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2 ILIESCU, JOHN, LAYTONwt +r � (ww) � Re�1�w+rq�r � (�T (rw) rw) + �1�2r � (A�1(rwrw)) = �f in 
� (0; T ]r �w = 0 in 
� [0; T ]w(x; 0) = �u0(x) in 
+ boundary conditions on @
: (1.1)The notation and terms in (1.1) require some explanation. The operator A�1 denotesa regularization operator, introduced in [15], which is described below. The term rwrwis shorthand for the tensor (rwrw)ij := dX̀=1 @wi@x` @wj@x` :The function �T (rw) is the \turbulent viscosity" coe�cient arising from the subgridscale model employed for turbulent 
uctuations. There are many mathematically inter-esting possibilities for �T (rw); see [25], [37], [46], [32], [33], [16], [20], [44]. In this paperwe study the most commonly used Smagorinsky [46] model�T (rw) = �0�2jrwj; jrwj = 0@ dXi;j=1�@wi@xj �21A1=2 : (1.2)The parameter � denotes the \averaging radius": the model (1.1) seeks to provide anapproximation of the eddies of size O(�) or larger. The data �f ; �u0 are O(�) averages ofdata from some turbulent 
ow problem underlying (1.1). The domain 
 is assumed tobe polyhedral and bounded with boundary �.The question of boundary conditions for (1.1) is a fundamental question in LES. Thereare various proposals; we impose a boundary condition suggested in [15] and developedin [45]. If the 
uid particles adhere to the walls, it does not follow that the large eddiesalso \stick." In fact, it is clear that large eddies do move slip along walls and lose energyas they slip. The conditions we impose are no penetration (1.3) and slip with resistance(1.4): w � n̂ = 0; on �; (1.3)w � �̂j + ��1(�;Re)t � �̂j = 0; and �; j = 1; d� 1: (1.4)Here �(�;Re) is the friction coe�cient, and the vectors n̂ and �̂j (where j = 1 ifd = 2 and j = 1; 2 if d = 3) denote the unit normal and tangent vectors to � where, ifd = 3; �̂1 ? �̂2. The computational choice of n̂ and �̂j at the corners in such boundaryconditions is resolved in the work by Gresho and Sani [18]. If d = 3, all terms in which�̂j occurs should (by understanding) be summed from j = 1; 2; for example, kw � �̂jk2�means P2j=1 kw � �̂jk2�. Also t represents the Cauchy stress vector associated with w.Speci�cally, t = n̂ � [�qI � �1�2A�1(rwrw) + Re�1rw + �t(w)rw]:There are several natural choices for the regularization A�1 in (1.1). The most com-monly used model, which we consider here, is with no regularization A�1 � I. Thismodel evolved from the work of Leonard [36] and Clark, Ferziger, and Reynolds [4]. Its



CONVERGENCE OF FINITE ELEMENT APPROXIMATIONS 3derivation was systematized by Aldama [2], and it has been used for many computationalstudies, for example, Cantekin, Westerink, and Luettich [9]and Sagaut [44]. The report[15] suggests the inclusion of a regularization operator A�1 in the system (1.1). Onechoice of A�1 is simply to reapply the spatial �lter underlying (1.1): A�1v = g� � v;another possibility is A�1v = (��2�+ I)�1v.Large eddy simulation involves two fundamental issues: assessment of \modeling er-rors" and \numerical errors". Modeling errors refer to the question of how close w(x; t)is to the true 
ow averages: jjjw� �ujjj for some norm jjj � jjj. To our knowledge, there areno analytical results to date on this question for (1.1), but there are experimental resultscomparing various averages of w to those same averages of �u (i.e., averages of averagesof u). If we accept w(x; t) as an interesting model for �u, \numerical errors" describe howclose an approximationwh is to w. Numerical errors raise classical questions of stability,consistency, and convergence for approximations of (1.1).This report considers precisely this question for �nite element approximations of (1.1).In Theorem 3.4 we show that the usual, continuous-in-time, �nite element approximationto (1.1), wh, converges to w as the mesh width h! 0 for the Reynolds number Re andaveraging radius � �xed.This analysis leads to interesting questions beyond the case of the usual Navier-Stokesequations (pioneered by Heywood and Rannacher in a series of papers [21], [22]), includ-ing the case of slip with friction boundary conditions (1.4) (see, for example, [34], [38]for some work related to this case); the degeneracy of the �-Laplacian-based subgrid-scale model in (1.1) (see, for example, [10], [32] for numerical analysis of the equilibriummodel composed of NSE + �-Laplacian); the \cross-term" �2r� (rwrw) in (1.1), whichis non monotone, nonlinear, and higher order; and the dependence of the error on theReynolds number, Re, and the averaging radius, �.Our convergence analysis comes to grips with some of these questions. In particular,we prove convergence as h! 0 for �xed Re. In some sense, Theorem 3.4 shows that theparameter � does not degrade convergence. Naturally, we expect that a sharper analysiswill show that its presence in the model improves the estimates. The degeneracy in theSmagorinsky [46] subgrid-scale model is not an essential di�culty; but (surprisingly) itspolynomial growth, which must match that of the cross term to ensure boundedness ofthe kinetic energy in w, seems to cause suboptimality in the resulting error estimates.This issue has recently been studied in a simpli�ed setting in [26].Nevertheless, convergence wh ! w as h! 0 is proven. The long-term analytical goalsin the numerical analysis of large eddy simulation are then to extend the error analysis tothe model, including the regularization operator A�1; to sharpen this result, especiallywith respect to error dependence on � and Re, where possible; and to complement itwith analysis of the modeling error. Preliminary steps in this last direction have recentlybeen taken in [27] for a di�erent class of LES models.II. VARIATIONAL FORMULATION OF THE MODELWe now introduce the notation for the functional setting. The L2(
) norm and innerproduct are denoted k � k and (�; �). The L2(�) norm and inner product are denotedk � k� and (�; �)�. The L3(
) norm is k � kL3 , and the Sobolev W k;p(
) norm is denotedk � kk;p, with p omitted if p = 2. See, for example, [13] for a clear development of Sobolev



