of the conditions (1.2), and from (1.8),
it immediately follows that

(1.10) A(x) # 0o Ad(x) #0 < I\ € AY(x), such that Ay # 0.

The regularity condition, or constraint qualification, ensures that a linear approx-
imation of the feasible set in the neighborhood of a stationary point = captures the
geometry of the feasible set. The regularity condition that we will use at times at
a stationary point z is the Mangasarian-Fromovitz constraint qualification (MFCQ)

[27, 26]:

1. inzj(x), j=1,2,... r are linearly independent and
(MFCQ) 2.3p # 0 such that V,h;(z)'p=0, j=1,2,...,r

and Vg (x)Tp <0, i€ A(x).

It is well known [17] that MFCQ is equivalent to the fact that the set A(x) of Lagrange
multipliers of (1.1) is not empty and bounded at a stationary point « of (1.1). Note
that A(z) is certainly polyhedral in any case.

It 1s useful to extend this constraint qualification for points that are not stationary
or even feasible. We say that the Mangasarian-Fromovitz constraint qualification
holds at a possibly infeasible point « of (1.1) if MFCQ holds at # where the active set
1s now defined as

(1.11) A(z) ={ie{1,2,...,m}]| gi(z) > 0}.
We call z a generalized (possibly infeasible) Fritz-John point if

0£GEeRMT, i >0,i=1,2,.
Y ied(o) FiVedi(x) + 3752 fimts V

such that

(1.12) ) =0,

o m
Vah;

By the alternative theorem,
(1.13) (1.12) holds & MFCQ does not hold at x.

Another condition that we will use on occasion is the strict Mangasarian-
Fromovitz constraint qualification (SMFCQ). We say that this condition is satisfied
by (1.1) at a KKT point x if

1) MFCQ is satisfied at « and

2) the Lagrange multiplier set A(z) contains exactly one element.
4
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The critical cone at a stationary point x is [10, 35]

Cle) = {uER” | Vohi(x)Tu=0,j=1,2,...,r,

1.14 i ~
(1.14) Veii(2)Tu <0, i € A(x); Vof(z)Tu< o}.

We now review the conditions for a point * to be a solution of (1.1). The
second-order necessary conditions for #* to be a local minimum are that A9(z*) #
and [22]

(1.15) Yu € C(2*), 3N € A9(x*), such that «T V2, L(x* A )u > 0.

The second-order sufficient conditions for z* to be a local minimum are that
A9(z*) #  and [22]

(1.16) Vu e C(z*), u#£0, I e A9(x*), such that T V2 L(x*, :\*)u > 0.

1.2. Notation. For a mapping ¢ : R” — R!, we define

max}qlgl‘;,gi maX}—fhEl‘;,gi
) = max q? z), and g~ (z) = max ({2 z),
max{¢q(z),0} max{—¢;(z),0}

With this definition, it immediately follows that ¢(z) = ¢*(x) — ¢~ (z) and that
lgi(z)] = ¢ (z) + ¢ (2),i=1,2,...,1.
We denote the L., nondifferentiable penalty function by

(1.17) Poo() = max{jl(l‘),ﬁz(l‘),...,ﬁm(x), ‘/31(93)‘ , ‘/22(93)‘,...,

We also define the L; penalty function as

r

(1.18) i) = Yo aF () + 3 [y()].

j=1
It 1s immediate that
0 < Poo(x) < Pa(x) < (m+ 1) Pos ().

An obvious consequence of (1.18) and (1.17) is that z is a feasible point of (1.1) if
and only if Pi(z) = P (x) = 0.
We say that the nonlinear program (1.1) satisfies the quadratic growth condition

with a parameter & at z* if
(1.19) max{f(x)_f(x*),ﬁoo(x)} > ||e — 2|

holds for some ¢ > 0 and all # in a neighborhood of z*. The quadratic growth
condition is equivalent to the second-order sufficient conditions (1.16) [7, 8, 22, 23, 35].
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For the case in which MFCQ holds at a solution «* of (1.1), the quadratic growth
condition at * is equivalent to [7]

(1.20) flz) = f(z") = 57 lle — 2|

for some op>0 and all  feasible in a neighborhood of z*.

If F:R" — R™ is a differentiable mapping we denote its Jacobian by

oFy,  oF, . oF,

oz oz ox1
9F or, .. 9F,

- oz oz oz
Vel(e) = | 7% 7%
oF,  oF, | oF,
Ox Ox e

We use this convention since now gradients of scalar valued maps become column
vectors, which is the usual setup in the optimization literature. For vector valued
maps F', this definition of the Jacobian is the transpose of the one used, for example,

in [24].

1.3. Exact Penalty Conditions for Degenerate Nonlinear Program-
ming. We now assume that at a solution z* of the nonlinear program (1.1) the
following conditions hold:

1. The Lagrange multiplier set at 2*, A(z*), is not empty.

2. The quadratic growth condition (1.19) is satisfied.
Then there exists a neighborhood V(z*), some penalty parameters ¢; > 0, éoo > 0
and some growth parameters o1 > 0 and o, > 0 such that [8, Theorem 3.113]

Vo € V(") i1 (2) = F(x) + @ Pi(e) > Fla) + o1 o — a7
(1.21) =1 (2") + o |z — 27|,
Vi € V(") oo (#) = F2) + oo Pro (0) > (&) + 00 i = 27|
(1.22) = o) + 0 o — 277

Therefore, £* becomes an unconstrained strict local minimum for the nondifferentiable
functions ¢ (2) and e (#). Such functions are called nondifferentiable exact merit
functions for the nonlinear program (1.1) [4, 5, 12]. If (1.21) and (1.22) are satisfied
then we say that the functions ¢ (x) and ¢ () satisfy a quadratic growth condition
near ™.

The minimal values of ¢; and é., that result in (1.21) and (1.22) holding depend on
both first and second-order properties of the nonlinear program (1.1) at #*. However,
in order for * to be a stationary point for ¢ (#) and e (%) the parameters ¢ and
éoo must satisly [2, 4, 12]

(1.23) > min fille, ée > min Jlill;

T AEA(e) feA(z*)

Therefore the size of the penalty parameters ¢; and ¢, that makes the corresponding
merit function exact is connected to the minimal size of the Lagrange multipliers of

(1.1).



1.4. Nonlinear programming algorithms with global convergence safe-
guards. A desirable feature of nonlinear programming algorithms is that any of their
accumulation points should be meaningful for the original nonlinear program (1.1).
Since one possible outcome is that the nonlinear program is infeasible, one should
define meaningful in this context.

We construct the following nonlinear program which is associated with the con-
straints of (1.1)

. T T
ming yvw  enpt+e, (v+w)

2 UL,

(1.24) subject to Gile) Swiy i=1,2,0m,
_nghj(x)gwja i=12...r
u’v’wzoa

where e,;, and e, are vectors whose entries are all ones, of dimension m and r, re-
spectively. The nonlinear program (1.24) is closely related to the unconstrained min-
imization of pl(a:), and 1s also related to the feasibility restoration phase of the Filter
SQP algorithm [15]. The nonlinear program (1.24) satisfies MFCQ everywhere and
has two types of stationary points:

1. Stationary points (x,u, v, w) at which the objective function is 0. The com-
ponent z of such stationary points is a feasible point for (1.1).

2. Stationary points (z,u, v, w) at which the objective function is not 0. The
component z of such points is an infeasible point for (1.1). From the sta-
tionarity conditions (1.8) applied to (1.24) it is immediate that such points
x must be infeasible Fritz-John points (1.12) of (1.1) at which, from (1.13),
MFCQ cannot hold.

If, while attempting to solve (1.1), an algorithm encounters a point of the second
type then, based on first-order information alone, the objective function of (1.24) and
]51(1‘) cannot be locally reduced.

We say that an algorithm is globally convergent to a local stationary point of
(1.1), or that it has a global convergence safeguard, if any accumulation point of the
algorithm is either

A) an infeasible Fritz-John point (MFCQ does not hold),

B) a feasible Fritz-John point (MFCQ does not hold), or

C) a KKT point.

An algorithm with this property is FilterSQP [13, 14]. The algorithm does not
use a merit function, and when a linearized version of (1.1) becomes infeasible, the
algorithm enters a feasibility restoration phase which is based on a nonlinear program
that is essentially (1.24) [15]. If the algorithm does not exit the feasibility restoration
phase, then it will end up in either case A) or B).

1.5. Formulation of Mathematical Programs with Complementarity
Constraints. We use notation similar to the one in [33] to define a mathematical
program with complementarity constraints (MPCC).

(MPCCQ) ming f(x)
subject to gi(%) <0, i=1,2,...,n
hj(z) =0, j=1,2,...,n,
Fi1(2) <0, k=1,2,....n,
Fy o(2) <0, k=1,2,....n,
Fpi(2)Fro(x) <0, k=1,2,... n.



In this work we assume that the data of (MPCC) (f(z), h(x),g(z) and Fj ;(2), for
k=1,2,...,nc and i = 1,2) are twice continuously differentiable.

For a given k, the constraints Fy 1(x) <0, Fy »2(z) < 0 imply that Fy 1(2)Fy 2(2)
< 0 is equivalent to Fj 1(x)Fy2(2) = 0. The constraints Fy q(z)Fy 2(x) < 0 are
therefore called complementarity constraints and are active at any feasible point of
(MPCCQC).

Since we cannot have Fj 1(x) < 0, Fi o(2) < 0, and Fy 1(2)Fy 2(x) < 0 simulta-
neously, it follows that MFCQ cannot hold at any feasible point « [24, 33].

1.6. MPCC Notation. If ¢ is one of 1,2 we define 1 = 2 — ¢ + 1. Therefore
i=1=i=2 andi=2=¢=1 The complementarity constraints can thus be
written as [}, ;(2)F, 7(x) <0, k =1,2,...,n.. We use the notation

(125) F(l‘) = (Fll(l‘), Flz(l‘), le(l‘), Fzz(l‘), ceey Fncl(l‘), Fncz(l‘))T .

The active set of the inequality constraints g;(x) < 0, 1 < ¢ < m, at a feasible point
x 18

(1.26) Ale) = i€ {1,2,.. . ni} | giz) = 0}

We use the following notation:

1.27) I(x :{ E{l,?,...,nc}x{1,2}|Fk72—.(x)<0},
1.28) T(x) = {(k,i) € {1,2,. .., n} x {1,2}] Frs(x) < 0},
1.29) D(w) = {(k,i) € {1,2, ... nc} % {1,2}] Fra(a) = Fyz(e) = 0,

{1,2,...,nc} x {1,2} = Z(2),
={ke{l,2,...,n. | (k,1)eZ(x) or (k,2) eZ(x)},
{ke{l,2,...,n.}| Fpa(z) = Fro(z) =0} ={1,2,...,n.} — K(2).

