Convergence of Finite Element Approximations of
Large Eddy Motion

Traian lliescu*
Mathematics and Computer Science Division, Argonne National Laboratory,

Argonne, IL 60439

Volker Johny
Faculty of Mathematics, Otto-von-Guericke University, Magdeburg, Germany

William J. Laytoni
Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260

Fluid motion in many applications occurs at higher Reynolds numbers. In these applications
dealing with turbulent flow is thus inescapable. One promising approach to the simulation of
the motion of the large structures in turbulent flow is large eddy simulation in which equations
describing the motion of local spatial averages of the fluid velocity are solved numerically. This
report considers “numerical errors” in LES. Specifically, for one family of space filtered flow
models, we show convergence of the finite element approximation of the model and give an
estimate of the error. © 777 John Wiley & Sons, Inc.
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[. INTRODUCTION

Consider the (turbulent) flow of an incompressible fluid. One promising and common
approach to the simulation of the motion of the large fluid structures is Large Eddy
Simulation (LES). Various models are used in LES; a common one is to find (w,q),

where w : Q(C RY d=2or 3) x [0,7] — R, ¢:Q x (0, 7] = R satisfying
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w; + V- (ww) — Re"'Aw + Vg

~V - (vp(Vw) Vw) + 11182V - (A~H(VwVw)) = f in Q x (0,7]
V-w =20 in Qx[0,7] (1.1)
w(x,0) = up(x) in

+ boundary conditions on 9.

The notation and terms in (1.1) require some explanation. The operator A~! denotes
a regularization operator, introduced in [15], which is described below. The term VwVw
is shorthand for the tensor

d

(VWVW)” = Z

3Xz 3Xz.

The function vp(Vw) is the “turbulent viscosity” coefficient arising from the subgrid
scale model employed for turbulent fluctuations. There are many mathematically inter-
esting possibilities for vy (Vw); see [25], [37], [46], [32], [33], [16], [20], [44]. In this paper

we study the most commonly used Smagorinsky [46] model
1/2

d 2
Jw;
vp(Vw) = ﬂo(52|VW|, |Vw|= E (3;}) . (1.2)
j

i,7=1

The parameter § denotes the “averaging radius”: the model (1.1) seeks to provide an
approximation of the eddies of size O(§) or larger. The data f, g are O(J) averages of
data from some turbulent flow problem underlying (1.1). The domain € is assumed to
be polyhedral and bounded with boundary TI'.

The question of boundary conditions for (1.1) is a fundamental question in LES. There
are various proposals; we impose a boundary condition suggested in [15] and developed
in [45]. If the fluid particles adhere to the walls, it does not follow that the large eddies
also “stick.” In fact, 1t is clear that large eddies do move slip along walls and lose energy
as they slip. The conditions we impose are no penetration (1.3) and slip with resistance

(1.4):

w-n = 0, onT, (1.3)
w7+ 36, Re)t -7 = 0, and T, j=1,d— 1. (1.4)

Here (4, Re) is the friction coefficient, and the vectors # and 7; (where j = 1 if
d=2and j =1,2if d = 3) denote the unit normal and tangent vectors to I' where, if
d =3, 1 L 75. The computational choice of 7 and 7; at the corners in such boundary
conditions is resolved in the work by Gresho and Sani [18]. If d = 3, all terms in which
7; occurs should (by understanding) be summed from j = 1,2; for example, ||w - 75||Z
means 2521 |lw - 75||f. Also t represents the Cauchy stress vector associated with w.
Specifically,

t=n-[—ql — 1 0° A" (VWVW) 4+ Re™'Vw + 1, (w)Vw].

There are several natural choices for the regularization A=1 in (1.1). The most com-
monly used model, which we consider here, is with no regularization A~! = I. This
model evolved from the work of Leonard [36] and Clark, Ferziger, and Reynolds [4]. Tts
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derivation was systematized by Aldama [2], and it has been used for many computational
studies, for example, Cantekin, Westerink, and Luettich [9]and Sagaut [44]. The report
[15] suggests the inclusion of a regularization operator A~! in the system (1.1). One
choice of A™1 is simply to reapply the spatial filter underlying (1.1): A~lv = g5 * v;
another possibility is A7lv = (=§?A + I)71v.

Large eddy simulation involves two fundamental issues: assessment of “modeling er-
rors” and “numerical errors”. Modeling errors refer to the question of how close w(x,?)
is to the true flow averages: |||w —ul|| for some norm ||| - |||. To our knowledge, there are
no analytical results to date on this question for (1.1), but there are experimental results
comparing various averages of w to those same averages of u (i.e., averages of averages
of u). If we accept w(x,1) as an interesting model for u, “numerical errors” describe how
close an approximation w” is to w. Numerical errors raise classical questions of stability,
consistency, and convergence for approximations of (1.1).

This report considers precisely this question for finite element approximations of (1.1).
In Theorem 3.4 we show that the usual, continuous-in-time, finite element approximation
to (1.1), w”, converges to w as the mesh width A — 0 for the Reynolds number Re and
averaging radius ¢ fixed.

This analysis leads to interesting questions beyond the case of the usual Navier-Stokes
equations (pioneered by Heywood and Rannacher in a series of papers [21], [22]), includ-
ing the case of slip with friction boundary conditions (1.4) (see, for example, [34], [38]
for some work related to this case); the degeneracy of the p-Laplacian-based subgrid-
scale model in (1.1) (see, for example, [10], [32] for numerical analysis of the equilibrium
model composed of NSE + p-Laplacian); the “cross-term” 2V - (VwVw) in (1.1), which
is non monotone, nonlinear, and higher order; and the dependence of the error on the
Reynolds number, Re, and the averaging radius, 4.

Our convergence analysis comes to grips with some of these questions. In particular,
we prove convergence as h — 0 for fixed Re. In some sense, Theorem 3.4 shows that the
parameter § does not degrade convergence. Naturally, we expect that a sharper analysis
will show that its presence in the model improves the estimates. The degeneracy in the
Smagorinsky [46] subgrid-scale model is not an essential difficulty; but (surprisingly) its
polynomial growth, which must match that of the cross term to ensure boundedness of
the kinetic energy in w, seems to cause suboptimality in the resulting error estimates.
This issue has recently been studied in a simplified setting in [26].

Nevertheless, convergence w” — w as h — 0 is proven. The long-term analytical goals
in the numerical analysis of large eddy simulation are then to extend the error analysis to
the model, including the regularization operator A~!; to sharpen this result, especially
with respect to error dependence on § and Re, where possible; and to complement it
with analysis of the modeling error. Preliminary steps in this last direction have recently
been taken in [27] for a different class of LES models.

