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2 Stephen J. WrightIt follows immediately from (3) that we can have ��i > 0 only if i 2 B. The weaklyactive constraints are identi�ed by the indices i 2 B for which ��i = 0 for all�� satisfying (3). Conversely, the strongly active constraints are those for which��i > 0 for at least one multiplier �� satisfying (3). The strict complementaritycondition holds at z� if there are no weakly active constraints.We are interested in degenerate problems, those for which the active con-straint gradients at the solution is linearly dependent or the strict complemen-tarity condition fails to hold (or both). The �rst part of our paper describes atechnique for partitioning B into weakly active and strongly active indices. Sec-tion 3 builds on the technique described by Facchinei, Fischer, and Kanzow [5]for identifying B. Our technique requires the solution of a sequence of closelyrelated linear programming subproblems in which the set of strongly active in-dices is assembled progressively. Solution of one additional linear program yieldsa Lagrange multiplier estimate � such that the components �i for all stronglyactive indices i are bounded below by a positive constant.In the second part of the paper, we use the cited technique to adjust the La-grange multiplier estimate between iterations of the stabilized sequential quadraticprogramming (sSQP) algorithm described by Wright [18] and Hager [8]. The re-sulting technique has the advantage that it converges superlinearly under weakerconditions than considered in these earlier papers. We can drop the assumptionof strict complementarity and a \su�ciently interior" starting point made in[18], and we do not need the stronger second-order conditions of [8]. Motivationfor the sSQP approach came from work on primal-dual interior-point algorithmsdescribed in [19,12]. It is also closely related to the method of multipliers andthe \recursive successive quadratic programming" approach of Bartholomew-Biggs [2]. (See Wright [16, Section 6] for a discussion of the similarities.)Other work on stabilization of the SQP approach to yield superlinear con-vergence under weakened conditions has been performed by Fischer [6] andWright [16]. Fischer proposed an algorithm in which an additional quadraticprogram is solved between iterations of SQP in order to adjust the Lagrangemultiplier estimate. He proved superlinear convergence under conditions thatare weaker than the standard assumptions but stronger than the ones made inthis paper. Wright described superlinear local convergence properties of a classof inexact SQP methods and showed that sSQP and Fischer's method could beexpressed as members of this class. This paper also introduced a modi�cation ofstandard SQP that enforced only a subset of the linearized constraints|thosein a \strictly active working set"|and permitted slight violations of the nonen-forced constraints yet achieved superlinear convergence under weaker-than-usualconditions.Bonnans [3] showed that when strict complementarity fails to hold but theactive constraint gradients are linearly independent, then the standard SQPalgorithm (in which any nonuniqueness in the solution of the SQP subproblemis resolved by taking the solution of minimum norm) converges superlinearly.Our concern here is with local behavior, so we assume availability of a start-ing point (z0; �0) that is \su�ciently close" to the optimal primal-dual set. Webelieve, however, that ingredients of the approach proposed here can be embed-



Constraint Identi�cation for Degenerate Nonlinear Programs 3ded in practical algorithms, such as SQP algorithms that include modi�cations(merit functions and �lters) to ensure global convergence. We believe also thatthis approach could be used to enhance the robustness and convergence rate ofother types of algorithms, including augmented Lagrangian and interior-pointalgorithms, in problems in which there is degeneracy at the solution. We mentionone such extension in Section 6.2. Assumptions, Notation, and Basic ResultsWe now review the optimality conditions for (1) and outline the assumptionsthat are used in subsequent sections. These include the second-order su�cientcondition we use here, the Mangasarian-Fromovitz constraint quali�cation, andthe de�nition of weakly-active indices.Recall the KKT conditions (3). The set of \optimal" Lagrange multipliers ��is denoted by S�, and the primal-dual optimal set is denoted by S. Speci�cally,we have S� = f�� j�� satis�es (3)g; S = fz�g � S�: (5)An alternative, compact form of the KKT conditions is the following variationalinequality formulation:�r�(z�) +rg(z�)��g(z�) � 2 � 0N (��) � ; (6)where N (�) is the set de�ned byN (�) def= �fy j y � 0 and yT� = 0g if � � 0,; otherwise. (7)We now introduce notation for subsets of the set B of active constraint indicesat z�, de�ned in (4). For any optimalmultiplier�� 2 S�, we de�ne the set B+(��)to be the \support" of ��, that is,B+(��) = fi 2 B j ��i > 0g:We de�ne B+ (without argument) asB+ def= [��2S� B+(��); (8)this set contains the indices of the strongly active constraints. Its complement inB is denoted by B0, that is, B0 def= BnB+:This set B0 contains the weakly active constraint indices, those indices i 2 Bsuch that ��i = 0 for all �� 2 S�. In later sections, we make use of the quantity�� de�ned by �� def= max��2S� mini2B+ ��i : (9)