There are two cases for the constraints involved in the complementarity con-

straints at a feasible point x.
1. Fga(x)+Fg 2(x) <0.In this case there is an i(k) € {1, 2} such that Fy ;x) =0
and Fk,z_'(k) < 0. Therefore, with our notation k& € K(z), (k,i(k)) € Z(x)
and (k,i(k)) € Z(x). We call Fy 1(2), Fy 2(2) a nondegenerate (or strictly
complementary) pair. In the rest of the paper i(k) and i(k) will have the
meaning defined in this paragraph, whenever & € K.
2. Fpa(zx) + Frpa(z) = 0, or Fr1(z) = Fra(z) = 0. In this case k& € E(x),
(k,1) € D(z) and (k,2) € D(z). We call Fy 1(x), Fr 2(x) a degenerate pair.
Therefore Z () contains the indices of the active constraints at which strict com-
plementarity occurs, whereas D () contains the indices of the constraints that are
degenerate at « from the point of view of complementarity. The set K(z) represents
the indices & at which strict complementarity occurs and E(r) the indices &k at which
complementarity degeneracy occurs.

Since we are interested in the behavior of (MPCC) at a solution point z*, we
may avoid the dependence of these index sets on x. Therefore we denote T = Z(x*),
D =D(z*), K =K(z*), and A = A(2*). At 2" we denote by nz and np the number
of elements in Z and D, respectively.

For a set of pairs J C {1,2,...,n.} x {1,2} we denote by F7; a map whose
components are Fy ; with (k,4) € J.



1.7. Associated Nonlinear Programs at z*. In this section we associate two
nonlinear programs to (MPCC). This will help with characterizing the stationarity
conditions for (MPCC). The notation is from [33].

At z* we associate the relaxed nonlinear program (RNLP) to (MPCC).

(RNLP) ming  f()
subject to  g;(x) <0, i=1,2,...,n
hij(z) =0, j=1,2,...n
Fp(l‘) S 0,
Fz(l‘) =0.

As it can be seen, (RNLP) is obtained from (MPCC) by dropping the elements from
F(z) that are inactive at 2*, as well as the complementarity constraints, but enforcing
the complements of inactive constraints as equality constraints.

We also associate at z* the tightened nonlinear program (TNLP), in which all
the complementarity constraints in (MPCC) are dropped and all active constraints
at 2* connected to complementarity constraints are replaced by equality constraints.

(TNLP) ming  f(=z)
subject to  gi(z) <0, i=1,2,...,n
hij(z) =0, j=12...,n.
FD(x) = Oa
Fz(l‘) =0.

We immediately see that, near #*, (TNLP) is a more constrained problem than
(MPCC), which in turn is more constrained than (RNLP), and all three programs
have the same objective function. As a result, if #* is a local solution of (RNLP),
then it must be a local solution of (MPCC). Also, if #* is a local solution of (MPCC),
then it will be a local solution of (TNLP). None of the reverse implications hold in
general for either local solutions or stationary points.

However, if (TNLP) satisfies SMFCQ at a solution z* of (MPCC), then #* is a
Karush-Kuhn-Tucker point of (TNLP) and (RNLP) [33].

2. The Lagrange Multiplier Set of (MPCC). In this section we analyze the
relationship between the relevant mathematical objects of (MPCC) and (RNLP) at a
solution #*. The (RNLP) formulation does not immediately violate MFCQ, the way
(MPCC) does. By establishing a correspondence between the Lagrange multiplier
sets of (RNLP) and (MPCC) we ensure that, under certain conditions, (MPCC)
has a nonempty Lagrange multiplier set, although it does not satisfy a constraint
qualification.

2.1. Critical Cones. In this section we compare the critical cones of (MPCC)
and (RNLP). The active sets play a structural part in the definition of the critical
cones. We have that

Ve (Fi1Fy 2) (2%) = Fi 1 (27) Vi Fr o(27) + Fi 2(2") Vi Fi 1 (27).
We distinguish two cases.
1. If k € K, we have that F 1(2*) = Fj 2(2*) = 0, and, as a result,
(2.1) k€K =V, (Fy1Fr2) (2")=0.
Therefore, if k € K, the constraint Fy 1(z)Fg 2(z) < 0, which is active at *,

has no bearing on the definition (1.14) of the critical cone (it would just add
the constraint 0 < 0).



2. If k € K, then there exist an (k) such that (k,i(k)) € Z and (k,i(k)) € .
The constraints Fy ;xy(z) < 0 and Fk,i(k)(l‘)ij(k)(l‘) < 0 are active at z*,
whereas Fkyl—'(k)(x*) < 0 and the corresponding constraint is inactive at z*.
Therefore we have that

(2.2) Vo (Fk,i(k)Fk,z_'(k)) (%) = Fy 700y (#) Va P iy (27),

and thus the constraints connected to k that enter the definition of the critical
cone (1.14) are

for u an element of the critical cone.
Using the definition (1.14) we get that the critical cone of (MPCC) is

Cmpcc={u€R" | Vof(a*)Tu < 0,
Vegi(2*) u < 0, ieA
Vehi(z*)Tu = 0, je1,2,... n,
(2.3) VoFi1(z*) u < 0, kek
Vkayz(x*)Tu < 0, kek
Fy 0 (0 Ve P ()T <0, (k.ilk) € 7).

We use (1.14) again to determine the critical cone of the relaxed nonlinear pro-
gram. It is immediate from the definition of the index sets Z,K, and D that all
constraints involving components of F'(z) are active at #* for (RNLP). It thus follows
that the critical cone of (RNLP) is

CRNLP = {u € R | Vo f(x")"u < 0,
Vegi(z*) u < 0, ieA
(2.4) Vehi(z*)Tu = 0, jeL2. .. n
’ Vkayl(x*)Tu < 0, kek
Vkayz(x*)Tu < 0, kek
VeFrig(@)Tu = 0, (ki(k)e}.

LEMMA 2.1. CMPCC = CRNLP’

Proof The conclusion is immediate, by noting that all the constraints involving
the critical cones are the same with the exception of the ones involving indices &k for
which (k,i(k)) € Z. For these k, from the definition (1.27) of the index sets it follows
that Fkyl—'(k)(x*) < 0. We therefore have that

Valkig(@)'u < 0 and Fy Z’(k)(l’*)vka,i(k)(x*)Tu < 0e
Vka,i(k)(x*)Tu < 0 and Vka,i(k)(l‘*)Tu > 0e
Ve Figy(@)fu = 0.

Since the remaining constraints of (RNLP) and (MPCC) are the same this equivalence
proves the claim. o

2.2. Generalized Lagrange Multipliers. The set of generalized Lagrange
multipliers of (MPCC) at z* is a set of multiples

0# (a,v,m,pt,m) €ER X R™ x R™ x R*™e x R
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that satisfies the Fritz-John conditions (1.2). Since p are the multipliers corresponding
to the components of F'(z), we will index them by elements in (1,2,...,n.) x (1,2).
The Fritz-John conditions for (MPCC) at z* are that z* is feasible for (MPCC) and
that

(2.5) aVyf(x —1—214 2gi(x —|—Z7T]V hy(

Ne

Z [k 1 Ve Fie 1 (%) + i 2 Vo Fi 2(27) + eV (Fy, 1 Fy o) (2%)] =0

Fri(z*) <0, pgi>0, priFri(2)=0, k=12,...n
1=1,2
(2:6) gi(z*) <0, v >0, vigi(e®) =0, i=1,2,...,n
Fia(@™) Fro(27) <0, me 20, meFra(a”)Fep(x”) =0, k=1,2,....n

From our definition of the index sets it follows that I(x*) < 0 and gae(x*) <0
Therefore, from the complementarity conditions (2.6), it follows that puz = 0 and
vge = 0.

We can also determine the relations satisfied by the generalized Lagrange multi-
pliers of (RNLP). As discussed above, the index sets that define (RNLP) have been
chosen such that all constraints involving components of F'(x) are active. Therefore
the generalized Lagrange multipliers are

that satisfy the Fritz-John conditions:

(2.7) aVyf(x —1—214 2gi(x —|—Z7T]V hy(

> 1V Fi 1 () + fik 2V Fi o +an Vol iy (27) = 0
kel keK

28) gi(@) <0, B3>0, Bgie*) =0, i=12...,n
. /]k,l Z Oa /jk,Z Z Oa kek.

Here ji is a vector that is indexed by elements of D, and 7 is indexed by elements of

7.

2.2.1. Other types of stationary points of (MPCC). In the analysis of
(MPCC), other useful types of stationarity at a solution #* can be defined, based on
the interpretation of (MPCC) as a problem with nonsmooth constraints [21, 33]:

o (-stationary points of (MPCC) are points #* that, together with an appropri-
ate set of multipliers (v, v, 7, , ), with « = 1, satisfy (2.5) and (2.6), except
for the conditions yiz 1 > 0 and pr 2 > 0, for k € K, which are now relaxed

to pr,iptk2 > 0, for k € K.
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o M-stationary points of (MPCC) are points z* that, together with an appro-
priate set of multipliers (o, v, 7, 4, 1), with o = 1, satisfy (2.5) and (2.6),
except for the conditions pi 1 > 0 and pi 2 > 0, for k € K, which are now
relaxed to

for k € K, either iz 1 > 0, pr2 >0, or pg 12 = 0.

e B-stationary points of (MPCCQC) are points z* that, together with an appro-
priate set of multipliers (o, v, 7, 4, ), with o = 1, satisfy (2.5) and (2.6). The
last type of points coincide with the notion of a KKT point.

2.3. Relations between the generalized Lagrange Multiplier Sets of

the generalized multiplier A of (RNLP) a generalized multiplier A\° of (MPCC). We
define the following types of components of A°.

1. Components that correspond to the objective function or the inequality con-
straints g;(2) < 0 and equality constraints h;(z) =0

(2.9) o =a; vV =v;, 7° =7

2. Components connected to the pairwise degenerate constraints. For these we

have k € K and (k,1),(k,2) €D or Fi1(z*) = Fi 2(z*) = 0. We define
(2.10) 1R = fng, (k) €Dy i =0, kek.
Similar to the equation (2.1) we have that

Vo (Fy 1 Fi0) (37) =0,

and therefore

Fire, 1 Vel 1(2%) + ik 2V Fi o (2%) = g (Vo Fia(2™)  +

2.11
(2.11) 13 2V Fio(a®) + 10V (For Fi o) (2).

3. Components connected to pairwise strictly complementary constraints. In this
case we have k € K, (k,i(k)) € Z, and (k,i(k)) € Z. Therefore F, Z’(k)(x*) < 0,
Fy iky(2") = 0, and we thus define the multipliers

uz,i(k) = max{ﬁk,i(k), 0} ; (k’,f(k’)) c z
(2.12) Peig = O ) o (k,i(k)) €1
M = Wmln{nk,i(k),o}, kek.

It is immediate from these definitions that p; i(k) 2 0 and 52 > 0. Since, for fixed £,

fik,i(k) is the only multiplier of (RNLP) involved in definition (2.12), we obtain using
(2.2) that

i (k) Ve B ie)(€%) = [max {7 k), 0} + min {ik ;(x), 0}] Vo Fr s
(2.13) = “Z,i(k)vakvi(k)($*) + Usz,E(k)(l’*)vka,i

“Z,i(k)vakvi(k)($*) + ﬂZy{(k)vak,z_'(k)(x*) + 1, Ve (Fy z’(k)Fk,z_'(k)) (7).