[1. VARIATIONAL FORMULATION OF THE MODEL

We now introduce the notation for the functional setting. The L?(Q) norm and inner
product are denoted || - || and (-,-). The L?*(T') norm and inner product are denoted
|- |lr and (-, ). The L3(Q) norm is || - ||ps, and the Sobolev W*?(Q) norm is denoted
|| -|lx,p, with p omitted if p = 2. See, for example, [13] for a clear development of Sobolev
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spaces focusing on those important for the Navier-Stokes equations. Generic constants
independent of the mesh width h are denoted by C'.
It is natural to define the velocity—pressure spaces as follows:

X = {veW3Q)¢:v.an=00onT,}
Q = Li(Q)={A(x) € L*(Q): (A1) =0}
The Smagorinsky model used needs the assumption Vv € L3().

Some existence results for weak solutions of (1.1)—(1.4) have recently been proven in [6],
[7], and [14]. The regularity of weak solutions to (1.1)—(1.4) is still an open question,
including regularity down to t = 0. We shall nevertheless assume that (1.1)—(1.4) has
a unique solution in the sense of the variational formulation (2.1). We will attempt to
minimize any additional regularity assumed, and it will be explicitly stated as it is used.
Since the boundary conditions on w are not simple Dirichlet conditions, care must be

taken in developing a variational formulation of (1.1) in (X, Q).
Consider the following term, for v € X and w smooth enough:

/ V- lgI + 116*(VwVw) — (Re™! + vp(Vw))Vw] - v dx
Q
= / i g + 62 (VwVw) — (Re™! + vp(Vw))Vw] - v ds
r
—/ qV - v+ [uléz(VwVw) — (Re_1Vw +vp(Vw))Vw] : Vv dx.
Q

Decomposing v = (v - 73)7; + (v - 2)n = (v - 73)7; in the first integral, canceling the
obvious terms, and using (1.3)—(1.4), we obtain

/QV gl + uléz(VwVw) — (Re_1 +vp(Vw))Vw] - v dx

= 5(5,36)/(w.@)(v.@) ds (2.1)

T

—/ gV -v + [uléz(VwVw) — (Re_1 +vp(Vw))Vw] : Vv dx.
0

The next lemma is fundamental to energy estimation. Its proof is the same index
calculation as in the case of the no-slip boundary condition.
Lemma 2.1. Foranyu,v,w € X satisfying V-v =10
(v -Vw,u) = —(v-Vu,w),
such that
1 1
(v .Vw,u) = §(v -Vw,u) — §(v -Vu, w).

Proof. This followssince v-n=0on I forallve X and V-v=0.

]
We consider the skew—symmetric form of the convective term, which is denoted by

((u-Vv,w)— (u-Vw,v)).

N | —

b(u,v,w) =
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A variational formulation of (1.1)-(1.4) is thus as follows. Find a differentiable map
w:[0,7] = X,q:(0,T] = Q satisfying
(Wi, v) + ((Re™ ! + vp (VW) Vw, Vv) + B(6, Re)(w - 7, v - 7)r
—(q,V -v) 4+ b(w,w,v) — 11*((VwVw),Vv) = (f,v), (2.2)
(A V-w) = 0,

for all (v, ) € (X,Q).
We will frequently use the Poincaré inequality for all v € X

vl < ClIVvll. (2.3)

Note that this inequality needs only v -7 =0 on I' to hold, rather than v = 0 on I'; see
Galdi [13], p. 56.

The next two technical lemmas quantify the control the model of turbulent diffusion
exerts over the interaction of large and small eddies. They are also the key for prov-
ing existence of weak solutions; see Coletti [7], [6] and Galdi et al. [14]. Define, for
compactness,

F(w) = (Re_1 +vp(Vw))Vw — uléz(VwVw). (2.4)

Lemma 2.2. Let vp(Vw) := pod?|Vw|, where, pg > 4py. Then, there is a constant
C' such that for any vi,vs € X,

(F'(v1) = F(v2),V(vi = va)) + B(8, Re)((vi — va) - 75, (V1 — v2) - Tj)r
> ReH||[V(vi = va)l[* + %ﬂ052||v("1 —vo)l[7s + B3, Re)||(vi — va) - 7|

Proof. The proof of a similar estimate can be found in Coletti [7], which in turn
is based on a proof by Ladyzhenskaya [31]. Since we need an explicit relation between
po and gy in our new setting, we will present here the proof to highlight the condition

Ko > 4p.
Let

1
F(w) = (Re‘1 + §u0(52|Vw|) Vw — 11164(VwVw).

Note that F(w) = F(w) + L1062 | VW[ Vw.
Letting v¥ := yvy 4+ (1 — ¥)va, v € [0,1], and using the p-Laplacian’s strong mono-
tonicity (see, for example, [32]) and the approach in [7], we get

(F'(v1) = F(v2),V(vi = va)) + B(8, Re)((vi — va) - 75, (V1 — v2) - Tj)r
= B8, Re)|l(vi — v2) - 2 + (F(v1) = F(vz), V(vi — v2))

> s el —va) i+ [ ( 1 EEW ) Vv = v

C
+ S0V (v = V). (2.5)
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We now start to evaluate the second term on the right-hand side of the last inequality.
In the sequel, by convention, repeated indices denote summation.

d ¥
EF(V YV (v —va)

d 1
= |:R€_1—P)/VV’Y —|— 5#0(52

d d
d EHVV”VVW) - ﬂléza(VVWVVv)] V(vy —va)

1/2

d ov] [Ovy  Ovey 1 d ovi\ > A vy Ovey
S AL i OVaiy 1 2@ o i | (Vi Ovai
he dy 0x; <3xj 0% ) + 9o dy Z <3xk) 0% <3xj 0%

k\

g d vl V]| (ovii Ova
H1 dvy | Ox; Ox; 0% 0%

—1/2

L (Ovi Ova )T 1 1 v\’ v vy Ovy
— 1 _ Zund?Z i 9 2L ML
Re ( 8Xj 8Xj ) + 2”0 2 Z <8Xk) [ <8Xk) <8Xk 8Xk ):|

k\

1/2

)

8V? 8V1i 8V2i 1 2 8V7 . 8V1i 8V2i 8V1i 8V2i
[<3X]’) <3X]’ B 3Xj ):| + 5”06 Z E 3Xj B 3Xj 3Xj B 3Xj

kil
_ (52 3V1i _ 3V2i E + 3V7 3V1j _ 3V2j 3V1i _ 3V2i
H1 3X1 3X1 3X1 3X1 3X1 3X1 3Xj 3Xj ’

In the last equality, dropping the second term (which is positive) and using (twice)
the Cauchy-Schwarz inequality for the last term, we get for pg > 4444

d -~ 1
EF(VW)V(Vl —va) > Re_1|V(v1 — V2)|2 + §u0(52|Vv7| |V(vy — V2)|2

— 8V [V (v = v2) |2 = [ V||V (v1 = vo)|?
R6_1|V(V1 —V2)|2.

