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1 Introduction

In this article, we show that small perturbations of equilibrium states in fer-
romagnetic media give rise to standing and traveling waves that are stable for
long times. The evolution of the wave profiles is governed by semilinear heat

equations.

These results are obtained in the framework of micromagnetics—a contin-
uum approximation that allows the calculation of magnetization phenomena
on a length scale intermediate between the size of a magnetic domain and the
mean distance between crystal lattice sites. The basic variable is the magne-
tization vector, which is assumed to vary continuously with position and de-
scribes the magnetization structures and reversal mechanisms in the medium.
Its dynamics are those of a spinning top driven by the local effective magnetic
field, subject to damping. The dynamic equation was first formulated by Lan-
dau and Lifshitz [1] and later given in an equivalent form by Gilbert [2]. The
equation is complemented by Maxwell’s equations for the electromagnetic field
variables [3]. The Landau-Lifshitz—Maxwell equations admit an equilibrium
solution, where the magnetization is uniform and everywhere parallel to the
effective magnetic field. In this article, we are interested in small perturba-
tions of such equilibrium states. The size of the perturbations is measured by

a small parameter . The complete mathematical model is given in Section 2.

The system of partial differential equations that governs the spatio-temporal
evolution of the perturbations belongs to a general class of hyperbolic equa-
tions for vector-valued functions, which we analyze in detail in Section 3. Using
formal expansion techniques, we show that the equation admits an asymptotic
solution that exhibits standing and traveling waves. The wave profiles evolve

on a slow time scale (measured in units of e™') according to a semilinear heat



equation. Using analytical techniques inspired by nonlinear optics, we then
show that the asymptotic solution approaches the exact solution of the hyper-
bolic equation in the limit as ¢ | 0. The main result for the general case is

stated in Theorem 3.1 (Section 3.3).

The derivation of the asymptotic solution and the proof of the conver-
gence theorem require several hypotheses, which are satisfied in the case of
the Landau—Lifshitz—Maxwell model. The application is discussed in Section 4.
We find that the magnetization as well as the electromagnetic field variables
develop standing waves and up to four traveling waves, whose speed of propa-
gation varies with the equilibrium state. The asymptotic solution generalizes

the expansion developed in [4].

Section 5 contains numerical results that show the standing and traveling
waves. They also confirm the analytical result that the waves are stable for

times of the order of 7 !.

2 Mathematical Model

The state of a ferromagnet is described by the magnetization vector M. The
evolution of M with time (¢) is governed by the Landau-Lifshitz (LL) equa-
tion [1],

&M:%MXH%T%MWMMXH» (2.1)

This is the equation of a spinning top driven by the magnetic field H and
subject to damping; the constant ¢ is the (dimensionless) damping coefficient.
Note that the magnitude |M| of M is an invariant of the motion. The electro-

magnetic field variables obey Maxwell’s equations [3],

O —V x E = —0,M, (2.2)



OE+V x H=0, (2.3)

The equations are in dimensionless form, and the coefficients have been set

equal to one. The spatial domain is all of R>.

2.1 Basic Solution

The system of Eqgs. (2.1)-(2.3) admits a family of constant solutions,
(M, H,E), = (My,a " Mp,0), a>0. (2.4)

Here, My is an arbitrary vector in R?; without loss of generality, we may
assume that |My| = 1. We are interested in the spatio-temporal evolution of
long-wave perturbations of such solutions. The perturbations are measured in

terms of an arbitrarily small positive parameter ¢ and have the form

M(x,t) = Mo+ eM(&,1,7), (2.5)
H(z,t) = a "My + cH(2,t,7), (2.6)
B(x,t) =cE(#,1,7), (2.7)

where M, H, and E are O(1) as ¢ | 0, and
i=cxr, t=ct, 7=2c (2.8)

If the triple (M, H, F) is a solution of Eqs. (2.1)—(2.3), then M, H, and E

must satisfy the system of equations

cOIM + 20, M = —(My x H) + o (Mg x M) — (M x H)

_ 9
| M]

+eM x (Mo x [) —ca™ M x (Mo x M)+ 22M x (M x )], (2.9)

(Mo x (Mo % H) —a™ My x (Mg x M) + (Mo x (M x I)

cO;H + 20 H — £(V x ) = —e0;:M — 20, M, (2.10)
cOiE 4 220, + £(V x H) = 0. (2.11)
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Here, we have reduced the powers of ¢ by one everywhere. Furthermore, in
Eq. (2.9), we have left the term | M| in the denominator without expanding it.
This term introduces complications that are merely technical and nonessential
for the arguments to be presented. To avoid these complications entirely, we
will change the model slightly: we replace the term |M| by |My|, which is 1,
and thus reduce the factor multiplying the damping term to g.

We are interested in solutions of Eqs. (2.9)-(2.11) that describe plane
waves propagating in the direction of k, a fixed unit vector in R? that is not

parallel or antiparallel to Mj. Since variations occur only in the direction of

k, we may make the substitution

V = ko, (2.12)

if # is the coordinate in the direction of k. Henceforth, we omit the tilde, so

the equations to be considered are

;M + 20, M = —(My x H)+a (Mg x M) —e(M x H)
—g[Mo x (Mg x H) —a™ My x (Mg x M)+ My x (M x H)
+eM x (Mo x H)—ea™M x (Mg x M)+ e*M x (M x H)], (2.13)
e H 4 220, H — ek x 0, F = —cO,M — 20, M, (2.14)
cO 4+ €20, F +¢ck x 0,H = 0. (2.15)

2.2 Vector Formulation

The system of Eqs. (2.13)—(2.15) can be written as a single equation for a
function U : R x [0,00) x [0,7] = R? = R? x R® x R?,
a2 M (x,t,7)
U(l’,t,T): H(x7t77') 5 T ER, tZO, T € [OT] (216)
E(x,t,7)



The factor a~'/? is introduced for convenience, so the problem has certain
symmetry properties (see Section 2.3). After dividing once more by e, we

obtain the following equation for U:
OU + 20U+ AQ,U + e (Lo + LU = B(U,U) 4+ T(U,UU),  (2.17)

where A, Lo, and L, are linear operators in R?,

0 0 0 Uy
Au = 0 0 —k x . U9 9 (218)
0 &k x- 0 Us
—Oé_l(MO X ) Oé_l/z(MO X ) 0 Uq
LOU — Oé_l/z(MO X ) _(MO X ) 0 U9 5 (219)
0 0 0 Us
—Oé_lMo X (MO X ) Oé_1/2M0 X (MO X ) 0 Uq
Liu=g| a™V?Myx (Mg x-) —Myx(Myx-) 0 ws |5 (2.20)
0 0 0 Us
B is a bilinear map on R? x R?,
Bl(uvv)
B(u,v) = | —a'2B(u,v) |, (2.21)
0
with
Bi(u,v) = —%(ul X vg 4 U1 X Ug) — %gMo X (U1 X vy + v1 X uz))