4 ILIESCU, JOHN, LAYTONspaces focusing on those important for the Navier-Stokes equations. Generic constantsindependent of the mesh width h are denoted by C.It is natural to de�ne the velocity{pressure spaces as follows:X := fv 2W 1;3(
)d : v � n̂ = 0 on �; gQ := L20(
) = f�(x) 2 L2(
) : (�; 1) = 0g:The Smagorinsky model used needs the assumption rv 2 L3(
).Some existence results for weak solutions of (1.1){(1.4) have recently been proven in [6],[7], and [14]. The regularity of weak solutions to (1.1){(1.4) is still an open question,including regularity down to t = 0. We shall nevertheless assume that (1.1){(1.4) hasa unique solution in the sense of the variational formulation (2.1). We will attempt tominimize any additional regularity assumed, and it will be explicitly stated as it is used.Since the boundary conditions on w are not simple Dirichlet conditions, care must betaken in developing a variational formulation of (1.1) in (X;Q).Consider the following term, for v 2 X and w smooth enough:Z
r � [qI + �1�2(rwrw)� (Re�1 + �T (rw))rw] � v dx= Z� n̂ � [qI + �1�2(rwrw)� (Re�1 + �T (rw))rw] � v ds� Z
 qr � v + [�1�2(rwrw)� (Re�1rw + �T (rw))rw] : rv dx:Decomposing v = (v � �̂j)�̂j + (v � n̂)n̂ = (v � �̂j)�̂j in the �rst integral, canceling theobvious terms, and using (1.3){(1.4), we obtainZ
r � [qI + �1�2(rwrw)� (Re�1 + �T (rw))rw] � v dx= �(�;Re) Z�(w � �̂j)(v � �̂j) ds (2.1)� Z
 qr � v + [�1�2(rwrw)� (Re�1 + �T (rw))rw] : rv dx:The next lemma is fundamental to energy estimation. Its proof is the same indexcalculation as in the case of the no-slip boundary condition.Lemma 2.1. For any u;v;w 2 X satisfying r � v = 0(v � rw;u) = �(v � ru;w);such that (v � rw;u) = 12(v � rw;u)� 12(v � ru;w):Proof. This follows since v � n̂ = 0 on � for all v 2 X and r � v = 0.We consider the skew{symmetric form of the convective term, which is denoted byb(u;v;w) = 12 ((u � rv;w)� (u � rw;v)) :



CONVERGENCE OF FINITE ELEMENT APPROXIMATIONS 5A variational formulation of (1.1){(1.4) is thus as follows. Find a di�erentiable mapw : [0; T ]! X; q : (0; T ]! Q satisfying(wt;v) + ((Re�1 + �T (rw))rw;rv) + �(�;Re)(w � �̂j;v � �̂j)��(q;r � v) + b(w;w;v)� �1�2((rwrw);rv) = (�f ;v); (2.2)(�;r �w) = 0;for all (v; �) 2 (X;Q).We will frequently use the Poincar�e inequality for all v 2 Xkvk � Ckrvk: (2.3)Note that this inequality needs only v � n̂ = 0 on � to hold, rather than v = 0 on �; seeGaldi [13], p. 56.The next two technical lemmas quantify the control the model of turbulent di�usionexerts over the interaction of large and small eddies. They are also the key for prov-ing existence of weak solutions; see Coletti [7], [6] and Galdi et al. [14]. De�ne, forcompactness, F (w) := (Re�1 + �T (rw))rw � �1�2(rwrw): (2.4)Lemma 2.2. Let �T (rw) := �0�2jrwj, where, �0 � 4�1. Then, there is a constantC such that for any v1;v2 2 X,(F (v1) � F (v2);r(v1 � v2)) + �(�;Re)((v1 � v2) � �̂j ; (v1 � v2) � �̂j)�� Re�1kr(v1 � v2)k2 + C2 �0�2kr(v1 � v2)k3L3 + �(�;Re)k(v1 � v2) � �̂jk2�:Proof. The proof of a similar estimate can be found in Coletti [7], which in turnis based on a proof by Ladyzhenskaya [31]. Since we need an explicit relation between�0 and �1 in our new setting, we will present here the proof to highlight the condition�0 � 4�1.Let ~F (w) := �Re�1 + 12�0�2jrwj�rw� �1�2(rwrw):Note that F (w) = ~F (w) + 12�0�2jrwjrw.Letting v
 := 
v1 + (1 � 
)v2; 
 2 [0; 1], and using the �-Laplacian's strong mono-tonicity (see, for example, [32]) and the approach in [7], we get(F (v1) � F (v2);r(v1 � v2)) + �(�;Re)((v1 � v2) � �̂j ; (v1 � v2) � �̂j)�= �(�;Re)k(v1 � v2) � �̂jk2� + (F (v1)� F (v2);r(v1 � v2))� �(�;Re)k(v1 � v2) � �̂jk2� + Z
�Z 10 dd
 ~F (v
 )d
�r(v1 � v2)dx+C2 �0�2kr(v1 � v2)k3L3 : (2.5)