Y

Inserting this estimate into (2.4) proves the statement of the lemma.

]
Remark: This lemma does not include the V- (ww) nonlinearity describing how the

large eddies convect themselves. Because of this V - (ww) term, the nonlinearity in (1.1)
is not monotonic.

The next technical lemma concerns the continuity properties of F(-).

Lemma 2.3. Assume vp(Vw) := puod?|Vw|. Then, there is a constant C such that
for any vi,va, ¢ € X with ||[Vvi|pe <7 and ||[Vva||rs <7,

(F(vi) = F(v2), Vo) < Cro*||V(vi = vo)llLs[[V@l[zs + Re™H [V (vi = va)]| || Vl.

Proof. Using Holder’s inequality and adding and subtracting terms as appropriate,
we get

(F(v1) = F(v2), V)

)
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< Re7 Y[V (vi = va)l[[V]] +
1082 (|Vvi|Vvy — |[Vva Vv, Vo) — 11182 (Vvi Vv — VvaVve, Vo)

< Re7H[V(vi = vV + 062 (V1| Vv — [VV1[VVe + [VVvi|VVs — Vs |Vvs, V)
— 11182 (VviVVvi — VviVVvs 4+ Vv Vvy — Vva Vv, Vo)

< Re7Y|V(vi = va)[[l[ Vo[ + Crod®|[Vvilza ][V (vi = v2)|[12] [V 1o
+Ced? ||V (vi = v2)llLa[Vval[s[[ V| 1o + 18 |[VVil 2o [V (v = v2) |26 ][ V|l o
F10? ||V (vi = Vo) |2 |[VvellLe [V el e,

which proves the lemma. -

Using these lemmas, we can prove an energy bound for the solution of the continuous
problem (1.1)—(1.4). This first bound is the foundation upon which an existence theory
for (1.1)—(1.4) is built.

Proposition 2.4.  [Leray’s inequality for the Large Eddy Model]. Let w(x,t) satisfy
(2.1). Then, w satisfies the energy inequality

t

1 ¢ . _ 1 _
§|Iw(1t)||2+/0 [Bllw- 7]+ Re ™ [V w[*+Cpuod?|[Vwl|7s] dt’ < §|Iw(0)||2+/0 (f, w) dt’,

for any t > 0. In particular,
t
7113/2
VW[ Zs 00,5 < €0 pt0) <||W(X,0)||2 +/0 ||f||L/s/s) =: C1(6, pro, t).

Proof. Set v=w and A = ¢ in (2.1). Using Lemma 2.2 then gives
1d ) -
S Il + Re™H[Vwl[* + Cpod®|[Vw||7s + Bllw - 75IE < (F, w),

from which the energy inequality follows by integration.

To prove the second part, use Holder’s inequality, the Sobolev embedding W13(Q) —

L5(R2), Poincaré inequality (2.3), and Young’s inequality to obtain
_ _ _ A 5 C -
(£, w) <|wllzellfllzers < ClIVwlzallf]lLers < SlIVWIZs + 75 [IE]]

Choosing ¢ = ('§? proves the second statement of Proposition 2.4.

3/2
Le/s"

]
Before proceeding with the error analysis of the nonlinear, time-dependent problem,

we give estimates of two equilibrium projections. The first (Proposition 2.5) gives an
estimate of the error in the nonlinear Galerkin projection obtained by dropping time
dependence and convection (hence retaining only those terms associated with the tur-
bulence modeling.) This estimate is not optimal, reflecting the quadratic growth in the
model’s nonlinearity. (Suboptimal estimates similar to this also occur in error analysis of
problems such as the p-Laplacian [1], which are locally Lipschitz and strongly monotone
in the sense of Vainberg [49].) Proposition 2.5 thus gives an idea of rates of convergence
attainable in more complex settings as well. After that, in Proposition 2.6, we give an
analysis of the error in the Galerkin approximation to the Stokes problem with slip with
friction boundary conditions.
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We assume that the velocity-pressure space (X", Q") satisfies the natural ( [34], [38])
inf-sup condition associated with slip with friction conditions on I'. Note that since I" 1s
polyhedral, the natural norm on I' is not the Hl/Z(F) norm but rather the sum of the
Hl/z(Fi) norms over all faces I'; of I'. Thus, we assume

/\h v - h
)\hingh sup ALV -vh) 7z =2 a>0. (2.6)
€ vhexh N
ex ||/\h|| ||VVh||2 + Za]] faces ;, of T ||Vh ’ Tj”éypl

Under this condition, the space of discretely divergence-free functions V*
yh.— {vh e xh. (/\h,V~vh) =0, V Noe Qh}

is well defined [17], [19]. Examples of finite element spaces satisfying (2.6) are con-
structed in [34], [38].

Proposition 2.5. Let x" denote an approrimation of w in V" satisfying ||V x"||zs <
C||Vw]||ps. Assume also the conditions of Lemma 2.2 hold. Let w € V" be defined by

(F(w) = F(w),Vv") + B((w — w) - 75, v" - 75)r = 0,
for all v € V. Then, W € V" exists uniquely and the error w — W satisfies

B8, Re)ll(w — W) - 7IE + Re ™ ||V (w — W)||* + Cod®||V (w — w)][75
< C{Cpo) (@Y Twl|Le)* 267V (w = X[ + Re |V (w — x|
+B(0, Re)|l(w —x") - 7][71-
Proof. That w exists uniquely follows from standard arguments using monotonicity

following Minty’s lemma, [41], [39], [11]. For the error estimate, adding and subtracting
terms give

A" =w) -7, v" ) + (F(X") = F(w), V")
= B(X" =w) -7,V + (F() = F(w), V")
for all v € V. Setting v = x* — W and using Lemma 2.2 gives
B = w) - 7 IE + Re™H IV (X" = W)|[* + Crod®|[V (X" = w)|[Zs
< (B = F(w), VX" = W) + B((" = w) - 75, (" = W) - )
Thus, using the Cauchy-Schwarz inequality, Young’s inequality, and Lemma 2.3 give
A" = W) - 7 IE + Re™ V(X" = W)I* + Crod®||V(x" — W[

1 1 .
< SRYVOE =W+ gRe V(¢ - W)l
g S B . - -
FEIOC = %) A2+ DI = w) - 7R+ Cra V(¢ = W)Ll ¥ (w ="

where r = max{||Vx"||zs, |[VW||zs}, which is bounded by C|[Vw]||zs. Collecting terms
gives
IO = W) - 5l[F+ Re IV = W) + 20087 [V (X" = W) [0
< 2RIV (= W 178 = X" llze + Re~ [V (w — xP)? + Bll(w = ) - 5112
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Using Young’s inequality and the triangle inequality completes the proof.