— 39l(wr x (Mo x (v3 — a7 2v1))) + (01 x (Mo x (ug — a7 '/?uy))));
and T is a trilinear map on R? x R? x R?,

Tl(uvvvw)
T(u,v,w) = a'l?g —o? Ty (u, v, w) |, (2.22)
0



with

Ti(u,v,w) = é[ul X (vg X w1) + ug X (wy X v1) +wy X (vy X uy)

+ vy X (UQ le)—|—U1 X (U)Q X u1)+w1 X (UQ X Ul)].

Here, u, v, and w are arbitrary vectors in R?, u = (uy,uz, u3)", v = (v, v2,v3)",

and w = (wy, wy, w3)" with u;, v, w; € R? i =1,2,3.

Equation (2.17) must be satisfied for all « € R, ¢ > 0, and 7 € [0, T].

2.3 Auxiliary Properties

Since the vector product is antisymmetric, the operator A is symmetric with

respect to the usual scalar product in R?,
Au-v=u-Av, u,v € R’ (2.23)

The operators Lg and Ly are antisymmetric and symmetric, respectively, with

respect to the scalar product in R?,
(Lou)-v = —u-(Lov), (Liu)-v=u-(Lv), u,veR. (2.24)

The bilinear map B is symmetric, B(u,v) = B(v,u) for all u,v € R?, and the
trilinear map T is symmetric in the sense that T'(u,v,w) = T(7w(u,v,w)) for

all u,v,w € R? and any permutation 7.

Lemma 2.1 The operator Lo + Ly induces an orthogonal decomposition,

R9 = ker(Lo + Ll) D 1m(L0 + Ll) (225)

Proof. The symmetry properties of Lo and Ly imply that ((Lo + Lq1)u)-v =
—u-(Lov) +u- (L) for any u,v € R?. A straightforward computation shows
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that ker(Lg) = ker(Ly) = ker(Lo+ L), so ((Lo+ Li)u)-v = 0 for any u € R,
veEker(Lo+ Ly). 1

The kernel and image of Lo+ L are given explicitly by

ker(Lo + L) = {v = (vi,v2,v3)" € R : (a_1/2v1 —wvy) X My =0},  (2.26)

im(Lo + L) = {v = (vi,v2,v3)" € R 10y - My = 0,0y = —al/zvl,vg = 0}(2.27)

Let P and @) be the orthogonal projections on ker(Lg + Li) and im(Lg + L4),
respectively, and let R be the inverse of Lo 4+ L; on im(Lo + L1), trivially
extended to R?. Then

Furthermore, if (Lo + Ly)u = v for some u,v € R?, then Pv = 0 and Qu = Ruv.

The following lemma is verified by direct computation.

Lemma 2.2 (i) The operator Ly is coercive on im( Lo+ L1),

(L1Qu) - (Qu) = g(1 + a7 )(Qv) - (Qu), veER”. (2.29)
(it) The maps B and T are transparent on ker(Lo + L1),

PB(Pu, Pv)=0, PT(Pu,Pv,Pw)=0, u,v,wéecR’ (2.30)

3 A General Hyperbolic Equation

Equation (2.17) is a special case of the general differential equation

U +0.U + AdU + ™" LU = B(U,U) + T (U,U,U) (3.1)



in R* (n > 1), where A is a symmetric linear operator, L a linear operator, B
a symmetric bilinear map, and 7" a symmetric trilinear map. In this section we
consider Eq. (3.1); the application to the special case of Eq. (2.17) follows in
Section 4. OQur procedure is as follows. First, we construct an asymptotic solu-
tion of Eq. (3.1) using formal power series expansions in the small parameter ¢
(Section 3.1). Then we give precise asymptotic estimates of the various terms
in the asymptotic solution (Section 3.2). Finally, we show that the asymptotic
solution actually converges to the solution of Eq. (3.1) on the slow time scale

as ¢ | 0 (Section 3.3).

3.1 Formal Expansion

We first take an asymptotic approach to Eq. (3.1) and look for a solution
U=U(x,t,7) of the form

U= (Ur+ely+eUs+--), (3.2)

proceeding formally by substituting, expanding, and equating the coefficients
of like powers of €. The underlying assumption is that U; = O(1), elUz = o(1),
and eUs = o(1) as ¢ | 0 [5, 6]. The construction requires three hypotheses.
Hypothesis 1 R" = ker(L) & im(L).

Hypothesis 2. (Lu)-u > C||Qul]* for all u € R™, for some C' > 0.
Hypothesis 3 PB(Pu, Pv) =0 and PT(Pu, Pv, Pw) =0 for all

u,v,w € R™.

Here, P and ) are the orthogonal projections on ker(L) and im(L), respec-
tively. The hypotheses are satisfied in the case of Eq. (2.17). Hypothesis 3



is commonly referred to as the transparency property, a term borrowed from

nonlinear optics [7].

Let R be the partial inverse of L on im(L), trivially extended to all of R™.
Then RL = LR = (). The proof of the following lemma is trivial.

Lemma 3.1 [f Lu = v for some u,v € R", then Pv = 0 (solvability condi-
tion) and Qu = Rv.

