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Abstract. The classical trust-region method for unconstrained minimization can be aug-
mented with a line search that finds a point that satisfies the Wolfe conditions. One can use
this new method to define an algorithm that simultaneously satisfies the quasi-Newton con-
dition at each iteration and maintains a positive-definite approximation to the Hessian of the
objective function. This new algorithm has strong global convergence properties and is robust
and efficient in practice.
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1. Introduction

Many important problems may be expressed in terms of nonlinear multivariate
unconstrained optimization. The basic unconstrained optimization problem is to
minimize a real-valued objective function f(x) over all vectors x ∈ IRn. Many
techniques are available for solving unconstrained minimization problems when
f(x) is twice continuously differentiable. Quasi-Newton techniques for minimiz-
ing f(x) are popular, particularly whenever the matrix-valued second derivative
of f(x), called the Hessian and written ∇2f(x), is not known analytically or is
prohibitively expensive to compute or store.

As their name suggests, quasi-Newton methods are closely related to New-
ton’s method. Given the current iterate xk, an unmodified Newton method com-
putes a step sk by the formula

sk = −∇2f(xk)−1∇f(xk)

and then takes xk+1 = xk + sk as its next iterate. Similarly, an unmodified
quasi-Newton method takes

sk = −B−1
k ∇f(xk) (1)

as the step to the next iterate, where {Bk} is a sequence of matrix approximation
to the Hessian. Like Newton’s method, quasi-Newton methods must be modified
to enforce convergence and to encourage convergence to a minimizer, rather
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than a maximizer or other point at which ∇f(x) = 0. Furthermore, the simple
quasi-Newton iteration given by (1) is not even defined if Bk is singular, and a
practical algorithm must handle this case.

Two broad classes of modified quasi-Newton algorithms are trust-region
methods and line-search methods. Trust-region methods define each iterate as
the approximate minimizer of a relatively simple model function within a region
in which the algorithm “trusts” that the model function behaves like f . In their
simplest form, line-search methods produce each iterate by searching for an ac-
ceptable value of x along a line passing through the previous iterate. The fact
that many different line-search methods exist makes it difficult to make a gen-
eral statement about how the search direction is chosen. Normally, the step will
be related to the quasi-Newton step (1), with some modification that preserves
convergence if Bk becomes nearly singular. A line-search method often requires
more iterations to find a minimizer of f than does a trust-region method. On
the other hand, a line-search method tends to compute each iterate more quickly
than does a comparable trust-region method.

In this paper, we propose and analyze a new algorithm that combines ele-
ments of trust-region methods with elements of line-search methods. The new
algorithm retains the quick convergence and stability of trust-region methods,
while significantly decreasing the average cost per iteration of the method. The
new method, like most trust-region methods, also puts few restrictions on the
sequence {Bk}. In particular, the method will behave correctly if some of the ma-
trices are indefinite or singular. Thus, one can to choose Bk to be ∇2f(xk), the
exact Hessian of the objective function, or one can use a quasi-Newton method
such as the symmetric rank-one (SR1) update that does not produce a positive
definite sequence {Bk}.

When Bk is not the exact Hessian, however, there is some advantage to
maintaining positive definiteness. If Bk is not positive definite, then the exact
solution to the trust-region subproblem will be at a point at which the trust-
region radius will be active. Therefore, when Bk is indefinite, a method for
solving the trust-region subproblem approximately will not, in general, choose
an unmodified quasi-Newton step (1).

Line-search quasi-Newton methods have traditionally also had another ad-
vantage over their trust-region counterparts. By employing an appropriate line-
search strategy and an appropriate updating strategy for Bk, one can generate a
positive definite sequence of approximations to the Hessian of f(x). In contrast,
trust-region methods have traditionally had to modify Bk in ways that make
it a less accurate model of the Hessian of f(x) in order to maintain a positive
definite sequence of approximate Hessians. We describe some of these modifica-
tions, and the sense in which they make the approximate Hessian less accurate,
in Section 3.

The algorithm proposed in this paper, on the other hand, provides a nat-
ural way of modifying the approximate Hessian to produce a positive definite
sequence of matrices. We provide a general convergence theory for the algorithm
and show how the algorithm, in conjunction with the BFGS update (5), may be
used to produce an efficient quasi-Newton method.
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2. Trust-Region Methods

Trust-region methods produce a trial step by minimizing a quadratic model of the
objective function subject to a constraint on the length of the trial step. Because
of this restriction, trust-region methods are sometimes known as restricted-step
methods. In this section, we summarize some properties of trust-region methods.
For an in-depth overview of trust-region methods see Conn, Gould, and Toint [2].

A quadratic model of f(xk + s)− f(xk) takes the form

Qk(s) = gT
ks + 1

2sTBks, (2)

where s = x−xk. Typically, gk is chosen to be ∇f(xk) or a close approximation
to the gradient. In this paper, we always choose gk = ∇f(xk), and we write g(x)
for ∇f(x). Trust-region methods put few restrictions on the choice of Bk. In
Section 3 we describe how to choose Bk to be a quasi-Newton approximation to
the Hessian. The trust-region subproblem may be formally stated as follows:

minimize Qk(s)
subject to ‖Nks‖ ≤ δk,

(3)

where δk is a scalar known as the trust-region radius, ‖ · ‖ is any vector norm,
and Nk is a nonsingular matrix used to scale the problem.

No consensus exists on what choice of Nk is appropriate. Convergence theory
allows the choice Nk = I for all k, and this choice seems to be acceptable for
well-scaled problems. Choosing Nk to be a constant matrix in order to improve
the scaling of the problem is a trivial modification to a trust-region algorithm.
Some methods for solving problem (3), however, must vary Nk at each iteration
in order to compute the trial step efficiently (see, for instance, Steihaug [15] and
Toint [18])

Our new quasi-Newton method always chooses Bk to be positive definite.
We also choose ‖ · ‖ to be ‖ · ‖∞ and Nk to be diagonal. With these choices, the
trust-region subproblem (3) is a convex quadratic program (QP) with only sim-
ple bounds on the variables. The minimizer is unique, and the subproblem can
be solved by off-the-shelf software. Possibly the first method to use a quadratic
model of the objective function with the trust-region based on ‖ · ‖∞ was de-
scribed by Wilson [19]. More modern methods were studied by Fletcher [3], who
maintains a positive definite Bk, and by Friedlander et al. [5], who define a
method that finds a direction of sufficient decrease by solving a simplified QP.

3. Quasi-Newton Methods

We use a quasi-Newton updating scheme to define the matrices Bk in our
quadratic model (2). Quasi-Newton methods use the curvature information from
the current iteration, and possibly the matrix Bk to define Bk+1. A true quasi-
Newton method will choose Bk+1 so that

gk+1 − gk = Bk+1(xk+1 − xk). (4)
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In this way, Bk+1(xk+1−xk) is a finite difference approximation to the derivative
of g(x) in the direction of xk+1 − xk. For a practical quasi-Newton method,
computing Bk+1 should be considerably less expensive than computing ∇2f(x).
Popular quasi-Newton methods choose Bk+1 = Bk + E, where E is a matrix of
low rank, usually one or two.