Remark. Ly stability estimates of the Lo projection into finite element spaces ts
proven for many interesting spaces, for example, in [8] and [50].

The Stokes Projection under Slip with Friction Boundary Conditions

We consider the linear projection operator I : (X, Q) — (X", Q") with II(w,q) =
§) € (X"*,Q") defined by solving the following discrete Stokes problem. The pair
q) satisfies for all (v? A") € (V* Q"):
Re ™ (V(w — W), Vv") + B((w = W) - 7, v" - 7)r — (¢ — ¢,V -v") = 0,
(V- (w—w),\") = 0. (2.7)

(
(

w,
w,

This is equivalent to the following. Find w € V" satisfying
Re Y (V(w — W), Vv") + B((w —w) -7, v - ) — (¢ = A",V -v') =0, (2.8)
for all v? € V" and for any A" € Q".

Proposition 2.6.  Suppose the discrete inf-sup condition (2.6) holds. Then, (W,§)
exists uniquely in (X" Q") and satisfies

R [V (w W) + Bl (w — W) -7

< C inf R—lv _ whyy 2 vy a2 R _AhZ
<Ot ARV = V)P Bllw =) <71+ Rella = X))

< O, ot Amax{Re B[V (w = VDI + fl(w =) 5117 + Rellg = A7),

1
AheQh vie

Proof. Existence and uniqueness of (w, §) follow from the inf-sup condition and the
abstract theory in Girault and Raviart [17].

Let ["(w) denote some approximation of w in V. Decompose the error as w — w =
n— ¢" where n = w — I*(w) and ¢" = w — ["*(w) € V. The error equation for w — w
can then be rewritten, picking v* = ¢”, as

Re™H(V¢", V") +5(6" - 75,6" - 7j)r = Re™ (Vn, V") + B(n-75,6" - 7)r

_(q - Aha v ) ¢h)

Using the Cauchy-Schwarz inequality, Young’s inequality and ||V - ¢*|| < |[V¢"||, we get

Re™H V"2 + Blle" - 7l[E < € (Re™ IV nll* + Bl - 75117 + Rellg = A"1%) .
By the triangle inequality, we obtain

Re™H|[V(w — w)|I” + Bll(w — w) - 75|
< nt, RV =+ Altw = v 5+ Rellg = X
The stated result with infimum taken over X” follows because, under the discrete inf-sup
condition (2.6), it is known that if V- w = 0, the infimum over V* can be replaced by
an infimum over X”* with a larger constant C' (relation (1.12) on p.60 in [17]).



10 ILIESCU, JOHN, LAYTON

Il FINITE ELEMENT APPROXIMATION OF LARGE EDDY MOTION

The usual, continuous-in-time, Galerkin finite element approximation of the solution of
(w,q) of the large eddy model (1.1)—(1.4) will be given now. First, finite-dimensional
finite element subspaces
X"cX, Q"cq

are selected that satisfy the discrete inf-sup condition (2.6).

The continuous-in-time approximations (w”, ¢") are maps w” : [0,7] — X" ¢" :
(0,7] — Q" satisfying that w”(0) approximates 1y in X” and

(Wi vh) 4+ (Re™! + vp(VW"))Vw! Vv + b(wh, wh v") (3.1)
—(qh, V- Vh) + 8(4, Re)(wh . %j,vh “T)r — /1152(thth), Vvh) = (f',vh)
MV -wh) =0,

for all (v, A\*) € (X" Q"). Using V* and the nonlinear operator F(-) defined by (2.4),

we can write the approximation (3.1) more compactly. In particular, w” : [0, 7] — V*
satisfies

(wf,vh)—i—(F(Wh),V(vh))—I—b(wh,wh,vh) (3.2)
+5(9, Re)(wh ~7°j,vh ST)r = (f',vh), for all v € V.

The method (3.1) or (3.2), respectively, is stable. It satisfies the same energy inequality
as the continuous problem.

Proposition 3.1.  [Leray’s inequality for w"]. Suppose w" is the solution of (3.2).
Then, wh satisfies for all t > 0

1 ! ) -
Sl 7+ [ 18w 5+ B TWH? + Cond?[ T ]

1 b
< GIW O+ [ ) @) ar.
In particular,

t t
| BT < IO + CRe [ i) d
0 0

Proof. The proof of the first estimate 1s the same as that of Proposition 2.4. The
second estimate follows from the first estimate by neglecting the first, second, and the
last term on the left-hand side. Then, the second term on the right-hand side is estimated
by the Cauchy—Schwarz inequality, the Poincaré inequality (2.3), and Young’s inequality,
leading to

¢ ¢
[a@nwrenar< [ (§iren+ St )
0 —Jo \2 2¢
Choosing ¢ = C'Re and collecting terms, we conclude the proof.

By a similar argument, we obtain a particularly simple bound on ||w"(t)||, uniform in

both Re and §.
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Lemma 3.2. Suppose w” is the solution of (3.2). Then, for T >0

T
h h f
mase | (D] < [lw <o>||+/0 [£(1)]] dt.

Proof. Set v = w” in (3.2). Dropping the non-negative terms resulting on the left
hand side gives

1 d
2 di
Thus, %Hwh(t)ﬂ < |If(®)]|,* and the result follows.

d _ _
[w" (D117 = [w"|[llw" @)l < (£, w") <[] []w"]].

Combining this lemma and Proposition 2.4 gives an a priori bound on the quantity

al (1) = [|w" ()12 w" ()2, (3-3)

Lemma 3.3. Let a*(t) be as above and w" be the solution of (3.2). Then, a*(t) €
LY0,T) uniformly in h and

T 2 T
la" (Oll7a¢0.7) < (||"Vh(0)||+/0 £ dt) (llfffHWh(O)HzJrCRffz/0 [FGIR dt)~
Proof. Since

T
lla" (0)][23 0,7y < IIWhIIiw(o,T)/O [Vw"|[* dt,

the result follows from Proposition 3.1 and Lemma 3.2.

The method (3.2) reduces existence of w” to existence for a system of ordinary dif-
ferential equations in V", The Cauchy-Schwarz inequality and Proposition 3.1 give im-
mediately an a priori bound on w” (). Thus, w”(x,t) exists uniquely. If the discrete
inf-sup condition (2.6) and standard arguments of Girault and Raviart [17] are used, ¢"
does as well.

