
Solving Optimization Problems on Computational GridsStephen J. Wright�1 Multiprocessors andComputational GridsMultiprocessor computing platforms, whichhave become available more and more widelysince the mid-1980s, are now heavily used byorganizations that need to solve very demand-ing computational problems. There has alsobeen a great deal of research on computationaltechniques that are suited to these platforms,and on the software infrastructure needed tocompile and run programs on them. Paral-lel computing is now central to the cultureof many research communities, in such ar-eas as meteorology, computational physics andchemistry, and cryptography. Nevertheless,fundamental research in numerical techniquesfor these platforms remains a major topic ofinvestigation in numerical PDE and numericallinear algebra.The nature of parallel platforms has evolvedrapidly during the past 15 years. The eight-ies saw a profusion of manufacturers (Intel,Denelcor, Alliant, Thinking Machines, Con-vex, Encore, Sequent, among others) witha corresponding proliferation of architecturalfeatures: hypercube, mesh, and ring topolo-gies; shared and distributed memories; mem-ory hierarchies of di�erent types; butter
yswitches; and global buses. Compilers andruntime support tools were machine speci�cand idiosyncratic. Argonne's Advanced Com-�Mathematics and Computer Science Division, Ar-gonneNational Laboratory, and Computer ScienceDe-partment, University of Chicago.

puting Research Facility kept a zoo of thesemachines during the late 1980s, allowing freeaccess to many researchers in the UnitedStates and giving many of us our �rst tasteof this brave new world.By the early 1990s, the situation had startedto change and stabilize. Most of the vendorswent out of business, and their machines grad-ually were turned o�|one processor at a time,in some cases. Architectures gravitated to-ward two easily understood paradigms thatprevail today. One paradigm is the shared-memory model typi�ed by the SGI Origin se-ries and by computers manufactured by Sunand Hewlett-Packard. The other paradigm,typi�ed by the IBM SP series, can be viewedroughly as a uniform collection of processors,each with its own memory and all able to passmessages to one another at a rate roughly in-dependent of the locations of the two proces-sors involved. On the software side, the adventof software tools such as p4, MPI, and PVMallowed users to write code that could be com-piled and executed without alteration on themachines of di�erent manufacturers, as well ason networks of workstations.The optimization community was quick totake advantage of parallel computers. In de-signing optimization algorithms for these ma-chines, it was best in some cases to exploit par-allelism at a lower level (that is, at the levelof the linear algebra or the function/derivativeevaluations) and leave the control 
ow of theoptimization algorithm essentially unchanged.Other cases required a complete rethinking1



OPTIMIZATION ON COMPUTATIONAL GRIDS 2of the algorithms, to allow simultaneous ex-ploration of di�erent regions of the solutionspace, di�erent parts of the branch-and-boundtree, or di�erent candidates for the next it-erate. Novel parallel approaches were devel-oped for global optimization, network opti-mization, and direct-search methods for non-linear optimization. Activity was particularlywidespread in parallel branch-and-bound ap-proaches for various problems in combinato-rial and network optimization, as a brief Websearch can attest.As the cost of personal computers and low-end workstations has continued to fall, whilethe speed and capacity of processors and net-works have increased dramatically, \cluster"platforms have become popular in many set-tings. Though the software infrastructure hasyet to mature, clusters have made supercom-puting inexpensive and accessible to an evenwider audience.A somewhat di�erent type of parallel com-puting platform known as a computationalgrid (alternatively, metacomputer) has arisenin comparatively recent times [1]. Broadlyspeaking, this term refers not to a multiproces-sor with identical processing nodes but ratherto a heterogeneous collection of devices thatare widely distributed, possibly around theglobe. The advantage of such platforms is ob-vious: they have the potential to deliver enor-mous computing power. (A particular type ofgrid, one made up of unused compute cyclesof workstations on a number of campuses, hasthe additional advantage of costing essentiallynothing.) Just as obviously, however, the com-plexity of grids makes them very di�cult touse. The software infrastructure and the ap-plications programs that run on them must beable to handle the following features:heterogeneity of the various processors inthe grid;the dynamic nature of the platform (thepool of processors available to the user