6 ILIESCU, JOHN, LAYTONWe now start to evaluate the second term on the right-hand side of the last inequality.In the sequel, by convention, repeated indices denote summation.dd
 ~F (v
)r(v1 � v2)= �Re�1 dd
rv
 + 12�0�2 dd
 (jrv
jrv
)� �1�2 dd
 (rv
rv
)�r(v1 � v2)= Re�1 dd
 @v
i@xj �@v1i@xj � @v2i@xj �+ 12�0�2 dd
 2640@Xk;l �@v
l@xk�21A1=2 @v
i@xj 375�@v1i@xj � @v2i@xj ���1�2 dd
 "@v
i@xl @v
j@xl #�@v1i@xj � @v2i@xj �= Re�1�@v1i@xj � @v2i@xj �2 + 12�0�2 12 24Xk;l �@v
l@xk�235�1=2 �2�@v
l@xk��@v1l@xk � @v2l@xk ����@v
i@xj ��@v1i@xj � @v2i@xj ��+ 12�0�2 24Xk;l �@v
l@xk�2351=2�@v1i@xj � @v2i@xj ��@v1i@xj � @v2i@xj ���1�2 "�@v1i@xl � @v2i@xl � @v
j@xl + @v
i@xl �@v1j@xl � @v2j@xl �#�@v1i@xj � @v2i@xj � :In the last equality, dropping the second term (which is positive) and using (twice)the Cauchy-Schwarz inequality for the last term, we get for �0 � 4�1dd
 ~F (v
)r(v1 � v2) � Re�1jr(v1 � v2)j2 + 12�0�2jrv
j jr(v1 � v2)j2��1�2jrv
 jjr(v1� v2)j2 � �1�2jrv
jjr(v1 � v2)j2� Re�1jr(v1 � v2)j2:Inserting this estimate into (2.4) proves the statement of the lemma.Remark: This lemma does not include the r� (ww) nonlinearity describing how thelarge eddies convect themselves. Because of this r� (ww) term, the nonlinearity in (1.1)is not monotonic.The next technical lemma concerns the continuity properties of F (�).Lemma 2.3. Assume �T (rw) := �0�2jrwj. Then, there is a constant C such thatfor any v1;v2; � 2 X with krv1kL3 � r and krv2kL3 � r,(F (v1) � F (v2);r�) � �Cr�2kr(v1 � v2)kL3kr�kL3 + Re�1kr(v1 � v2)k kr�k:Proof. Using H�older's inequality and adding and subtracting terms as appropriate,we get(F (v1) � F (v2);r�)



CONVERGENCE OF FINITE ELEMENT APPROXIMATIONS 7� Re�1kr(v1 � v2)kkr�k+�0�2(jrv1jrv1 � jrv2jrv2;r�)� �1�2(rv1rv1 �rv2rv2;r�)� Re�1kr(v1 � v2)kkr�k+ �0�2(jrv1jrv1 � jrv1jrv2 + jrv1jrv2 � jrv2jrv2;r�)��1�2(rv1rv1 �rv1rv2 +rv1rv2 �rv2rv2;r�)� Re�1kr(v1 � v2)kkr�k+ C�0�2krv1kL3kr(v1 � v2)kL3kr�kL3+C�0�2kr(v1 � v2)kL3krv2kL3kr�kL3 + �1�2krv1kL3kr(v1 � v2)kL3kr�kL3+�1�2kr(v1 � v2)kL3krv2kL3kr�kL3;which proves the lemma.Using these lemmas, we can prove an energy bound for the solution of the continuousproblem (1.1){(1.4). This �rst bound is the foundation upon which an existence theoryfor (1.1){(1.4) is built.Proposition 2.4. [Leray's inequality for the Large Eddy Model]. Let w(x; t) satisfy(2.1). Then, w satis�es the energy inequality12kw(t)k2+Z t0 [�kw��̂jk2�+Re�1krwk2+C�0�2krwk3L3] dt0 � 12kw(0)k2+Z t0 (�f ;w) dt0;for any t > 0. In particular,krwk3L3(0;t;L3) � C(�; �0)�kw(x; 0)k2 + Z t0 k�fk3=2L6=5� =: C1(�; �0; t):Proof. Set v = w and � = q in (2.1). Using Lemma 2.2 then gives12 ddtkwk2 +Re�1krwk2 + C�0�2krwk3L3 + �kw � �̂jk2� � (�f ;w);from which the energy inequality follows by integration.To prove the second part, use H�older's inequality, the Sobolev embedding W 1;3(
)!L6(
), Poincar�e inequality (2.3), and Young's inequality to obtain(�f ;w) � kwkL6k�fkL6=5 � CkrwkL3k�fkL6=5 � �3krwk3L3 + C�1=2k�fk3=2L6=5 :Choosing � = C�2 proves the second statement of Proposition 2.4.Before proceeding with the error analysis of the nonlinear, time-dependent problem,we give estimates of two equilibrium projections. The �rst (Proposition 2.5) gives anestimate of the error in the nonlinear Galerkin projection obtained by dropping timedependence and convection (hence retaining only those terms associated with the tur-bulence modeling.) This estimate is not optimal, re
ecting the quadratic growth in themodel's nonlinearity. (Suboptimal estimates similar to this also occur in error analysis ofproblems such as the �-Laplacian [1], which are locally Lipschitz and strongly monotonein the sense of Vainberg [49].) Proposition 2.5 thus gives an idea of rates of convergenceattainable in more complex settings as well. After that, in Proposition 2.6, we give ananalysis of the error in the Galerkin approximation to the Stokes problem with slip withfriction boundary conditions.