We now turn to the error in the approximation w® of w. Important questions in
the error analysis of large eddy simulation include dependence of the errors upon Re
and §, including cases in which ¢ and h are related. In this report we consider only the
first, without which later steps are not imaginable: we consider convergence of w” to w
as h — 0 for Re and ¢ fixed. Further, if there were a convergence result for w” to w
that was uniformly in 6, this would immediately imply a convergence result w — u (the
solution of the underlying Navier-Stokes equations) as 6 — 0. Such a result has never
been proven (to the authors’ knowledge) for any conventional turbulence model and only
for the Camassa-Holm model and one large eddy model [35].

Theorem 3.4. Let (w,q) let be the solution of (2.1) and (w", ¢") be the solution of
(3.1). Let the finite element spaces fulfill the inf-sup condition (2.6), let yig > 4py1, and
let a”(t) be defined in (3.3). Under the assumption

Vw € L0, T; L*(Q)),
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the error e = w — w” satisfies

lellZqor,22) + Blle - Tl T 2022 (ry) + Re™HIVellfago,rn2) + 1087V el [Foo ri0

< CC*(T 0) —w'(x,0)||>+ C inf F(w—w,q— N Re 8 1o, T
< (T)|lw(x,0) —w"(x,0)[|" + Wexh(lg)yxhem (w—w,q , Re,d, po, T)

with

C*(T) = exp (/0 (1 + C'(Re)3||Vw||4) dt) (3.4)

and

f(W—w,q—Ah,Re,é,ﬂo,T)

= Cl|lw - VNVH%“’(O,T,L?) + 1108%||V (w — VNV)H%S’(O,T,LE")

+C(T) ||| (w = %) (5, 07 + Re (Ila" (D110, + 990,72 ) IV (% = )3 07,1

. 13/2 _ . _
+C(8, po, T)||V (W — W)||L/3(0,T,L3) + Re V(W = W)lIZ2(0,7,22) + Rell(w — W)el[Z20,7, 1)

+Ol(w — w) - Tj||i2(0,T,L2(F)) + Rellg — /\h||i2(o,T,L2)H :

Proof. Let e =w —w” and v* € V. An error equation is obtained by subtracting
(3.1) from (2.1). This yields
(er, V) 4+ (F(w) — F(w"), Vv") + b(w,w,v") — b(w" wh v") (3.5)
+ﬁ(6 . %javh . 7A—])F == (q - Ahav . Vh)a
where A* € Q" is arbitrary. Let w € V" denote an approximation to w. Then, with
n=w-—wand ¢" = (W' —w) € V" and choosing v = ¢" we can rewrite the error
equation (3.5) as
(6, ¢") + B(e" - 75,0" - 7j)r + (F(w") = F(w), V")
= b(W,W, ¢h) - b(whawha ¢h) + (F(W) - F(\?V), v¢h) - (q - Aha = ¢h) + (nta ¢h)
+0(n - 75, 6" - 7)r. (3.6)
Using Lemma 2.3 gives the estimate for the nonlinear eddy viscosity term
(vr(VW)Vw — 1116%(VwVw)]
~[pr(W)V(W) — 18 (VWVYW)], V") < Cré?||V(w —w)lza||Ve"||za,  (3.7)

with
r = max{||[Vw||rz, ||VW]||r:} < C||[VW||s. (3.8)
With Lemma 2.2 we have
1 d R _
& TN + Bl6" -5+ B V6P + Crod?| V6 2

< b(w,w,¢") = b(w", w" 6") + |lmell o (V"] + Cré®||[Vallzs IV6"][2s (3.9)
+ReIVllIVe" |l + llg = ANV 6" + Blln - 7lcll¢" - 751l
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We consider now the convection terms on the right-hand side of this last inequality.
Adding and subtracting terms give

b(w,w, (/)h) — b(wh,wh, (/)h) = b(w,e, (/)h) + ble,w, (/)h) —be, e, (/)h)

By skew symmetry and e = 1 — ¢" = w — w”, this can be rewritten in the form

b(w,w,¢") —b(w", w", ") = b(n, w,¢") +b(w" 0, 6") —b(6", w,¢").  (3.10)
In the analysis of the trilinear form we will use the estimate
b(a, v, w) < C||Vul['?|[u][ /|| Vv|[|[Vw]|. (3.11)

This estimate is derived by Holder’s inequality, the Sobolev imbeddings Wl/Z’Z(Q) —
L3(Q) and WH2(Q) — L5(Q), the interpolation of W22(Q) by L*(Q) and WH3(Q),
and Poincaré’s inequality (2.3); see also the proof of Lemma 2.2 (f) in [40]. We obtain
by (3.11), Poincaré’s inequality (2.3), and Young’s inequality, for any € > 0

[b(n, w, ") + b(w", 1, 6")]
C IVl Il 5wl + w12l lw" 12l ) (96"

IA

IA

C (1wl + 7w /2 ]lw" 1) [Tl 6"

IA

€ C
§||W>h||2 +— (VW + 7w [l ) 11Vl

The remaining term on the right-hand side of (3.10) is also estimated by (3.11) and
Young’s inequality:

(", w, 6")]

IA

ClIV " P16 12 [V w]|
€ C
§||Vf/>h||2+ 6—3||VW||4||¢>h||2~

A

Applying again Young’s inequality, for € = Cyg,

Crd? ||V |l 1Vl

IA

€ 2 _ -~
SOV IEs + 520 (o)) ) (3.12)

1 9 _ ~
= 0"V |2 + () (Cuo) ™ 267Vl

The remaining terms on the right-hand side of (3.8) are also estimated by Young’s
inequality:

h 2 Re™! hy(2
([eller=2 (VO < Rellnellzg-2 + —— V7|
1 1
-1 h 2 B2
RTHlIITS | < g IVl + 5|V 6
1 €
lg =MV < ella = X+ SIVa°

Blln - mlclle" - w5l

IA

g g
Sl + Sl 7
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Picking e = O(Re™1), inserting all estimates into (3.8), and collecting terms give

d 54 . _ 2
EIWII2 + §I|¢h - 7|[: 4+ CRe™ Y| Vo |I” + gQuoészhII?ia

N | —

1
<C [Re (UIFwll” + 19w [llw" 1) 19l + Rellnell” + 51V ]]*
2 = - g
2P TS + CRella = X+ Dl
1
+ |+ crPIvw] It
Since, by assumption, ||[Vwl|* € L1(0,T), Gronwall’s inequality now implies
2 ’ h 1 2 4 2
s 160+ [ (28160 -+ BT+ T )
T
< D)) + e (T) / (Re (17w + 7w |[l[w"]) [1V5]1* + Rellne]|*
1 -
IVl 4 o2 28l 3+ Rellg — Ah||2+ﬁ||n~fj||%) dt

where C*(T) is defined in (3.4). We can bound by using the Cauchy—Schwarz inequality
in L2(0,7T):

A

T
/0 IVwIPIVnlPdt < IVWliZaor 2o IVallLao r 02

A

T
/0 IFw w9l < lla" @llzaom) Vol r 22

A

T
3/2 3/2 3/2 3/2
/0 e[S c/ IV w2Vl < VW 2o IV 7 1)

3/2
C(, o, DIV 7 10y

IA

The last estimate was obtained by using the estimate of r (3.8) and the result of Propo-
sition 2.4. The term a”(¢) is estimated in Lemma 3.3.
The error estimate now follows by the triangle inequality and collecting terms. -

IV. NUMERICAL RESULTS

We present two numerical tests that confirm the error estimate given in Theorem 3.4.
The first example is Chorin’s vortex decay problem in 2D and the second example has an
analytical solution in 3d. A third example illustrates the slip with resistance boundary
condition. Before the numerical examples, we will describe the numerical schemes used
in the computations.