4 Stephen J. WrightNote by the de�nition of B+ that �� > 0.The Mangasarian-Fromovitz constraint quali�cation (MFCQ) [11] holds atz� if there is a vector �y 2 IRn such thatrgi(z�)T �y < 0 for all i 2 B.By de�ning rgB to be the n� jBj matrix whose rows are rgi(�), i 2 B, we canwrite this condition alternatively asrgB(z�)T �y < 0: (10)It is well known that MFCQ is equivalent to boundedness of the set S�; seeGauvin [7].Since S� is de�ned by the linear conditions r�(z�) +rg(z�)�� and �� � 0,it is closed and convex. Therefore, under MFCQ, it is also compact.We assume throughout that the following second-order condition is satis�ed:there is � > 0 such thatwTLzz(z�; ��)w � �kwk2; for all �� 2 S�; (11)and for all w such that rgi(z�)Tw = 0; for all i 2 B+;rgi(z�)Tw � 0; for all i 2 B0: (12)This condition is referred to as Condition 2s.1 in [16, Section 3]. Weaker second-order conditions, stated in terms of a quadratic growth condition of the objective�(z) in a feasible neighborhood of z�, are discussed by Bonnans and Io�e [4] andAnitescu [1].Our standing assumption for this paper is as follows.Assumption 1. The �rst-order conditions (3), the MFCQ (10), and the second-order condition (11), (12) are satis�ed at z�. Moreover, the functions � and gare twice Lipschitz continuously di�erentiable in a neighborhood of z�.The following is an immediate consequence of this assumption.Theorem 1. Suppose that Assumption 1 holds. Then z� is an isolated station-ary point and a strict local minimizer of (1).Proof. See Robinson [13, Theorems 2.2 and 2.4].We use the notation �(�) to denote distances from the primal, dual, andprimal-dual optimal sets, according to context. Speci�cally, we de�ne�(z) def= kz � z�k; �(�) def= dist (�;S�); �(z; �) def= dist ((z; �);S); (13)where k � k denotes the Euclidean norm unless a subscript speci�cally indicatesotherwise. We also use P (�) to denote the projection of � onto S�; that is, we



Constraint Identi�cation for Degenerate Nonlinear Programs 5have P (�) 2 S� and kP (�) � �k = dist (�;S�). Note that from (13) we have�(z)2 + �(�)2 = �(z; �)2, and therefore�(z) � �(z; �); �(�) � �(z; �): (14)Using Assumption 1, we can prove the following result, which gives a practicalway to estimate the distance �(z; �) of (z; �) to the primal-dual solution set S.Theorem 2. Suppose that Assumption 1 holds. Then there are positive con-stants �, �0, and �1 such that for all (z; �) with �(z; �) � �, the quantity �(z; �)de�ned by �(z; �) def= 



� Lz(z; �)min(�;�g(z)) �



 (15)(where min(�;�g(z)) denotes the vector whose ith component is min(�i;�gi(z)))satis�es �0�(z; �) � �(z; �) � �1�(z; �):See Facchinei, Fischer, and Kanzow [5, Theorem 3.6], Wright [16, Theorem A.1],and Hager and Gowda [9, Lemma 2] for proofs of this result. (The second-ordercondition is stated in a slightly di�erent fashion in [5] but is equivalent to (11),(12).)We use order notation in the following (fairly standard) way: If two matrix,vector, or scalar quantities M and A are functions of a common quantity, wewrite M = O(kAk) if there is a constant � such that kMk � �kAk wheneverkAk is su�ciently small. We write M = 
(kAk) if there is a constant � suchthat kMk � ��1kAk whenever kAk su�ciently small, and M = �(kAk) if bothM = O(kAk) and M = 
(kAk). We write M = o(kAk) if for all sequences fAkgwith kAkk ! 0, the corresponding sequence fMkg satis�es kMkk=kAkk ! 0. Byusing this notation, we can rewrite the conclusion of Theorem 2 as follows:�(z; �) = �(�(z; �)): (16)3. Detecting Active ConstraintsWe now describe a procedure, named Procedure ID0, for identifying those in-equality constraints that are active and the solution, and classifying them ac-cording to whether they are weakly active or strongly active. We prove that Pro-cedure ID0 classi�es the indices correctly given a point (z; �) su�ciently close tothe primal-dual optimal set S. Finally, we describe some implementation issuesfor this procedure.



6 Stephen J. Wright3.1. The Detection ProcedureFacchinei, Fischer, and Kanzow [5] showed that the function �(z; �) de�ned in(16) can be used as the basis of a scheme for identifying the active set B. Choosingsome � 2 (0; 1), they estimatedA(z; �) def= fi = 1; 2; : : : ;m j gi(z) � ��(z; �)�g: (17)We have the following result.Theorem 3. Suppose that Assumption 1 holds. Then there exists � > 0 suchthat for all (z; �) with �(z; �) � �, we have A(z; �) = B.Proof. The result follows immediately from [5, De�nition 2.1, Theorem 2.3] andTheorem 2 above.A scheme for estimating B+ (hence, B0) is described in [5], but it requiresthe strict MFCQ condition to hold, which implies that S� is a singleton. Herewe describe a more complicated scheme for estimating B+ that requires only theconditions of Theorem 3 to hold.Our scheme is based on linear programming subproblems of the followingform, for a given parameter � 2 (0; 1) and a given set Â � A(z; �):max~� Pi2Â ~�i subject to (18a)��(z; �)� � r�(z) +Pi2A(z;�) ~�irgi(z) � �(z; �)� (18b)~�i � 0; for all i 2 A(z; �); ~�i = 0 otherwise: (18c)Note that the objective function involves elements ~�i only for indices i in thesubset Â, whereas the ~�i are permitted to be nonzero for all i 2 A(z; �). The ideais that Â contains those indices that may belong to B0; by the time we solve(18), we have already decided that the other indices i 2 A(z; �)nÂ probablybelong to B+.The complete procedure is as follows.Procedure ID0Given constants � and �̂ satisfying 0 < �̂ < � < 1, and point (z; �);Evaluate �(z; �) from (15) and A(z; �) from (17);De�ne Âinit = A(z; �)nfi j�i � �(z; �)�̂g;Â  Âinit ;repeatsolve (18) to �nd ~�;set C = fi 2 Â j ~�i � �(z; �)�̂g;if C = ;stop with A0 = Â, A+ = A(z; �)nÂ;else set Â  ÂnC;