8 ILIESCU, JOHN, LAYTONWe assume that the velocity-pressure space (Xh; Qh) satis�es the natural ( [34], [38])inf-sup condition associated with slip with friction conditions on �. Note that since � ispolyhedral, the natural norm on � is not the H1=2(�) norm but rather the sum of theH1=2(�i) norms over all faces �i of �. Thus, we assumeinf�h2Qh supvh2Xh (�h;r � vh)k�hk hkrvhk2 +Pall faces �i of � kvh � �̂jk212 ;�ii1=2 � � > 0: (2.6)Under this condition, the space of discretely divergence-free functions V hV h := fvh 2 Xh : (�h;r � vh) = 0; 8 �h 2 Qhgis well de�ned [17], [19]. Examples of �nite element spaces satisfying (2.6) are con-structed in [34], [38].Proposition 2.5. Let �h denote an approximation of w in V h satisfying kr�hkL3 �CkrwkL3. Assume also the conditions of Lemma 2.2 hold. Let ~w 2 V h be de�ned by(F (w)� F ( ~w);rvh) + �((w � ~w) � �̂j;vh � �̂j)� = 0;for all vh 2 V h: Then, ~w 2 V h exists uniquely and the error w � ~w satis�es�(�;Re)k(w � ~w) � �̂jk2� + Re�1kr(w � ~w)k2 +C�0�2kr(w � ~w)k3L3� Cf(C�0)�1=2(CkrwkL3)3=2�2kr(w � �h)k3=2L3 +Re�1kr(w � �h)k2+�(�;Re)k(w � �h) � �̂jk2�g:Proof. That ~w exists uniquely follows from standard arguments using monotonicityfollowing Minty's lemma, [41], [39], [11]. For the error estimate, adding and subtractingterms give �((�h � ~w) � �̂j;vh � �̂j)� + (F (�h) � F ( ~w);rvh)= �((�h �w) � �̂j;vh � �j)� + (F (�h)� F (w);rvh)for all vh 2 V h. Setting vh = �h � ~w and using Lemma 2.2 gives�k(�h � ~w) � �̂jk2� + Re�1kr(�h � ~w)k2 + C�0�2kr(�h � ~w)k3L3� (F (�h) � F (w);r(�h � ~w)) + �((�h �w) � �̂j ; (�h � ~w) � �̂j)�:Thus, using the Cauchy-Schwarz inequality, Young's inequality, and Lemma 2.3 give�k(�h � ~w) � �̂jk2� + Re�1kr(�h � ~w)k2 + C�0�2kr(�h � ~w)k3L3� 12Re�1kr(�h �w)k2 + 12Re�1kr(�h � ~w)k2+�2 k(�h � ~w) � �̂jk2� + �2 k(�h �w) � �̂jk2� + �Cr�2kr(�h � ~w)kL3kr(w � �h)kL3 ;where r = maxfkr�hkL3 ; krwkL3g, which is bounded by CkrwkL3. Collecting termsgives�k(�h � ~w) � �̂jk2� + Re�1kr(�h � ~w)k2 + 2C�0�2kr(�h � ~w)k3L3� 2 �Cr�2kr(�h � ~w)kL3kr(w � �h)kL3 +Re�1kr(w � �h)k2 + �k(w � �h) � �̂jk2�:



CONVERGENCE OF FINITE ELEMENT APPROXIMATIONS 9Using Young's inequality and the triangle inequality completes the proof.Remark. Lp stability estimates of the L2 projection into �nite element spaces isproven for many interesting spaces, for example, in [8] and [50].The Stokes Projection under Slip with Friction Boundary ConditionsWe consider the linear projection operator � : (X;Q) ! (Xh; Qh) with �(w; q) =( ~w; ~q) 2 (Xh; Qh) de�ned by solving the following discrete Stokes problem. The pair( ~w; ~q) satis�es for all (vh; �h) 2 (V h; Qh):Re�1(r(w � ~w);rvh) + �((w � ~w) � �̂j ;vh � �̂j)� � (q � ~q;r � vh) = 0;(r � (w � ~w); �h) = 0: (2.7)This is equivalent to the following. Find ~w 2 V h satisfyingRe�1(r(w � ~w);rvh) + �((w � ~w) � �̂j ;vh � �̂j)� � (q � �h;r � vh) = 0; (2.8)for all vh 2 V h and for any �h 2 Qh.Proposition 2.6. Suppose the discrete inf-sup condition (2.6) holds. Then, ( ~w; ~q)exists uniquely in (Xh; Qh) and satis�esRe�1kr(w � ~w)k2 + �k(w � ~w) � �̂jk2�� C inf�h2Qh;vh2V h fRe�1kr(w � vh)k2 + �k(w � vh) � �̂jk2� +Rekq � �hk2g� C inf�h2Qh;vh2Xh fmaxfRe�1; �g(kr(w � vh)k2 + k(w � vh) � �̂jk2�) +Rekq � �hk2g:Proof. Existence and uniqueness of ( ~w; ~q) follow from the inf{sup condition and theabstract theory in Girault and Raviart [17].Let Ih(w) denote some approximation of w in V h. Decompose the error as w� ~w =� � �h where � = w � Ih(w) and �h = ~w � Ih(w) 2 V h. The error equation for w � ~wcan then be rewritten, picking vh = �h, asRe�1(r�h;r�h) + �(�h � �̂j ; �h � �̂j)� = Re�1(r�;r�h) + �(� � �̂j; �h � �̂j)��(q � �h;r � �h):Using the Cauchy-Schwarz inequality, Young's inequality and kr ��hk � kr�hk, we getRe�1kr�hk2 + �k�h � �̂jk2� � C �Re�1kr�k2 + �k� � �̂jk2� + Rekq � �hk2� :By the triangle inequality, we obtainRe�1kr(w � ~w)k2 + �k(w � ~w) � �̂jk2�� C inf�h2Qh;vh2V h fRe�1kr(w � vh)k2 + �k(w � vh) � �̂jk2� +Rekq � �hk2g:The stated result with in�mumtaken over Xh follows because, under the discrete inf-supcondition (2.6), it is known that if r �w = 0, the in�mum over V h can be replaced byan in�mum over Xh with a larger constant C (relation (1.12) on p.60 in [17]).