We start by discretizing equation (1.1) in time by the fractional-step—f—scheme;see, for
example, Bristeau, Glowinsky, and Periaux [3], which is analyzed for the time-dependent
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Navier—Stokes equations by Kloucek and Rys [30]. This implicit scheme is of second-
order accuracy, more stable than the Crank—Nicolson scheme, and is currently considered
“best” on the basis of accuracy and reliability; see, for example, Turek [48] or Rannacher
[42].

The fractional-step—f—scheme divides each time step into three subtime steps. In
each subtime step, a nonlinear saddle point problem has to be solved. The nonlinear
problem is linearized by a fixed-point iteration. The term coming from the LES model,
A=H(VwVw), is computed only at the beginning of each subtime step and is not, changed
during the fixed-point iteration. All other nonlinear terms are updated after each itera-
tion step. We have used two finite element discretizations of different polynomial degree
to discretize the arising linear saddle point problems. The lower-order finite element is
the Q2/P{i*¢ (or 5/ P_1; see Gresho and Sani [18]) finite element discretization; that is,
the velocity is approximated by continuous piecewise biquadratics in 2D (triquadratics
in 3D) and the pressure by discontinuous bilinears in 2D (trilinears in 3D). The higher-
order pair of finite elements is the Qsz/P*¢ discretization; that is the discrete velocity
is continuous and piecewise bicubic in 2D (tricubic in 3D) and the pressure discontin-
uous and piecewise biquadratic in 2D (triquadratic in 3D). These conforming pairs of
finite element spaces fulfill the inf-sup or Babuska—Brezzi stability condition on meshes
consisting of parallelepipeds. They are currently considered among the most stable and
best-performing elements for finite element discretizations of Navier—Stokes equations;
see, for example, Fortin [12], Gresho and Sani [18], or the study in [28].

The linear saddle point problems are solved by a flexible GMRES method; see Saad
[43]. The preconditioner is a coupled multigrid method with Vanka—type smoothers as
studied numerically, for example, in [29] and [28]. These algorithmic choices are currently
considered among the best in terms of reliability, stability, and accuracy in finite element

CFD.

Ezample 1.  Chorin’s vortex decay problem in 2D. This problem is taken from [5] and
is also used in other numerical tests, for example, by Tafti [47] or in [24]. The domain is
the unit square Q = (0,1)?, and the prescribed solution has the form

wy = — cos(nmx)sin(nry) exp(—2nnit/7),
wy = sin(nma) cos(nmy) exp(—2nn’t/T),
1
g = —Z(cos(Qnﬂ'x) + cos(2ny)) exp(—4n’r?t/T).

We have chosen n = 4 and three different values of the relaxation parameter 7 in our
computations. Since the solution is known, we use for simplicity Dirichlet boundary
conditions. The right-hand side f is chosen such that w = (wy,ws)? and ¢ fulfill

w, — ReT'Aw 4 (w - V)w + Vg (4.1)
—V - (18| VW|VW) + p18°V - (VwVw) = f in (0, 7] x Q.
The derivation of the Taylor LES model with the Gaussian filter gives py = 1/12; see,

for example, [2]. As consequence of Lemma 2.2, we have chosen pg = 1/3. The other
parameters in this example were

Re = 10000,6 = 0.1, T = 20.

To reduce the influence of the time discretization error, we carried out all computations
with the small equidistant time step A¢ = 0.001. The unit square was decomposed into
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equidistant grids with squares of size A x h. The number of degrees of freedom (d.o.f.)
for the finite element discretizations and the different mesh sizes are given in Table I.
We present ||e|[p(0,7,22), Tables Il and IV, and ||Ve||p2(0,r,22), Tables III and V.
According to Theorem 3.4, the order of convergence of these errors is connected to the
approximation error of the used pair of finite elements. This can be clearly observed in the
numerical results. Theorem 3.4 predicts the same order of convergence for ||e]| Lo (0,7,12)
and ||Vel[z2(0,7,22). The higher order of convergence for ||e||ps 0,7,y in the numerical
results can be explained with the smoothness of the prescribed solution, because the

error estimate for |[e|[pos (0,7 £2) can be improved assuming a higher regularity of w in
Theorem 3.4.

Ezample 2. An analytical solution in 3D. In this example, the right-hand side f is
chosen such that

wy = t(10—1%) (a: + 4% + 2% 4 ¢° + sin(7mx) sin(7y) sm(ﬂ'z)) ,

wy = t(10—1) (a: + 222 4 32% 4 13 + cos(mz) cos(my) cos(ﬂ'z))

wy = t(10—1) ( 2x2 + by* — &ty + cos(rx) sin(my) cos(mz) + cos(ma) sin(my) sin(ﬂ'z)) ,
q = (10 —¢) 3z — 2y + Tz — 4) /25,

fulfill (4.1) in © = (0,1)3. Again, we used for simplicity Dirichlet boundary conditions.
The other parameters in this example were

= %,ul = 11—2,Re =10000,0 = 0.1,7" = 10.
The solution depends quadratically on ¢ such that the discretization error in time of the
fractional-step—# scheme is negligible. We have used the equidistant time step At = 0.01.
The unit cube is divided into equidistant & x h x h meshes. The number of degrees of
freedom for the different mesh sizes using the @5/ P{*¢ discretization is given in Table
VI

The results for |[e||Lo(0,7,z2) and ||Ve|[L2(0p,L2) are presented in Table VII. The
evaluation of the numerical tests leads to the same observations as in Example 1.

Ho

Ezrample 3. We like to give with this example a numerical illustration of the application
of the slip with resistance and no penetration boundary conditions. To our knowledge,
these boundary conditions have not been used in LES before. In addition, we wish to
demonstrate the behaviour of the regulariztion operator A=! in (1.1). An assessment
of some models in LES [24] demonstrates that the regularization A=! = I, called the
Taylor LES model in [24], leads in numerical tests often to a blowup of the solution. In
contrast, A=t = (I — §2/(4y) A)=! and A~! = gs*, both called the rational LES model
n [24], have yielded good numerical results.