Constraint Identi�cation for Degenerate Nonlinear Programs 7if Â = ;stop with A0 = ;, A+ = A(z; �);end(if)end(if)end(repeat)This procedure terminates �nitely; in fact, the number of times the \repeat"loop executes is bounded by the cardinality of Âinit.We prove that Procedure ID0 successfully identi�es B+ (for all �(z; �) su�-ciently small) in several steps, culminating in Theorem 4. First, we estimate thedistance of (z; ~�) to the solution set S, where ~� is the solution of (18) for someÂ.Lemma 1. Suppose that Assumption 1 holds. Then there are positive constants�0 and �2 such that whenever �(z; �) � �0, any feasible point ~� of (18) at anyiteration of Procedure ID0 satis�es�(z; ~�) � �2�(z; �)� :Proof. Initially choose �0 = � for � de�ned in Theorem 3, so that A(z; �) = B.Hence, we have Â � B at all iterations of Procedure ID0.We now estimate �(z; ~�) using the de�nition (15). We have directly from theconstraints (18b) that kLz(z; ~�)k1 � �(z; �)� :For the vector min(~�;�g(z)), we have for i 2 B that gi(z�) = 0 and ~�i � 0, andso i 2 B ) jmin(~�i;�gi(z))j � jgi(z)j = O(kz � z�k) = O(�(z; �)):Meanwhile for i =2 B = A(z; �), we have ~�i = 0 and gi(z�) < 0, and soi =2 B ) jmin(~�i;�gi(z))j = max(0; gi(z)) � jgi(z) � gi(z�)j = O(�(z; �)):By substituting these estimates into (15), and using the equivalence of k � k1and the Euclidean norm and the result of Theorem 2, we have that there is aconstant ��2 > 0 such that �(z; ~�) � ��2�(z; �)� :Using Theorem 2 again, we have�(z; ~�) � ��10 �(z; ~�) � ��10 ��2�(z; �)� ; (19)giving the result.In the next two lemmas and Theorem 4, we show that for �(z; �) su�cientlysmall, Procedure ID0 terminates with A0 = B0 and A+ = B+.Lemma 2. Suppose that Assumption 1 holds. Then there is �1 > 0 such thatwhenever �(z; �) � �1, Procedure ID0 terminates with B0 � A0.



8 Stephen J. WrightProof. Since we know the procedure terminates �nitely, we need show only thatB0 � Â at all iterations of the procedure. Initially set �1 = �0 � �, so thatA(z; �) = B and the result of Lemma 1 holds. Suppose for contradiction thereis an index j 2 B0 such that j either is not included in the initial index set Âinitor else is deleted from Â at some iteration of Procedure ID0.Suppose �rst that j is not included in Âinit . Then we must have �j > �(z; �)�̂ ,which by Theorem 2 implies that�(z; �) � j�jj � �(z; �)�̂ � ��̂0�(z; �)�̂ : (20)However, by decreasing �1 and using �̂ 2 (0; 1), we can ensure that (20) does nothold whenever �(z; �) � �1. Hence, j is included in Âinit.Suppose now that j 2 B0 is deleted from Â at some subsequent iteration.For this to happen, the subproblem (18) must have a solution ~� with~�j > �(z; �)�̂ (21)for some Â � B. Hence from Theorem 2, we have that�(z; ~�) � ~�j > �(z; �)�̂ � ��̂0�(z; �)�̂ : (22)By combining the result of Lemma 1 with (22), we have that�2�(z; �)� � ��̂0�(z; �)�̂ :However, this inequality cannot hold when �(z; �) is smaller than (��̂0��12 )1=(���̂ ).Therefore, by decreasing �1 if necessary, we have a contradiction in this case also.Lemma 3. Suppose that Assumption 1 holds. Then there is �2 > 0 such thatwhenever �(z; �) � �2, Procedure ID0 terminates with B+ � A+.Proof. Given any j 2 B+, we have for su�ciently small choice of �2 that j 2A(z; �). We prove the result by showing that Procedure ID0 cannot terminatewith j 2 A0.We initially set �2 = �1, where �1 is the constant from Lemma2. (We reduce itas necessary, but maintain �2 > 0, in the course of the proof.) For contradiction,assume that there is j 2 B+ such that j 2 Â at all iterations of Procedure ID0,including the iteration on which the procedure terminates and sets A0 = Â.Recalling the de�nition (9) of ��, we use compactness of S� to choose �� 2 S�such that �� = mini2B+ ��i . In particular, we have��j � �� > 0for our chosen index j. We claim that, by reducing �2 if necessary, we can ensurethat �� is feasible for (18) whenever �(z; �) � �2. Obviously, since A(z; �) = Bby Theorem 3, �� is feasible with respect to (18c). Since �� 2 S� andkz � z�k � �(z; �) � ��10 �(z; �);