10 ILIESCU, JOHN, LAYTONIII. FINITE ELEMENT APPROXIMATION OF LARGE EDDY MOTIONThe usual, continuous-in-time, Galerkin �nite element approximation of the solution of(w; q) of the large eddy model (1.1){(1.4) will be given now. First, �nite-dimensional�nite element subspaces Xh � X; Qh � Qare selected that satisfy the discrete inf-sup condition (2.6).The continuous-in-time approximations (wh; qh) are maps wh : [0; T ] ! Xh; qh :(0; T ]! Qh satisfying that wh(0) approximates �u0 in Xh and(wht ;vh) + ((Re�1 + �T (rwh))rwh;rvh) + b(wh;wh;vh) (3.1)�(qh;r � vh) + �(�;Re)(wh � �̂j ;vh � �̂j)� � �1�2(rwhrwh);rvh) = (�f ;vh)(�h;r �wh) = 0;for all (vh; �h) 2 (Xh ; Qh). Using V h and the nonlinear operator F (�) de�ned by (2.4),we can write the approximation (3.1) more compactly. In particular, wh : [0; T ]! V hsatis�es (wht ;vh) + (F (wh);r(vh)) + b(wh;wh;vh) (3.2)+�(�;Re)(wh � �̂j;vh � �̂j)� = (�f ;vh); for all vh 2 V h:The method (3.1) or (3.2), respectively, is stable. It satis�es the same energy inequalityas the continuous problem.Proposition 3.1. [Leray's inequality for wh]. Suppose wh is the solution of (3.2).Then, wh satis�es for all t > 012kwh(t)k2 + Z t0 ��kwh � �̂jk2� + Re�1krwhk2 + C�0�2krwhk3L3� dt0� 12kwh(0)k2 + Z t0 (�f (t0);wh(t0)) dt0:In particular, Z t0 Re�1krwhk2 dt � kwh(0)k2 + CRe Z t0 k�f(t0)k2 dt0:Proof. The proof of the �rst estimate is the same as that of Proposition 2.4. Thesecond estimate follows from the �rst estimate by neglecting the �rst, second, and thelast term on the left-hand side. Then, the second term on the right-hand side is estimatedby the Cauchy{Schwarz inequality, the Poincar�e inequality (2.3), and Young's inequality,leading to Z t0 (�f (t0);wh(t0)) dt0 � Z t0 � �2k�f(t0)k2 + C2�kwh(t0)k2�dt0:Choosing � = CRe and collecting terms, we conclude the proof.By a similar argument, we obtain a particularly simple bound on kwh(t)k, uniform inboth Re and �.



CONVERGENCE OF FINITE ELEMENT APPROXIMATIONS 11Lemma 3.2. Suppose wh is the solution of (3.2). Then, for T > 0max0�t�T kwh(t)k � kwh(0)k+ Z T0 k�f(t)k dt:Proof. Set vh = wh in (3.2). Dropping the non-negative terms resulting on the lefthand side gives 12 ddtkwh(t)k2 = kwhk ddtkwh(t)k � (�f ;wh) � k�fk kwhk:Thus, ddtkwh(t)k � k�f(t)k,` and the result follows.Combining this lemma and Proposition 2.4 gives an a priori bound on the quantityah(t) := kwh(t)k1=2krwh(t)k1=2: (3.3)Lemma 3.3. Let ah(t) be as above and wh be the solution of (3.2). Then, ah(t) 2L4(0; T ) uniformly in h andkah(t)k4L4(0;T ) �  kwh(0)k+ Z T0 k�f(t)k dt!2 Rekwh(0)k2 + CRe2 Z T0 k �f(t)k2 dt! :Proof. Since kah(t)k4L4(0;T ) � kwhk2L1(0;T ) Z T0 krwhk2 dt;the result follows from Proposition 3.1 and Lemma 3.2.The method (3.2) reduces existence of wh to existence for a system of ordinary dif-ferential equations in V h. The Cauchy-Schwarz inequality and Proposition 3.1 give im-mediately an a priori bound on wh(t). Thus, wh(x; t) exists uniquely. If the discreteinf-sup condition (2.6) and standard arguments of Girault and Raviart [17] are used, qhdoes as well.We now turn to the error in the approximation wh of w. Important questions inthe error analysis of large eddy simulation include dependence of the errors upon Reand �, including cases in which � and h are related. In this report we consider only the�rst, without which later steps are not imaginable: we consider convergence of wh to was h ! 0 for Re and � �xed. Further, if there were a convergence result for wh to wthat was uniformly in �, this would immediately imply a convergence result w! u (thesolution of the underlying Navier-Stokes equations) as � ! 0. Such a result has neverbeen proven (to the authors' knowledge) for any conventional turbulence model and onlyfor the Camassa-Holm model and one large eddy model [35].Theorem 3.4. Let (w; q) let be the solution of (2.1) and (wh; qh) be the solution of(3.1). Let the �nite element spaces ful�ll the inf-sup condition (2.6), let �0 � 4�1, andlet ah(t) be de�ned in (3.3). Under the assumptionrw 2 L4(0; T ;L2(
));



12 ILIESCU, JOHN, LAYTONthe error e = w �wh satis�eskek2L1(0;T ;L2) + �ke � �̂jk2L2(0;T ;L2(�)) +Re�1krek2L2(0;T ;L2) + �0�2krek3L3(0;T ;L3)� CC�(T )kw(x; 0)�wh(x; 0)k2 + C inf~w2Xh(
);�h2QhF(w � ~w; q � �h; Re; �; �0; T )with C�(T ) = exp Z T0 �1 + C(Re)3krwk4� dt! (3.4)andF(w � ~w; q � �h; Re; �; �0; T )= C"kw � ~wk2L1(0;T;L2) + �0�2kr(w � ~w)k3L3(0;T;L3)+C�(T )hk(w � ~w)(x; 0)k2 + Re�kah(t)k2L4(0;T ) + krwk2L4(0;T;L2)� kr(w � ~w)k2L4(0;T;L2)+C(�; �0; T )kr(w� ~w)k3=2L3(0;T;L3) +Re�1kr(w � ~w)k2L2(0;T;L2) + Rek(w � ~w)tk2L2(0;T;H�1)+�k(w � ~w) � �jk2L2(0;T;L2(�)) +Rekq � �hk2L2(0;T;L2)i#:Proof. Let e = w �wh and vh 2 V h. An error equation is obtained by subtracting(3.1) from (2.1). This yields(et;vh) + (F (w)� F (wh);rvh) + b(w;w;vh)� b(wh;wh;vh) (3.5)+�(e � �̂j ;vh � �̂j)� = (q � �h;r � vh);where �h 2 Qh is arbitrary. Let ~w 2 V h denote an approximation to w. Then, with� = w � ~w and �h = (wh � ~w) 2 V h, and choosing vh = �h, we can rewrite the errorequation (3.5) as(�ht ; �h) + �(�h � �̂j ; �h � �̂j)� + (F (wh)� F ( ~w);r�h)= b(w;w; �h)� b(wh;wh; �h) + (F (w)� F ( ~w);r�h)� (q � �h;r � �h) + (�t; �h)+�(� � �̂j; �h � �̂j)�: (3.6)Using Lemma 2.3 gives the estimate for the nonlinear eddy viscosity term([�T (rw)rw � �1�2(rwrw)]�[�T ( ~w)r( ~w)� �1�2(r ~wr~w)];r�h) � �Cr�2kr(w � ~w)kL3kr�hkL3 ; (3.7)with r = maxfkrwkL3; kr~wkL3g � CkrwkL3: (3.8)With Lemma 2.2 we have12 ddtk�hk2 + �k�h � �̂jk2� +Re�1kr�hk2 +C�0�2kr�hk3L3� b(w;w; �h)� b(wh;wh; �h) + k�tkH�1 kr�hk+ �Cr�2kr�kL3 kr�hkL3 (3.9)+Re�1kr�kkr�hk+ kq � �hkkr�hk+ �k� � �jk�k�h � �jk�:



CONVERGENCE OF FINITE ELEMENT APPROXIMATIONS 13We consider now the convection terms on the right-hand side of this last inequality.Adding and subtracting terms giveb(w;w; �h) � b(wh;wh; �h) = b(w; e; �h) + b(e;w; �h)� b(e; e; �h):By skew symmetry and e = � � �h = w �wh, this can be rewritten in the formb(w;w; �h) � b(wh;wh; �h) = b(�;w; �h) + b(wh; �; �h) � b(�h;w; �h): (3.10)In the analysis of the trilinear form we will use the estimateb(u;v;w) � Ckruk1=2kuk1=2krvkkrwk: (3.11)This estimate is derived by H�older's inequality, the Sobolev imbeddings W 1=2;2(
) !L3(
) and W 1;2(
) ! L6(
), the interpolation of W 1=2;2(
) by L2(
) and W 1;2(
),and Poincar�e's inequality (2.3); see also the proof of Lemma 2.2 (f) in [40]. We obtainby (3.11), Poincar�e's inequality (2.3), and Young's inequality, for any � > 0jb(�;w; �h) + b(wh; �; �h)j� C �kr�k1=2k�k1=2krwk+ krwhk1=2kwhk1=2kr�k�kr�hk� C �krwk+ krwhk1=2kwhk1=2�kr�kkr�hk� �2kr�hk2 + C� �krwk2 + krwhkkwhk�kr�k2:The remaining term on the right-hand side of (3.10) is also estimated by (3.11) andYoung's inequality: jb(�h;w; �h)j � Ckr�hk3=2k�hk1=2krwk� �2kr�hk2 + C�3 krwk4k�hk2:Applying again Young's inequality, for � = C�0,�Cr�2kr�hkL3kr�kL3 � �3�2kr�hk3L3 + 23��1=2�2( �Cr)3=2kr�k3=2L3 (3.12)= 13C�0�2kr�hk3L3 + 23( �Cr)3=2(C�0)�1=2�2kr�k3=2L3 :The remaining terms on the right-hand side of (3.8) are also estimated by Young'sinequality: k�tkH�1 kr�hk � Rek�tk2H�1 + Re�14 kr�hk2Re�1kr�kkr�hk � 12Rekr�k2 + 12Rekr�hk2kq � �hkkr�hk � 12�kq � �hk2 + �2kr�hk2�k� � �jk�k�h � �jk� � �2 k� � �jk2� + �2 k�h � �jk2�



14 ILIESCU, JOHN, LAYTONPicking � = O(Re�1), inserting all estimates into (3.8), and collecting terms give12 ddtk�hk2 + �2 k�h � �̂jk2� +CRe�1kr�hk2 + 23C�0�2kr�hk3L3� C �Re �krwk2 + krwhkkwhk� kr�k2 +Rek�tk2 + 12Rekr�k2+23( �Cr)3=2(C�0)�1=2�2kr�k3=2L3 +CRekq � �hk2 + �2 k� � �jk2��+ �12 +C(Re)3krwk4� k�hk2:Since, by assumption, krwk4 2 L1(0; T ), Gronwall's inequality now impliesmax0�t�T k�hk2 + Z T0 �2�k�h � �̂jk2� +Re�1kr�hk2 + 43C�0�2kr�hk3L3�dt� C�(T )k�h(0)k2 +CC�(T ) Z T0 �Re �krwk2 + krwhkkwhk� kr�k2 + Rek�tk2+ 1Rekr�k2 + r3=2��1=20 �2kr�k3=2L3 + Rekq � �hk2 + �k� � �jk2��dtwhere C�(T ) is de�ned in (3.4). We can bound by using the Cauchy{Schwarz inequalityin L2(0; T ):Z T0 krwk2kr�k2dt � krwk2L4(0;T;L2)kr�k2L4(0;T;L2)Z T0 krwhkkwhkkr�k2 � kah(t)kL4(0;T )kr�k2L4(0;T;L2)Z T0 r3=2kr�k3=2L3 � C Z T0 krwk3=2L3 kr�k3=2L3 � Ckrwk3=2L3(0;T;L3)kr�k3=2L3(0;T;L3)� C(�; �0; T )kr�k3=2L3(0;T;L3):The last estimate was obtained by using the estimate of r (3.8) and the result of Propo-sition 2.4. The term ah(t) is estimated in Lemma 3.3.The error estimate now follows by the triangle inequality and collecting terms.IV. NUMERICAL RESULTSWe present two numerical tests that con�rm the error estimate given in Theorem 3.4.The �rst example is Chorin's vortex decay problem in 2D and the second example has ananalytical solution in 3d. A third example illustrates the slip with resistance boundarycondition. Before the numerical examples, we will describe the numerical schemes usedin the computations.We start by discretizing equation (1.1) in time by the fractional{step{�{scheme;see, forexample, Bristeau, Glowinsky, and Periaux [3], which is analyzed for the time-dependent