(k) (2")
m(x™) =

After we compare the terms that, following (2.11) and (2.13), are equal in (2.7)
and (2.5), we get that A° = (a°,v°, w°, u°, n°) satisfies (2.5) as well as (2.6). By
12



tracing the definition of A° we also have that A # 0 = A\° # 0. Therefore \° is a
generalized Lagrange multiplier of (MPCC) or
(2.14) A= (a® v, 7w’ n°) EAK/IPCC’
where a® = & from (2.9).

THEOREM 2.2. If the set of Lagrange multipliers of (RNLP) is not empty, then
the set of Lagrange multipliers of (MPCC) is not empty.
_ Proof Since the Lagrange multiplier set of (RNLP) is not empty, we can choose
A= (L,o,7, 00 € A? rRyLp: From (2.14) it follows that A° = (1,v°, 7% p°,n°) €
A517 mpcc is a generalized multiplier of (MPCC). From (1.10) it follows that the La-

grange multiplier set of (MPCC) is not empty. o

COROLLARY 2.3. Assume that (TNLP) satisfies SMFCQ at a solution x* of
(MPCC), i.e.

1. VyFp(a*), VeFr(x*), and Vi h(z*) are linearly independent.
2. There exists p # 0 such that V,Fb(x*)p =0, Vo FL (z*)p =0, V.hT(z*)p =
0, Vgl (z*)p <0, forie A(z*).
3. The Lagrange multiplier set of (TNLP) at x* has a unique element.
Then the Lagrange multiplier set of (MPCC) is not empty.

Proof From [33, Theorem 2], since (TNLP) satisfies SMFCQ at x*, the Lagrange
multiplier set of (RNLP) is not empty. Following Theorem 2.2, we obtain that the
Lagrange multiplier set of (MPCC) is not empty, which proves the claim. o

Unfortunately, the reverse statement of Theorem 2.2 does not hold in the absence
of SMFCQ, as is shown in [33]. Indeed, consider the following example:

ming, Yy—<

y < 0
(2.15) y+a < 0
yly+x) < 0
z < 0

The unique minimum of this problem is (0, 0). However, if we construct the associated
(RNLP) formulation, we obtain

ming, Yy-—<

y < 0
(2.16) stz < 0
x < 0.

The point (y, 0) is feasible for y < 0 for the now-linear program (2.16). Thus (2.16) is
unbounded and cannot have (0, 0) as a stationary point. Therefore Theorem 2.2 can-
not be applied, since the Lagrange multiplier set of (2.16) is empty. In this situation
(TNLP) associated to (2.15) of (2.15) does not satisfy either MFCQ or SMFCQ.

2.4. An alternative formulation. We also investigate the following equivalent
formulation of (MPCC), where the complementarity constraints have been replaced
by one constraint:

min, f(x)
subject to gi(®) <0, i=1,2,...,n
hj(z) =0, j=1,2,...,n
(2.17) Fy 1(2) <0, k=1,2,....n,
Fy 2(2) <0, k=1,2,....n,
>onti Fra(@)Fep(x) <0



At a feasible point of the above program, we must have that >, 2, Fi 1(z)Fy o(z) = 0
and the equivalence between (2.17) and (MPCC) follows immediately. This formula-
tion is of interest in computations because it has less constraints than (MPCC).

LEMMA 2.4. If the Lagrange multiplier set of (MPCC) is not empty, there exists
a Lagrange multiplier (1,v,m p,n) € AK/IPCC such that n, = m, k = 2,3,...,n¢.
Proof Let A° = (1,v°, 7% u%, n°) € AK/IPCC be a Lagrange multiplier of (MPCC).
Now let d € R™ such that d > 0.

If k corresponds to degenerate complementarity constraints, k € K, we have, as
argued above, that Fj 1(2*) = Fj 2(2*) = 0, and thus

dkvx (Fk,le,Z) (l‘*) = 0
For this case, define
Me = Me + s Jry = Heys  Heo = Heo
which results in

1y 1 VaFra(2®) + pg o Ve Fro(27) + 05 Ve (Fr 1 Fr 2) (27)

9.18 . . N
(2.18) 18V Fin(2) + 18 oV Fi o) + 12V (Fi s Fi o) (27).

If k& corresponds to strict complementarity constraints, & € K, we have that
Fie iy (@) = 0, Fy, 74y (z") <0 and thus g, 5, = 0. Define

Me = Mo s Mg ie) = Faigh) — dka,{'(k)(l‘*) >0, F‘Z,{'(k) = “Z,Z’(k) =0.
Since F ;xy(2*) = 0 we have that
Vo (FiaFr o) (27) = Fy 500 (87) Ve Fe iy (27).

In turn, the last equation implies that

i)V Frite)(27) + 11 700 Vo B 50y (27) + 15V e (Fr 1 Fr ) (27

(ﬂz,i(k) - dka,;'(l‘*)) Ve Fieir) (&7) 4 1 500 +
(M + di) Vo (Fie 1 Fr2) (27) = g1, 500 Ve P iy (27) +
i 06y Vo B i (87) + 15V e (Fi 1 Fr ) (27)

Since A° satisfies (2.5) and (2.6), it follows from the preceding equation and (2.18), in
a manner similar to the proof of the Theorem 2.2, that \* = (1,v°, 7°, u*, n*) satisfies
(2.5) and (2.6) and thus A* € AK/IPCC for any 0 < d € R"e where n* = n° +d. The
conclusion is immediate, since we can always choose a vector d > 0 such that n; = 57,
k=1,2,...,n.. One such choice, for example, is d = [|n°]|_ (1,1,..., )T —n°. o

We now describe the Lagrange multiplier set of the alternative formulation (2.17).
We denote mathematical objects connected to (2.17) by the subscript yrpcc1. We
write the Fritz-John conditions (1.2) for (2.17) at the point #*, and we obtain

(2.19) Vo (&™) + Y viVegi(a®) + Y wiVah(x7) +
i=1 j=1

Ne 2 Ne
ZZ#ZNme(r*) + 7 va (Fk,le,Z) (") =0
k=11i=1 k=1
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I
—_

—_ =
[CRINCIS
=
o

(2.20)

Fk Z(l‘*) S 0, /JZJ» Z 0, “Z,iFk,i(x*) = 0, k
2
2

gi(z*) <0, v$>0, vigi(z*) =0,

c.y Ny

and 9y > 0 € R. A generalized multiplier of (2.17) is thus
) = (Ozo,ljo,ﬂo’ﬂo’nf) c A?WPCCI C R x RV w R x RZnC % R,

where A° satisfies the Fritz-John conditions (2.19), (2.20).

THEOREM 2.5. The formulation (2.17} has a nonempty Lagrange multiplier set
if and only if (MPCC) has a nonempty Lagrange multiplier set.

Proof If the Lagrange multiplier set of (2.17) is not empty, then there exists
A= (1, v, 7, 1% n5) € R x R™ x R x R?™e x R that satisfies (2.19-2.20). Define
= (8,0, .. )T € R and A* = (1,v°,7° u° n*). It follows by inspection
that A* satisfies (2.5), (2.6) at z*. Therefore A* is a generalized Lagrange multiplier
of (MPCC), which means that (v°,7°, 1° n*) is a Lagrange multiplier of (MPCC).
Thus the Lagrange multiplier set of (MPCC) is not empty. Conversely, applying
Lemma 2.4, if the Lagrange multiplier set of (MPCC) is not empty, there exists the
generalized Lagrange multiplier A = (1,v, 7, i, n) of (MPCC) that satisfies m, = 1,
for k = 1,2,...,n.. Tt immediately follows that, since A satisfies (2.5) and (2.6),
(1,v,m, u,m) satisfies (2.19) and (2.20) and is thus a generalized Lagrange multiplier
of (2.17). Therefore (v, 7, u, 1) is a Lagrange multiplier of (2.17) at #*. The proof is
complete. o

Theorems 2.2 and 2.5 give sufficient conditions for (MPCC) and (2.17) to have a
nonempty Lagrange multiplier set in spite of the fact that neither satisfy a constraint
qualification at any point in the usual sense of nonlinear programming. In Section
3 these conditions will imply that a relaxed version of either (MPCC) or (2.17) will
have the same solution as (MPCC) and will satisfy MFCQ, which makes either ap-
proachable by SQP algorithms.

3. The Elastic Mode. An important class of techniques for solving nonlinear
programs (1.1) is sequential quadratic programming. The main step in an algorithm
of this type is solving the quadratic program

Vol (2)Td+d"Wd,
Gi(e) + Vagi(2)'d <0, i=1,2,...,m
hi(x) + Vihi(2)Td =0, j=1,2,...

The matrix W can be the Hessian of the Lagrangian (1.1) at « [13], or a positive
definite matrix that approximates the Hessian of the Lagrangian on a certain subspace
[12, 18, 28]. A trust-region type constraint may be added to (3.1) for the case in which
W is not positive definite [13]. The solution d of (3.1) is then used in conjunction
with a merit function and/or line search to determine a new iterate. We give here
only a brief description of SQP algorithms, since our interest is solely in showing how
the difficulties regarding the potential infeasibility of (3.1) when applied to (MPCC)
can be circumvented. For more details about SQP methods see [12, 13, 18, 28].

If a nonlinear program satisfies MFCQ at z* then the quadratic program will
be feasible in a neighborhood of z*. If MFCQ does not hold at z*, however, the
possibility exists that (3.1) is infeasible, no matter how close to * [24, 31, 33]. This
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If the Quadratic Program (3.1) is infeasible or its Lagrange multipliers are too large then
NLPC: Find the solution (x°, u®, v w®) of the relaved NLP (3.3) by SQP.
If [(ufr, v, we)|| = 0, then x° solves (1.1). Stop.

otherwise update c1: ¢y = ¢ + K and return to NLPC.
TABLE 3.1
An adaptive L1 elastic mode approach

is an issue in the context of this paper because (MPCC) does not satisfy the MFCQ
at a solution z*.

In the case of infeasible subproblems some of the SQP algorithms initiate the
elastic mode [18]. This consists of modifying the nonlinear program (1.1) by relaxing
the constraints and adding a penalty term to the objective function. First we consider
the case in which the added penalty term is of the L., type:

minx,( f($) + Cooc
(3.2) subject to gl(x) <(¢ i=1,2,...,m,
| ~C<hi(@) <S¢ G=1.2r
=0

An alternative elastic mode strategy consists of using an L; approach. The mod-
ified nonlinear program becomes

ming 4 v w f(x) +c (e%u +el (v+ w))

2 UL,

subject to gile) <wy, i=1,2,...,m,
(3.3) = = .
—v; < hj(x)<w;, j=L1,2,...r
u,v,w > 0,

where e,, and e, are vectors whose entries are all ones, of dimension m and r, respec-
tively. We call ¢, and ¢; the penalty parameters. Note that a point « is a stationary
point of (3.2) and (3.3) if and only if it is a stationary point of ¢« (2) and, respectively,
1 (), for ¢os = coo and &, = ¢ [4, 5].