The equation of order O(¢7!). The equation is
LU, =0, (3.3)

so QU; = 0, and, therefore,

The equation of order O(1). The equation is

Because U; = PU; and B is transparent on ker(L) (Hypothesis 3), the solv-

ability condition PV, = 0 reduces to
(0y + PAPO,)U; = 0. (3.6)

The operator PAP is symmetric, so there exist k£ projections P; and & numbers

v; (1=1,...,k k <n) such that

P:ZP]‘; PAPP]‘:U]‘Pj,jzl,...,k. (37)

J=1

Hence, the solvability condition is met if
(6,5—|—v]0x)PjU1 :0, j: 1, ,k. (38)
Because Uy = PU; and R = 0 on ker(L), the equation QU = RV; reduces to
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Remark. The numbers v; can be characterized in terms of the characteristic
variety X = {(w,§) € C x R : det(—iw + 1A + L) = 0} of the operator
Oy + Ad; + L. Since L is not invertible, (0,0) € X. Suppose that (0,0) is an
isolated singular point of X. Then there exist k& functions w; (j = 1,... ,k,
kE < n) satisfying w;(0) = 0 that describe X in the neighborhood of (0,0), and
;= (0 [8],

The equation of order O(e). The equation is
LUs = V5(Uy,Us) = 2B(Uy, Up) + T'(Uy, Uy, Uy) — 0;Uy — (0p + A0, )Us. (3.10)

Because U; = PU; and T is transparent on ker(L) (Hypothesis 3), the solv-

ability condition PV5; = 0 reduces to
aTUl—I—atPUg—I—PAaxUQ ZQPB(Ul,UQ) (311)
We rewrite this condition, using Eq. (3.9) and the transparency of B on ker(L),

— PARO,B(Uy,Uy) — 2PB(Uy, RAO,UY). (3.12)

This equation represents a system of k£ equations,

k
6TP]U1 + (8,5 + U]‘al,)P]‘UQ — P]ARAzazPZUl = QPJ‘B(Ul, RB(Ul, Ul))

=1
The jth equation involves the rate of change of P;U; on the slow (7) time
scale, as well as the rate of change of P;U; along the characteristic determined
by v; on the regular (¢) time scale. We can separate these two effects if U

satisfies a sublinear growth condition,
.1
tliglo ?HUQ(‘,t,T)HHS :0, (314)

11



uniformly on [0, T, for some sufficiently large s. (H? is the usual Sobolev space
of order s.) The condition (3.14) implies, in particular, that || Us||g= = o(1) as
¢ J 0. The separation is accomplished by averaging over ¢ along characteristics.

Formally,

1 (T
Gyu(x,t) = lim T/ u(x +vs,t+s)ds, veR, (3.15)
0

T—o0

whenever the limit exists. The following lemma is taken from [6, Lemmas 3-6].

Lemma 3.2 (i) If (0; + v0;)u = 0, then Gyu exists for all v'; Gyu = u if

v = v, and Guu =0 otherwise.

(ii) If (Os+0v0;)u = 0 and (0;+v'0; )u’ = 0, then Gy (uu') = uu’ if v’ = v' = v,
and Gyr(uu') = 0 otherwise.

(iii) If u satisfies a sublinear growth condition, lim;_ .o t™*||u(-,t)||z~ = 0,

then G(0; + v0,)u exists, and G,(0y + v0,)u = 0.

The application of Gy, to both sides of Eq. (3.13) eliminates the transport

term and reduces the equation to

0, P;Uy — P,ARAP,9>P;U; = 2P, B(P,Uy, RB(P,Uy, P;Uy))
— P,ARO,B(P;Uy, P;Uy) — 2P, B(P,Uy, RAD,P;UY). j=1,... k. (3.16)

The operator P;ARAP; is nonnegative, because of Hypothesis 2, and propor-
tional to F;,

P,ARAP; = D, P;, (3.17)
where D; is a scalar, D; > 0. (In fact, D; = %wé’(()) [8].) The solvability
condition PV5; = 0 thus yields a system of k diffusion equations on the slow

(7) time scale,
(0- = D;o;)PUy = Fy(PiUh), j=1,... kK, (3.18)

12



where

Fi(P;UL) = 2P, B(P,Uy, RB(P;UL, PiUL))
— PARO,B(P,Uy, P,UL) — 2P B(P;Uy, RAS, Pl ).
Furthermore, if we use Eq. (3.16) to eliminate the 7 derivative in Eq. (3.13), we

find that the solvability condition PV5 = 0 also yields a system of k transport

equations for P;U; on the regular (¢) time scale,
(0y + v;0,)P;Uy = S;(Uy), j7=1,... k, (3.19)
where

k
S;(Uy) = PLARA Y 0:PU,
i=1,i)
+ ZPJ[B(UM RB(Ulv Ul)) - B(Plev RB(P]UM P]Ul))]
— Py ARO,[B(U, Uy) — B(PUy, P,UY)]

— 9P, B(Uh, RA,U,) — B(P:Uy, RAD, PiUL ).
If Egs. (3.18)—(3.19) are satisfied, then QUs = RV5;. The equation reduces to
QUg — QRB(Ul, Uz) - R@tUz - RA@ng (320)

This is as far as we go with formal asymptotic analysis. We summarize the

results of the analysis in a lemma.

Lemma 3.3 [f U, satisfies the sublinear growth condition (3.14), then Uy =
Zle P;Uy, where each P;U; satisfies a homogeneous transport equation on the

reqular (t) time scale (Fq. (3.8)), and an inhomogeneous heat equation on the
slow (1) time scale (Fq. (5.18)).

Remark. It is interesting to compare the present results with those ob-

tained for the case where the operator L is real antisymmetric, which has been
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studied extensively in nonlinear optics [5]-[13]. The asymptotics of Eq. (3.1)
are intimately connected with the characteristic variety X = {(w,€) € C x
R : det(—iw + 1A + L) = 0} of the operator d; + Ad, + L. For exam-
ple, plane-wave initial data lead to superpositions of modulated plane waves
exp(ie ! (k; - @ — w;t)), provided (w;, k;) is a regular point of X [9, 10]. The
asymptotic solutions are valid on time intervals of the order O(1) as ¢ | 0
(geometrical optics). On the slow (7) time scale, the dispersive effects of
diffraction come into play. Generically, if (0,0) € X, a mean field is created
(rectification effect) that evolves according to a nonlinear Schrodinger equa-
tion [5, 6]. If (0,0) is a singular point of X, a long-wave asymptotic analysis
yields Korteweg—de Vries equations, where the dispersive phenomena are de-
scribed by third-order differential expressions [11]. A similar situation arises
in the water-wave problem, where the long-wave limit yields two counterprop-

agating waves, each described by a Korteweg-de Vries equation [14, 15].

In the case considered here, L has a symmetric component, and the eigen-
values w are generally complex. Waves described by an expression of the form
exp(ic™ (k-2 —wt)) decay or grow exponentially as ¢ — 00, so the proofs given,
for example, in [6] no longer apply, nor can they be adapted. Asin [7, 12, 13],
stability on the slow time scale results from the transparency of B. Neverthe-
less, it is remarkable that the asymptotic behavior of a reversible system is

described by a system of irreversible equations.