may grow and shrink during the compu-tation);the possibility that a processor perform-ing part of the computation may disap-pear without warning;latency (that is, time for communicationsbetween the processors) that is highlyvariable but often slow.In many applications, however, the potentialpower and/or low cost of computational gridsmake the e�ort of meeting these challengesworthwhile. The Condor team, headed byMiron Livny at the University of Wisconsin,were among the pioneers in providing infras-tructure for grid computations. The Condorsystem can be used to assemble a parallel plat-form from workstations, PC clusters, and mul-tiprocessors and can be con�gured to use only\free" cycles on these machines, sharing themwith their respective owners and other users.More recently, the Globus project has devel-oped technologies to support computations ongeographically distributed platforms consist-ing of high-end computers, storage and visu-alization devices, and other scienti�c instru-ments.In 1997, we started the metaneos projectas a collaborative e�ort between optimizationspecialists and the Condor and Globus groups.Our aim was to address complex, di�cult op-timization problems in several areas, design-ing and implementing the algorithms and thesoftware infrastructure needed to solve theseproblems on computational grids. A coordi-nated e�ort on both the optimization and thecomputer science sides was essential. The ex-isting Condor and Globus tools were inade-quate for direct use as a base for programmingoptimization algorithms, whose control struc-tures are inevitably more complex than thoserequired for task-farming applications. Manyexisting parallel algorithms for optimizationwere \not parallel enough" to exploit the fullpower of typical grid platforms. Moreover,



OPTIMIZATION ON COMPUTATIONAL GRIDS 3they were often \not asynchronous enough,"in that they required too much communica-tion between tasks to execute e�ciently onplatforms with the heterogeneity and commu-nications latency properties of our target plat-forms. A further challenge was that, in con-trast to other grid applications, the computa-tional resources required to solve an optimiza-tion problem often cannot be predicted withmuch con�dence, making it di�cult to assem-ble and utilize these resources e�ectively.This article describes some of the resultswe have obtained during the �rst three yearsof the metaneos project. Our e�orts haveled to development of the runtime support li-brary MW, for implementing algorithms withmaster-worker control structure on Condorplatforms. This work is discussed below, alongwith our work on algorithms and codes for in-teger linear programming, the quadratic as-signment problem, and stochastic linear pro-gramming. Other metaneos work, not dis-cussed below, includes work in global opti-mization, integer nonlinear programming, andveri�cation of solution quality for stochasticprogramming.2 Condor, Globus, and theMW FrameworkThe Condor system [2, 3] had its origins atthe University of Wisconsin in the 1980s. Itfocuses on collections of computing resources,known as Condor pools, that are distribu-tively owned. To understand the implicationsof \distributed ownership," consider a typicalmachine in a pool: a workstation on the deskof a researcher. The Condor system providesa means by which other users (not known tothe machine's owner) can exploit some of theunused cycles on the machine, which other-wise would sit idle most of the time. Theowner maintains control over the access rightsof Condor to his machine, specifying the hours

in which Condor is allowed to schedule pro-cesses on the machine and the conditions un-der which Condor must terminate any processit is running when the owner starts a process ofhis own. Whenever Condor needs to terminatea process under these conditions, it migratesthe process to another machine in the pool,guaranteeing eventual completion.When a user submits a process, the Con-dor system �nds a machine in the pool thatmatches the software and hardware require-ments of the user. Condor executes the user'sprocess on this machine, trapping any sys-tem calls made by the process (such as in-put/output operations) and referring themback to the submitting machine. In this way,Condor preserves much of the submitting ma-chine's environment on the execution machine.Users can submit a large number of processesto the pool at once. Since each such pro-cess maintains contact with the submittingmachine, this feature of Condor opens up thepossibility of parallel processing. Condor pro-vides an opportunistic environment, one thatcan make use of whatever resources currentlyare available in its pool. This set of resourcesgrows and shrinks dynamically during execu-tion of the user's job, and his algorithm shouldbe able to exploit this situation.The Globus Toolkit [4] is a set of com-ponents that can be used to develop applica-tions or programming tools for computationalgrids. Currently, the Toolkit contains toolsfor resource allocation management and re-source discovery across a grid, security and au-thentication, data movement, message-passingcommunication, and monitoring of grid com-ponents. The main use of Globus within themetaneos project has been at a level belowCondor. By a Globus mechanism known asglide-in, a user can add machines at a remotelocation into the Condor pool on a temporarybasis, making them accessible only to his ownprocesses. In this way, a user can marshal alarge and powerful set of resources over multi-ple sites, some or all of them dedicated exclu-