CONVERGENCE OF FINITE ELEMENT APPROXIMATIONS 15Navier{Stokes equations by Kloucek and Rys [30]. This implicit scheme is of second-order accuracy, more stable than the Crank{Nicolson scheme, and is currently considered\best" on the basis of accuracy and reliability; see, for example, Turek [48] or Rannacher[42].The fractional{step{�{scheme divides each time step into three subtime steps. Ineach subtime step, a nonlinear saddle point problem has to be solved. The nonlinearproblem is linearized by a �xed-point iteration. The term coming from the LES model,A�1(rwrw), is computed only at the beginning of each subtime step and is not changedduring the �xed-point iteration. All other nonlinear terms are updated after each itera-tion step. We have used two �nite element discretizations of di�erent polynomial degreeto discretize the arising linear saddle point problems. The lower-order �nite element isthe Q2=P disc1 (or Q2=P�1; see Gresho and Sani [18]) �nite element discretization; that is,the velocity is approximated by continuous piecewise biquadratics in 2D (triquadraticsin 3D) and the pressure by discontinuous bilinears in 2D (trilinears in 3D). The higher-order pair of �nite elements is the Q3=P disc2 discretization; that is the discrete velocityis continuous and piecewise bicubic in 2D (tricubic in 3D) and the pressure discontin-uous and piecewise biquadratic in 2D (triquadratic in 3D). These conforming pairs of�nite element spaces ful�ll the inf{sup or Babu�ska{Brezzi stability condition on meshesconsisting of parallelepipeds. They are currently considered among the most stable andbest-performing elements for �nite element discretizations of Navier{Stokes equations;see, for example, Fortin [12], Gresho and Sani [18], or the study in [28].The linear saddle point problems are solved by a 
exible GMRES method; see Saad[43]. The preconditioner is a coupled multigrid method with Vanka{type smoothers asstudied numerically, for example, in [29] and [28]. These algorithmic choices are currentlyconsidered among the best in terms of reliability, stability, and accuracy in �nite elementCFD.Example 1. Chorin's vortex decay problem in 2D. This problem is taken from [5] andis also used in other numerical tests, for example, by Tafti [47] or in [24]. The domain isthe unit square 
 = (0; 1)2, and the prescribed solution has the formw1 = � cos(n�x) sin(n�y) exp(�2n2�2t=� );w2 = sin(n�x) cos(n�y) exp(�2n2�2t=� );q = �14(cos(2n�x) + cos(2n�y)) exp(�4n2�2t=� ):We have chosen n = 4 and three di�erent values of the relaxation parameter � in ourcomputations. Since the solution is known, we use for simplicity Dirichlet boundaryconditions. The right-hand side f is chosen such that w = (w1; w2)T and q ful�llwt �Re�1�w + (w � r)w +rq (4.1)�r � (�0�2jrwjrw) + �1�2r � (rwrw) = f in (0; T ]� 
:The derivation of the Taylor LES model with the Gaussian �lter gives �1 = 1=12; see,for example, [2]. As consequence of Lemma 2.2, we have chosen �0 = 1=3. The otherparameters in this example wereRe = 10000; � = 0:1; T = 20:To reduce the in
uence of the time discretization error, we carried out all computationswith the small equidistant time step �t = 0:001. The unit square was decomposed into



16 ILIESCU, JOHN, LAYTONequidistant grids with squares of size h � h. The number of degrees of freedom (d.o.f.)for the �nite element discretizations and the di�erent mesh sizes are given in Table I.We present kekL1(0;T;L2), Tables II and IV, and krekL2(0;T;L2), Tables III and V.According to Theorem 3.4, the order of convergence of these errors is connected to theapproximation error of the used pair of �nite elements. This can be clearly observed in thenumerical results. Theorem 3.4 predicts the same order of convergence for kekL1(0;T;L2)and krekL2(0;T;L2). The higher order of convergence for kekL1(0;T;L2) in the numericalresults can be explained with the smoothness of the prescribed solution, because theerror estimate for kekL1(0;T;L2) can be improved assuming a higher regularity of w inTheorem 3.4.Example 2. An analytical solution in 3D. In this example, the right-hand side �f ischosen such thatw1 = t(10� t) �x2 + y2 + z2 + y5 + sin(�x) sin(�y) sin(�z)� ;w2 = t(10� t) �x2 + 2xz + 3z4 + 13+ cos(�x) cos(�y) cos(�z)� ;w3 = t(10� t) ��2xz + 5y2 � x4y + cos(�x) sin(�y) cos(�z) + cos(�x) sin(�y) sin(�z)� ;q = t(10� t) (3x� 2y + 7z � 4) =25;ful�ll (4.1) in 
 = (0; 1)3. Again, we used for simplicity Dirichlet boundary conditions.The other parameters in this example were�0 = 13 ; �1 = 112 ; Re = 10000; � = 0:1; T = 10:The solution depends quadratically on t such that the discretization error in time of thefractional{step{� scheme is negligible. We have used the equidistant time step �t = 0:01.The unit cube is divided into equidistant h � h � h meshes. The number of degrees offreedom for the di�erent mesh sizes using the Q2=P disc1 discretization is given in TableVI.The results for kekL1(0;T;L2) and krekL2(0;T;L2) are presented in Table VII. Theevaluation of the numerical tests leads to the same observations as in Example 1.Example 3. We like to give with this example a numerical illustration of the applicationof the slip with resistance and no penetration boundary conditions. To our knowledge,these boundary conditions have not been used in LES before. In addition, we wish todemonstrate the behaviour of the regulariztion operator A�1 in (1.1). An assessmentof some models in LES [24] demonstrates that the regularization A�1 = I, called theTaylor LES model in [24], leads in numerical tests often to a blowup of the solution. Incontrast, A�1 = (I � �2=(4
)�)�1 and A�1 = g��, both called the rational LES modelin [24], have yielded good numerical results.We consider the channel 
ow past a step; see Figure 1 for the domain and the initialgrid. The length of the channel is 40, its height 10; the step of height 1 starts at length5 and ends at length 6. Parabolic in
ow boundary conditionsw = (y(10 � y)=25; 0)Tand out
ow boundary conditions, so{called do-nothing conditions, (see Heywood, Ran-nacher, and Turek [23]), are prescribed. The parameters in (1.1) and (1.2) are chosen tobe Re = 1000; � = 0:0625; �0 = 0:01; �1 = 112 ; T = 100; A�1 = �I � �24
���1 :