3.2 Asymptotic Estimates

For the convergence proof in the next section, we need asymptotic estimates of

the coefficients Uy, Us,, and Us. The estimates require an additional hypothesis.

Hypothesis 4. Either D; > 0, or, if D; = 0, both terms involving = deriva-
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tives in F; (Eq. (3.18)) are zero, j = 1,... , k.
Our first concern is the existence and uniqueness of Uj.

Lemma 3.4 For any U} € H*(R) (s > 1) satisfying the condition U} = PUY,
there exists a T > 0 and a unique function U; € C*([0,00) x [0, T]; H*~**(R))
such that Uy = Zle P;Uy, where the functions P;Uy satisfy Fgs. (3.8) and
(3.18). Furthermore, Uy(-,0,0) = U}.

Proof. Let u? = P,U}. Because of Hypothesis 4, there exists a 7; > 0 and a
unique solution u; € C*([0,T;], H*=?*(R)) of Eq. (3.18) such that u;(0) = ul.
Take T' = min{T; : 7 = 1,...,k}. Then the function U; defined by the

expression
k
1(x,t,7) Zu]x—v] reR,t>0,7 >0,
=1
satisfies the conditions of the lemma. 1
Next, we address the asymptotic estimates of Uy, Us, and Us. We intro-

duce the spaces X7 and Y7 (s > 0, T' > 0) of real-valued functions u defined
on R x [0,00) x [0,7],

Xor ={u: sup{]\@f@f@fu(- ,t,T)HLz(R) :1€0,00),7€[0,T]} < 0}, (3.21)
Vor = {u : limysyoo ¢ sup{|| 0807 00u(- ¢, 7)||12m) : 7 € [0, T]} = 0}, (3.22)

for all o, 3, and k such that o« + 3 + 2k = s and %3 >k > 0. The following

lemma is taken from [6, Proposition 5].
Lemma 3.5 [f (0, +vo,)u= f € X;q7 and G, f =0, then u € Y 7.

Lemma 3.5 enables us to establish the desired asymptotic estimates.
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Lemma 3.6 If U € H*(R), then U, € X,7, QUs € X117, PUy € Y, o1,
and QUg - 1/5_371“.

Proof. The first assertion is an immediate consequence of the construction of
U; (Lemma 3.4) and the definition of the space X; 7. Equation (3.9) defines
QU € Xs—1 7. Then Eq. (3.19) defines P;U, for j = 1,... , k. The inhomoge-
nous term S5 in Eq. (3.19) averages to zero along the characteristic determined
by v;, Gy,S; = 0, so P;Uy € Yo7 for each j. Hence, PU; € Y,_»7. Equa-
tion (3.20) defines QUs € Ys_s37. 1

3.3 Convergence Proof

Given any U? € H°(R), we define U = PU° and construct Uy = Uy(x,t,7)
in accordance with Lemma 3.4 and Uy = Uy(x,t,7) and QUs = QUs(x,t,7) in
accordance with Lemma 3.6. Our goal in this section is to prove that there
exists a solution U = U(x,t) of Eq. (3.1) satisfying U(-,0) = U° such that
U(-,t) = Up(-,t,et) = 0 on [0,T/e] in a suitable norm.

Theorem 3.1 Let Hypotheses 1-} be satisfied. For any U° € H*(R), there
exists a T > 0, which does not depend on e, such that Fq. (3.1) has a unique
solution U € C([0,T/e]; HY(R)) satisfying U(-,0) = U°. Furthermore,
sup{||PU(-,t) = Us(-,t,et)||gr : t € [0,T/e]} = o(1) as e ] 0, (3.23)
sup{||QU (- ,t)||gz : t € [to, T/c]} = o(1) as £ ] 0, for anyty > 0, (3.24)

L IQUC et = o) (3.25)

Proof. We introduce the function U, = U,(x,t,7) on R x [0,7T/e] x [0, T] by
the definition
Ua = U1 —|—€U2—|-€2QU3. (326)
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Because the variable 7 is restricted to the compact interval [0, T], it does not
play a critical role. Without loss of generality we may make the identification

7 = et and consider Uy, Uy and QUs, as well as U,, as functions of = and ¢ on

R x [0,7/<].

By assumption, U; € H?>(R), so Lemma 3.6 gives the asymptotic estimates

[0 ][ = O(1), [[QU2llmr = O(1), ]| PUs|[r = o(1), £]|QUs|[mr = o(1).
(3.27)
It follows that ||PU,||g: = O(1) and ||QU,||g: = O(e). The estimates hold
uniformly on [0,7/¢].

The proof of Theorem 3.1 consists of several steps; each step is summa-

rized in a lemma.

Lemma 3.7 The function U, satisfies a differential equation,
OU, + ADU, + 7' LU, = B(U,,U,) +eT(U,, Uy, Uy) +er1 4+ Qra, (3.28)

where ||r1||x, ||r2l|lx = o(1), X = L*=([0,T/e]; H'(R)), as e | 0.

Proof. The function U, satisfies the following differential equation:
WU, + ABU, + e LU, = B(U,, Uy,) — 2B(Uy, Uy) — 2e2B(Uy, QUs)
— 26 B(Uy, QUs) — ' B(QUs, QUs) + eT'(U,, Uy, U,) — 3> T (Uy, Uy, Us)
— 3T (Uy, Uy, Uy) = 33T (Uy, Uy, QUs) — T (Uy, Uy, Us)
— 6T (U, Uy, QUs) — 35T (Uy, QUs, QUs) — 3T (Us, Uy, QUs)
— 36T (Uy, QUs, QUs) — e"T(QUs, QUs, QUs)
+ 2[0:QUs + AD,QUs). (3.29)

Using Eq. (3.27), we estimate each term that does not involve U,. The term
B(Us,, Uy) is special because of Hypothesis 3,

B(Uy, Uy) = 2PB(PUy, QUy) + PB(QU,, QUy) + QB(Us, Uy).  (3.30)
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Hence,