By using a rank-two update, we may also arrange that Bk is always a positive-
definite, symmetric matrix. Many rank-two formulas may be used, but probably
the most famous is the BFGS update,

Bk+1 = Bk −
(Bkpk)(Bkpk)T

pT
kBkpk

+
ykyT

k

yT
kpk

, (5)

where pk = xk+1 − xk and yk = gk+1 − gk. It is well known (see, for instance,
Fletcher [4]) that if Bk is positive definite and yT

kpk > 0 and Bk+1 is chosen
using the BFGS update, then Bk+1 is also positive definite.

We note that for any update satisfying the quasi-Newton condition (4), the
matrix Bk+1 cannot be positive definite if yT

kpk < 0, because yT
kpk = pT

kBk+1pk.
Typically, quasi-Newton methods that use the BFGS update employ a line search
to locate a point for which yT

kpk > 0. In their simplest form, these methods will
generate a search direction sk for which gT

ksk ≤ 0 and then search for an positive
αk that satisfies the well-known strong Wolfe conditions,

f(xk + αksk)− f(xk) ≤ αkη1g
T
ksk (6)

and
|g(xk + αksk)Tsk| ≤ −ωgT

ksk, (7)

where 0 < η1 < ω < 1. Usually, one also requires that η1 < 1/2 so that the Wolfe
condition (6) is met by the exact minimizer of a quadratic function. One then
takes xk+1 = xk + αksk. We observe that sk, αk, and pk are related by the rule

xk+1 − xk = pk = αksk.

If xk+1 satisfies the Wolfe condition on the gradient (7), then

(gk+1 − gk)Tpk ≥ −(1− ω)gT
kpk, (8)

and therefore yT
kpk > 0. Thus, when paired with the BFGS update, a line search

using the Wolfe conditions will produce a positive-definite sequence of matrices
Bk, and the quadratic terms may be dropped. Traditional trust-region meth-
ods, which do not employ the Wolfe conditions, cannot ensure that yT

kpk > 0 at
each iteration. Thus, traditional trust-region algorithms, typically involve itera-
tions for which no symmetric positive definite Bk+1 satisfies the quasi-Newton
condition (4).

When the Wolfe conditions are not used to define xk+1, the BFGS update
may still be used to define Bk+1 when yT

ksk > 0. Nocedal and Yuan [11] suggest
simply setting Bk+1 = Bk when yT

ksk < 0. Obviously, their method will not
satisfy the quasi-Newton condition (4) at each iteration, but it will keep Bk

positive definite. Some care must be taken in applying the update, because when
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the Wolfe conditions are not used, yT
ksk may equal zero or may be arbitrarily

close to zero. Fletcher [3] develops a trust-region method that employs a rank-
two formula suggested by Powell [12] when yT

ksk ≤ 0. As we noted above, his
method cannot satisfy the quasi-Newton condition.

Nocedal and Yuan [11] also experiment with the symmetric rank-one update

Bk+1 = Bk +
(yk −Bkpk)(yk −Bkpk)T

(yk −Bkpk)Tpk
, (9)

which is the unique rank-one update that maintains a symmetric sequence of ma-
trices. The matrices generated by this quasi-Newton scheme are not necessarily
positive definite. To avoid numerical problems, the authors skip the update if
|(yk−Bkpk)Tpk| is less than some tolerance. They allow Bk to become indefinite
and use a method similar to Moré and Sorensen’s [10] to compute the approxi-
mate global minimizer. We are not aware of anyone using the BFGS update to
define Bk+1 when yT

ksk < 0. We see no technical reason why this could not be
done in the context of trust-region methods, provided that proper care is taken
when sT

kBksk or yT
ksk is nearly zero. On the other hand, we see no compelling

reason to use the BFGS update unless one wishes to generate a sequence of
positive definite matrices.

With low-rank quasi-Newton methods, it is not necessary to factor an n× n
matrix at each iteration to solve the trust-region subproblem. Gill et al. [7] show
how to update a Cholesky factorization of Bk to find a Cholesky factorization of
Bk+1 when Bk+1 is a low-rank modification of Bk. If B0 is chosen to be a diagonal
matrix, no factorization of Bk is ever required. The process of updating a fac-
torization of Bk requires O(n2) multiplications for a rank-one modification and
O(2n2) multiplications for a rank-two modification. This requirement is clearly
preferable to the O( 1

6n3) multiplications needed to factor a dense, symmetric
Bk+1. In our numerical experiments, we used the LSSOL algorithm of Gill et
al. [8], which is based on an algorithm by Stoer [16]. This code is specifically
designed for positive semidefinite Bk and can efficiently use a factorization of
Bk, rather than Bk itself, to find a minimizer.

4. Combination Trust-Region Line-Search Methods

The trust-region subproblem, repeated here for convenience, is

minimize Qk(s)
subject to ‖Nks‖ ≤ δk.

(10)

We observe that the trial step sk produced by solving the trust-region subprob-
lem is often a suitable search direction for a line-search technique. Furthermore,
these line-search techniques may use a variant of the strong Wolfe conditions,

f(xk + αksk)− f(xk) ≤ η1

(
αkgT

ksk + 1
2α2

k min(0, sT
kBksk)

)
(11)

and
|g(xk + αksk)Tsk| ≤ −ω(gT

ksk + αk min(0, sT
kBksk)), (12)
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as their termination criteria. When Bk is positive semidefinite, these conditions
reduce to the traditional strong Wolfe conditions (6) and (7), which allow com-
bination algorithms to fully exploit the properties of the BFGS update. Fur-
thermore, combination methods may be applied even when Bk is not positive
definite. Gertz [6] shows that when Bk is chosen to be the exact Hessian, the
quadratic terms in (11) and (12) can be used to ensure second-order convergence
of these methods.

To simplify notation, we introduce the function

qk(s) = gT
ks + 1

2 min(0, sTBks). (13)

In terms of this function, the first Wolfe condition (11) may be written more
succinctly as

f(xk)− f(xk + αsk) ≥ −η1qk(αsk). (14)

We also define the set

W(η1, ω) = {α > 0 | α satisfies conditions (11) and (12)}. (15)

This notation makes clear the dependence of the set of α’s that satisfy the Wolfe
conditions on the parameters η1 and ω.

This paper develops new algorithms, first introduced by Gertz [6], that apply
a line search to the trust-region trial step. These new methods apply rules defined
to favor iterations of the form xk+1 = xk+sk, because the trust-region step often
produces a very good reduction in f . When f(xk +sk) does not meet a sufficient
decrease condition, the method performs a line search to find an αk so that
f(xk +αksk)−f(xk) is sufficiently small when compared with Qk(αksk). In this
manner, every time a trial step is computed, the new algorithms produce a new
value of x that meets a sufficient decrease requirement. Classical trust-region
methods, by contrast, may require several solutions of the relatively expensive
trust-region subproblem before they find an acceptable new value of x. The
length αk‖Nksk‖ of the accepted step provides useful information for controlling
the size of the trust-region radius. We have used this length extensively and
effectively in adjusting δk.