All the constraints are now inequality constraints. A quadratic program analogous
to (3.1) is constructed for (3.2) or (3.3), which now satisfies MFCQ at any feasible
point. A feasible point of (3.2) or (3.3), respectively, can be immediately obtained by
choosing ¢ and u, v, w, respectively, to be sufficiently large.

An adaptive elastic mode strategy is presented in Table 3.1 when an L; approach
is used. The elastic mode subproblem (3.3) is solved successively for increasing values
of the penalty parameter, in an attempt to find its appropriate value. An equivalent
strategy exists when the L., approach (3.2) is used. The quantity K is a fixed positive
parameter. We present here only the essential characteristics of the elastic mode. For
more details about an adaptive elastic mode setup and the way it can be incorporated
in an SQP framework, see [18].

For fixed penalty parameter ¢1, the problem (3.3) can be solved by SQP as argued
above. The possibility exists, however, that ¢; may have to be increased indefinitely
in Table 3.1 before a solution of (1.1) is obtained. In the following theorem we discuss
sufficient conditions that ensure that the elastic mode relaxations (3.2) and (3.3) have
z* as a component of the solution for sufficiently large but finite penalty parameter.

THEOREM 3.1. Assume that, at a solution x* of (1.1), we have that
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o the Lagrange multiplier set of (1.1) is not empty,

o the quadratic growth condition (1.19) is satisfied at x*, and

o the data of (1.1) are twice continuously differentiable.

Then,

1. For sufficiently large but finite values of the penalty parameter co, and, respec-
tively, c1, we have that the points (x*,0) and, respectively, (z*,0p,0,,0,),
are local minima of (3.2) and (3.3) at which both MFCQ and the quadratic
growth condition (1.19) are satisfied.

2. For the same values co, and, respectively, c1 we have that the points (z*,0)
and (2*,0p,,0,,0,) are isolated stationary points of (3.2) and (3.3). There-
fore, any SQP algorithm with global convergence safequards that does not leave
a sufficiently small neighborhood of these points will in fact converge to them.

3. If mutialized sufficiently close to &* and with sufficiently large penalty param-
eter, the adaptive elastic mode strategy from Table 3.1 will recover z* for a
finite value of the penalty parameter.

Proof We will prove part 1 of the Theorem only for the L., case, the L;
case following in the same manner. If (z, () is a feasible point of (3.2), it immediately
follows from the definition (1.17) of the L, penalty function, ﬁoo(a:), that ¢ > ]Soo(x)
From (1.22), under the assumptions stated in this Theorem, we have that there exists
éoo > 0 such that the penalty function 1. (#) satisfies a quadratic growth condition
at z*. Choose now

Coo = Coo + 1.
Using (1.22), we obtain that, in a sufficiently small neighborhood of #*, we must have
f(2) + eooC > () + oo Poo(2) > o ||z — 27|
1

Whenever ¢ < -, we will have that o1¢(? < {. Therefore, in a sufficiently small
neighborhood of (#*,0), for all (z, () feasible, we will have that

F@) + el = Fa) 4 e+ 2 o1 (Jlo = 2|7 +¢2).

Therefore, for our choice of c¢o, we have that (3.2) satisfies the quadratic growth
condition for feasible points (#,¢). Since (3.2) clearly satisfies MFCQ everywhere,
this is equivalent to the quadratic growth condition (1.19) holding for all (z,¢) in a
neighborhood of (z*,0) [7, 8]. The proof of part 1 of the theorem is complete.

From the conclusion of part 1 we have that, since MFCQ and the quadratic
growth condition holds for (3.2) and, respectively, (3.3), at (z*,0) and, respectively,
(z*, 0m, 0n, 0,,), these points must be isolated stationary points of the respective non-
linear programs [1]. Therefore any algorithm with global convergence safeguards that
does not leave their neighborhood, will converge to them. This concludes the proof
of part 2.

Part 3 immediately follows since, if the initial ¢; is chosen larger than the ¢;
obtained in part 1, the update rule will not even need to be triggered, provided that
we start in a sufficiently small neighborhood of (2*, 0s, 0n, 0. o

Discussion

e Note that the conditions used in the Theorem are fairly weak. The quadratic
growth is the weakest possible second-order sufficient condition. Relaxing
our Lagrange multiplier requirement would result in a problem with an empty
Lagrange multiplier set, for which few regularity results are known that could
be algorithmically useful.
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e The proof of part 1 will work for any choice ¢, > éoo, for a possibly different
neighborhood of (z*,0). When we discuss the stationarity conditions of (3.2)
and (3.3) in connection to ceo and ¢; we will still use the lower bound (1.23).

e For part 2, an SQP algorithm with a global convergence safeguard is, for
example, FilterSQP [13]. For (3.2) and (3.3) other SQP algorithms using the
merit functions e (#) and 1 (z) will always accumulate at KKT stationary
points [4, 5]. Obtaining that an algorithm will not leave a neighborhood
of a solution point depends on the properties of the merit function used.
Near a point that satisfies the quadratic growth condition and MFCQ), this is
achievable for certain SQP algorithms that use nondifferentiable exact merit
functions, such as the one described in [1].

e The adaptive elastic mode presented in Table 3.1 has the potential of choosing
an appropriate value of the penalty parameter ¢; without input from the user.
However, determining the appropriate initial range of the penalty parameter
is a function of the problem. In particular, it depends on the behavior of
the solution of (3.3) when ¢y is smaller than the critical value that makes
(2*, 0m, 0n, 0,) a local solution. It may be possible that an excessively low
initial choice of the penalty parameter will push the solution in a region
where subsequent increases of the penalty parameter may not even result in
a feasible point. In this work we do not discuss the appropriate initial range,
we merely prove that it exists.

We now apply Theorem 3.1 for the case of interest in this work, MPCC. The
following corollary is a simple restatement of Theorem 3.1 for (MPCC).

COROLLARY 3.2. Assume that (MPCC) satisfies the following conditions, at a
solution z*:

e The Lagrange multiplier set of (MPCC) not empty. From Theorem 2.2, SM-
FCQ holding for (TNLP) is a sufficient condition for this assumption to hold.

o The quadratic growth condition (1.19) is satisfied at x*.

o The data of (MPCC) are twice continuously differentiable.

Then the conclusions of Theorem 3.1 hold for (MPCC).

Consequently, when started sufficiently close to a solution and with a sufficiently
large penalty parameter, the adaptive elastic mode strategy presented in Table 3.1
applied to (MPCC) will end with a finite ¢; as soon as (MPCC) satisfies the quadratic
growth condition and has a nonempty Lagrange multiplier set at a solution z*. Since
SMFCQ is a generic condition for (MPCC) and holds with probability 1 for instances
of problems in the MPCC class [33] and the quadratic growth condition is the weakest
second-order sufficient condition, the elastic mode can be expected to locally solve
(MPCC) for a finite value of the parameter ¢;.

As for the elastic mode nonlinear program (3.3) itself, Theorem 3.1 part 2, gives
sufficient conditions for an algorithm to converge to its solution for a finite value of
the penalty parameter ¢;. The fact that, for the conditions stated, the solution 1is
an isolated stationary point, makes it very likely for most algorithms of nonlinear
programming to converge to x*.

Some rate of convergence results can also be extended to the class of problems
discussed here. If the matrix W of (3.1) is positive definite, then an SQP algorithm
using an Armijo search in the direction d applied to either (3.2) or (3.3) will induce
at least R-linear convergence of the iterates to (¢*,0) and (2*, 04,0y, 0,), when used
in conjunction with an L., penalty function under the assumptions stated above [1].
An algorithm that 1s superlinearly convergent under the conditions stated here can
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TABLE 3.2
Results obtained with MINOS

Problem Var-Con-CC Value | Status Feval | Infeas
gnash14 21-13-1 -0.17904 | Optimal 80 0.0
gnash1b 21-13-1 -354.699 | Infeasible 236 | 7.1E0
gnash16 21-13-1 -241.441 | Infeasible 272 | 1.0E1
gnash17 21-13-1 -90.7491 | Infeasible 439 | 5.3E0
gne 16-17-10 0 | Infeasible 259 | 2.6E1
pack-rigl-8 | 89-76-1 0.721818 | Optimal 220 | 0.0EO
pack-rigl-16 | 401-326-1 0.742102 | Optimal 1460 | 0.0E0
pack-rigl-32 | 1697-1354-1 N/A | Interrupted | N/A N/A
TABLE 3.3
Results obtained with SNOPT
Problem Var-Con-CC Value | Status Feval | Elastic
gnash14 21-13-1 -0.17904 | Optimal 27 Yes
gnash1b 21-13-1 -354.699 | Optimal 12 None
gnash16 21-13-1 -241.441 | Optimal 7 None
gnash17 21-13-1 -90.7491 | Optimal 9 None
gne 16-17-10 0 | Optimal 10 Yes
pack-rigl-8 | 89-76-1 0.721818 | Optimal 15 None
pack-rigl-16 | 401-326-1 0.742102 | Optimal 21 None
pack-rigl-32 | 1697-1354-1 | 0.751564 | Optimal 19 None

be used to solve (3.3). The algorithm solves, at each step, a quadratically constrained
quadratic subproblem [3]. Under stronger second-order assumptions, a superlinear
rate of convergence is achievable for SQP algorithms [6, 11, 19, 20, 32, 36].

3.1. Numerical Experiments. We conducted some numerical experiments on
MPCCs from the collection MacMPEC of Sven Leyffer. To validate the conclusions
of this work, we used two widely employed nonlinear solvers MINOS [28] and SNOPT
[18]. SNOPT implements an adaptive L; elastic mode approach.

We considered three types of problem, all of which appear in [31]

1. Stackelberg games [31, Section 12.1], which characterize market complemen-
tarity problems in which one of the players has a temporal advantage over
the others. In our table these are the gnash problems.

2. Generalized Nash complementarity points [31, Section 12.2]. In our table
this is the gne problem, an instance of the problem 12.34 in [31]. This is a
restricted market complementarity problem.

3. Optimum packaging problem. The problem involves designing the support
of a membrane such that the area of contact between the membrane and a
specified rigid obstacle is minimized, subject to the constraint that a certain
region must be in contact [31, Chapter 10]. The underlying variational in-
equality 1s defined by a two-dimensional elliptic operator, which is discretized
on a grid of 8 x 8, 16 x 16, and 32 x 32 elements, which are the problems
pack-rig followed by the discretization index in our table.

With the exception of gne, all the problems have the complementarity constraints
lumped together as one inequality, as in the formulation (2.17).
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In the tables showing the results for MINOS and SNOPT, we indicate the number
of variables, constraints, and complementarity constraints (“Var-Con-CC” in the first
column), the final value of the objective function, the number of function evaluations
and the final status of the run. The runs for both MINOS and SNOPT were done
on the NEOS server [29] at Argonne National Laboratory. All the runs except one
completed: the exception was pack-rigid-32, in MINOS, which we were forced to
interrupt after it had been running on the World Wide Web interface of NEOS for
about 8 hours.