Constraint Identi�cation for Degenerate Nonlinear Programs 9we have




r�(z) + mXi=1 ��irgi(z)




1 = 




r�(z)�r�(z�) + mXi=1 ��i (rgi(z)�rgi(z�))




1� Mkz � z�k � M��10 �(z; �); (23)for some constant M that depends on the norms of r2�(�) and r2gi(�), i 2 B+in the neighborhood of z� and on a bound on the set S� (which is bounded,because of MFCQ). Since � < 1 and since �(z; �) = �(�(z; �)), we can reduce�2 if necessary to ensure thatM��10 �(z; �) < �(z; �)�whenever �(z; �) � �2, thereby ensuring that the constraints (18b) are satis�edby ��.Since �� is feasible for (18), a lower bound on the optimal objective isXi2Â��i � ��j � ��:However, since Procedure ID0 terminates with j 2 Â, we must have that C = ;for the solution ~� of (18) with this particular choice of Â. But we can have C = ;only if ~�i < �(z; �)�̂ for all i 2 Â, which means that the optimal objective isno greater than m�(z; �)�̂ . But since �(z; �) = �(�(z; �)), we can reduce �2 ifnecessary to ensure that m�(z; �)�̂ < ��whenever �(z; �) � �2. This gives a contradiction, so that A0 (which is set byProcedure ID0 to the �nal Â) can contain no indices j 2 B+. Since B+ � B =A(z; �) whenever �(z; �) � �2, we must therefore have B+ � A+, as claimed.By using the quantity �2 from Lemma 3, we combine this result with Theo-rem 3 and Lemma 2 to obtain the following theorem.Theorem 4. Suppose that Assumption 1 holds. Then there is �2 > 0 such thatwhenever �(z; �) � �2, Procedure ID0 terminates with A+ = B+ and A0 = B0.3.2. Scheme for Finding an Interior Multiplier EstimateWe now describe a scheme for �nding a vector �̂ that is close to S� but not tooclose to the relative boundary of this set. In other words, the quantity mini2B+ �̂iis not too far from its maximum achievable value ��.We �nd �̂ by solving a linear programming problem similar to (18) but con-taining an extra variable to represent mini2B+ �̂i. We state this problem as



10 Stephen J. Wrightfollows: maxt̂;�̂ t̂ subject to (24a)t̂ � �̂i; for all i 2 A+; (24b)��(z; �)� e � r�(z) +Pi2A+ �̂irgi(z) � �(z; �)� e (24c)�̂i � 0; for all i 2 A+; �̂i = 0 otherwise: (24d)Theorem 5. Suppose that Assumption 1 holds. Then there is a positive number�3 such that (24) is feasible and bounded whenever �(z; �) � �3, and its optimalobjective is at least �� (for �� de�ned in (9)). Moreover, there is a constant�0 > 0 such that �(z; �̂) � �0�(z; �)� .Proof. Let �� 2 S� be chosen so that �� = mini2B+ ��i . We show �rst that(t̂; �̂) = (��; ��) is feasible for (24), thereby proving that this linear program isfeasible and that the optimum objective value is at least ��.Initially we set �3 = �2. By De�nition (9), the constraint (24b) is satis�edby (t̂; �̂) = (��; ��). Since �(z; �) � �3 = �2, we have from Theorem 4 thatA+ = B+, so that (24d) also holds. Satisfaction of (24c) follows from (23), bychoice of �2. Moreover, it is clear from A+ = B+ that the optimal (t̂; �̂) willsatisfy t̂ = mini2B+ �̂i.We now show that the problem (24) is bounded for �(z; �) su�ciently small.Let �y be the vector in (10), and decrease �3 if necessary so that we can choosea number � > 0 such that�(z; �) � �3 ) �yTrgi(z) � ��; for all i 2 A+ = B+: (25)From the constraints (24c) and the triangle inequality, we have that





Xi2A+ �̂i�yTrgi(z)
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1� k�yk1 kr�(z)k1 + k�yk1�(z; �)� :However, from (25) and �̂i � 0, i 2 A+, we have that





 Xi2A+ �̂i�yTrgi(z)





1 � 


�̂A+


1 �:By combining these bounds, we obtain that


�̂A+


1 � ��1k�yk1 [kr�(z)k1 + �(z; �)� ] ;