€QB(U2, Uz) =&m + sz, (331)

where ||p1]|x, |[p2]|x = o(1) as € | 0. The remaining terms are easy to estimate;

they are all at least o(¢). The assertion of the lemma follows. §

Lemma 3.8 For any U° € HYR), there exist a T > 0 and a unique func-
tion U € C([0,T/e]; HY(R)) that satisfies Eq. (3.1) on [0,T/¢] and the initial
condition U(-,0) = U°. The difference V.= U — U, satisfies a differential

inequality

d _
SV + e IQVIE
<CUVI+ IV + [0l VI +o(D], ¢ € (0.7/2], (332)

for some positive constant C' that does not depend on ¢.
Proof. If U satisfies Eq. (3.1) and U, satisfies Eq. (3.28), then V satisfies the
equation

OV + AQV + = LV = B(V,V) + 2B(U,, V) + T (V,V,V)
43T (UL, V. V) 4+ 3T (U, U, V) — (571 + Qra). (3.33)

We take the scalar product of both sides of this equation with V and —d?V,

add the two equations, and integrate the resulting equation over R,

LIV + = (LVV)) = BV, V). V) + 2((B(UL, V). V)
+e((T(V, V. V), V) +3((T(U,, V, V), V) + 3e((T'(U,, Uy, V), V)

— ((er1 + Qrs, V). (3.34)

Here, ((-,-)) denotes the H'-inner product, ((u,v)) = Jg((u - v) + (Jwu -
J:v))(z) dx for u,v € [HY(R)]"™.
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We estimate each term in the right member. Again, the transparency of
B on ker(L) plays a critical role: any product ((B(u,v),w)) is estimated by a

sum of terms, each of which contains at least one of Qu, Qv, and Quw,

(B, v),w)] < C(|Qul[m|[v][m [[wllmr + lull g | Qo ]|
+ ullm ol |Quwlla),  u,v,w e [HY(R)]™
Thus we find that there exists a positive constant C' that does not depend on
¢ such that
Ld
2dt
< CUVIEANQVIm +11QUalm VI + Vsl IV L [|QV )
+e (VI + Ul VI + 10l 1V )
Fellrdlm (VI + Izl [[QV ] - (3.35)

V@)l + =7 (LV.V))

Hypothesis 2 enables us to estimate the left member from below, replacing the
term ((LV,V)) by C||QV]|3:. We estimate the right member from above by
means of Young’s inequality, absorbing every term involving |[Q V|| in the
left member. (At this step we make use of the fact that ||QU,|z: = O(e).)
The differential inequality (3.32) follows. 11

The convergence does not follow from Lemma 3.8, since V(-,0) does not
tend to zero as ¢ | 0. As a matter of fact, PU(-,0) = PU(-,0) + o(1) =
Ui(+,0) + o(1), so PV(-,0) = o(1) as ¢ | 0. But QU(-,0) is not necessarily
zero, so we can conclude only that QV(-,0) = O(1).

Lemma 3.9 There exists a positive constant C' that does not depend on e such

that

T/e
ot €T/ <0 L [Vl di < 0 i=12,
0

sup ||V ()]
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Proof. The estimates in H' follow from Lemma 3.8; those in H? follow

similarly, because U (-,0) € H°(R). 1

Lemma 3.10 For any ty > 0 that does not depend on ¢,

sup{||PV (t)||gr : t € [0,%0]} = o(1). (3.37)

Proof. We apply P to Eq. (3.33),

8PV + PAOL(PV +QV) = PB(V,V)+2PB(U,,V)
4 ePT(V,V,V) +3ePT(U,,V, V) + 3 PT(U,, Uy, V) — ePry, (3.38)

and take the H! inner product with PV,

S TIPVIn + (PAGQV, PV)) = (PB(V.V), PV))

L 2(PB(UL, V), PV)) + c((PT(V,V, V), PV)) + 32((PT(U,, V, V), PV))
4 3e((PT(U,,U,, V), PV)) — e((Pry, PV)). (3.39)

Again, because of the transparency of B on ker(L),

(PBV.V), PV < CUPVImIQVIm +1QVIEIPY I,
((PB(UL, V), PV))| < C(|[Uallan [QV [ + QU [V [ ) PV [ 11

SO

d
GV lm <c LRV PVl + [PV QY o
HIQVIEA PV + 10l @V PV + [QUall gt IV Nl 1PV 11
+ellVIE + elUalla 1V + elUallz VI +ellrlla [PV ] (3.40)

It follows from Lemma 3.9 that ||V (¢)||g: is bounded on [0,7/c]. We already
know that ||U,]|z: is bounded and [|QU,||z: = O(¢), so

d
SV Ol < CLURVIE + 1QVIaI PV +e]. (3.41)
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Applying Young’s inequality, we obtain the differential inequality
d 2 2 2 2
SPVOU < IPVIE +C[(IQVIE: +IQVIE) +e].  (3.42)
According to Lemma 3.9,
T/e 5 5
L IVl + 10V ] a < ce. (3.43)
Applying Gronwall’s lemma to Eq. (3.42), we obtain the estimate
1PVl < IPV(O)[[Fne” + Ce, € [0, 1], (3.44)
for any tg > 0 that does not depend on ¢. The lemma follows, because

1PV (0)|lz = el PU(0)][r = o(1). N

We now complete the proof of Theorem 3.1.

According to Lemma 3.9, [i°[|QV ()||%: dt < Ce, so |QV ()|} < 2Ce
for some t; € (0,%0). Using this estimate and Lemma 3.10, we conclude that

IV ()|l g = o(1). On [t1,T/¢], V satisfies the asymptotic differential equation
d 2 —1 2
VOl + 7RV = ofe). (3.45)

Hence, ||V ()| = o(1) on [t1,T/e]. The proof of the theorem is complete. 1

4 The Landau—Lifshitz—Maxwell Equations

We now return to Eq. (2.17) and the system of partial differential equations
of micromagnetics, Eqs. (2.13)—(2.15).

As we observed in Section 2.2, Eq. (2.17) is a special case of the general
equation (3.1). (In fact, Eq. (2.17) provided the motivation for the analysis of
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Section 3.) Hypotheses 1-3 are satisfied (see Section 2.3); we will verify the re-
maining Hypothesis 4 once we have found the coeflicients D;. The asymptotic
approximation is therefore unique and valid on the slow time scale. How the
asymptotic approximation is actually constructed is irrelevant. This observa-
tion is important because it allows us to use the Landau-Lifshitz equation in

the form given by Gilbert [2],

g
OM = ~(M > H) + s (M < D). (4.1)

This equation, which is known as the Landau-Lifshitz—Gilbert (LLG) equa-
tion, is equivalent with the LL equation (2.1), except for a rescaling of time
by a factor 1 + ¢%. As it turns out, the LLG equation is more convenient for

constructing the asymptotic expansions.