The fact that (MPCC) does not satisfy MFCQ does not immediately result in the
algorithm’s running into an infeasible QP and failure. But it suggests a significant
expectation that this would occur. Indeed, it can be seen that MINOS fails in more
than half of the instances of MPCCs with an “infeasible” message and a large value
of the measure of infeasibility. SNOPT, by contrast, solves all the problems presented
in a reasonable number of iterations, needing to initiate the elastic mode for two
problems as shown in the table.

We have not determined any immediate correspondence between initiating the
elastic mode in SNOPT and final infeasibility of MINOS, but that is to be expected
because the two algorithms are not completely equivalent in the absence of the elastic
mode. However, the use of the elastic mode considerably increases the robustness
of sequential quadratic programs and is guaranteed to succeed for a finite penalty
parameter under the conditions discussed in this paper.

3.2. Convergence effects of the penalty parameter. An important issue
when using a penalty approach is the choice of the penalty parameter. In this subsec-
tion we investigate the effect of large penalty parameters in the relaxed formulations
(3.2) and (3.3), associated with (MPCC), over the region of convergence of SQP al-
gorithms.

Consider a local minimum #* of (MPCC). We make the following assumptions
(refer to Section 2 for a description of the notation)

(B1) The first pair of constraints is strictly complementary, or Fy 1(2*) = 0 and
Fy 2(2*) < 0 (the first pair can eventually be relabeled to make the second
constraint inactive at #*). To continue using the aggregate notation, while
referring separately to the first pair of constraints, we define the following
sets of indices at z*, derived from the ones introduced in Subsection 1.6:

71— {(1’ 1)}

7- {(1’ 2)}
K —{1}.

(3.4)

&3 R N
Il

The other index sets defined in Subsection 1.6 do not change their meaning
and we will therefore use the same notation.

(B2) We assume that Fg(2*) < —cp, for 8 € Z, where cp > 0. Therefore, with the
exception of the first pair of constraints, all inactive constraints are “strongly”
inactive.

(B3) The minimal singular value of

J = |Veg(z) Voh(z) Volp(x) Voln(z) Vel 1(z) Vel 2(z) |,

is bounded bellow by o,,, for any «#. This implies that, for vectors u,v of
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appropriate dimensions we must have
1
Ju=wv=|Jul| < —|Jv]].
Om

In particular, the same property must hold for any matrix made of a subset
of the columns of J.

(B4) The values of the norms of the first and second derivatives of the data of
(MPCC) are bounded above by ¢p for any .

(B5) Define the set

P ={z|g(x)

A

bl

OO O o oo

bl

-, BEI}.

IA

We assume that P is feasible and that there exists £ € P such that
(3.5) lo* = 7| < —cp Fiale"),

for some parameter c¢p > 0.
(B6) The linear independence of the columns of J implies that there exists @ that
satisfies the following constraints at z,

Vegi(@Ta = 0, icAy@)
Vegi(#)Ta = —1, i Ag(¥)
V.h(@Ta = 0,
V.Pp(#)Ta = 0,
VeFs(#)a = 0,
VeFP (3 Ta = —1,
V.F o8 e = 0.

Here A, (&) contains the indices of components of g that are active at & From
Assumption (B3) we must have that

v+ 1

Om

[lall <

We assume that there exists er > 0 and a twice continuously differentiable
arc x(t) that is feasible for (MPCC) for 0 <t < er and that satisfies #(0) = &

and Mdtﬁ = u. We denote by
dz(t) d*x(t)
er = max maxq ||——=
B e dt ||| dit?

We will now analyze the subclass of (MPCC) problems that satisfies the above
assumptions for fixed values of ¢p, cp, 0, cp, cr, er. We investigate the dependence
of the relevant optimality quantities with respect to Fy »(2*). The case of interest in
this analysis is Fy o(2*) ~ 0 (almost degeneracy).
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The assumptions above can be easily relaxed by considering them valid only on
suitable neighborhoods of #*. Assumptions (B1)-(B2) describe the complementarity
situation at «* for (MPCC), and state that, with exception of Fj »(2), all other inac-
tive constraints are strongly inactive: for all feasible points near «* only Fy 5(z) can
switch from inactive to active. Assumption (B3) is essentially a uniform linear inde-
pendence property for the (TNLP) program associated to (MPCC). Tt can be relaxed
to include only the gradients of the components of g(z) that can be active in a certain
neighborhood of #*. Assumption (B5) immediately follows from Assumption (B3) for
|F1 2(2*)| sufficiently small and ¢p then depends on ¢p, 0y, and cp. Note that, if all
involved mappings were linear then Assumption (Bb) is a simple corollary to Hoff-
man’s Lemma [8, Theorem 2.200]. Assumption (B6) is also implied by Assumptions
(B2), (B3), (B4) and (B5) and er and c¢r depend on ¢p, o, and cp. However, to
simplify the presentation we will consider cp, cp, om, ¢p, cr and cr to be the primary
parameters and we will ignore their interdependence.

Since from our assumptions, the linear independence constraint qualification holds
for (TNLP) at «*, then, from Corollary 2.3, there will exist the Lagrange multipliers
v >0, 7 pu>0and 5> 0 of (MPCC), such that vTg(x*) = 0 and

0=V,f(z*) + Veg(&*)v + Voh(e™)m + Vi Fp(x*)up+

Bk, i(k) 1,1

2oper VeFrit (@) (i) + Ukaj(k)(l’*)) +Ve Py (x”) (11 +m (™)) .
(3.6)
In this relation, we ignore multipliers 1, for k¥ € K, because in the previous equation
they would multiply Vo (Fg 1Fk 2) (#*) which is 0 for degenerate pairs.

We can immediately see that the above equation implies that (v, 7, up, i) are
Lagrange multipliers of (TNLP) and (RNLP). Here we define ji = (ﬁk,i(k) k€ K).
The first component of ji is fi; 1. Due to our linear independence assumption (B3),
the associated nonlinear programs (RNLP) and (TNLP) have a unique Lagrange mul-
tiplier at #* which is the same for both nonlinear programs [33]. From Assumptions
(B2) and (B4) we must have that

. 1 . cp
(37) I, 7o, I < IV F )] < 2

We now analyze the way in which the Lagrange multipliers of (MPCC) of mini-
mum 1 or oo norm can be obtained from the Lagrange multipliers of (TNLP) in this
particular situation.

If k € K then (k,1), (k,2) € D, and we can choose, same as in Section 2, 7 = 0.
The multipliers py 1 and g 2 are components of up and are the same for (TNLP),
(RNLP) and (MPCC).

If & € K, then we have that either fi ;) > 0 and then we can take pg ;1) =
Brigy = 0, Prie)y = 0 and nx = 0; or figix) < 0 and then we take py ;) = 0,
/’Lk,z_'(k) —0and 0 < = Fku;(:)(z*) < |ukc,;(k)|.
because it corresponds to an inactive constraint of MPCC, since Fkyl—'(k)(x*) < 0.

Either way, we obtain

The multiplier pu, (k) i1s always 0

- 1
(3.8) 0 < Mg, fe1, k2 < |uk7i(k)|max{;,1}, k=2,... n..
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It can be immediately seen from (3.6) that our choices for Hi,i(k) > 0 and ni > 0 are
not unique in order to satisfy fi. ;) = prir) + Fk,{'(k)(l‘*)nk However, it is obvious
that the multiplier vector (v, m, p,n) has a minimal 1,2, or oo norm only if one of
Kk i(k) and ng are 0.
We now have two different cases, according to the value of fi; 1, the multiplier
corresponding to the almost degenerate pair.
1. fi11 > 0. In this case we can choose y11 = fi1 1 > 0 and 7, = 0. Using (3.8)
and (3.7) we obtain that

(3.9)  lwm il < max{ 21w, )] < 22 max{ 21}

Using the inequality (1.23) and the inequalities between the co, 1 and 2 norms
we get that whenever

(ni+ne+3nc)cD 1
max ;,1 > (v, mo )y

(3.10)  é1,¢00 >
Om

the solution z* of (MPCC) will be a stationary point of the penalty functions
¢1(2) and Yoo (). In light of the discussion following Theorem 3.1 concerning
the connection between ¢., and ¢; and the penalty parameters ¢, and ¢; of
the elastic mode, if ¢p and o, are large, then the penalty parameter of
the elastic mode need not take very large values before convergence to z* is
observed. }

2. fi1;1 < 0. In this case we must have that g ; = 0 and g = #(;*) Using

the equation (1.23) we get that in order for the solution z* of (MPCC) to be

a stationary point of (3.2) and (3.3), or equivalently, of the penalty functions

Yoo () and o1 (x) with és = ce and &1 = ¢1 [4, 5], we must have at least

that

1,1

A1 oM = .
(3 ) C1,Co0 2 71 F1,2($*)

If, in addition, we have that

il ep (N + ne + 3n. 1
/'Ll’l* + D( )maX{_,1}2||Va7Ta/'La77||1’
Flyz(l‘ ) Om Cr

then the solution z* of (MPCC) will be a stationary point of the penalty
functions ¢ (z) and te(z), and thus of the nonlinear programs (3.2) and

Note that here we discuss only necessary bounds on ¢, and ¢; for stationarity,
because they will also be necessary for optimality. We then see that, in the second
case, the minimal value of either penalty parameters necessary for the elastic mode to
end with z* must exceed #(;*) If |Fy 2(2z*)] is very small, this means that ¢; and

C1,Coo Z

Coo must have exceedingly large values before the elastic mode approach ends with a
solution. This i1s an undesirable effect because problems with large penalty parameters
may take longer to solve. It is also perhaps surprising because, due to Assumption
(B3), any (TNLP) associated to (MPCC) at a feasible point # in a neighborhood of
x™ will be in fact very well conditioned, at least as far as constraints are concerned.
In this sense we could talk of a well conditioned (MPCC).

However, in this case we argue that, although #* is a local minimum, it cannot
be a minimum in a sufficiently large neighborhood.
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THEOREM 3.3. Assume that at a local minimum x* of (MPCC) assumptions
(B1)-(B6) hold. Further, assume that fiy 1 < 0. Define

g+ 1
ay = cpep > 0 and as = epep (x/ne + n; —|—2ncc—D + 1) ni—i— > 0.

Om Om

Also define

tr = min{eF, ﬁ} ;= 1a71.
2¢rep (er + 1) 5N — @z

Here my 1s the minimal multiplier corresponding to the first complementarity constraint
of (MPCC), n = #(;*) If 0 <ty < tp, then we must have that

f(t™)) = f(&) <0,
where t* = #
Proof This follows from investigating the behavior of the objective function
f(x) along x(t). We therefore estimate W N Vo f(#)Ta. We get
()T +cp |[a]] |lo* — 2] <
T x/Z:n+1 F1,2(1°*)~

— Cpecp

(3.12)

fo() <Vef
T

Using (3.6) and the definition of & we obtain that

W'V f(z*) = —al Veg(z*)v — af Veh(z*)m — IV, Fp(2* ) up

W'V (e iz — 0T Vo Fy g (%)) <

—il'V,g(3)v — ' Voh(z)r — @'V, Fp(F)pp —

(313} P (8) iz — @V Fy 1 (&)1 + ep ||(v, 7, pp, )1 Na]] || — 2] =
fir +ep ||(v,m o pp, ||y ]| ]a™ — 2| <

V)

fi1— epep ||(v, 7, pp, B)||; Fr2(x*).