OPTIMIZATION ON COMPUTATIONAL GRIDS 4sively to his job.MW is a software framework that facili-tates implementation of algorithms of master-worker type on computational grids. It wasdeveloped as part of the metaneos projectby Condor team members Mike Yoder andSanjeev Kulkarni in collaboration with opti-mization specialists Je� Linderoth and Jean-Pierre Goux [5, 6]. MW takes the form of aset of C++ abstract classes, which the userimplements to perform the particular opera-tions associated with his algorithm and prob-lem class. There are just ten virtual functions,grouped into the following three fundamentalbase classes:� MWDriver contains four functions thatobtain initial user information, set up theinitial set of tasks, pack the data requiredto initialize each worker processor as itbecomes available, and act on the resultsthat are returned to the master when atask is completed.� MWWorker contains two functions, tounpack the initialization data for theworker and to execute a task sent by themaster.� MWTask contains four functions to packand unpack the data de�ning a single taskand to pack and unpack the results asso-ciated with that task.MW also contains functions that monitor per-formance of the grid and gather various statis-tics about the run.Internally, MW works by managing a list ofworkers and a list of tasks. The resource man-agement mechanisms of the underlying gridare used to obtain new workers for the list andprovide information about each worker. Theinformation can be used to order the workerlist so that the most suitable workers (e.g.,the fastest machines) are at the head of thelist and hence are the �rst to receive tasks.Similarly, the task list can be ordered by a

user-de�ned key to ensure that the most im-portant tasks are performed �rst. Schedulingof tasks to workers then becomes simple: The�rst task on the list is assigned to the �rstavailable worker. New tasks are added to thelist by the master process in response to resultsreceived from completion of an earlier task.MW is currently implemented on twoslightly di�erent grid platforms. The �rst usesCondor's version of the PVM (parallel vir-tual machine) protocol, while the second usesthe remote I/O features of Condor to allowmaster and workers to communicate via seriesof shared �les. In addition, MW provides a\bottom-level" interface that allows it to beimplemented in other grid computing toolkits.3 Integer ProgrammingConsider the linear mixed integer program-ming problemmin cTx subject to Ax � b; l � x � u;xi 2 Z; for all i 2 I;where x is a vector of length n, Z representsthe integers, and I � f1; 2; : : :; ng. Paral-lel algorithms and frameworks for this prob-lem have been investigated by a number ofauthors in recent times. The approaches de-scribed in [7, 8, 9, 10] implement enhance-ments of the branch-and-bound procedure, inwhich the work of exploring the branch-and-bound tree is distributed among a �xed num-ber of processors. These approaches are di�er-entiated by their use of virtual-shared-memoryvs. message-passing models, their load balanc-ing procedures, their choice of branching rules,and their use of cuts.By contrast, the FATCOP code of Chen,Ferris, and Linderoth [11] uses the MWframework to greedily use whatever compu-tational resources become available from theCondor pool. The algorithm implementedin FATCOP (the name is a loose acronym



OPTIMIZATION ON COMPUTATIONAL GRIDS 5for \fault-tolerant Condor PVM") is an en-hanced branch-and-bound procedure that uti-lizes (globally valid) cuts, pseudocosts forbranching, preprocessing at nodes within thebranch-and-bound tree, and heuristics to iden-tify integer feasible solutions rapidly.In FATCOP's master-worker algorithm,each task consists of exploration of a subtreeof the branch-and-bound tree, not just eval-uation of a single node of the tree. Givena root node for the subtree, and other infor-mation such as the global cut and pseudocostpools, the task executes for a given amount oftime, making its own branching decisions andaccumulating its own collection of cuts andpseudocosts. It may also perform a \diving"heuristic from its root node to seek a new in-teger feasible solution. When the task is com-plete, it returns to the master a stack repre-senting the unexplored portions of its subtree.(Depth-�rst search is used to limit the size ofthis stack.) The task also sends back any newcut and pseudocost information it generated,which is added to the master's global cut andpseudocost pools.By processing a subtree rather than a sin-gle node, FATCOP increases the granularity ofthe task and improves utilization of the com-putational power of each worker. The time forwhich a processor is sitting idle while waitingfor the task information to be sent to and fromthe master, and for the master to process itsresults and assign it a new task, is generallysmall relative to the computation time.The master process is responsible for main-taining the task pool, as well as the pools ofcuts and pseudocosts. It recognizes new work-ers as they join the computation pool, andsend them copies of the problem data togetherwith the current cut and pseudocost pools.Moreover, it sends tasks to these workers andprocesses the results of these tasks by updatingits pools and possibly its incumbent solution.Another important function of the master is todetect when a machine has disappeared fromthe worker pool. In this case, the task that was