We need to make one more change. In Section 2.1, we introduced a simpli-
fication of the mathematical model, replacing the term | M| in the denominator
of the damping term by |My|; see the discussion following Eq. (2.11). We make
the same simplification in Eq. (4.1) and take the factor multiplying the damp-

ing term to be g. Thus, we start from the following system of equations:

eOM + 20, M = —(My x H) +a ' (Mg x M) —e(M x H)
+ gle(Mo x O, M) 4 £*(Mo x 0. M) + e*(M x ;M) +e*(M x 0, M)], (4.2)
O H + %0, H — ck x 0,F = —eo:M — 20 M, (4.3)
e E 4 20, E + ek x 0, H = 0. (4.4)

Note that the exponent of ¢ in this system is 1 more than in Eq. (3.1). There

is no need to symmetrize the equations.

We construct an asymptotic solution of Eqs. (2.13)—(2.15) along the lines
of Section 3.1,

M:M1—|—€M2—|—€2M3—|—---, (45)
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H:H1—|—€H2—|—€2H3—|—"', (46)

E:E1—|—€E2—|—€2E3—|—"'. (47)

4.1 The Equations of Order O(1).

To leading order, Eqs. (4.2)—(4.4) reduce to a single equation,
_MO X (Hl — Oé_lMl) =0. (48)
The equation gives an expression for M; in terms of My - My and Hy,

M1 = (Ml . Mo)MO — OéMO X (MO X Hl) (49)

4.2 The Equations of Order O(¢).

To first order, Eqgs. (4.2)-(4.4) yield a set of differential equations,

atMl = _MO X (H2 — Oé_lMQ — g@tMl) — M1 X Hl, (410)
&Hl —k x axEl = —atMl, (411)
atEl + k x al,Hl = 0. (412)

Taking the scalar product of Eq. (4.10) with My and adding to it the scalar
product of Eq. (4.8) with My, we find that 9,(M; - My) = 0, so

My - My = fo, fo= folz,T). (4.13)

(Note that M, - My is the O(e) term in the expansion of |M|*, which is con-
stant.) If, instead of the scalar product, we take the vector product, we obtain

an expression for My in terms of My - My and Hs,
M2 = (M2 . Mo)MO — OéMO X (MO X HQ) + OéMO X q, (414)
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where the vector ¢ is given in terms of My and Hy,
q = —atMl —|—gM0 X atMl — M1 X Hl. (415)

We substitute the expression (4.9) in the right member of Eq. (4.11), use the
fact that 0;(M; - My) = 0, and solve the resulting equation for 9;H; to obtain
a system of equations for H; and Fy,

(a4

1+«

1
atHl + (k‘ . (MO X axEl))Mo — ?k X axEl = 0, (416)
o

atEl + k x al,Hl =0. (417)

4.2.1 Choice of Coordinates

The system of Eqs. (4.16), (4.17) is most easily solved if we adopt a coordinate
system in R? that is spanned by k, k x My, and M,. (Here, we rely on the
assumption that k and My are not parallel or antiparallel.) Given any vector

v € R?, we define

vy =v-My, vy=v-(kx M), ve=v-k vER (4.18)
Then
v = 1_17 [(va — kavo) Mo 4 vy (k x M) + (ve — kava)k], v € R?, (4.19)
where
ko = My - k. (4.20)

An easy computation shows that

u-v=

W[uava + upvy + Ut — kg (Ugve + ucy)],  u,v € R”, (4.21)

MO k x MO k
1
U X v= 1 12 Uy Up Ue | U,V E RB. (422)
Vg Vp U,
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The system of Eqs. (4.16), (4.17) becomes
8tu1 —|— Kal,ul = 0, (423)

where uy = (Hyq, Hyy, Hie, Era, Eyy, )t and

0 0 0 0 1 0
0 0 0 —(1+a)! 0 ko(l 4 a)™t
0 0 0 0 kyo(l + o)t 0
K = ( ) (4.24)
0 -1 0 0 0 0
1 0 =k 0 0 0
0 0 0 0 0 0
The derivatives in Eq. (4.23) are taken componentwise.
4.2.2 Solution of Equation (4.23)
The characteristic determinant of K is
det(A — K) = (A — v3)(\? — 0?)(A* — v)), (4.25)
where
INE 14 (1= k)a)"?

so the eigenvalues of K are vy = 0 (algebraic multiplicity 2), +vy, and Fwv,.

Note that vg < vy < vy; furthermore,

1 — o5 = k(1 —vj). (4.27)
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In terms of vy and v,, we have

0 0 0 0 1 0
0 0 0 —v? 0 kov?
0 0 0 0 k(l—vi) 0
K = (4.28)
0 -1 0 0 0
1 0 —ks O 0 0
0 0 0 0 0 0
The matrix K is diagonalized by the linear transformation F',
K =F"'WF, V=diag(vo,vo, v, —v1,v2, —03), (4.29)
where
k(1 —o7%) 0 op? 0 0 0
0 0 0 0 0 1
0 1 0 —U1 0 kavl
F= ) (4.30)
0 1 0 U1 0 _kavl
vyt 0 —kowyt 0 1 0
—vyt 0 kit 0 1 0
kovy? 0 0 0 %vz_l —%vz_l
0 0 : : 0 0
Pt vivy? 0 0 0 Lkl —vdHvy' —Lk,(1—viuy!
0 k, —%vfl %vfl 0 0
0 0 0 0 : :
0 1 0 0 0 0
(4.31)

Applying F' to both members of Eq. (4.23), we obtain a diagonal system,
(0 +V0O,)Fuy = 0. (4.32)

(This system corresponds to Eq. (3.8).) The equations are decoupled, and

each equation can be integrated along its characteristics. Upon application of
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the inverse transformation F~! we find
Up = F_lf, (4.33)

where

Hi, fi fi= Al
Hyy, f2 2= fal
H. I3 fa = fi( ) (4.34)
Fia fa J1 = fulx +vit, 1),
Ey Is Is = f5( )
( )

. Je fe=fo

The functions f; and f, represent standing waves; f; and f; are traveling
waves propagating with the velocity v; and —vy, respectively; and f5 and fs

are traveling waves propagating with the velocity v and —wv,, respectively.