Constraint Identi�cation for Degenerate Nonlinear Programs 11whenever �(z; �) � �3, so that the feasible region for (24) is bounded, as claimed.To prove our �nal claim that �(z; �̂) � �0�(z; �)� for some �0 > 0, we useTheorem 2. We have from (24c) and the cited theorem that


Lz(z; �̂)


1 � �(z; �)� � ��1�(z; �)� :For i 2 A+ = B+, we have from �̂i � �� and gi(z�) = 0 thati 2 A+ ) ���min(�̂i;�gi(z))��� � jgi(z)j � jgi(z)� gi(z�)j= O(kz � z�k) = O(�(z; �)):For i =2 A+, we have �̂i = 0 and gi(z�) � 0, and soi =2 A+ ) ���min(�̂i;�gi(z))��� = max(0; gi(z)) � jgi(z)� gi(z�)j= O(kz � z�k) = O(�(z; �)):By substituting the last three bounds into (15) and applying Theorem 2, weobtain the result.3.3. Computational AspectsSolution of the linear programs (18) is in general less expensive than solutionof the quadratic programs or complementarity problems that must be solvedat each step of an optimization algorithm with rapid local convergence. Linearprogramming software is easy to use and readily available. Moreover, given apoint (z; �) with �(z; �) small, we can expect Âinit not to contain many moreindices than the weakly active set B0, so that few iterations of the \repeat" loopin Procedure ID0 should be needed.Finally, we note that when more than one iteration of the \repeat" loop isneeded in Procedure ID0, the linear programs to be solved at successive iterationsdi�er only in the cost vector in (18a). Therefore, if the dual formulation of (18)is used, the solution of one linear program can typically be obtained at minimalcost from the solution of the previous linear program in the sequence. To clarifythis claim, we simplify notation and write (18) as follows:max cT� subject to b1 � A� � b2; � � 0; (26)where � = [�i]i2A(z;�), while c, b1, b2, and A are de�ned in obvious ways. Inparticular, c is a vector with elements 0 and 1, with the 1's in positions corre-sponding to the index set Â. The dual of (26) ismaxbT1 y1 + bT2 y2 subject to�AT �AT I � 24 y1y2s 35 = �c; (y1; y2; s) � 0:



12 Stephen J. WrightWhen the set Â is changed, some of the 1's in the vector c are replaced by zeros.When only a few such changes are made, and the previous optimal basis is usedto hot-start the method, we expect that only a few iterations of the dual simplexmethod will be needed to recover the solution of the new linear program.4. SQP and Stabilized SQPIn the best-known form of the SQP algorithm (with exact second-order infor-mation), the following inequality constrained subproblem is solved to obtain thestep �z at each iteration:min�z �zTr�(z) + 12�zTLzz(z; �)�z; (27)subject to g(z) +rg(z)T�z � 0,where (z; �) is the current primal-dual iterate. Denoting the Lagrange multipliersfor the constraints in (27) by �+, we see that the solution �z satis�es thefollowing KKT conditions (cf. (6)):�Lzz(z; �)�z +r�(z) +rg(z)�+g(z) +rg(z)T�z � 2 � 0N (�+) � ; (28)where N (�) is de�ned as in (7).In the stabilized SQP method, we choose a parameter � � 0 and seek asolution of the followingminimax subproblem for (�z; �+) such that (�z; �+��)is small: min�z max�+�0 �zTr�(z) + 12�zTLzz(z; �)�z (29)+(�+)T [g(z) +rg(z)T�z]� 12�k�+ � �k2:The parameter � can depend on an estimate of the distance �(z; �) to the primal-dual solution set; for example, � = �(z; �)� for some � 2 (0; 1). We can also write(29) as a linear complementarity problem, corresponding to (28), as follows:�Lzz(z; �)�z +r�(z) +rg(z)�+g(z) +rg(z)T�z � �(�+ � �) � 2 � 0N (�+) � : (30)Li and Qi [10] derive a quadratic program in (�z; �+) that is equivalent to (29)and (30): min(�z;�+) �zTr�(z) + 12�zTLzz(z; �)�z + 12�k�+k2; (31)subject to g(z) +rg(z)T�z � �(�+ � �) � 0:Under conditions stronger than those assumed in this paper, the results ofWright [18] and Hager [8] can be used to show that the iterates generated by(29) (or (30) or (31)) yield superlinear convergence of the sequence (zk; �k) ofQ-order 1+�. Our aim in the next section is to add a strategy for adjusting themultiplier, with a view to obtaining superlinear convergence under a weaker setof conditions.