Table 1: Performance of FATCOP on gesa2 o�P Nodes Timeminumum 43.2 6207993 6951average 62.5 8214031 10074maximum 86.3 9693518 13198occupying that machine is lost, and the mas-ter must assign it to another worker. (This isthe \fault tolerant" feature that makes FAT-COP fat!) On long computations, the mas-ter process \checkpoints" by writing out thecurrent state of computation to disk. By do-ing so, it can restart the computation at thelatest checkpoint after a crash of the masterprocessor.To illustrate FATCOP's performance, weconsider the solution of the problem gesa2 ofrom the MIPLIB test set. This problem arisesin an electricity generation application in theBalearic Islands. FATCOP was run ten timeson the Condor pool at the University of Wis-consin. Because of the dynamic computationalenvironment|the size and composition of thepool of available workers and communicationtimes on the network varied between runs andduring each run|the search pattern followedby FATCOP was quite di�erent in each in-stance, and di�erent from what one would ob-tain from a serial implementation of the sameapproach. However, using the statistical fea-tures of MW, we can �nd the average numberof workers used during each run, de�ned as�P = 1Xk=1k�k=T;where �k is the total time during which the runhad control of k processors, and T is the wallclock time for the run. The minimum, maxi-mum, and mean values of �P over the ten runsare shown in Table 1. This table also showsstatistics for the number of nodes evaluated byFATCOP, and the wall clock times.Figure 1 pro�les the size of the worker poolduring a particular run. Note the sharp dip,
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TimeFigure 1: Number of Workers during FATCOPon gesa2 owhich occurred when a set of machines partic-ipated in a daily backup procedure, and thegradual buildup during the end of the run,which occurred in the late afternoon whenmore machines became available as their own-ers went home.For a detailed performance analysis of FAT-COP, see [11].A separate but related activity involved so-lution of the Seymour problem. This wellknown problem, posed by Paul Seymour,arises in a new proof [12] of the famous Four-Color Theorem, which states that any mapcan be colored using four colors in such a waythat regions sharing a boundary segment re-ceive di�erent colors. The Seymour problemis to �nd the smallest set of con�gurationssuch the Four-Color Theorem is true if noneof these con�gurations can exist in a minimalcounterexample. Although Seymour claimedto have found a solution with objective value423, nobody (including Seymour himself) hadbeen able to reproduce it|and there was somescepticism in the integer programming com-munity as to whether this was indeed the op-timal value.In July 2000, a team of metaneos researchersfound solutions with the value 423. GaborPataki, Stefan Schmieta, and Sebastian Ce-ria at Columbia used preprocessing, disjunc-