Toint [18] describes a method that also adds a line search to a trust-region
method. His method is based on the observation that one may substitute x̂k for
xk where f(x̂k) < f(xk) at any point in a trust-region method without adversely
affecting the proof that lim infk→∞ ‖gk‖ = 0. Toint therefore performs a line
search at every iterate to attempt to find a lower value of the objective function.
His method does not impose a sufficient decrease condition on the line search.
Nocedal and Yuan [11] describe a method that performs a backtracking line
search when f(xk + sk) ≥ f(xk). They also do not impose a sufficient decrease
condition on this line search, and moreover they accept f(xk + sk) whenever
f(xk + sk) ≤ f(xk). Thus, they do not impose a sufficient decrease requirement
on any step. Gertz [6] also introduces and develops a trust-region method with a
backtracking line search. The backtracking method employs a sufficient decrease
criterion at every iteration and has strong convergence properties. However,
this method is less useful in developing quasi-Newton algorithms than are the
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methods described here because it does not generate steps that satisfy the Wolfe
conditions (11) and (12). For a method that adds a backtracking line search to
a trust-region method for equality-constrained optimization, see El Hallabi [9].

The convergence theorems presented in Gertz [6] are stronger than those pre-
sented in the papers discussed in the preceding paragraph. Since these authors do
not impose a sufficient decrease requirement on each step, the techniques used to
prove the stronger convergence theorems are not available for their methods. We
doubt that the stronger theorems hold. Nocedal and Yuan do make limited use
of the line search to control the trust-region radius, in the sense that when αksk

is determined by the backtracking line search and αk‖Nksk‖ is small enough,
they set δk = αk‖Nksk‖. Our use of the step length to adjust the trust-region
radius is more sophisticated.

The theory developed by Nocedal and Yuan is limited to the case in which
‖ · ‖ = ‖ · ‖2, whereas the theory developed here is not. Furthermore, they base
their algorithm on a method of solving the trust-region subproblem developed by
Moré and Sorensen [10] but omit a key step in this method. The omitted step,
which computes an approximate null vector of a certain matrix, often allows
Moré and Sorensen’s method to find a solution to the trust-region subproblem
far more quickly than their simplified method. Nocedal and Yuan, in fact, use
Moré and Sorensen’s method in their numerical experiments but are vague about
the theoretical basis of their using the method. The omission of the step from
Moré and Sorensen’s algorithm is not trivial. It affects the theoretical properties
of sk significantly.

Neither the method of Toint nor the method of Nocedal and Yuan necessarily
finds steps for which (gk+1 − gk)Tsk > 0. Thus, they are limited in their ability
to fully exploit the properties of the BFGS update in their methods.

5. The Biased Wolfe Trust-Region Algorithm

Line-search methods based on the Wolfe conditions have a desirable property not
found in backtracking methods: it is possible to find acceptable values of α that
are greater than one. If the method chooses an α > 1, then either the quadratic
model was unduly pessimistic, or the trust-region bound was active and the
trust-region radius was too small. In either case, the step αksk still satisfies a
sufficient decrease condition, and generally f(xk + αksk) < f(xk + sk). Since it
is possible, and sometimes necessary, that α > 1, we may define a trust-region
method that relies exclusively on αk‖Nksk‖ to adjust the trust-region radius.

Algorithm 5.1. Wolfe Trust-Region Algorithm
Let constants kmax, ν ≥ 1 and 0 < η1 < ω < 1 be given.
k ← 1; δk ← 1; xk ← x0

while k ≤ kmax and not converged
Let sk be an approximate solution to the trust-region subproblem (3).
Choose αk ∈ W(η1, ω).
xk+1 ← xk + αksk
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Choose δk+1 ∈ [αk‖Nksk‖, αkν‖Nksk‖].
k ← k + 1

end

The introduction of the constant ν merits some explanation. The trial step
sk is not computed exactly. Thus, even when all minimizers of the trust-region
subproblem occur on the boundary, sk may be computed only such that ‖Nksk‖
is within some tolerance of δk. The value of this tolerance depends on the method
used solve the subproblem but is often significantly greater than machine pre-
cision. We may always arrange so that ‖Nksk‖ ≤ δk, but we cannot practically
require that ‖Nksk‖ = δk. The constant ν is used to compensate for this effect.
Assume that ‖Nksk‖ ≥ (1/ν)δk unless sk = −B−1

k g. An acceptable rule for
choosing δk+1 ∈ [αk‖Nksk‖, αkν‖Nksk‖] is

δk+1 =
{

αk‖Nksk‖ if sk = −B−1
k gk

αkδk otherwise. (16)

Other reasonable choices depend on the algorithm used to solve the trust-region
subproblem.

Gertz [6] has shown that Algorithm 5.1 is theoretically sound and possesses
a fast asymptotic convergence rate. Practical problems arise, however, when this
algorithm is paired with usual methods of performing the line search. The rule
Algorithm 5.1 used to adjust the trust-region radius can lead to unnecessarily
small choices of δk+1. Moreover, the constants η1 and ω used in the Wolfe con-
ditions are often chosen to produce a rather relaxed search. Because αk = 1 is
usually the first value tried by line search algorithm, Algorithm 5.1 is not aggres-
sive in increasing the trust-region radius, even when an increase is permissible.
Away from a solution, unnecessarily small values of δk can cause the algorithm
to take unnecessarily small steps. Numerical experiments show an increase in
the number of iterations for some problems. More significant, however, is the
fact that some methods for solving the trust-region subproblem (3) appear to be
adversely affected by an unnecessarily small choice of δk. Since the solution of (3)
can be the computational bottleneck of a trust-region algorithm, it is important
to solve the trust-region subproblem as efficiently as possible.

Algorithm 5.1 is theoretically interesting because of its simplicity, but for
practical use it must be modified to “bias” it against decreasing the trust-region
radius. Rather than modifying the line search to cause it to search more aggres-
sively for α > 1, we have chosen the simple scheme outlined below.

Algorithm 5.2. Biased Wolfe Trust-Region Algorithm
Let constants kmax, 0 < αmin < 1, 0 < η1 < η2 < 1 and γ3 > ν ≥ 1 be given.
k ← 1; δk ← 1; xk ← x0

while k ≤ kmax and not converged
Let sk be an approximate solution to the trust-region subproblem (3).
ρk ← (f(xk + sk)− f(xk)) /qk(sk)
Choose αk ∈ W(η1, ω).
xk+1 ← xk + αksk
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if ρk ≥ η2 and αk ≥ αmin then
Choose ν̂k ∈ [1, ν].
δk+1 = max(δk, αkν̂k‖Nksk‖, γ3‖Nksk‖)

else
Choose δk+1 ∈ [αk‖Nksk‖, αkν‖Nksk‖].

end if
k ← k + 1

end

The scalar νk may be chosen implicitly at each iteration by a rule such
as (16). One would first use an appropriate rule to choose a trust-region radius
δ̂k in the interval [αk‖Nksk‖, αkν‖Nksk‖] and then take ν̂k = δ̂k/‖Nksk‖. It is
significantly more notationally convenient to refer to the sequence of scalars {ν̂k}
than to the sequence {δ̂k}. Thus the notation δ̂k will not be used in the sequel.