The components of M; are found from Eqs. (4.9), (4.13), and (4.33),

1 —wv? v —v? 1 —w?
My, = fo, My = Touz 1(f3—|-f4)7 M. = kafo-l-i2 3 lfl_kail (f5s—fo)-
vy V5 20,
(4.35)

This completes the analysis of the first-order approximation. We now know
that the coefficients of order 1 in the expansions (4.5), (4.6), and (4.7) are
linear combinations of standing (vo = 0) and traveling waves (fvy, +vy). In
the next section we will see how the profile functions fy,... ., fg evolve on the

slow time scale (that is, as a function of 7).

4.3 The Equations of Order O(s?)

To second order, Eqs. (4.2)—(4.4) yield the differential equations
OMy + 0, M, = — M, x (H3 —a "My — g0 My — 987M1)
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—M1 X (H2 —gatMl) — (M2 X Hl), (436)

8,5[-[2 + 87H1 —k x &UEQ = — (atMQ + aq—Ml) R (437)

atEQ + 8TE1 + k x ang = 0. (438)

We follow the same procedure as in the preceding section. First, we take

the scalar product of Eq. (4.36) with My and add to it the scalar product of
Eq. (4.10) with M; and the scalar product of Eq. (4.8) with M;. The result is

at(MQ N MO —|— %|M1|2) —|— aT(Ml N Mo) — 0 (439)

Recall Eq. (4.13): M; - My = fo, where fy does not depend on ¢. Hence,
Eq. (4.39) implies that M, - Mo + $|M;|* grows linearly with ¢ as ¢t — oo,
unless fo is independent not only of ¢ but also of 7. We avoid this type of
secular behavior by imposing the condition fo = fo(x). If My - My = 0 at

t = 0, then this condition gives
fo=0, (4.40)

and the expressions (4.35) simplify,

Mla = 07 Mlb =

1 —v? v — p? 1 —v?
L(fs+ fa), Mi=-"25"1fi—k . -
2

20 V5 2 (fs = fo).

(4.41)

If My and M; are not orthogonal at ¢ = 0, a constant nonzero component must

be added to My,, M., and the quantities derived from them.

The scalar product of Eq. (4.36) with My thus yields the relation
2My - Mo+ [Mi]* = fao,  fao = fao(, 7). (4.42)

(Note that 2My - Mo+ | M |* is the O(£?) term in the expansion of [M|?, which
is constant.) If, instead of the scalar product, we take the vector product of

Eq. (4.36) with My, we obtain an expression for M3 in terms of Hs (as well as
H2 and Hl),

M3 = (Mg . Mo)MO + (1 — UI_Q)MO X (MO X Hg) — (1 — UI_Q)MO X {2, (443)
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where

g2 = —0:My — 0. My + gMy x 0: My + gMy x 0. M, (4.44)

—|—ng X atMl — M1 X H2 — M2 X Hl. (445)

We substitute the expression (4.14) in the right member of Eq. (4.37) and
solve the resulting equation for d;H; to obtain a system of equations for H,

and F,,

8,5[-[2 + (1 — U%)(k . (MO X ang))MO — U%k‘ X &UEQ
= (1 —v})(Mo - vig) My + vivgy, (4.46)

atEQ + k x ang = VEg. (447)
The vectors vy and vy are known,

Vg = —aT(Hl + Ml) + at[%|M1|2MO — OéMO X Q], (448)

vy = —0, E. (4.49)

Here, ¢ is the vector defined in Eq. (4.15).

4.3.1 Coordinate Representation

We use the coordinate system introduced in Section 4.2.1, with the abbrevi-
ations defined in Eq. (4.18). Equations (4.46) and (4.47) correspond to the

following system of equations:

Oy + KOpug = =0 F~' f + Oyr, (4.50)
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where K is the matrix defined in Eq. (4.24), f is the vector f = (f1,...,fs)",

and uy and r stand for the vectors

Hy, 3| ML
Hay (I —vi)g
Uy = e . or= shal M = (1= v)ay . (4.51)
Fae 0
o 0
Fa. 0

The elements of r are known (in terms of f; and f5 through fs; fo does not
enter). Notice, however, that f; does not depend on ¢ and that the derivatives
of f3 through fs with respect to ¢ can be expressed in terms of their derivatives

with respect to x; see Eq. (4.33). Thus,

M = | -k S

# e g =B el
=~y gy UZ B2 0 g g gy ke = oy

s o kO Ak ), (Y
g = ka%fl(fa + fa) + quff(f:” + fa)(fs = fo)

e XU AR NI XV ) (4.54

4.3.2 Solution of Equation (4.50)

We apply the transformation F' defined in Eq. (4.30) to both sides of Eq. (4.50)
and absorb the t-derivative term in the left member, compensating with an x

derivative in the right member,
(0 + VO, ) F(ug —r)=—=0,f — 0, VFr. (4.55)
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Because V' is diagonal, Eq. (4.55) decouples into six first-order hyperbolic
equations with constant coefficients, which can be integrated along their char-
acteristics. If the solution is to remain bounded, the right member must be
such that it does not lead to secular behavior. This condition imposes con-
straints, which we can find by following the averaging strategy of Section 3.1,

Lemma 3.2.

We decompose V Fr, separating the terms that are constant along the

characteristics from those that are not,

The first two terms are constant along the characteristics; Dy and D, are diag-

onal matrices with nonnegative entries that are readily found from Eqs. (4.52),

(4.53), and (4.54),

Dy = 3g(1 —vi)* diag(0,0,1,1,1,1), (4.57)
3(1 — v?)(1 — v
Dy = ( Ué)g ) diag(0,0,0,0,1,1); (4.58)
U3

f?% is the vector whose entries are the squares of the entries of f,

=0 B ) (4.59)

The remainder w consists exclusively of terms that vary along the character-
istics: its first and second components involve at least one of f3 through fg,
its third component at least one of f; and f; through fg, and so on. Thus,
Eq. (4.55) becomes

Application of the averaging operator to each component yields the equation
Orf — D10*f + D30, f* = 0. (4.61)
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Thus, a necessary condition for the solution of Eq. (4.55) to remain bounded
for long times as ¢ | 0 is that the first-order profile functions f; through fg
satisfy a heat equation on the (slow) time scale of 7. The equations for f;
and fy are particularly simple: 0.f; = 0, 0,f; = 0, so f; and f; must be
constant on the slow time scale, and we have fi = fi(x) and f, = fo(x).
The equations for f; and f; are linear, those for f5 and fs nonlinear with a

quadratic nonlinearity.