On the other hand, from the intermediate value theorem we have that
f(@) = f(&7) <cpllz” = Z[| < —cpep Fra(a).
Using now the last inequality, as well as (3.7), (3.5), (3.13) and (3.12) we obtain that

f(@) = ( ) < —an ki p(2Y)
(Vef(@) 0 < finy — axFis(e™),

where a; > 0 and as > 0 are defined in the body of the theorem. Here we used
that ||v, 7, pup, fil|; < V/ne +n; + 2ne 2, which follows from applying the inequality
between the 1 and 2 norms in (3.7).

Therefore, we obtain that for 0 < ¢ < er and for some ¢ € [0, er] we must have

f(@) = fl@") < —ailia(z )
Ja) - 1@ < ( Fla()® L] i+
§ (4y L a2 + £, g )], 7
< t(fnq1— azF1,2(l‘ )) + t%erep (er + 1),
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which, by adding the two inequalities, implies that

3 {4)'5(15)) — f(*) < $thig — Fio(e”) (a1 + tas) + 5tisq +t2erep (er +1) =
’ = —Fi () (—5tm + a1 +tas) +t (3fi1,1 + terep (er + 1)) .

Recall, we work under the assumption that fi11 < 0 and Fy »(2*) < 0. Using the
definitions of ¢t and #; from the statement of the Theorem, it follows that, if 0 < #; <
t <ir, then we have that both terms on the right of (3.14) are negative and thus

f(2(t)) = f(=") <0.

Since t* = # satisfies t, < t* < tp, the conclusion follows. o

As we argued in (3.11), we need at least that ¢1,ceo > 11 in order for 2* to be a
stationary point of ¢1(2*) and ¥ (2*), and thus of (3.3) and (3.2), and the elastic
mode to converge to «* locally. This may lead to an exceedingly large value of ¢; and
coc When 7y is large. However, if 1, is large and fi; 1 is bounded away from 0, then we
will have that ¢ is positive and small and 0 < #;, < tp. In turn Theorem 3.3 implies
that there exists ¢* such that x(¢*) is feasible and for which f(z(¢*)) < f(#*), in spite
of the fact that z* is a local minimum of (MPCC).

We therefore get that, if the penalty parameters ¢; and ¢, need to be large under
the assumptions set forth at the beginning of this section, then there exist feasible
points (MPCC) of lower value than f(2*) in a neighborhood of #* whose size is about
the order of |Fy o(2)| (3.5).

This shows that choosing very large parameters ¢; and c., of the elastic mode
may result in convergence towards an otherwise shallow local minimum z* in nearly
degenerate cases. By strictly local standards z* need not be a shallow minimum, as
measured by the quadratic growth parameter. However, the nonsmooth nature of the
complementarity constraint allows for a feasible arc z(¢) that starts at & close to z*
and on which a significant decrease of the objective function can be obtained.

If (MPCC) is otherwise well conditioned, in the sense that all associated (TNLP)
are well conditioned in a neighborhood of #*, then smaller values of ¢; and ¢, will
avoid #* (which cannot be a stationary point of the relaxed NLP for small values of
the penalty parameters) and will instead converge to better minima. The equations
(3.9) and (3.10) suggest that appropriate initial values of the penalty parameters,
which will avoid convergence to such shallow minima z*, should be of the order of the
norm of the Lagrange multiplier of (TNLP).

3.2.1. Example of shallow minimum convergence for large penalty pa-
rameter. Consider the following mathematical program with complementarity con-

straints
min z
subject to  Fy(y,z) = z — y* < 0
Foly,z)=z+1—-e—(y—1)2 < 0
Fl(yaZ)FZ(yaz) S 0
The feasible region consists of one piece of each of the curves Fy(y,z) = 0 and

Fy(y,z) = 0 and is presented in Figure 3.1 for ¢ = 0.3 in the (y,z) space. The
two curves intersect at the point # = (0.5¢,0.25¢?). The problem has a local shallow
minimum #* = (0,0) and a global minimum (1,¢ — 1). The point * can be brought
closer to degeneracy, thus needing larger penalty parameters for the elastic mode to
converge to it, by taking € > 0 closer to 0. The Figure 3.1 also illustrates the point
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feasible set of MPCC

(0.5%ps,0.25%ps?)

Fi1Gc. 3.1. Example of a shallow minimum that needs a large penalty parameter

made by and after equation (3.14) that the increase in the objective function that is
encountered by going from z* to & on Fi(y,z) = 0 is followed by a sharp decrease
as we switch to Fa(y,z) = 0. Note that the quadratic growth parameter at z* is 1,
independent of € > 0.

We solve this example with SNOPT, but instead of using the elastic mode, we
use directly the relaxed nonlinear program (3.2). We use ¢ = 0.1 and the starting
point (—0.01,0.0001). For c¢o, = 1000 we observed that the algorithm converges to
the shallow minimum z*, whereas for coo = 10 the algorithm converges to (1,e — 1).
This validates the above observation that using a smaller penalty parameter will avoid
convergence to the shallow minimum.

4. Global convergence of an elastic mode approach applied to opti-
mization of parametric mixed P nonlinear complementarity problems. In
Section 3 we proved that the adaptive elastic mode approach, described in Table 3.1,
applied to (MPCC), will retrieve a solution z*, provided that it is started sufficiently
close to z* and with a sufficiently large penalty parameter ¢;. As we argued before,
the latter requirement cannot be relaxed in general since starting with an exceedingly
low ¢; may induce the drift of the algorithm to a point from which feasibility cannot
be recovered once ¢; is increased. In a special though quite important case we now
show that a variation of the elastic mode can be guaranteed to retrieve a feasible
C-stationary point of (MPCC).

4.1. The mixed P property. The key notion used in this section is the mizred
P property [24, pg.277]. Before describing the special class of MPCCs to be solved,
we define and prove some useful properties of partitions with the mixed P property.
These will allow us, in turn, to prove a global convergence result for a special type
of adaptive elastic mode approach applied to the optimization of parametric mixed P
nonlinear complementarity problems.

Let A € RImthxm B e RIm+Dxm and ¢ € RMHD*L We say that the partition
[A B O] satisfies the mixed P property if

04 (y,w,2) ER™FT Ay+ Buw+Cr=0=
Fe, 1 <7 <m, such that y;w; > 0.
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LEMMA 4.1. Assume [A B C] salisfies the mized P property. Let D € R™*™
be a diagonal matriz such that all its diagonal entries satisfy d; 20,1 =1,2,...,m.
Then the partition [AD BD C] also satisfies the mized P property.

Proof Let 0 # (y,w,z) € R** such that ADy+ BDw +Cz = 0. Let § = Dy
and @ = Dw. We then have that 0 # (7, @, z) and A§+ Bw 4+ Cz = 0. From (4.1)
we obtain that 3i, 1 < i < m, such that 0 < g;@w; = d?y;w;, which in turns implies
that y;w; > 0. The proof is complete. o

LEMMA 4.2. Assume that [A B O] satisfies the mized P property. The system of
linear constraints

ATo <o, BTo<o0, cTo=0

has the unique feasible point 8 = 0.

Proof Let 0 #y € R™. An immediate consequence of the fact that [A B (]
satisfies the mixed P property is that the matrix [B C] is invertible [24, Prop.6.1.5].
We define w € R™ and z € R! by

w= —[I, 0][B C]~ Ay
z=—[0 L][B C]~* Ay.

Here we denote by Ij, the k x k identity block. Tt can immediately be seen that (y, w, z)
satisfies Ay + Bw + Cz = 0. Using the mixed P property of [A B ] we obtain that
Ji, 1 < i < m, such that y;w; > 0. Let @ = —[I,,, 0][B C]7*A. Since w = Qy this
means that Yy # 0, there 3i, 1 < i < m, such that y; (Qy), > 0 and thus @ isa P
matrix [9, Thm.3.3.4(b),(c)]. Therefore QT is also a P matrix [9, Thm.3.3.4(a)(c)],

where
BT 17N 1
T _ AT m
oe—r[H ]
Let now @ be a feasible point of the linear constraints in the statement of the
theorem. There exist 51,72 € R™, 71 > 0, 52 > 0 such that
AT94+ =0, BYo+n=0 cTo=0.

We can solve for 8 from the last 2 equations to obtain that
BT 17'[ I,
(4.2) 9:—[CT] [ 0 ]772.

Substituting in the remaining equation we get that

BT 17'T 1,
OZUI_AT[CT] [0 :|772a

which, using our definition for @ and Q7 can be rewritten as
—m =Q .

From the definition of a P matrix, it follows that, if 2 # 0 there exists ¢, where
1 < ¢ < m, such that —ny ;12 > 0, or 71,1m2; < 0. This would contradict the fact
that 71 > 0 and 72 > 0. The only alternative remains n; = 52 = 0. From (4.2) this
results in # = 0 which proves our claim. o
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4.2. Optimization of parameterized mixed P variational inequalities.
We now define the following mathematical program with complementarity constraints
together with its relaxed version

min, f(x Y, w Z) min@'yyyw@’y( f(l‘, Y, w, Z) + CC
S%Jywt(z) ’g(;g) ’ <0 sbhj. to g(x) <0
(4.3) h(e) =0 h(x) =0
F(z,y,w, z) =0 F(r,y,w,2) =0
;/ w <0 g <0
T, T < yw <(
We=0 yw <0 ¢ > 0.

The last constraint of (MPEC) can be formulated as either an equality or an inequality
constraint without altering the feasible set.

Here x € R?, y,w € R™, z € R}, f: R SR h:R* = R, g :R" —
Rne, F oo ReAImtl 5 Rl In (MPEC(c)) we relax only the complementarity
constraints y”w < 0. This approach is different from the one in Section 3 where all
constraints are relaxed.

For fixed z, the system of generalized equations

(4.4) F(e,y,w,2)=0, y<0, w<0, wly=0

defines a mixed nonlinear complementarity problem. We can therefore interpret y, w, z
as the state variables and x as the parameters of the parameterized nonlinear com-
plementarity problem (4.4). Due to this particular structure of the constraints the
first problem from (4.3) is called mathematical problem with equilibrium constraints
or MPEC [24].
For the remainder of this section we make the following assumptions:
(A1) The mappings f, g, h, F are twice continuously differentiable.
(A2) The constraints involving only the parameters x satisfy an MFCQ type con-
dition:

Vzh(z) has full column rank and Ip € R™ such that
Vieh(z)Tp =0 and Vg;(x)Tp < 0, Vi such that g;(x) > 0.