This pseudocode has two subtle details. The first is that if ρk ≥ η2 and
αk ≥ αmin, then δk+1 ≥ δk, but this is not the only condition under which the
trust-region radius may increase. Even if ρk ≤ η2, we may still find αk > 1
and increase the trust-region radius. The test ρk ≥ η2 exists only to bias the
algorithm toward choosing a larger trust-region radius. The second detail is that
Algorithm 5.2 can take small steps without reducing the trust-region radius.
Specifically, if ρk ≥ η2 and αk ≥ αmin, then the trust-region radius will not
decrease, but αk‖Nksk‖ can be significantly smaller than δk.

Without further conditions, it appears impossible to prove that Algorithm 5.2
does not converge to a point that is not stationary. One need also require that
the algorithm for performing the line search find an αk that satisfies

f(xk + αksk)− f(xk)− η1qk(αksk) ≤ f(xk + sk)− f(xk)− η1qk(sk). (17)

A common method of finding an αk that satisfies conditions (11) and (12) is to
apply a safeguarded univariate minimization routine to the function

φk(α) = f(xk + αsk)− f(xk)− η1qk(αsk). (18)

One can safely assume that this routine uses α = 1 as its first iterate and
produces a nonincreasing sequence of objective values. Our assumption (17) is
merely the statement that φk(αk) ≤ φk(1), which is simple to achieve in practice.

It is not immediately clear that a line search based on minimizing φk(α) will
find a value of αk satisfying both (11) and (12). In fact, without some further
conditions on Bk there may be no such αk. In Lemma 2 we will give conditions
under which αk may be computed. Before we state and prove Lemma 2, however,
we must discuss conditions on sk that a reasonable algorithm will meet.

6. First-Order Convergence of Trust-Region Methods

Under mild assumptions, one can prove that trust-region algorithms produce a
sequence of iterates {xk} for which limk→∞ ‖gk‖ = 0. Since the approximation
to the first derivative of f converges to zero, such proofs are often called proofs of
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first-order convergence. These proofs are global convergence proofs in the sense
that it is not necessary to assume that some xk is sufficiently close to a stationary
point, but only to assume that all iterates lie in a region in which f(x) is bounded
below. Unfortunately, it is not usually possible to produce global proofs that
the sequence of iterates converges. Proofs that {xk} converges (explicitly or
implicitly) generally assume that some iterate is sufficiently close to an isolated
local minimizer.

In the following sections, we prove first-order convergence results for Al-
gorithm 5.2. These convergence theorems do not require that Bk be positive
definite. We present the more general theory because Algorithm 5.2 is not re-
stricted to methods that use the BFGS update; because the general results are
not significantly more difficult to prove; and because the general results demon-
strate that the algorithm remains robust in the presence of near-singularity or
indefiniteness resulting from numerical error.

The earliest proofs of first-order convergence are due to Powell [13,14], who
proved that lim infk→∞ ‖gk‖ = 0. Thomas [17] extended this result, proving that
under additional conditions, limk→∞ ‖gk‖ = 0. Thomas’s proof, however, relies
heavily on Powell’s result. Powell’s theorem is remarkable, not only in that it
requires weak assumptions on f , but also in that his proof provides a general
framework for proving the convergence of trust-region algorithms. To fit within
this framework, an algorithm must have the following two properties:

P1. If f(xk) is bounded below and ‖gk‖ is bounded away from 0, then δk → 0
and {xk} converges.

P2. If ‖gk‖ is bounded away from 0 and {xk} converges, then δk 6→ 0.

It follows immediately that for any algorithm satisfying P1 and P2, either f(xk)
is unbounded below or lim infk→∞ ‖gk‖ = 0.

Proofs of convergence for trust-region methods require that we specify con-
ditions on the step sk. The first condition specifies how accurate sk must be as
a solution to the trust-region subproblem. It is wholly unrealistic to require that
sk be an exact solution. Possibly the weakest requirement is proposed by Powell,
who requires that for some constant τ > 0,

−Qk(sk) ≥ τ‖gk‖min(δk/‖Nk‖, ‖gk‖/‖Bk‖) and ‖Nksk‖ ≤ δk. (19)

This criterion was motivated by the following lemma.

Lemma 1 (Powell). Let κ be a constant such that for all s, ‖s‖2 ≥ κ‖s‖. Then

min
α
{Qk(−αgk) | ‖Nk(αgk)‖ ≤ δk} ≤ − 1

2κ2‖gk‖min
(

δk

‖Nk‖
,
‖gk‖
‖Bk‖2

)
. (20)

Proof. See Powell [13,14].
Since the minimum value of Qk(s) within the trust region is at least as

small as the constrained minimum value along the steepest descent direction, the
lemma provides an upper bound on the constrained minimum value of Qk(s).
Notice, however, that the lemma also yields an upper bound for the choice of
τ in (19). Because ‖Bk‖∞ ≥ ‖Bk‖2, a comparison of inequalities (19) and (20)
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shows that τ must be chosen less than 1
2κ2, where κ depends on the choice of

norm. For the infinity and Euclidean norms, κ = 1; for the one-norm, κ = 1/
√

n.
We assume henceforth without comment that τ is chosen sufficiently small.

The second condition that must be placed on sk is more of a theoretical
annoyance than a practical problem. Powell’s criterion (19) is not sufficient to
ensure that gT

ksk ≤ 0, a condition that is needed to ensure that the line search
will be successful. Clearly, if gT

ksk > 0, then Q(−sk) < Q(sk), and thus −sk is a
better approximation to a minimizer of Q(s) than is sk. Therefore, even if our
algorithm for solving the trust-region subproblem (10) produced an sk such that
gT

ksk > 0, we could simply negate the step. Such an action, however, is usually
not necessary, because methods for solving this subproblem tend to be defined
in such a way that they always generate steps for which gT

ksk ≤ 0. See Conn,
Gould, and Toint [2] for a survey of methods for finding an approximate solution
of (10).

It is not, however, possible to prove in general that gT
ksk is not zero. In

particular, if Bk is indefinite and ‖ · ‖ is the infinity norm, then there is the
unlikely possibility that the global minimizer, s?

k, of the trust-region subproblem
might occur at a point for which gT

ks?
k = 0 even if gk 6= 0. Thus, for the line

search to be successful, we must assume that the second-order information Bk

is a sufficiently accurate representation of ∇2f(xk) whenever gT
ksk = 0.

We note that this is not an issue for quasi-Newton methods that maintain
a positive definite approximation to the Hessian. When Bk is positive definite,
0 > Qk(sk) > gT

ksk. Nonetheless, we present the following lemma giving general
conditions under which the line search will be successful.

Lemma 2. Let f(x) be twice continuously differentiable and bounded below. Let
g(x) = ∇f(x), and denote gk = g(xk) for all indices k. If gT

ksk ≤ 0 and further-
more

sT
k∇2f(xk)sk < η1s

T
kBksk < 0 whenever gT

ksk = 0, (21)

then there are constants 0 < αl < αh such that α satisfies the quadratic Wolfe
conditions (11) and (12) whenever αl ≤ α ≤ αh.