Remark. Equation (4.61) corresponds to Eq. (3.18). The nonzero entries of
D1 are positive, and the equations for f; and f;, which involve the zero entries

of Dy, are trivial. This observation validates Hypothesis 4.

If the condition (4.61) is satisfied, Eq. (4.60) reduces to
(0 + V) F(uy — 1) = w, (4.62)
from which we obtain the solution uy of Eq. (4.50),
uy =1+ F(fo 4+ (0 +V3,) 'w). (4.63)

Here, (9, + V9,)~" denotes the integral along characteristics, and

Hy, fa fa = fa 51/'77')
Hy fa2 fa2 = fa2 51?77')7

H2c f23 f23—f23

(

(
Uy = . fo= , E (4.64)

(

(

Faq faa foa = foa
Eg fas fas = fos
Ey. fas fae = fae(x + vat, 7).

In addition, we have the expression My, = %(f20—|M1 1), where fag = faolx, 7);

see Eq. (4.42). The remaining components of M, follow from Eq. (4.14),
MQb — a(HZb - QC)v M2c — kaMQa + a(HZC - kaHQa + Qb) (465)
This completes the construction of the asymptotic approximation.
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5 Numerical Results

In this section we illustrate the analytical results of the preceding section with
the results of some numerical computations. The computations are done in a
Cartesian (x,y,z) coordinate system. The (x,y, z) coordinates are obtained

from the (a,b,c) coordinates (Eq. (4.18)) by applying the matrix

0 0 sing
T = Sirll¢ 1 0 —coso |- (5.1)
0 1 0
The basic solution is given by
cos ¢ cos ¢ 0
My=1| sing |, Ho=| sing |, Eo=1] 0 |, (5.2)
0 0 0

for some ¢ € (0,7). At ¢t = 0, we perturb this basic solution near the origin.

The perturbation is uniform in y and z, sharply peaked near the origin in x,

1
M(z,0) = H(z,0) = E(z,0) =2 | 2 |. (5.3)
3
With & = (1,0,0)", we have k, = cos ¢, while k x My falls along the z axis.
When we apply the transformation T' to Eqs. (4.33), (4.34), and (4.35), the
asymptotic analysis gives the following expressions for M, H, and F:
Ugv_gvf Ji— (l_vjqj;ow(ﬁ — /f6)
M ~ _(U%-Uf)cowfl 4 1-v) (fs — fo) | (5.4)

vg sin 2vo sin ¢

mrag(fo 1)

$fi 4 Gt — ) f
H~ 2;i¢(f5_f6) , B _m(f:%—fzt) - (5.5)
25i1n¢(f3+f4) m(]%ﬁ'fes)
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Here,

1 1/2 l—l—ozsinqu 1/2
v = (1 n a) , Vg = (l—l—ioz) . (5.6)
The functions f; and f; are independent of time; f5, f4, f5, and fg represent
propagating waves traveling with the velocities vy, —vy, ve, and —wvsq, respec-
tively. Thus, leading-order asymptotics predict that £, is constant in time;
M., H,, and E, split into waves traveling at the velocities £vy; H, and FE,

split into waves traveling at the velocities £vy; and M, M,, and H, combine

a standing wave with waves traveling at the velocities +v,.

5.1 Numerical Results

All computations reported in this section refer to the case ¢ = 0.01 and ¢ = 1.
We use a finite-difference approximation on a uniform mesh on an interval
—L < x < L with 2N + 1 mesh points. With an implicit treatment of the
linear terms and an explicit treatment of the nonlinear terms, the computation

requires the factorization of a (sparse) matrix of dimension 9(2N + 1).

Figure 1 shows the x, y, and z components (top to bottom) of M, H,
and F (left to right) vs. @ (measured along the front) and ¢ (increasing toward
the back), for « = 1 and ¢ = %7‘[‘. They display the features predicted by
the asymptotic theory. We see standing waves and waves traveling with the
velocities v; = 0.69 and vy = 0.91. The specific wave configuration depends
on the initial data. In fact, by changing the initial data for the individual

components we can change a positive wave into a negative wave or vice versa.

A variation of the angle ¢, changing the direction of the basic solution (5.2)
in the (z,y) plane, does not affect the velocity of the slower waves (v1); on
the other hand, the velocity of the faster waves (vy) increases with ¢ until it

is close to 1 when ¢ = %7‘[‘.
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o P, N W

Figure 1: Solution of Egs. (2.13)—~(2.15); o = 1,¢ = .

Figure 2: Solution of Eqs. (2.13)~(2.15); a =1, ¢ = 3.
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Figure 3: Variation of the wave speeds with «.

At ¢ = %7‘[‘, some waves disappear, in accordance with the asymptotic

theory; see Fig. 2.

As a increases, both vy and vy decrease; the former approaches 0, the latter
sin ¢ as a — co. Figure 3 shows vy and vy as a function of «, the latter for three
different values of ¢. The continuous curves were obtained from the asymptotic
expressions, Eq. (4.27), the discrete marks from the numerical solution. The

asymptotic expressions appear to slightly overestimate the computed values.

Both Figs. 1 and 2 show results for times of order O(1). When we integrate
over longer time intervals, we begin to see the evolution of the wave profiles
on the slow time scale. To show the different types of evolution, we computed
the solution (MW, HM  EW) from the initial data (5.3) and the solution
(M@ H® E®) from initial data that had the same shape but twice the
magnitude, using the vector (2,4,6)" instead of (1,2,3)". Figures 4 and 5
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37



show the quantities

. Hz(l)(' 7t) _ %HZ(Z)(' 7t)
AR = maX{Hz(l)(:I:,t): €[-L, L]} (5.1

el
. Egl)('vt) _ %Eéz)(-,t)
AL = max{EM(a,t) 2 € [-L, L]} (5:8)

on the interval [— L, L] with L = 60, at ¢t = 0, 20, 40, and 60. Note that, at the

last time frame (¢ = 60), ¢ is of the order of e™!. We observe that AH,, which
depends only on f3 and f;, scales with the initial data; AH, is of the same
order as ¢ (AH, ~ 0.01). On the other hand, F. depends on f5 and fs, which
evolve nonlinearly and do not scale with the initial data. The effect of the

nonlinearity is evident in the numerical results; AF, is an order of magnitude

larger than AH, (AFE, ~0.1).
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