(A3) The partitioned matrix [VyFT, VoFT, VZFT] satisfies the mixed P property
(4.1).

An instance of the problem (4.3) which satisfies this assumptions consists of the
packaging problems with rigid or flexible obstacles after the additional state con-
straints have been replaced by a penalty term [31, Section 10].

Note that (MPEC) is identical with the problem studied in [24] except for

1. The marginally weaker mixed Py property is assumed in [24]. In that case
that was possible because strict feasibility was maintained at all times in a
penalty interior point algorithm. Here we discuss the behavior of sequential
quadratic programming algorithms which may approach the solution through
the infeasible region.

2. The stronger assumption is made in [24] that the set of feasible parameters
x can be described by a finite set of linear equalities and inequalities.
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THEOREM 4.3. The nonlinear program (MPEC(c)) satisfies MFCQ at any point
(z,y,z,w,C) and for any value ¢ of the penalty parameter.
Proof We denote by

.A(l‘) = {iE {1,2,...,77,9} |gz(x) Z 0}

If MFCQ doesn’t hold for (MPEC(c)) at (z,y, w, z,() then, by (1.13), there exist the
multipliers A € R, y; € R for i € A(z), 0 € R 5, € R™, ny € R™, 10 € R,
n¢ € R not all of them 0 such that g; > 0 for ¢ € A(z), 5y, > 0, 9w > 0, 7o > 0 and
n¢ > 0 which satisfy

Veh(z)A+ Zz’eA(x) wiVygi(2) + Ve F(x,y,w, z)0

Ny + now + VyF(z,y,w,2)8

(4.5) e + Moy + Vo F (2, y,w, 2)0
V. F(x,y,w,z)f

no+ne =

I
cooco o

Since 1o, ¢ > 0, the last equation implies that ny = ¢ = 0. Replacing 1o = 0 in the
other equations, and using that 7,7y > 0, we obtain that § must satisfy

VyF(z,y,w,2z)8 < 0
VoF(z,y,w,2)8 < 0
V.F(z,y,w,z)8 = 0.

Using assumption (A3) and Lemma 4.2 we obtain that # = 0. Replacing # = 0 in
(4.5) we get that 1, =5, = 0 and that

Veh(@)A+ > wiVaegi(z) =0
1€EA(x)

where A and g, for i € A(x) cannot all be equal to 0, which contradicts assumption

(A2), by (1.13). This completes the proof of the result. o
THEOREM 4.4. Let (Zn, Yn, Wn, 2n,Cn) be a stationary point of (MPEC{(cy )}).
If limy 00 ¢ = 00 then any accumulation point (x*,y*, w*, z*,(*) of the sequence

(Tny Yn, Wn, 2n, Cn) must satisfy ¢* = 0 and (*,y*, w*, z*) is a feasible C-stationary
point of (MPCC).

Proof: Feasibility. From our assumption, (n, ¥n, Zn, Wn,Cy) is a stationary
point of (MPEC(e,)), which, by Theorem 4.3, satisfies MFCQ everywhere. There
must exist the Lagrange multipliers A € R™, u € R"s, §* € Rm+D ny €R™,
Ny € R™, af,af € R such that p" > 0,7y > 0, 3, > 0 and af, af > 0, that, together
with (2, Yn, Wn, 2n, (), satisfy the KKT conditions (1.8), part of which include the
following equations

vxf(xna Yn, Wn, Zn) + vxh($n)An +

vyf($naynawnazn) + O/llwn + 775 + VyF(l‘n,yn,wn,Zn)H" = 0

(4 6) wa(l‘n,yn,wn,zn)-l-a?yn+77{Z+VwF(l‘n,yn,wn,Zn)9" = 0
’ vzf(xnaynawnazn)+sz($nayn,wn,Zn)9n = 0
af + o = ¢,

g(xn) <0, yn <0, w, <0, (wgyn - Cn) <0, ¢ > 0

g(zn) 'y =0, yhng =0, wing =0, of(why, —¢) =0, a3 = 0.
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Let now

A= (A, 0%, o af)

Since of + af = ¢”, and ¢® — oo we must have that ‘ A7 — 00 as n — 0.

oQ

||3§:|L| , admits an accumulation point

Therefore the sequence

M= (N0, a1, a3)

that satisfies

=1land p* > 0,75y >0, n; >0, a] >0 and a5 > 0. We can

X*

(o]
assume without loss of generality (after eventually restricting the respective sequences
to subsequences) that

n o~
‘Xi — A* and (xnaynawnaznaCn) — ($*ay*aw*a2*ac*)'
n

oQ

AR and take the limit as n — oo, to obtain
(o]

We now divide (4.6) by ‘

ajw* 4y + Vy Fl(z*, y",w*, 27)0" = 0

atyt ok + Ve F(ae*, g, w*, 2")0* = 0

(47) VZF(x*,y*,w*,z*)H* - 0
g(z*) <0, v <0, w <0, (wy" —()<0, ¢* > 0

g(@) =0, vy =0, w' =0, af(w” Yy —¢) =0, a3¢* = 0.

Obviously, g* > 0, g(z*) < 0 and g(=*)? p* = 0 imply that pf = 0 whenever 1 < i <
ng and ¢ ¢ A(z*).

Take now an index j such that 1 < j < m. Since a] > 0, wj <0, y7 <0,
Mw; > 0, and ny ;> 0, we must have that

7)

4.
Ny tajw; >0 = >0 (:> y; = 0=, ; +ajy; >0.

Similarly ny, ; + ojy; > 0 = 75y ; + afwj > 0. We therefore conclude that for
j=1,2,...,m we must have that

(4.8) (o +aiup) (5 + ajwi) > 0.
We can therefore define for j = 1,2,..., m the quantities

Uil (ny; +afy;) > 0or (n; +afw;) >0
dj=14 —1 if (n;+afyl) <0or (n);+ajw)) <0
1oif (4 ofwl) = (5, +aty;) = 0.

From our observation and the definition of d; we must have

d; (77;7]» + oﬁl‘w;) >0, d; (77:,7]» + oﬁ{y;) >0, j=1,2,...,m.
30



Denote now by D € R™*™ the matrix whose diagonal elements are dj,j =
1,2,...,m. The middle equations from (4.7) and our definition of D imply that

DV F(z*, y*,w*, 258" < 0,
DV, F(z*, gy, w*, z*)0* < 0,
V. F(z*, gy, w*,z*)0* = 0.

Using now assumption (A3), and Lemmas 4.1 and 4.2 this implies that #* = 0.
Replacing this in (4.7), we obtain that

Veh(@)A + > piVagi(2®) =0,
tEA(z*)

which, using assumption (A2) implies that A* = 0 and p* = 0. The fact that 6* =0
also implies from (4.7) that

(4.9) no et =0, n) +alyt =0,

Multiplying the first relation with y*T and the second one with w* and using the
complementarity relations y*T ny = 0 and w*TnfU =0 from (4.7) we obtain that

(4.10) aty wt = 0.

We have the following cases.
1. a7 > 0. Then (4.10) implies that y*T w* = 0. From the equation oz”l‘(w*Ty* —
¢*) = 0 of (4.7) we get that ¢* = y*Tw* =0.
2. aj = 0. Then from (4.9) we get that n; = n;, = 0. It then follows that the
A =1.
The complementarity condition a5¢* = 0 from (4.7) now implies * = 0.
In either case we obtain ¢* = 0 which shows that the limit point (z*, y*, w*, z*) must
be feasible.
Proof: C-stationarity. We return to the equation (4.6). We define

only nonzero component of A* s a% which must then satisfy o =

(4.11) Ty =y + o wa, Ty =y + alyn.
Following the same argument that led to (4.8), we obtain that

(4.12) >0, j=1,2

yiho,j Z 1Ly T

Define now
A= (Ana/'tna gn’ ﬁZ’ ﬁg) .
The components of n satisfy a set of equations derived from (4.6):

vxg(xn)ﬂn + vxF($na Yn, Wn, Zn)gn
vyf($nayn; Wnp, Zn) + ﬁg + va($na Yn, Wny,y Zn)gn
( )0"
(

(4.13)

oo oo

vwf(xnaynawnazn)‘i'%‘i'vwF Tny Yn, Wn,y Zn
vzf(xnaynawnazn)‘i'sz xnaynawnazn)gn =
g(l‘n)SO, g(xn)TﬂHZOa yn§0, wn§0
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Assume now that A" admits a subsequence that diverges to co. We can assume
without loss of generality that the entire sequence itself diverges to oo. Define now
the sequence

bl

(o]
which, being bounded, must admit a convergent subsequence. We assume, again
~7N

without loss of generality, that the sequence N s itself convergent to

*

x o= (3 7))
A

with = 1. From the construction of A" we must have that " > 0, whereas

oQ

from (4.12) we must have that

(1.14) Wiy 20, =12,
Dividing now all equations involving multipliers of (4.13) by ‘ An and taking the
limit as n — oo, we obtain that >
Vxh(x*)x* + Veg(z* ) 4+ Ve F (2™, y*, w ,z*)g* 0
Ny + VyF (™, y",w,2")0" = 0
(4.15) —|—V Fla*, gy, w*,z*)0* = 0
V. F(x*, g, w*, z*)0* 0
g(z*) <0, g(z)Tp* =0, y* <0, w* <0

Using now the exact same argument that we applied to (4.7), and which led to the
conclusion that #* = 0 and, subsequently, (* = 0, we get that (4.15), (4.14) and
Assumption (A3) imply that 0* = 0. In turn, this implies that 7y = 7;, = 0 and, from
Assumption (A2) and using the complementarity relation on the last line of (4.15),

that A* = 0, 7* = 0 and thus A= 0, which is a contradiction with h) = 1. This

oQ

implies that the sequence 2" must be bounded. Let

A= (Nt 0,7 )
be a limit point of this sequence. We assume without loss of generality that it is the
unique limit point. From (4.12) we must have that

(4.16) W >0, j=1,2,....m

From our definition of 7y, and 7; (4.11), it does not immediately follow that the
corresponding limit point satisfy a complementarity relation with w* and, respectively,
y*. Although we have that 7y ;w,; = 0 and 5y ;y,; = 0, for j = 1,2,...,m from
(4.6), the additional terms a1y, ; and aqwy, ; may potentially prevent a corresponding
complementarity relation from holding for 77 and ﬁg, or the respective limits, since
af may diverge to co. In the following we prove that that is not the case.

We are going to show that, if y7 < 0, for some j among 1,2, ..., m, then 77 .5 = 0.

Due to the fact that (™, y*, w", 2 ) is fea81b1e for (MPEC), as we proved in the first
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part of this Theorem, we must have that wjy; = 0 and thus w; = 0. We also must
have that y, ; < 0 for all n sufficiently large, and thus, from the complementarity
constraints in (4.6) we also have that 7; ; = 0. We have the following cases:

1. The sequence wy, ; has a nonzero sequence wy, ; < 0, k=1,2,.... The com-
plementarity constraints in (4.6) imply that n"k =0, and thus from (4.11)
we get that 7, nwd = a{*yn, ;. Since, per our assumptlon, 7k is convergent, it
follows that the subsequence ﬁfu’j] = a*yy, ; must be bounded. We therefore
get that

*

=0.