tive cuts and branch-and-bound to break downthe problem into a list of 256 integer programs.Michael Ferris atWisconsin and Je� Linderothat Argonne joined the Columbia group inworking through this list. The problems weresolved separately with the help of the Condorsystem, using the integer programming pack-ages CPLEX and XPRESS-MP. About 9000hours of CPU time was needed, the vast ma-jority of it spent in checking optimality.4 Quadratic AssignmentProblemThe quadratic assignment problem (QAP) isa problem in location theory that has provedto be among the most di�cult combinato-rial optimization problems to solve in practice.Given n�n matrices A, B, and C, where Ai;jrepresents the 
ow between facilities i and j,Bi;j is the distance between locations i andj, and Ci;j is the �xed cost of assigning fa-cility i to location j, the problem is to �ndthe permutation f�(1); �(2); : : : ; �(n)g of theindex set f1; 2; : : : ; ng that minimizes the fol-lowing objective:nXi=1 nXj=1Ai;jB�(i);�(j) + nXi=1Ci;�(i):An alternative matrix-form representation isas follows:QAP(A;B;C): mintr(AXB + C)XT ;s.t. X 2 �;where tr(�) represents the trace and � is theset of n� n permutation matrices.The practical di�culty of solving instancesof the QAP to optimality grows rapidly withn. As recently as 1998, only the second-largestproblem (n = 25) from the standard \Nu-gent" benchmark set [13] had been solved, andthis e�ort required a powerful parallel plat-form [14]. In June 2000, a team consisting of



OPTIMIZATION ON COMPUTATIONAL GRIDS 7Kurt Anstreicher and Nate Brixius (Univer-sity of Iowa) and metaneos investigators Jean-Pierre Goux and Je� Linderoth solved thelargest of the Nugent problems|the n = 30instance known as nug30|verifying that a so-lution obtained earlier from a heuristic was op-timal [15]. They devised a branch-and-boundalgorithm based on a convex quadratic pro-gramming relaxation of QAP, implemented itusing MW, and ran it on a Condor-based com-putational grid spanning eight institutions.The computation used over 1000 worker pro-cessors at its peak, and ran for a week. It wassolving linear assignment problems (the corecomputational operation in the algorithm) atthe rate of nearly a million per second duringthis period.In the remainder of this section, we outlinethe various theoretical, heuristic, and compu-tational ingredients that combined to makethis achievement possible.The convex quadratic programming (QP)relaxation of QAP proposed by Anstreicherand Brixius [16] yields a lower bound on theoptimal objective that is tighter than alter-native bounds based on projected eigenvaluesor linear assignment problems. Just as impor-tant, an approximate solution to the QP relax-ation can be found at reasonable cost by ap-plying the Frank-Wolfe method for quadraticprogramming. Each iteration of this methodrequires only the solution of a dense linear as-signment problem|an inexpensive operation.Hence, the Frank-Wolfe method is preferablein this context to more sophisticated quadraticprogramming algorithms; its slow asymptoticconvergence properties are not important be-cause only an approximate solution is requiredThe QAP is solved by embedding the QP re-laxation scheme in a branch-and-bound strat-egy. At each node of the branch-and-boundtree, some subset of the facilities is assignedto certain locations|in the nodes at level k ofthe tree, exactly k such assignments have beenmade. At a level-k node, a reduced QAP canbe formulated in which the unassigned part

of the permutation (which has n � k compo-nents) is the unknown. The QP relaxation canthen be used on this reduced QAP to �nd anapproximate lower bound on its solution, andtherefore on the cost of all possible permuta-tions that include the k assignments alreadymade at this node. If the bound is greater thanthe cost of the best permutation found to date(the incumbent), the subtree rooted at thisnode can be discarded. Otherwise, we need todecide whether and how to branch from thisnode.Branching is performed by choosing a facil-ity and assigning it to each location in turn(row branching) or by choosing a location andassigning each of the remaining facilities to itin turn (column branching). However, it is notalways necessary to examine all possible n� kchildren of a level-k node; some of them canbe eliminated immediately by using informa-tion from the dual of the QP relaxation. Infact, one rule for deciding the next node fromwhich to branch at level k of the tree is tochoose the node that yields the fewest chil-dren. A more expensive branching rule, us-ing a strong branching technique, is employednear the root of the tree (k smaller). Here, theconsequence of �xing each one of a collectionof promising facilities (or locations) is evalu-ated by provisionally making the assignmentin question and solving the corresponding QPrelaxation. Estimates of lower bounds are thenobtained for the grandchildren of the currentnode, and these are summed. The node forwhich this summation is largest is chosen asthe branching facility (location).The branching rule and the parameters thatgovern the execution of the branching rule arechosen according to the level in the tree andalso the gap, which measures the closeness ofthe lower bound at the current node to theincumbent objective. When the gap is large ata particular node, it is likely that explorationof the subtree rooted at this node will be acostly process. Use of a more elaborate (andexpensive) branching rule tends to ensure that