Proof. Consider the function

φk(α) = f(xk + αsk)− f(xk)− η1αgT
ksk − 1

2η1α
2 min(0, sT

kBksk),

first introduced in (18). By assumption, f(xk + αksk) is bounded below, and
gT

ksk ≤ 0 with sT
kBksk negative when gT

ksk = 0. Therefore limα→∞ φk(α) = ∞.
The first and second derivatives of φk at zero are

φ′k(0) = (1− η1)gT
ksk and φ′′k(0) = sT

k∇2f(xk)sk − η1 min(0, sT
kBksk).

If gT
ksk is negative, then so is φ′k(0). If, on the other hand, gT

ksk = 0, then sT
kBksk

is negative, and thus φ′k(0) = 0 and φ′′k(0) < 0. In either case, because φk(0)
equals zero, φk(α) is negative for all sufficiently small positive α. Because there
are α > 0 with φk(α) < 0 but φk(α) is continuous and limα→∞ φk(α) =∞, there
is a β > 0 with φk(β) = 0. Let α∗ be the global minimizer of φk(α) in [0, β]. The
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minimum value cannot occur at the endpoints because φk(0) = φk(β) = 0, but
there are α in [0, β] with φk(α) < 0. Thus α∗ is also a local minimizer of φk(α),
and φk(α∗) < 0.

Let ᾱ be any local minimizer of φk(α) with φk(ᾱ) < 0. Then

f(xk + ᾱsk)− f(xk)− η1(ᾱgT
ksk + 1

2 ᾱ2 min(0, sT
kBksk)) < 0,

so
f(xk + ᾱsk)− f(xk) < η1(ᾱgT

ksk + 1
2 ᾱ2 min(0, sT

kBksk)).

Therefore ᾱ satisfies the first Wolfe condition (11). Because ᾱ is a local uncon-
strained minimizer, φ′k(ᾱ) = 0. In other words

g(xk + ᾱsk)Tsk = η1(gT
ksk + ᾱ min(0, sT

kBksk)).

The right-hand side of the preceding equation is clearly negative, and thus g(xk+
ᾱsk)Tsk < 0. Because ω > η1, we find

−ω(gT
ksk + ᾱ min(0, sT

kBksk)) > −g(xk + ᾱsk)Tsk = |g(xk + ᾱsk)Tsk|,

which shows that ᾱ satisfies the second Wolfe condition (12). The existence of
an appropriate interval then follows immediately from the existence of a local
minimizer and the continuity of φk(α).

A well-defined univariate minimization routine will therefore find an appro-
priate αk. We assume that, in any implementation of Algorithm 5.2, the method
used to solve the trust-region subproblem will find an sk at each iteration that
satisfies Powell’s sufficient decrease criterion (19) and the conditions of Lemma 2.
We discuss one such method in Section 8.

We now show that Algorithm 5.2 has the property P2.

Lemma 3. Let {xk} be a sequence of iterates produced by Algorithm 5.2, let Ω ⊂
IRn be a region containing {xk} in its interior, and let f(x) be twice continuously
differentiable and bounded below in Ω. Assume further that ‖Bk‖, ‖Nk‖ and
‖N−1

k ‖ are all bounded above. Then if {‖gk‖} is bounded away from zero and
{xk} converges, δk 6→ 0.

Proof. Because xk+1 = xk + αksk, we may denote g(xk + αksk) as gk+1. The
second Wolfe condition (12) requires that

−|gT
k+1sk| ≥ ω(gT

ksk + αk min(0, sT
kBksk)).

The value −|gT
k+1sk| is bounded above by gT

k+1sk, and min(0, sT
kBksk) is bounded

below by −|sT
kBksk|. Therefore

gT
k+1sk + αkω|sT

kBksk| ≥ ωgT
ksk.

When −gT
ksk is subtracted from both sides of this inequality, it becomes

(gk+1 − gk)Tsk + αkω|sT
kBksk| ≥ −(1− ω)gT

ksk. (22)
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If δk → 0 but {‖gk‖} is bounded away from zero, then δk/‖Nk‖ ≤ ‖gk‖/‖Bk‖
for sufficiently large values of k. We subtract 1

2 (1−ω)sT
kBksk from the right side

of (22), add its absolute value to the left side, and apply the sufficient decrease
condition (19) to obtain

(gk+1 − gk)Tsk + (αkω + 1
2 (1− ω))|sT

kBksk| ≥ τ(1− ω)
‖gk‖
‖Nk‖

δk.

Let ‖ · ‖T denote the norm dual to ‖ · ‖. In other words ‖x‖T = max‖y‖=1 |xTy|.
Let κ1 > 0 be a constant such that for all x, ‖x‖T ≤ κ1‖x‖. It then follows from
norm inequalities that

‖gk+1 − gk‖T ‖sk‖+ κ1(αkω + 1
2 (1− ω))‖sk‖2‖Bk‖ ≥ τ(1− ω)

‖gk‖
‖Nk‖

δk.

Using the relationship ‖sk‖ ≤ ‖N−1
k ‖δk and canceling wherever possible, we find

‖gk+1 − gk‖T ‖N−1
k ‖+ (κ2αk + κ3)‖Nksk‖ ≥ τ(1− ω)

‖gk‖
‖Nk‖

, (23)

where κ2 and κ3 are constants such that

κ2 ≥ κ1ω‖Bk‖‖N−1
k ‖

2 and κ3 ≥ 1
2κ1(1− ω)‖Bk‖‖N−1

k ‖
2.

Now, if δk → 0, then both ‖Nksk‖ and αk‖Nksk‖ ≤ δk+1 → 0. Since {xk}
converges, the iterates eventually lie in a compact region, and within this region
g(x) is uniformly continuous. Thus, it is clear that the left-hand side of (23)
converges to zero. On the other hand, the right-hand side of (23) is bounded
below by a positive constant, which yields a contradiction. Therefore, it cannot
be that δk → 0.

We will show that under suitable conditions, and particularly under the false
assumption that ‖g(xk)‖ is bounded away from zero,

∑∞
k=1 δk is finite. It will

then follow that δk → 0 and that {xk} is Cauchy and thus converges. In other
words, we will show that Algorithm 5.2 has the property P1.

To prove that the sum of the entire sequence δk is finite, we proceed in stages,
breaking the sequence into more manageable subsequences. Let ᾱ be a constant
such that 0 < ᾱν < 1. Define the set

S(ᾱ) = {k | αk ≥ ᾱ}. (24)

The set S(ᾱ) can be thought of as the set of indices for which αk is not “too
small.” Let the set T be defined by the rule

T = {k | f(xk)− f(xk + sk) ≥ −η2qk(sk) and αk ≥ αmin}. (25)

We also define a set to represent the union of S(ᾱ) and T , specifically

U(ᾱ) = S(ᾱ) ∪ T . (26)

The set U(ᾱ) is important because it contains as a (typically proper) subset all
indices at which the trust region radius increases. Those indices at which the
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trust region increases because αk > 1 are in S(ᾱ), and those indices at which
the trust-region increases because ρ ≥ η2 and αk ≥ αmin are in T .