~ w k=00 |~
Wny,j | (7% ng,J | *
- 3.

. w,j J|
Yny,j Yny,j Sy

|77y] - |O/1“€w”k7j| = |O/1“€ynk7j|
Since 7, is a convergent sequence this means that ﬁ*y,j =0.
2. For all n sufficiently large we must have w, ; = 0. From (4.11) this implies
that 7 ; = 0, which in turn implies that 7y ; = 0.
Either way, we see that the conclusion becomes that ny]_O We reach a similar

conclusion that if w; < 0 for some j =1,2,...,m, then 7% j = 0. We therefore obtain
that for any 7 among 1,2, ..., m we must have that
(4.17) w; <0=7,,;,=0; y; <0=17n, ;=0

Taking now the limit in (4.13) as n — oo we obtain that (z*, y*, w*, z*) is feasible
from the first part of the proof and that, together with A*, it satisfies the equations

VoS (@, y*,w*, 2%) + Voh(a*)\" +

Veg(a*)p* + Vi F(z*, ", w*, z2)6* = 0

(4.18) Vyf(a* ' w*, 2%) + 0y + Vy F(a™, y", w*, 2%)0" = 0
‘ Vol y*, w*z)—i—nw—l—v Fla*, gy, w*,z*)0* = 0
Vo fle* gy w*, 2*) + V F (™, vy, w*, )6 = 0,

g(l‘*)SO, pe>0, gl@)tps = 0.

The last line of equations and inequalities implies that uf = 0 whenever ¢ ¢ A(z").
From equations (4.16), (4.17) and (4.18), and using the conclusion of the feasibility
part of the proof, we get that the point (z*,y*, w*, 2*) is a C-stationary point [21]
with associated multiplier = (/\*,/,L*,H*,ﬁ;;,ﬁ:})' It satisfies (2.5) and (2.6) with
a = 1 and where the requirements p 1 > 0, pz 2 > 0, for k € K have been relaxed to
M apr2 > 0, for k € K. o
The preceding result also allows us to characterize all local solutions of MPEC.
COROLLARY 4.5. Assume that (MPEC) satisfies assumptions (A1), (A2) and
(A3) everywhere and that (x*,y*, w*, z*) is a strict local minimum of (MPEC). Then
(x*,y*, w*,z*) is a C-stationary point of (MPEC).
Proof It is immediate from the definition of (MPEC(c)) that (2, y°, w®, 2¢,(°)
is a local solution of (MPEC(c)) if and only if (2, y°, w®, z°) is a local solution of

ming yw. f(e,y,w,z)+ ey’ w

sbj. to g(x) <0

(MPEC1(c)) h(x) =0
Fz,y,w, 2) =0

Y, w < 0.
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Choose some ¢y >0, n =10
MPECL:  Find a solution (stationary point) (x°~, yr, wo, 2%~ () of (MPEC{(cy, }).
If (¢~ =0, then (2, y°, wer, z°") solves (MPEC). Stop.

otherwise update ¢: cpy1 = ¢ + K and n: n =n+ 1 and return to MPECL.

TABLE 4.1
An adaptive L1 modified elastic mode approach

If 2 = (¢, y", w*, 2*) is a strict local minimum of (MPEC), then there exist § > 0
and a ball B(z,§), whose boundary we denote by T', such that for any (z,y,w, z) € T,
a feasible point of (MPECI1(c)), we must have that

max{f(z,y,w,z) — f(z",y",w", "), yTw} > 0.

This implies that there exists ¢ such that, for all v > ¢ we have that for any
(z,y,w,z), a feasible point of (MPECI1(c)) on the boundary T of B(Z,d), we must
have that

f($ayawaz) _f($*ay*aw*a2*) _|_,nyw > 0

If this were not true, then for any n there exists v, > n such that, for some
(™ yo", wo™ z%") € T, a feasible point of (MPEC1(c)), we have that

(419) f(xo,n’yo,n’wo,n’zo,n) _f(x*’y*’w*’z*)+Pynyo,nTwo,n S 0.

Since T is compact, the sequence (£°", y*™ w®", 2°") has an accumulation point
(2°,y°, w®, z°) € T that must be feasible for (MPEC1(c)). Dividing (4.19) by =, and
taking the limit as n — oo, we get that y°T w® = 0, or that (z°,y°, w®, z°) is in effect
feasible for (MPEC). But (4.19) also implies that, for all n,

f(xo,n’yo,n’wo,n’zo,n) _ f(a:*,y*,w*,z*) S 0.
Taking the limit in the last inequality we obtain that
f&®yt w, 2% = f(&",y, wh, 27) <0

which contradict our choice of §.

Therefore, ¢ with the properties specified above must exist. This shows that,
for ¢ > ¢, (MPECI1(c)) will have a local solution inside of B(Z,d). For all n > ¢
let (2", y", w™, 2z") be the local solution of (MPEC1(n)) in B(Z,d) with the lowest
value. By an argument similar to the one that lead to the existence of ¢ it follows
that (2", y", w", z") = (2%, y",w", z%). Tt also follows from the observation at the
beginning of the proof that (x”,y”,w”,z”,y”Tw”) 1s a local solution, and thus a
stationary point, of (MPEC(n)). From Theorem 4.4 it thus follows that (z*, y*, w*, z*)
is a C-stationary point of (MPEC). The proof is complete. o

4.3. A globally convergent modified elastic mode for the optimization
of parameterized mixed P variational inequalities. The results from Subsection
4.2 allow us to define a modified elastic mode approach with good global convergence
properties for the optimization of parameterized mixed P variational inequalities. The
modification is described in Table 4.1.
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THEOREM 4.6. Consider the algorithm described wn Table 4.1. Assume that,
for a fized ¢, the subproblem (MPEC(c,)) is solved with a nonlinear programming
algorithm with global convergence safequards which does not diverge to oo and produces
(xer yom, won, 2% (). Then either

1. the algorithm stops at a finite n with (°~ = 0 and (2", y°, w°, z°") is a
B-stationary (KKT) point of (MPEC); or

2. ¢ >0, Vn and any accumulation point (x*,y*, w*, z*) of (x
is a C-stationary point of (MPEC).

Proof Since, for a fixed value ¢,, the NLP algorithm does not diverge, it will
have an accumulation point (z°~, y°~, w, z°* (). Since, from Theorem 4.3, MFCQ
holds at every point of (MPEC(c,)) and the NLP algorithm has global convergence
safeguards, it follows that cases A) and B) in Subsection 1.4 cannot occur, and thus
(xen, yo, w2z () is a KKT point of (MPEC(cy)).

If the algorithm ends with a finite n and, thus, a finite value of the penalty ¢,
and ¢°» = 0, from the fact that (2% y°», w z°~, 0) is a KKT point of (MPEC(¢,))
it follows that (x°,y° w, 2°") is in effect a KKT point of MPEC, which proves
part 1.

If (¢~ > 0 for any n, then ¢, is increased to oo, and, by applying Theorem 4.4, we
get that any accumulation point (z*, y™, w*, z*) of (z°~, y°=, w, z°~) is a C-stationary
point of (MPEC). The proof is complete.

Cn’ nd , wcn’ Zc")

o

We can therefore claim that the adaptive modified elastic mode in Table 4.1 is
globally convergent: Any accumulation point produced by this algorithm is at least
a C-stationary point of the problem (MPEC). It is true that the desirable global
convergence result would require that any limit point be a B-stationary point. Note,
however, that the example (2.15) satisfies the assumptions (A1), (A2) and (A3) at
(0,0,0) (after introducing the slack variable w = y+), but (0,0, 0) cannot be a KKT
and thus a B-stationary point. So global convergence to B-stationary points cannot
be guaranteed, in general.

5. Conclusions. A class of mathematical models, mathematical programs with
complementarity constraints (MPCCs), which describe a wide variety of problems in
economics and engineering cannot satisfy the Mangasarian-Fromovitz constraint qual-
ification (MFCQ) at a solution point. Therefore, sequential quadratic programming
algorithms may encounter infeasible quadratic program subproblems arbitrarily close
to a solution z*.

In this work we determine sufficient conditions for (MPCC) to have a nonempty
Lagrange multiplier set. Based on results from [33], we establish that having the
strict MFCQ hold for the tightened nonlinear program (TNLP) results in the MPCC’s
having a nonempty Lagrange multiplier set.

As a result, the strict Mangasarian-Fromovitz constraint qualification (SMFCQ)
for (TNLP) and the quadratic growth condition near a solution z* of (MPCC) imply
that the adaptive elastic mode strategy as presented in Table 3.1 will terminate with a
solution of the original problem for a sufficiently large but finite value of the penalty
parameter, ¢y, provided that 1t is initiated sufficiently close to the solution. For
this value of ¢; the modified nonlinear program (3.3) satisfies MFCQ at all feasible
points and the quadratic growth at the solution and can thus be locally solved by
certain sequential quadratic programming algorithms [1]. In addition (3.3) has now an
isolated stationary point at the point corresponding to the solution of (MPCC), which
means that any sequential quadratic programming algorithm with global convergence
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safeguards that does not leave a neighborhood of the solution will in effect converge to
it. We demonstrate this point by applying the adaptive elastic mode implemented in
SNOPT [18] to several problems. As has been argued elsewhere [33], SMFCQ can be
expected to hold at the solution of almost all MPCCs (in a measure theoretic sense).
Also, the quadratic growth condition is the weakest sufficient second-order condition,
and 1s thus the most general possible. We can therefore claim that the elastic mode
approach will locally solve a generic instance of the MPCC class for a finite value of
the penalty parameter.

An important issue, whenever a relaxation-penalty approach is applied, concerns
the choice of the penalty parameter. In particular, the penalty parameter, though
finite, may have to be very large for the relaxed problem to have the same solution as
the original problem. If this happens near a local solution z* of an MPCC we show
that, under certain assumptions, there will be feasible points of MPCC that have
lower objective values than #*. This makes #* an undesirable end point which can be
avoided if the penalty parameter is not aggressively increased.

We also show that any accumulation point of an adaptive elastic mode type
approach, presented in Table 4.1, is a C-stationary point of an optimization problem
whose complementarity constraints originate in a parameterized mixed P variational
inequality, if the penalty parameter of the elastic mode is allowed to increase to co.
A corollary to this observation is that any strict local minimum of such problem must
be a C-stationary point. Although the desirable result should involve B-stationarity,
we show by an example that there exist such optimization problems that do not have
B-stationary local minima.

The elastic mode therefore provides a framework for solving mathematical pro-
grams with complementarity constraints by using sequential quadratic programming
algorithms. The benefit of this perspective is that a large class of algorithms, whose
behavior and properties have been amply analyzed and for which sophisticated finely
tuned implementations already exist, can be used to solve mathematical programs
with complementarity constraints.
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