OPTIMIZATION ON COMPUTATIONAL GRIDS 8exploration of unpro�table parts of the subtreeis avoided, thereby reducing overall run time.Parallel implementation of the branch-and-bound technique uses an approach not unlikethe FATCOP code for integer programming.Each worker is assigned the root node of a sub-tree to explore, in a depth-�rst fashion, for agiven amount of time. When its time expires,it returns unexplored nodes from its subtree tothe master, together with any new incumbentinformation. The pool of tasks on the mas-ter is ordered by the gap, so that nodes withsmaller gaps (corresponding to subtrees thatshould be less di�cult to explore) are assigned�rst. To reduce the number of easy tasks re-turned to the master, a \�nish-up" heuristicpermits a worker extra time to explore its sub-tree if its gap becomes small.Exploitation of the symmetries that arepresent in many large QAPs is another impor-tant factor in making solution of nug30 andother large problems a practical proposition.Such symmetries arise when the distance ma-trix is derived from a rectangular grid. Sym-metries can be used, for instance, to decreasethe number of child nodes that need to beformed (to considerably fewer than n� k chil-dren at a level-k node).Prediction of the performance pro�le of arun is also important in tuning algorithmic pa-rameters and in estimating the amount of com-putational resources needed to tackle the prob-lem. An estimation procedure due to Knuthwas enhanced to allow prediction of the num-ber of nodes that need to be evaluated at eachlevel of the branch-and-bound tree, for a spe-ci�c problem and speci�c choices of the algo-rithmic parameters.Figure 2 shows the number of workers usedduring the course of the nug30 run in earlyJune 2000. As can be seen from this graph, therun was halted �ve times|twice because offailures in the resource management softwareand three times for system maintenance|andrestarted each time from the latest mastercheckpoint.
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TimeFigure 2: Number of Workers during nug30ComputationIn the weeks since the nug30 computation,the team has solved three more benchmarkproblems of size n = 30 and n = 32, us-ing even larger computational grids. Severaloutstanding problems of size n = 36 derivedfrom a backboard wiring application continueto stand as a challenge to this group and to thewider combinatorial optimization community.5 Stochastic ProgrammingThe two-stage stochastic linear programmingproblem with recourse can be formulated asfollows:minx Q(x) def= cTx+PNi=1 piQi(x)subject to Ax = b; x � 0;whereQi(x) def= minyi qTi yi s.t.Wyi = hi�Tix; yi � 0:The uncertainty in this formulation is modeledby the data triplets (hi; Ti; qi), i = 1; 2; : : : ; N ,each of which represents a possible scenariofor the uncertain data (h; T; q). Each pi rep-resents the probability that scenario i is theone that actually happens; these quantities arenonnegative and sum to 1. The quantities pi,



OPTIMIZATION ON COMPUTATIONAL GRIDS 9i = 1; 2; : : : ; N are nonnegative and sum to 1;pi is the probability that scenario i is the trueone.The two-stage problem with recourse rep-resents a situation in which one set of deci-sions (represented by the �rst-stage variablesx) must be made at the present time, whilea second set of decisions (represented by yi,i = 1; 2; : : : ; N ) can be deferred to a later time,when the uncertainty has been resolved andthe true second-stage scenario is known. Theobjective function represents the expected costof x, integrated over the probability distribu-tion for the uncertain part of the model.In many practical problems, the number ofpossible scenarios N either is in�nite (that is,the probability distribution is continuous) or is�nite but much too large to allow practical so-lution of the full problem. In these instances,sampling is often used to obtain an approxi-mate problem with fewer scenarios.Decomposition algorithms are well suited togrid platforms, because they allow the com-putations associated with the N second-stagescenarios to be performed independently andrequire only modest amounts of data move-ment between processors. These algorithmsview Q as a piecewise linear, convex functionof the variables x, whose subgradient is givenby the formula@Q(x) = c + NXi=1 pi@Qi(x):Evaluation of each functionQi, i = 1; 2; : : :; Nrequires solution of the linear program in yigiven above. One element of the subgradient@Qi(x) of this function can be calculated fromthe dual solution of this linear program.In the metaneos project, Linderoth andWright [17] have implemented a decomposi-tion algorithm based on techniques from non-smooth optimization and including various en-hancements to lessen the need for the masterand workers to synchronize their e�orts. Inthe remainder of this section, we outline in