Constraint Identi�cation for Degenerate Nonlinear Programs 135. Multiplier Adjustment and Superlinear ConvergenceWe show in this section that through use of Procedure ID0 and the multiplieradjustment strategy (24), we can devise a stabilized SQP algorithm that con-verges superlinearly whenever the initial iterate (z0; �0) is su�ciently close tothe primal-dual solution set S. Only Assumption 1 is needed for this result.Key to our analysis is Theorem 1 of Hager [8]. We state this result in Ap-pendix A, using our current notation and making a slight correction to theoriginal statement. Here we state an immediate corollary of Hager's result thatapplies under our standing assumption.Corollary 1. Suppose that Assumption 1 holds, and let �� 2 S� be such that��i > 0 for all i 2 B+. Then for any su�ciently large positive �0, there arepositive constants �0, �1, 
 � 1, and �� such that �0�0 < �1, with the followingproperty: For any (z0; �0) withk(z0; �0)� (z�; ��)k � �0; (32)we can generate an iteration sequence f(zk; �k)g, k = 0; 1; 2; : : :, by setting(zk+1; �k+1) = (zk +�z; �+);where, at iteration k, (�z; �+) is the local solution of the sSQP subproblem with(z; �) = (zk; �k); � = �k 2 [�0kzk � z�k; �1]; (33)that satis�es 

(zk +�z; �+) � (z�; ��)

 � 
 

(z0; �0)� (z�; ��)

 : (34)Moreover, we have �(zk+1; �k+1) � �� ��(zk�k)2 + �k�(�k)� : (35)Recalling our de�nition (9) of ��, we de�ne the following parametrized subsetof S�: S�� def= f� 2 S� j mini2B+ �i � ���g: (36)It follows easily from the MFCQ assumption and (9) that S�� is nonempty, closed,bounded, and therefore compact for any � 2 [0; 1].We now show that the particular choice of stabilization parameter � =�(z; �)� , for some � 2 (0; 1), eventually satis�es (33).Lemma 4. Suppose the assumptions of Corollary 1 are satis�ed, and let ��be as de�ned there. Let � be any constant in (0; 1). Then there is a quantity�2 2 (0; �0] such that when (z0; �0) satis�esk(z0; �0)� (z�; ��)k � �2; (37)the results of Corollary 1 hold when we set the stabilization parameter at iterationk to the following particular value:� = �k = �(zk; �k)� : (38)



14 Stephen J. WrightProof. We prove the result by showing that �k de�ned by (38) satis�es (33)for some choice of �2. For contradiction, suppose that no such choice of �2 ispossible, so that for each ` = 1; 2; 3; : : :, there is a starting point (z0[`] ; �0[`]) with


(z0[`]; �0[`])� (z�; ��)


 � `�1�0 (39)such that the sequence n�zk[`]; �k[`]�ok=0;1;2;::: generated from this starting pointin the manner prescribed by Corollary 1 with �k = �(zk[`] ; �k[`])� eventually comesacross an index k` such that this choice of �k violates (33), that is, one of thefollowing two conditions holds:�0 


zk`[`] � z�


 > �(zk[`] ; �k[`])� ; (40a)�1 < �(zk[`] ; �k[`])� : (40b)Assume that k` is the �rst such index for which the violation (40) occurs. By(34) and (39), we have that


�zk`[`] ; �k`[`]�� (z�; ��)


 � 
 


�z0[`]; �0[`]�� (z�; ��)


 � 
`�1�0: (41)Therefore by Theorem 2 and (13), we have for ` su�ciently large that� �zk`[`] ; �k`[`]��


zk`[`] � z�


 � � �zk`[`] ; �k`[`]��� �zk`[`] ; �k`[`]�� ��0 � �zk`[`] ; �k`[`]���1� ��0 


�zk`[`] ; �k`[`]�� (z�; ��)


��1� ��0
��1���10 `1��: (42)Hence, taking limits as ` " 1, we have that� �zk`[`] ; �k`[`]��


zk`[`] � z�


 !1 as ` " 1.Dividing both sides of (40a) by 


zk`[`] � z�


, we conclude from �niteness of �0that (40a) is impossible.By using Theorem 2 again together with (41), we obtain� �zk`[`] ; �k`[`]� � �1� �zk`[`] ; �k`[`]�� �1 


�zk`[`] ; �k`[`]�� (z�; ��)


� �1
�0`�1;and therefore � �zk`[`] ; �k`[`]�� ! 0 as ` " 1. Hence, (40b) cannot occur either, andthe proof is complete.



Constraint Identi�cation for Degenerate Nonlinear Programs 15We now use a compactness argument to extend Corollary 1 from the singlemultiplier �� in the relative interior of S� to the entire set S�� , for any � 2 (0; 1].Theorem 6. Suppose that Assumption 1 holds, and �x � 2 (0; 1]. Then thereare positive constants �̂, 
 � 1, and � such that the following property holds:Given (z0; �0) with dist �(z0; �0);S��� � �̂;the iteration sequence f(zk; �k)gk=0;1;2;::: generated in the manner described inCorollary 1, with �k, k = 0; 1; 2 : : : chosen according to (38), satis�es the fol-lowing relations:�(zk+1; �k+1) � ��(zk; �k)1+� (43a)�ki � 12���; for all i 2 B+ and all k = 0; 1; 2 : : :: (43b)Proof. For each �� 2 S�� , we use Corollary 1 to obtain positive constants �0(��)(su�ciently large), �1(��), 
(��), and ��(��), using the argument �� for eachconstant to emphasize the dependence on the choice of multiplier ��. In thesame vein, let �2(��) 2 (0; �0(��)] be the constant from Lemma 4. Now choose�̂(��) > 0 for each �� 2 S�� in such a way that0 < �̂(��) � 12�2(��); (44a)
(��)�̂(��) � 14���; (44b)and consider the following open cover of S�� :[��2S�� n� j k�� ��k < �̂(��)o : (45)By compactness of S�� , we can �nd a �nite subcover de�ned by points �̂1; �̂2; : : : ; �̂f 2S�� as follows: S�� � V def= [j=1;2;:::;f n� j k�� �̂jk < �̂(�̂j)o : (46)V is an open neighborhood of S�� . Now de�ne
 def= maxj=1;2;:::;f 
(�̂j ); �� def= maxj=1;2;:::;f ��(�̂j); � def= maxj=1;2;:::;f �̂(�̂j): (47)Also, choose a quantity �̂ > 0 with the following properties:�̂ � minj=1;2;:::;f �̂(�̂j) � �; (48a)n� j dist(�;S��) � �̂o � V; (48b)�̂ � ���4
 ; (48c)�̂ � 1: (48d)