CONVERGENCE OF FINITE ELEMENT APPROXIMATIONS 17The friction constant in (1.4) was set � = 2=(�p�) � 18:05406, which is proved in [45]to be the friction constant for laminar boundary layers in the limit Re!1.We used the Q2=P disc1 �nite element discretization in this example. The computationswere carried out on level 3 (105 602 d.o.f. of the velocity, 39 168 d.o.f. of the pressure)and with equaldistant time step �t = 0:01.The initial velocity was set to be zero in all interior degrees of freedom and we ap-plied an impulsive start. The 
ow starts to develop vortices behind the step which aretraveling on the lower boundary and �nally leaving the channel. Because of the slip withresistance boundary condition, the reattachment point of a vortex can be determinedeasily by a change of the sign of the tangential velocity on the boundary. In contrastto homogeneous Dirichlet boundary conditions, the tangential component, in general,does not vanish. The reattachment points of the vortices are presented in Figure 2 fort 2 [0; 100]. Streamlines of the corresponding velocity for some times t are given in Figure3.REFERENCES1. O. Axelsson and W. J. Layton, Defect correction methods for convection dominated con-vection di�usion methods, RAIRO Anal Num�er 24 (1990), 423{455.2. A. A. Aldama, Filtering Techniques for Turbulent Flow Simulation, Springer Lecture Notesin Eng 56, Springer, Berlin, 1990.3. M. O. Bristeau, R. Glowinski, and J. Periaux, Numerical methods for the Navier{Stokesequations: Applications to the simulation of compressible and incompressible viscous 
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FIG. 1. Coarsest grid (level 0) in Example 3.
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FIG. 3. Example 3, streamlines for t = 50; 75; 100.
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TABLE I. Example 1, mesh widths and degrees of freedom for Q2=P disc1 discretization (left)and Q3=P disc2 discretization (right).h Velocity Pressure Total Velocity Pressure Total1=4 338 96 4341=8 578 192 770 1250 384 16341=16 2178 768 2 946 4802 1536 63381=32 8450 3072 11522 18818 6144 249621=64 33282 12288 45570
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TABLE II. Example 1, kekL1(0;T;L2 ) for the Q2=P disc1 discretization.� = 1000 � = 10000 � = 100000h Error Order Error Order Error Order1=8 2.139817e-02 2.140299e-02 2.140347e-021=16 2.758204e-03 2.956 2.758924e-03 2.956 2.758996e-03 2.9561=32 3.470081e-04 2.991 3.470864e-04 2.991 3.471288e-04 2.9911=64 4.498844e-05 2.947 4.351145e-05 2.996 4.351082e-05 2.996



CONVERGENCE OF FINITE ELEMENT APPROXIMATIONS 25
TABLE III. Example 1, krekL2(0;T;L2 ) for the Q2=P disc1 discretization.� = 1000 � = 10000 � = 100000h Error Order Error Order Error Order1=8 1.476035e+00 3.954061e+00 5.086226e+001=16 3.652900e-01 2.015 9.784881e-01 2.015 1.258638e+00 2.0151=32 9.097928e-02 2.005 2.436802e-01 2.006 3.134455e-01 2.0061=64 2.273662e-02 2.001 6.087638e-02 2.001 7.830957e-02 2.001
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TABLE IV. Example 1, kekL1(0;T;L2 ) for the Q3=P disc2 discretization.� = 1000 � = 10000 � = 100000h Error Order Error Order Error Order1=4 3.301491e-02 3.497423e-02 3.531723e-021=8 2.065646e-03 3.998 2.066067e-03 4.081 2.066109e-03 4.0951=16 1.364503e-04 3.920 1.364647e-04 3.920 1.364567e-04 3.9201=32 8.900156e-06 3.938 8.902196e-06 3.938 8.902265e-06 3.938



CONVERGENCE OF FINITE ELEMENT APPROXIMATIONS 27
TABLE V. Example 1, krekL2(0;T;L2 ) for the Q3=P disc2 discretization.� = 1000 � = 10000 � = 100000h Error Order Error Order Error Order1=4 1.555536e+00 4.164188e+00 5.356372e+001=8 2.156786e-01 2.850 5.778960e-01 2.849 7.434777e-01 2.8491=16 2.549815e-02 3.080 6.814509e-02 3.084 8.765900e-02 3.0841=32 3.160856e-03 3.012 8.432707e-03 3.015 1.084991e-02 3.014
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TABLE VI. Example 2, mesh widths and degrees of freedom for Q2=P disc1 discretization.h Velocity Pressure Total1=2 375 32 4071=4 2187 256 24431=8 14739 2048 167871=16 107811 16384 124195
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TABLE VII. Example 2, kekL1(0;T;L2 ) (left) and krekL2(0;T;L2 ) (right).kekL1(0;T;L2 ) krekL2(0;T;L2 )h Error Order Error Order1=2 3.080651e+00 1.055479e+021=4 2.686117e-01 3.520 1.657113e+01 2.6711=8 4.133357e-02 2.700 4.645197e+00 1.8351=16 6.429026e-03 2.685 1.051972e+00 2.143