turn the trust-region algorithm ATR and itsconvergence properties, implementation of thisalgorithm on the Condor grid platform usingMW, and our \asynchronous" variant.The ATR algorithm progressively builds upa piecewise-linear model function M (x) sat-isfying M (x) � Q(x) for all x. At the kthiteration, a candidate iterate z is obtained bysolving the following subproblem:minz M (z) subject to Az = b; z � 0;kz � xkk1 � �;where the last constraint represents a trust re-gion with radius � > 0. The candidate z be-comes the new iterate xk+1 if the decrease inobjective Q(xk) � Q(z) is a signi�cant frac-tion of the decrease Q(xk) � M (z) promisedby the model function. Otherwise, no step istaken. In either case, the trust-region radius� may be adjusted, function and subgradientinformation about Q at z is used to enhancethe model M , and the subproblem is solvedagain. The algorithm uses a \multicut" vari-ant in which subgradients for partial sums ofPNI=1Qi(z) are included in the model sepa-rately, allowing a more accurate model to beconstructed in fewer iterations.In the MW implementation of the ATR al-gorithm, the function and subgradient infor-mation de�ningM is accumulated at the mas-ter processor, and the subproblem is solved onthis processor. (Since M is always piecewiselinear and the trust region is de�ned by an1-norm, the subproblem can be formulatedas a linear program.) Most of the computa-tional work in the algorithm involves solutionof the N second-stage linear programs in yi,from which we obtain Qi(z) and @Qi(z). Thiswork is distributed among T tasks, to be exe-cuted in parallel, where each task requires so-lution of a \chunk" of N=T second-stage linearprograms.The use of chunking allows problems withvery large N to make e�cient use of a fairlylarge number of processors. However, the



OPTIMIZATION ON COMPUTATIONAL GRIDS 10approach still requires evaluation of all thechunks for Q(z) to be completed before de-ciding whether to accept or reject z as thenext iterate. It is possible that one chunkwill be processed much more slowly than theothers|its computation may have been inter-rupted by the workstation's owner reclaimingthe machine, for instance. All the other work-ers in the pool will be left idle while waitingfor evaluation of this chunk to complete.The ATR method maintains not just a sin-gle candidate for the next iterate but rathera basket B containing 5 to 20 possible candi-dates. At any given time, the workers are eval-uating chunks of second-stage problems asso-ciated with one or other of these basket points.ATR also maintains an \incumbent" xI, whichis the current best estimate of the solution andis a point for which Q(xI) is known. Whenall the chunks for one of the basket points zhave been evaluated, Q(z) is compared withthe incumbent objective Q(xI) and with thedecrease predicted by the model function Mat the time z was generated. As a result, ei-ther z becomes the new incumbent and xI isdiscarded, or xI remains the incumbent and zis discarded. In either case, a vacancy is cre-ated in the basket B. To �ll the vacancy, anew candidate iterate z0 is generated by solv-ing a subproblem with the trust-region con-straint centered on the incumbent, that is,kz0 � xIk1 � �:We show results obtained for sampled in-stances of problems from the stochastic pro-gramming literature, using the MW imple-mentation of ATR running on a Condor pool.The SSN problem described in [18] arises indesign of a network for private-line telecom-munications services. In this model, each of 86parameters representing demand can indepen-dently take on 3 to 7 values, giving a total ofapproximately N = 1070 scenarios. Samplingis used to obtain problems with more modestvalues of N , which are then solved with ATR.