16 Stephen J. WrightNow consider (z0; �0) with

(z0; �0) � (z�; ��)

 � �̂; for some �� 2 S�� : (49)We have dist(�0;S��) � �̂, and so �0 2 V. It follows that for some j = 1; 2; : : : ; f ,we have k�0 � �̂jk � �̂(�̂j): (50)Moreover, since kz0 � z�k � �̂, we have from (48a) that


(z0; �0) � (z�; �̂j)


 � �̂ + �̂(�̂j) � 2�̂(�̂j) � �2(�̂j); (51)where the �nal inequality follows from (44a). Application of Corollary 1 andLemma 4 now ensures that the stabilized SQP sequence starting at (z0; �0) with� = �k chosen according to (38) yields a sequence f(zk�k)gk=0;1;2;::: satisfying


(zk; �k)� (z�; �̂j)


 � 
(�̂j) 


(z0; �0)� (z�; �̂j)


� 2
(�̂j)�̂(�̂j) � 2
�; (52)where we used (47) to obtain the �nal inequality.To prove (43a), we have from Lemma 4, Corollary 1, the bound (14), Theo-rem 2, the de�nition (47), and the stabilizing parameter choice (38) that�(zk+1; �k+1) � ��(�̂j) ��(zk; �k)2 + �k�(�k)�� �� ��(zk; �k)2 + �(zk�k)��(zk; �k)� from (47) and (38)� �� ��(zk; �k)2 + ��1 �(zk; �k)1+�� from Theorem 2� �� �(2
�)1�� + ��1� �(zk; �k)1+� ;where in the last line we use �(zk; �k) � dist((zk; �k);S��) � 2
�. Therefore, theresult (43a) follows by setting � = �� �(2
�)1�� + ��1 �.Finally, we have from (44b) (with �� = �̂j) and (52) thatdist �(zk; �k);S��� � 2
(�̂j )�̂(�̂j) � 12���:Therefore, we havei 2 B+ ) �ki � min��2S�� ��i � 12��� � ��� � 12��� = 12���;verifying (43b) and completing the proof.We are now ready to state a stabilized SQP algorithm, in which multiplieradjustment steps (consisting of Procedure ID0 followed by solution of (24)) areapplied when the convergence does not appear to be rapid enough.



Constraint Identi�cation for Degenerate Nonlinear Programs 17Algorithm sSQPagiven � 2 (0; 1), � and �̂ with 0 < �̂ < � < 1, tolerance tol;given initial point (z0; �0) with �0 � 0;k 0;calculate A(z0; �0) from (17);call Procedure ID0 to obtain A+, A0; solve (24) to obtain �̂0;�0  �̂0;repeatsolve (29) with (z; �) = (zk; �k) and � = �k = �(zk; �k)�to obtain (�z; �+);if �(zk +�z; �+) � �(zk; �k)1+�=2(zk+1; �k+1) (zk +�z; �+);k k + 1;else calculate A(zk; �k) from (17);call Procedure ID0 to obtain A+, A0; solve (24) to obtain �̂k;�k  �̂k;end (if)until �(zk; �k) < tol.The following result shows that when (z0; �0) is close enough to S, the initialcall to Procedure ID0 is the only one needed.Theorem 7. Suppose that Assumption 1 holds. Then there is a constant �� > 0such that for any (z0; �0) with �(z0; �0) � ��, the \if" condition in AlgorithmsSQPa is always satis�ed, and the sequence �(zk; �k) converges superlinearly tozero with Q-order 1 + �.Proof. Our result follows from Theorems 5 and 6. Choose � = 1=2 in Theorem 6,and let �̂, 
, and � be as de�ned there. Using also �3 and �0 from Theorem 5and �� de�ned in (9), we choose �� as follows:�� = min0@�3; �̂;� ��2�0�1=� ; �̂�0!1=� ; 1(2�)1=� ; �0� �0��1�2=�1A : (53)Now let (z0; �0) satisfy �(z0; �0) � ��, and let �̂0 be calculated from (24). FromTheorem 5 and (53), we have that�(z0; �̂0) � �0�(z0; �0)� � �0��� � 12�� (54)and �̂0i � ��; for all i 2 B+; (55a)�̂0i = 0; for all i =2 B+: (55b)