We consider the channel flow past a step; see Figure 1 for the domain and the initial
grid. The length of the channel is 40, its height 10; the step of height 1 starts at length
5 and ends at length 6. Parabolic inflow boundary conditions

= (y(10 — y)/25,0)"

and outflow boundary conditions, so—called do-nothing conditions, (see Heywood, Ran-
nacher, and Turek [23]), are prescribed. The parameters in (1.1) and (1.2) are chosen to

be
52 7!
T =100,A"" = (I——A) .
4y

1
Re = 1000,6 = 0.0625, o = 0.01, 1 = 75,
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The friction constant in (1.4) was set 3 = 2/(d/7) ~ 18.05406, which is proved in [45]
to be the friction constant for laminar boundary layers in the limit Re — oo.

We used the @/ P{¥*¢ finite element discretization in this example. The computations
were carried out on level 3 (105 602 d.o.f. of the velocity, 39 168 d.o.f. of the pressure)
and with equaldistant time step At = 0.01.

The initial velocity was set to be zero in all interior degrees of freedom and we ap-
plied an impulsive start. The flow starts to develop vortices behind the step which are
traveling on the lower boundary and finally leaving the channel. Because of the slip with
resistance boundary condition, the reattachment point of a vortex can be determined
easily by a change of the sign of the tangential velocity on the boundary. In contrast
to homogeneous Dirichlet boundary conditions, the tangential component, in general,
does not vanish. The reattachment points of the vortices are presented in Figure 2 for
t € [0,100]. Streamlines of the corresponding velocity for some times ¢ are given in Figure

3.

REFERENCES

1. O. Axelsson and W. J. Layton, Defect correction methods for convection dominated con-
vection diffusion methods, RATRO Anal Numér 24 (1990), 423-455.

2. A. A. Aldama, Filtering Techniques for Turbulent Flow Simulation, Springer Lecture Notes
in Eng 56, Springer, Berlin, 1990.

3. M. O. Bristeau, R. Glowinski, and J. Periaux, Numerical methods for the Navier—Stokes
equations: Applications to the simulation of compressible and incompressible viscous flows,
Comput Phys Reports 6 (1987), 73-187.

4. R. A. Clark, J. H. Ferziger, and W. C. Reynolds, Evaluation of subgrid-scale models using
an accurately simulated turbulent flow, J Fluid Mech 91 (1979), 1-16.

5. A.J. Chorin, Numerical solution for the Navier—Stokes equations, Math Comp 22 (1968),
745-762.

6. P. Coletti, A global existence theorem for large eddy simulation turbulence model, Math
Models and Methods in App Sci 7 (1997), 579-591.

7. P. Coletti, Analytic and numerical results for k — ¢ and large eddy simulation turbulence
models, Ph.D. thesis, Univerity of Trento, 1998.

8. M. Crouzeix and V. Thomée, The stability in L? and WP of the L?-projection onto finite
element function spaces, Math Comp 48 (1987), 521-523.

9. M. E. Cantekin, J. J. Westerink, and R. A. Luettich Jr., Low and moderate Reynolds
number transient flow simulations using space filtered Navier—Stokes equations, Num Meth
Part Diff Eq 10 (1994), 491-524.

10. Q. Du and M. D. Gunzburger. Finite-element approximations of a Ladyzhenskaya model
for stationary incompressible viscous flow, STAM J Numer Anal 27 (1990), 1-19.

11. G. Duvaut and J. L. Lions, Les Inéquations en méchanique et physique, Dunod, Paris,
1972.

12. M. Fortin, Finite element solution of the Navier-Stokes equations, Acta Numerica (1993),
239-284.

13. G. P. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations
I: Linearized Theory, Springer Tracts in Natural Philosophy 38, Springer-Verlag, 1994.



18

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

ILIESCU, JOHN, LAYTON

G. P. Galdi, T. Ihescu, and W. J. Layton, Mathematical analysis for a new large eddy
simulation model, Preprint, University of Pittsburgh, 2000.

P. Galdi and W. Layton, Approximation of the larger eddies in fluid motion II: A model
for space filtered flow, Math Models and Meth in Appl Sciences 10 (2000), 343-350.

M. Germano, U. Piomelli, P. Moin, and W. Cabot, A dynamic subgrid—scale eddy viscosity
model, Phys Fluids A 3 (1991), 1760-1765.

V. Girault and P. A. Raviart, Finite Element Approximation of the Navier-Stokes Equations,
Springer-Verlag, Berlin, 1979.

P. M. Gresho and R. L. Sani, Incompressible Flow and the Finite Element Method, Wiley,
2000.

M. Gunzburger, Finite Element Methods for Viscous Incompressible Flows, Academic
Press, Boston, 1989.

T. J. Hughes, L. Mazzei, and K. E. Jansen, Large eddy simulation and the variational
multiscale method, Comput Visual Sci 3 (2000), 47-59.

J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-
Stokes problem [: Regularity of solutions and second order error estimates for spacial dis-
cretization, SIAM J Num Anal 19 (1982), 275-311.

J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-
Stokes problem [11: Smoothing property and higher order estimates for spatial discretization,
SIAM J Num Anal 25 (1988), 489-512.

J. G. Heywood, R. Rannacher, and S. Turek, Artificial boundaries and flux and pressure
conditions for the incompressible Navier-Stokes equations, Int J Numer Methods Fluids 22
(1996), 325-352.

T. Iliescu, V. John, W. J. Layton, G. Matthies, and L. Tobiska, An assessment of models
in large eddy simulation, Preprint 21, Otto-von-Guericke Universitat Magdeburg, Fakultat
fur Mathematik, 2000.

T. Tliescu and W. J. Layton, Approximating the larger eddies in fluid motion III: The
Boussinesq model for turbulent fluctuations, Analele Stiintifice ale Universitatii ” Al 1.
Cuza” lagi, Tomul XLIV, s.l.a, Matematicd 44 (1998), 245-261.

T. Iliescu, Genuinely nonlinear models for convection-dominated problems, Preprint
ANL/MCS-P857-1100, Argonne National Laboratory Mathematics and Computer Science
Division, 2000.

V. John and W. J. Layton, Approximating local averages of fluid velocities: The Stokes
problem, Computing (2001), to appear.

V. John and G. Matthies, Higher order finite element discretizations in a benchmark problem
for incompressible flows, submitted, 2000.

V. John and L. Tobiska, Smoothers in coupled multigrid methods for the parallel solution
of the incompressible Navier—Stokes equations, Int J Num Meth Fluids 33 (2000), 453-473.