Table 2: SSN, with N = 10; 000Run Iter. Procs. E�. Time (min.)L 255 19 .46 398ATR-1 47 19 .35 130ATR-10 164 71 .57 43Results for an instance of SSN with N =10000 are shown in Table 2. When writ-ten out as a linear program in the un-knowns (x; y1; y2; : : : ; yN ), this problem hasapproximately 1; 750; 000 rows and 7; 060; 000columns. Table 2 compares three algorithms.The �rst is an L-shaped method (see [19]),which obtains its iterates from a model func-tionM but does not use a trust region or checksu�cient decrease conditions. (The implemen-tation described here is modi�ed to improveparallelism, in that it does not wait for all thechunks for the current point to be evaluatedbefore calculating a new iterate.) The secondentry in Table 2 is for the synchronous trust-region approach (which is equivalent to ATRwith a basket size of 1), and the third entry isfor ATR with a basket size of 10. In all cases,the second-stage evaluations were divided into10 chunks, and 50 partial subgradients wereadded toM at each iteration. The table showsthe average number of processors used duringthe run, the proportion of time for which theseprocessors were kept busy, and the wall clocktime required to �nd the solution.The trust-region approaches were consider-ably faster than the L-shaped approach, in-dicating that the need for sound algorithmsremains as keen as ever in a parallel environ-ment; we cannot rely on raw computing powerto do all the work. The bene�ts of asyn-chronicity can also be seen. When ATR hasa basket size of 10, it is able to use a largernumber of processors and takes less time tocomplete, even though the number of iteratesincreases signi�cantly over the synchronoustrust-region approach.The real interest lies, however, not in solv-



OPTIMIZATION ON COMPUTATIONAL GRIDS 11Table 3: storm, with N = 250; 000Run Iter. Procs. E�. Time (min.)ATR-1 25 67 .57 211ATR-5 57 86 .96 229ing single sampled instances of SSN, but inobtaining high-quality solutions to the under-lying problem (the one with 1070 scenarios).ATR gives a valuable tool that can be used inconjunction with variance reduction and veri-�cation techniques to yield such solutions.Finally, we show results from the \storm"problem, which arises from a cargo 
ightscheduling application [20]. The ATR im-plementation was used to solve a sampledinstance with N = 250; 000, for whichthe full linear program has approximately132; 000; 000 rows and 315; 000; 000 columns.The results in Table 3 show that this hugelinear program with nontrivial structure canbe solved in less than 4 hours on a compu-tational platform that costs essentially noth-ing. Because the second-stage work can bedivided into a much larger number of chunksthan for SSN|125 chunks, rather than 10|the synchronous trust-region algorithm is ableto make fairly e�ective use of an average of67 processors and requires less wall clock timethan ATR with a basket size of 5.6 ConclusionsOur experiences in the metaneos project haveshown that cheap, powerful computationalgrids can be used to tackle large optimiza-tion problems of various types. These resultshave several interesting implications. In anindustrial or commercial setting, the resultsdemonstrate that one may not have to buypowerful computational servers to solve manyof the large problems arising in areas such asscheduling, portfolio optimization, or logistics;the idle time on employee workstations (or,at worst, an investment in a modest cluster

of PCs) may do the job. For the optimiza-tion research community, our results motivatefurther work on parallel, grid-enabled algo-rithms for solving very large problems of othertypes. The fact that very large problems canbe solved cheaply allows researchers to bet-ter understand issues of \practical" complex-ity and of the role of heuristics. In stochasticoptimization, higher-quality solutions can befound, and improvements to samplingmethod-ology can be investigated.Work remains to be done in making the gridinfrastructure robust enough for general use.The logistics of assembling a grid|issues ofsecurity and shared ownership|remain chal-lenging. The vision of a computational gridthat is as easy to tap into as the electric powergrid remains far o�, though metaneos gives aglimpse of the way in which optimizers couldexploit such a system.We have investigated just a few of the prob-lem classes that could bene�t from solutionon computational grids. Global optimiza-tion problems of di�erent types should be ex-amined further. Data-intensive applications(from tomography and data mining) representa potentially huge �eld of work, but these re-quire a somewhat di�erent approach from thecompute-intensive applications we have con-sidered to date.We hope that optimizers of all 
avors, alongwith grid computing experts and applicationsspecialists, will join the quest. There's plentyof work for all!AcknowledgmentsThe metaneos project was funded by NationalScience Foundation grant CDA-9726385 andwas supported by the Mathematical, Infor-mation, and Computational Sciences Divisionsubprogram of the O�ce of Advanced Scien-ti�c Computing Research, U.S. Department ofEnergy, under Contract W-31-109-Eng-38.For more information on the metaneos
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