Because αkν‖Nksk‖ ≤ δk+1, our primary interest is to obtain bounds involv-
ing ‖xk+1 − xk‖ = αk‖sk‖ indirectly by obtaining bounds involving δk+1. We
first establish bounds δk+1 for all indices k ∈ S(ᾱ).

Lemma 4. Let {xk}, {sk}, and {αk} be the sequences of iterates, search direc-
tions, and step lengths generated by Algorithm 5.2, respectively. Let ᾱ be any
number in the interval (0, 1/ν), and define S(ᾱ) by (24). It holds that

f(xk)− f(xk + αksk) ≥ η1τᾱ2

γ3
‖g(xk)‖min

(
δk+1

ν‖Nk‖
, γ3
‖gk‖
‖Bk‖

)
(27)

for any k ∈ S(ᾱ).

Proof. A combination of the inequality −qk(sk) ≥ −Q(sk) and Powell’s suf-
ficient decrease requirement (19) yields

−q(sk) ≥ τ‖gk‖min(δk/‖Nk‖, ‖gk‖/‖Bk‖).

The inequality ᾱ < 1/ν ≤ 1 may be used to obtain an expression for qk(αksk) in
terms of qk(sk) for all k ∈ S(ᾱ). If sT

kBksk ≥ 0, then −qk(αksk) = −αkgT
ksk ≥

−ᾱαkqk(sk). Alternatively, if sT
kBksk < 0, then

−qk(αksk) = −αkgksT
k −

1
2
α2

ksT
kBksk

≥ −ᾱαkgT
ksk − 1

2 ᾱαksT
kBksk = −ᾱαkqk(sk).

In either case, αksk satisfies the Wolfe condition on the objective (11) and

f(xk)− f(xk + αksk) ≥ η1τᾱ‖gk‖min (αkδk/‖Nk‖, αk‖gk‖/‖Bk‖) (28)

for all k ∈ S(ᾱ).
By the updating rules for Algorithm 5.2, δk+1 ≤ max(αkνδk, γ3δk). For k ∈

S(ᾱ), both αkν/ᾱ ≥ 1 and γ3/ᾱ > 1, and thus

δk+1 ≤
γ3αk

ᾱ
νδk.

Substituting this upper bound for δk+1 into inequality (28) and noting that
αk ≥ ᾱ for k ∈ S, we obtain the bound (27).

Lemma 5. Let {xk}, {sk}, and {αk} be the sequences of iterates, search di-
rections, and step lengths generated by Algorithm 5.2, respectively. Let ᾱ be a
constant such that 0 < ᾱ < 1/ν ≤ 1, and define the set U(ᾱ) by (26). Then

f(xk)− f(xk+1) ≥ η̂τ‖gk‖min (δk+1/(ν‖Nk‖), γ3‖gk‖/‖Bk‖) , (29)

where

η̂ = min
(

η1ᾱ
2

γ3
,
η2 − η1

γ3

)
,

for all k ∈ U(ᾱ).
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Proof. The step lengths generated by Algorithm 5.2 satisfy the Wolfe con-
ditions (11) and (12) and the condition (17). Condition (17), repeated here for
clarity, is that

f(xk + αksk)− f(xk)− η1qk(αksk) ≤ f(xk + sk)− f(xk)− η1qk(sk).

We combine this condition with the first Wolfe condition (11) to conclude

f(xk)− f(xk + αksk) ≥ f(xk)− f(xk + sk) + η1qk(sk). (30)

Consider, now, k ∈ T . By definition, for indices in T it holds that f(xk) −
f(xk + sk) ≥ −η2qk(sk). Thus because of the bound (30), it also holds that

f(xk)− f(xk + αksk) ≥ −(η2 − η1)qk(sk).

But then, because sk meets Powell’s sufficient decrease condition (19),

f(xk)− f(xk + αksk) ≥ (η2 − η1)τ‖gk‖min (δk/‖Nk‖, ‖gk‖/‖Bk‖) ,

for all k ∈ T .
If k 6∈ S(ᾱ), then by definition of S(ᾱ), αk < ᾱ < γ3. Whenever k ∈ T and

αk < γ3, the radius δk+1 ≤ γ3δk ≤ γ3νδk, and thus

f(xk)− f(xk + αksk) ≥ η2 − η1

γ3
τ‖gk‖min

(
δk+1

ν‖Nk‖
, γ3
‖gk‖
‖Bk‖

)
, (31)

for all k ∈ T \ S(ᾱ). We may therefore combine Equations (27) and (31) to
obtain the desired bound (29) for k ∈ U(ᾱ) = S(ᾱ) ∪ T .

As we noted above, the set U(ᾱ) contains all the indices for which δk increases.
We now explore the behavior of iterates in the complement of U(ᾱ).

Lemma 6. Let 0 < ᾱν < 1, let U(ᾱ) be defined by (26) and let {k | ` < k ≤ m}
be any unbroken sequence of iteration indices for Algorithm 5.2 with no members
in U(ᾱ). Then

m∑
k=`

δk+1 <
1

1− νᾱ
δ`+1. (32)

Proof. When k 6∈ U(ᾱ), the trust region radius decreases by at least a constant
factor. Specifically, δk+1 ≤ ᾱνδk, where ᾱν < 1. Let {k | ` < k ≤ m} be any
unbroken sequence of iterates with no members in U(ᾱ). Then

m∑
k=`

δk+1 ≤
m∑

k=`

(ᾱν)(k−`)δ`+1 <
∞∑

j=0

(ᾱν)jδ`+1 =
1

1− νᾱ
δ`+1,

which is the desired result.
It is significant that ` may be in U(ᾱ) and that the sum in the bound (32)

includes δm+1 even if m + 1 ∈ U(ᾱ).
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Corollary 1. Let {k | ` < k <∞} be any unbroken sequence of iteration indices
for Algorithm 5.2 with no members in U(ᾱ). Then

∞∑
k=`

δk+1 ≤
1

1− νᾱ
δ`+1.

Proof. Because δk > 0 for all k, it holds that
∑∞

k=` δk+1 = supm>`

∑m
k=` δk+1.

Lemma 6 then provides an upper bound on this supremum.
We now use Powell’s criterion (19) to show that Algorithm 5.2 has the prop-

erty P1.

Lemma 7. Let {xk} be a sequence of iterates produced by Algorithm 5.2, let Ω ⊂
IRn be a region containing {xk} in its interior, and let f(x) be twice continuously
differentiable and bounded below in Ω. Assume further that ‖Bk‖, ‖Nk‖ and
‖N−1

k ‖ are all bounded above. Then if {‖gk‖} is bounded away from zero, δk → 0
and {xk} converges.

Proof. If U(ᾱ) is finite, then clearly
∑

k∈U(ᾱ) δk+1 < ∞. Suppose, on the
other hand, that U(ᾱ) is infinite. Algorithm 5.2 generates a nonincreasing se-
quence {f(xk)} of function values that is, by assumption, bounded below. Thus∑∞

k=0 (f(xk)− f(xk+1)) is finite, and f(xk)−f(xk+1) converges to zero. Also by
assumption, the sequence {‖gk‖/‖Bk‖} is bounded away from zero, and hence
the bound (29) reduces to

f(xk)− f(xk+1) ≥
η̂τ‖gk‖
ν‖Nk‖

δk+1,

for sufficiently large k ∈ U(ᾱ).
Therefore, from the false premise that {‖gk‖} is bounded away from zero,

it follows that
∑

k∈U(ᾱ) δk+1 is finite. We now show that, based on the same
premise,

∑∞
k=0 δk+1 is finite.