18 Stephen J. WrightSince S� is closed, there is a vector �̂� 2 S� such that�(z0; �̂0) = 


(z0; �̂0) � (z�; �̂�)


 : (56)From (54) and (55a), we have thati 2 B+ ) �̂�i � �̂0i � 12�� � 12��;so that �̂� 2 S�� for � = 1=2. We therefore have from (54), (56), and (53) thatdist((z0; �̂0);S��) = 


(z0; �̂0)� (z�; �̂�)


 � �0��� � �̂: (57)From here on, we set �0  �̂0, as in Algorithm sSQPa. Because of the lastbound, we can apply Theorem 6 to (z0; �0). We use this result to prove thefollowing claims. First,�� � �(z0; �0) � 2�(z1; �1) � 4�(z2; �2) � � � � : (58)Second, �(zk+1; �k+1) � �(zk; �k)1+�=2; for all k = 0; 1; 2; : : :: (59)We prove both claims by induction. For k = 0 in (58), we have from (57) and�� � �̂ in (53) that �(z0; �0) � ��. Assume that the �rst k + 1 inequalities in (58)have been veri�ed. From (43a) and (53), we have that�(zk+1; �k+1) � ��(zk ; �k)1+� � �����(zk; �k) � 12�(zk; �k);so that the next inequality in the chain is also satis�ed. For (59), we have fromTheorem 2, (43a), and (58) that�(zk+1; �k+1) � �1�(zk+1; �k+1)� ��1�(zk; �k)1+�� ��1���=2�(zk; �k)1+�=2� ��1���=2��1��=20 �(zk; �k)1+�=2� �(zk; �k)1+�=2;where the last bound follows from (53). Hence, (59) is veri�ed, so that thecondition in the \if" statement of Algorithm sSQPa is satis�ed for all k =0; 1; 2; : : :. Superlinear convergence with Q-order 1 + � follows from (43a).



Constraint Identi�cation for Degenerate Nonlinear Programs 196. Summary and Possible ExtensionsWe have presented a technique for identifying the active inequality constraintsat a local solution of a nonlinear programming problem, where the standardassumptions|existence of a strictly complementary solution and linear inde-pendence of active constraints gradients|are replaced by weaker assumptions.We have embedded this technique in a stabilized SQP algorithm, resulting in amethod that converges superlinearly under the weaker assumptions when startedat a point su�ciently close to the (primal-dual) optimal set.The primal-dual algorithm described by Vicente and Wright [14] can also beimproved by using the techniques outlined here. In that paper, strict comple-mentarity is assumed along with MFCQ, and superlinear convergence is provedprovided both �(z0; �0) is su�ciently small and �0i � 
, for all i 2 B = B+ andsome 
 > 0. If we apply the active constraint detection procedure (17) and thesubproblem (24) to any initial point (z0; �0) with �(z0; �0) su�ciently small,the same convergence result can be obtained without making the positivity as-sumption on the components of �0B+ . (Because of the strict complementarityassumption, Procedure ID0 serves only to verify that B = B+.)Numerous issues remain to be investigated. We believe that degeneracy isan important issue, given the large size of many modern applications of non-linear programming and their nature as discretizations of continuous problems.Nevertheless, the practical usefulness of constraint identi�cation and stabiliza-tion techniques remains to be investigated. The numerical implications shouldalso be investigated, since implementation of these techniques may require so-lution of ill-conditioned systems of linear equations (see M. H. Wright [15] andS. J. Wright [17]). Embedding of these techniques into globally convergence algo-rithmic frameworks needs to be examined. We should investigate generalizationto equality constraints, possibly involving the use of the \weak" MFCQ con-dition, which does not require linear independence of the equality constraintgradients.AcknowledgmentsWe thank Bill Hager for discussions of his key result, Theorem 8.A. Hager's TheoremWe restate Theorem 1 of Hager [8], making a slight correction to the originalstatement concerning the conditions on (z0; �0) and the radius of the neighbor-hood containing the sequence f(zk; �k)g. No modi�cation to Hager's analysis isneeded to prove the following version of this result.Theorem 8. Suppose that z� is a local solution of (1), and that � and g aretwice Lipschitz continuously di�erentiable in a neighborhood of z�. Let �� be



20 Stephen J. Wrightsome multiplier such that the KKT conditions (3) are satis�ed, and de�ne�B def= fi j��i > 0g:Suppose that there is an � > 0 such thatwTLzz(z�; ��)w � �kwk2; for all w such that rgi(z�)Tw = 0, for all i 2 �B:Then for any choice of �0 su�ciently large, there are positive constants �0, �1,
 � 1, and �� such that �0�0 < �1, with the following property: For any (z0; �0)with k(z0; �0)� (z�; ��)k � �0;we can generate an iteration sequence f(zk; �k)g, k = 0; 1; 2; : : :, by setting(zk+1; �k+1) = (zk +�z; �+);where, at iteration k, (�z; �+) is the local solution of the sSQP subproblem with(z; �) = (zk; �k); � = �k 2 [�0kzk � z�k; �1];that satis�es 

(zk +�z; �+) � (z�; ��)

 � 
 

(z0; �0)� (z�; ��)
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