If U(α) is empty, then Corollary 1 implies that

∞∑
k=0

δk+1 ≤
1

1− νᾱ
δ1 <∞.

Similarly, if U(α) is finite and K = max(U(ᾱ)) then

∞∑
k=0

δk+1 =
K∑

k=0

δk+1 +
∞∑

k=K

δk+1 ≤
K∑

k=0

δk+1 +
1

1− νᾱ
δK+1 <∞.

Suppose, then, that U(ᾱ) is infinite. We denote the members of U(ᾱ), taken
as a subsequence of all iterates, using the notation {kj}∞j=1. The sequence of
all iterates may be partitioned into nonoverlapping subsequences as follows. Let
P0 = {k | k < k1} and Pj = {k | kj ≤ k < kj+1} for indices 1 ≤ j <∞.
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If P0 is not empty, then its first index is zero, and none of its indices are in
U(α). Thus, Lemma 6 applies, and we may use the bound (32) to conclude that∑

k∈P0

δk+1 <
1

1− νᾱ
δ1 <∞.

Similarly, for 1 ≤ j < ∞, the first index in the subsequence Pj is kj , and none
of the other indices are in U(ᾱ). Thus

∞∑
j=1

∑
k∈Pj

δk+1 ≤
1

1− νᾱ

∞∑
j=1

δkj+1 =
1

1− νᾱ

∑
k∈U(ᾱ)

δk+1 <∞.

But then
∑∞

k=0 δk+1 =
∑

k∈P0
δk+1 +

∑∞
j=1

∑
k∈Pj

δk+1 < ∞. It follows imme-
diately that δk → 0. Moreover, because ‖xk+1−xk‖ ≤ ‖N−1

k ‖δk+1 and ‖N−1
k ‖ is

bounded above,
∑∞

k=0 ‖xk+1 − xk‖ is finite. Thus the sequence {xk} is Cauchy
and must converge.

We have proved the following theorem. For clarity, we explicitly state the
conditions we have imposed on the sequences {αk} and {sk}.

Theorem 1. Let {xk} be a sequence of iterates produced by Algorithm 5.2, let
Ω ⊂ IRn be a region containing {xk} in its interior, and let f(x) be twice con-
tinuously differentiable in Ω. Suppose that at each iteration the approximate
solution, sk, to the trust-region subproblem (10) satisfies Powell’s sufficient de-
crease criterion (19) and the conditions of Lemma 2. At each iteration, let the
line search be performed so that αk satisfies Condition (17). Assume further that
‖Bk‖, ‖Nk‖ and ‖N−1

k ‖ are all bounded above. If f is bounded below in Ω, then
lim infk→∞ ‖gk‖ = 0.

Proof. Lemmas 3 and 7 are clearly contradictory, and so ‖gk‖ cannot be
bounded away from zero.

7. Strengthening the Convergence Results

One may show, under additional assumptions, that limk→∞ ‖g(xk)‖ = 0. The
first such proof is due to Thomas [17], who showed that limk→∞ ‖g(xk)‖ = 0
for classical trust-region methods, in other words for those methods for which
xk+1 = xk whenever ρk ≤ η1. Our proof borrows from Thomas but has been
extensively modified to allow for a line search.

Lemma 8. Assume that the sequence {xk} generated by Algorithm 5.2 lies in
a compact region and that {‖Nk‖} is bounded above. Then the sequence {δk} is
also bounded above.

Proof. Since {xk} lies in a compact and thus bounded region, the sequence
{‖xk+1 − xk‖} has a finite upper bound. But xk+1 − xk = αksk, and by as-
sumption {‖Nk‖} is bounded above. Therefore, the sequence {αk‖Nksk‖} is
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also bounded above. For each iteration, there are two possible rules for choosing
δk+1. The first rule, applied when ρk < η2 or αk < αmin, is to choose

δk+1 ∈ [αk‖Nksk‖, αkν‖Nksk‖].

If, on the other hand, ρk ≥ η2 and αk ≥ αmin, we choose δk+1 by the rule

δk+1 = max (δk, αkν̂k‖Nksk‖, γ3‖Nksk‖) ,

where, by definition, the sequence of scalars {ν̂k} is bounded above by ν and
below by one.

Let Γ be any number greater than αkν‖Nksk‖ for all k. The existence of
an upper bound on {αk‖Nksk‖} implies that a suitable Γ exists. Assume fur-
ther, without loss of generality, that Γ is greater than γ3‖Nksk‖ for those k
for which αk ≥ αmin. Then a straightforward inductive argument shows that
δk ≤ max{δ0, Γ} for all k.

The bound on {δk} may be used to obtain a strengthened form of Lemma 6.

Lemma 9. Let {k | ` ≤ k ≤ m} be any unbroken sequence of iterates with no
members in U(ᾱ). Let ∆ be an upper bound on {δk}, and let ξ be a constant
scalar such that ξ ≥ ‖N−1

k ‖ for all k. Then

m∑
k=`

αk‖sk‖ <
ᾱξ

1− νᾱ
∆. (33)

Proof. Lemma 6 implies that
∑m

k=` δk+1 < δ`+1/(1 − νᾱ). But, because ` is
not in U(ᾱ), it holds that δ`+1 ≤ ᾱδ`. Furthermore δ` ≤ ∆ by definition of ∆,
and so

m∑
k=`

δk+1 <
ᾱ

1− νᾱ
∆.

But αk‖sk‖ ≤ αkξ‖Nksk‖ ≤ ξδk+1 for any index k. The bound (33) immediately
follows.

We observe that, in contrast to Lemma 6, the conditions of Lemma 9 require
that ` not be in U(ᾱ).

Lemma 10. Assume that the sequence {xk} generated by Algorithm 5.2 lies in
a compact region and that the sequences {‖Bk‖}, {‖Nk‖}, and {‖N−1

k ‖} remain
bounded. Choose ε1 > ε2 > 0. For every ε3 > 0 there is an integer L sufficiently
large that

∑m−1
k=` αk‖sk‖ < ε3 for all indices m > ` ≥ L for which ‖g(x`)‖ > ε1,

‖g(xk)‖ ≥ ε2 for consecutive indices k = `, ` + 1, . . . ,m− 1, and ‖g(xm)‖ < ε2.

Proof. Note that if ‖g(xk)‖ > ε1 holds only finitely often, then the lemma is
trivially true. Furthermore, because lim infk→∞ ‖g(xk)‖ = 0, it must hold that
for every iteration ` for which ‖x`‖ > ε1, there must exist a subsequent iteration
m such that ‖g(xm)‖ < ε2.
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Let ∆ be an upper bound on {δk} and ξ be an upper bound on {‖N−1
k ‖}.

Let ε3 be given. We choose the scalar ᾱ so small that

ᾱξ

1− νᾱ
∆ ≤ ε3

2
, (34)

with the foresight that this bound will be used in the sequel to obtain a bound
on (38).

Let J denote the sequence of iteration indices {`, `+1, . . . ,m−1}. Let {kj}rj=1

denote the subsequence of J with indices in U(ᾱ). We partition the set J into r
nonoverlapping subsequences as follows. If U(ᾱ)∩J is empty, then let P0 = J .
Otherwise let, P0 = {`, ` + 1, . . . , k1 − 1}, Pj = {kj , kj + 1, . . . , kj+1 − 1},
j = 1, 2, . . . , r − 1 and Pr = {kr, kr + 1, . . . , m− 1}. These definitions allow
the quantity to be bounded to be written as

‖xp − xq‖ ≤
m−1∑
k=`

αk‖sk‖ =
∑
k∈P0

αk‖sk‖+
r∑

j=1

∑
k∈Pj

αk‖sk‖. (35)

First we estimate the quantity
∑

k=P0
αk‖sk‖. If p ∈ U(ᾱ), then P0 is empty,

and the sum is zero. Suppose, then, that P0 is nonempty. Because no indices in
P0 are in U(ᾱ), the conditions of Lemma 9 are met, and thus∑

k=P0

αk‖sk‖ <
ᾱξ

1− νᾱ
∆. (36)

Clearly, the bound (36) also holds if P0 is empty.
We now consider the sum

r∑
j=1

∑
k∈Pj

αk‖sk‖ ≤ ξ

r∑
j=1

∑
k∈Pj

δk+1.

For j = 1, . . ., r, the conditions of Lemma 6 are met, and thus

r∑
j=1

∑
k∈Pj

αk‖sk‖ <
ξ

1− νᾱ

r∑
j=1

δkj+1 (37)

The bounds (36) and (37) may be combined to conclude

q−1∑
k=0

αk‖sk‖ ≤
ξ

1− νᾱ

r∑
j=1

δkj+1 +
ᾱξ

1− νᾱ
∆. (38)

Lemma 4 implies that for every index in the set U(ᾱ),

f(xk)− f(xk+1) ≥ η̂τ‖gk‖min (δk+1/(ν‖Nk‖), γ3‖gk‖/‖Bk‖) ,

where η̂ is a positive scalar constant. Let G(L) = {k | k ≥ L and ‖g(xk)‖ > ε2}.
Because

∑∞
k=1 f(xk)−f(xk+1) <∞, because the sequences {‖Bk‖} and {‖Nk‖}
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are bounded by assumption, and because ‖g(xk)‖ is bounded away from zero for
k ∈ G(L), it follows that ∑

k∈U(ᾱ)∩G(L)

δk+1 <∞.

Thus, there is a L so large that ∑
k∈U(ᾱ)∩G(L)

δk+1 <
ε3
2

. (39)

We use the bounds (34) and (39) to bound the right-hand side of (38). We
conclude that if ` ≥ L, then

∑m−1
k=` αk‖sk‖ < ε3.

Theorem 2. Let all the conditions of Theorem 1 hold. Assume further that all
iterates lie in a compact region. Then limk→∞ ‖g(xk)‖ = 0.

Proof. If {‖g(xk)‖} does not converge to zero, then there is an ε1 > 0 such
that ‖g(xk)‖ > ε1 infinitely often. But, by Theorem 1, ‖g(xk)‖ < ε1/2 infinitely
often.

Because g(x) is uniformly continuous within a compact set, there is an ε3
sufficiently small that ‖g(xp)− g(xq)‖ < ε1/2 whenever ‖xp − xq‖ < ε3. Taking
ε2 = ε1/2 and applying Lemma 10, we find that there is an integer L sufficiently
large that

∑m−1
k=` αk‖sk‖ < ε3 for all indices m > ` ≥ L for which ‖g(x`)‖ > ε1,

‖g(xk)‖ ≥ ε1/2 for consecutive indices k = `, ` + 1, . . . ,m − 1, and ‖g(xm)‖ <
ε1/2. But then for any such indices ` and m

‖x` − xm‖ ≤
m−1∑
k=`

αk‖sk‖ < ε3,

and so ‖g(x`)−g(xm)‖ < ε1/2. This is a contradiction, because ‖g(x`)‖ > ε1 and
‖g(xm)‖ < ε1/2. Thus, there can be no ε1 > 0 such that ‖g(xk)‖ > ε1 infinitely
often, and therefore limk→∞ ‖g(xk)‖ = 0.

8. Numerical Results

We conducted a series of numerical tests on all unconstrained problems in the
CUTE [1] test suite with fewer than 100 variables. All algorithms use the Wolfe
conditions and the BFGS update to produce a sequence of positive definite
approximate Hessians. One of the algorithms uses only a line search on the
direction sk = −B−1

k gk. The other two algorithms are based on Algorithms 5.1
and 5.2 and employ an infinity norm trust region. The iteration is considered
to have converged if ‖g(xk)‖2 < 10−6(1 + ‖g(x0)‖2). The Euclidean norm is
used in the convergence test to make these results comparable with the results
from second-order methods. If the exact Hessian at the computed solution is not
positive semidefinite, the solution is rejected.
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If the solution is not found after 300 iterations, the algorithm is considered
to have failed. Likewise, the algorithm will stop if the line search fails to discover
a step satisfying the Wolfe conditions. Moreover, we also consider the algorithm
to have failed if ‖g(xk + αksk)‖2 > 10−6 and α‖sk‖/‖xk‖ < ε, where ε ≈
2× 10−16 is machine precision. We have found that when a step is that small, it
is extraordinarily unlikely that the iteration will eventually succeed.

The scaling matrix is taken to be Nk = I, and the trust-region subproblem
is solved by using LSSOL [8]. In all cases we use η1 = .05, η2 = .25, and ω = .9.
For Algorithm 5.2, we set αmin = 10−6. For each iteration δk+1 is taken to be
some appropriate multiple of ‖sk‖. For instance, when the algorithm calls for
choosing δk+1 ∈ [αk‖Ns‖, ναk‖Ns‖], we choose δk+1 = αk‖s‖. For all problems,
we use δ0 = 1 for our initial trust-region radius.

Tables 1 and 2 show the number of function evaluations required by each
algorithm to solve each problem. In Table 3 we list the total number of prob-
lems solved by each algorithm. Thirty-three problems are solved by all three
algorithms. Table 3 also lists the total number of function evaluations required
to solve these thirty-three problems. Both the basic Wolfe condition based algo-
rithm and the biased algorithm perform better than the basic line-search algo-
rithm, with the biased algorithm clearly having the best overall performance.

9. Conclusion

We have developed the convergence theory of a method that performs a line
search on the direction proposed by the solution of a trust-region subproblem.
This method, combined with a BFGS update and a Wolfe condition–based line
search, produces an effective quasi-Newton method.

When the Hessian of the function is available, this method has the same
second-order convergence properties as traditional trust-region methods. Fur-
thermore, under suitable conditions, convergence will be Q-quadratic. Proofs
that the method has these properties are given in [6].
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