P. Kloucek and F. S. Rys, Stability of the fractional step #—scheme for the nonstationary
Navier-Stokes equations, STAM Num Anal 31 (1994), 1312-1335.

O. A. Ladyzhenskaya, New equations for the description of motion of viscous incompressible
fluids and solvability in the large of boundary value problems for them, Proc Steklov Inst
Math 102 (1967), 95-118.

W. J. Layton, A nonlinear, subgridscale model for incompressible viscous flow problems,
SIAM J Sci Comput 17 (1996), 347-357.



CONVERGENCE OF FINITE ELEMENT APPROXIMATIONS 19

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.
44.

45.

46.

47.

48.

49.

50.

W. J. Layton, Subgridscale modelling and finite element methods for the Navier Stokes
equations, Report mbi-96-4, Otto-von-Guericke Universitat, Magdeburg, Germany, 1996.

W. J. Layton, Weak imposition of “no-slip” conditions in finite element methods. Comput
and Math with Applications 38 (1999), 129-142.

W. J. Layton, Analysis of a scale-similarity model of the motion of large eddies in turbulent
flows, Preprint, University of Pittsburgh, 2000.

A. Leonard, Energy cascade in large eddy simulation of turbulent fluid flows, Adv in
Geophysics 18A (1974), 237-248.

R. Lewandowski, Analyse Mathematique et Oceanographie, Masson, 1997.

A. Liakos, Weak imposition of boundary conditions in the Stokes and Navier—Stokes equa-
tion, Ph.D. thesis, University of Pittsburgh, 1999.

J. L. Lions, Quelques Méthodes de résolution des problémes aux limites non linéaires,
Dunod, Gauthier—Villars, Paris, 1969.

W. Layton and L. Tobiska, A two—level method with backtracking for the Navier—Stokes
equations, STAM J Numer Anal 35 (1998), 2035-2054.

G. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math J 29 (1962), 341-
346.

R. Rannacher, Finite element methods for the incompressible Navier—Stokes equations, J
Math Fluid Mech (2000), to appear.

Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1996.

P. Sagaut, Introduction & la simulation des grandes échelles pour les écoulements de fluide
incompressible, Springer Verlag, Berlin, 1998.

N. Sahin, New perspectives on boundary conditions for large eddy simulation, Technical
report, University of Pittsburgh, 2000.

J. S. Smagorinsky, General circulation experiments with the primitive equations, Mon
Weather Review 91 (1963), 99-164.

D. Tafti, Comparison of some upwind—biased high—order formulations with a second—order
central-difference scheme for time integration of the incompressible Navier—Stokes equa-
tions, Comp and Fluids 25 (1996), 647-665.

S. Turek, Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Compu-
tational Approach, Lecture Notes in Computational Science and Engineering 6, Springer,
1999.

M. M. Vainberg, Variational Methods and the Method of Monotone Operators in the Theory
of Nonlinear Equations, Wiley, New York, 1973.

J. Xu. Theory of multilevel methods, Ph.D. thesis, Cornell University, Ithaca, New York,
1989.



20

ILIESCU, JOHN, LAYTON

FIG. 1.

Coarsest grid (level 0) in Example 3.
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FIG. 3. Example 3, streamlines for ¢t = 50, 75, 100.
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TABLE 1. Example 1, mesh widths and degrees of freedom for Q2 /Pf*¢ discretization (left)
and Qg/PQd’Sc discretization (right).

h |Velocity Pressure  Total | Velocity ~ Pressure  Total

1/4 338 96 434
1/8 578 192 770 1250 384 1634
1/16 2178 768 2 946 4802 1536 6338
1/32 8450 3072 11522 18818 6144 24962

1/64 33282 12288 45570
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TABLE 1. Example 1, |le||oc (0,7,r2) for the Q2 / Pf*° discretization.

7 = 1000 7 = 10000 7 = 100000
h Error  Order Error  Order Error  Order
1/8 2.139817e-02 2.140299e-02 2.140347e-02

1/16 | 2.758204e-03 2.956 | 2.758924e-03 2.956 | 2.758996e-03 2.956
1/32 | 3.470081e-04 2.991 | 3.470864e-04 2.991 | 3.471288e-04 2.991
1/64 | 4.498844e-05 2.947 | 4.351145e-05 2.996 | 4.351082¢-05 2.996
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TABLE I1I.  Example 1, ||Vel||z2(0,1,r2) for the Qo /Pf*¢ discretization.
T = 1000 T = 10000 T = 100000
h Error  Order Error  Order Error  Order
1/8 1.476035e+00 3.954061e4-00 5.086226e+00
1/16 3.652900e-01 2.015 9.784881e-01 2.015 | 1.258638e4-00 2.015
1/32 9.097928e-02 2.005 2.436802e-01 2.006 3.134455e-01 2.006
1/64 2.273662e-02 2.001 6.087638e-02 2.001 7.830957e-02 2.001
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TABLE IV.  Example 1, |le]| g (0,7,2) for the Qs /Ps**° discretization.

7 = 1000 7 = 10000 7 = 100000
h Error  Order Error  Order Error  Order
1/4 3.301491e-02 3.497423e-02 3.531723e-02

1/8 | 2.065646e-03  3.998 | 2.066067¢-03  4.081 | 2.066109e-03  4.095
1/16 | 1.364503e-04  3.920 | 1.364647e-04  3.920 | 1.364567e-04  3.920
1/32 | 8.900156e-06  3.938 | 8.902196e-06  3.938 | 8.902265e-06  3.938




CONVERGENCE OF FINITE ELEMENT APPROXIMATIONS

TABLE V.  Example 1, ||[Ve|r2(0,1,12) for the Qs /Ps**° discretization.

7 = 1000 7 = 10000 7 = 100000
h Error  Order Error  Order Error  Order
1/4 1.555536e+00 4.164188e+00 5.356372e+00

1/8 2.156786e-01 2.850 5.778960e-01 2.849 7.434777e-01 2.849
1/16 2.549815e-02 3.080 6.814509e-02 3.084 8.765900e-02 3.084
1/32 3.160856e-03  3.012 8.432707e-03  3.015 1.084991e-02 3.014
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TABLE VI.  Example 2, mesh widths and degrees of freedom for QQ/PldiSC discretization.

h | Velocity  Pressure Total

1/2 375 32 407

1/4 2187 256 2443

1/8 14739 2048 16787

1/16 107811 16384 124195
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TABLE VII.  Example 2, |le]|pec (0,722 (left) and ||Ve|[z2 (0,1 r2) (right).

||€||L°°(0,T,L2) ||V6||L2(O,T,L2)
h Error  Order Error  Order
1/2 3.080651e+00 1.055479e+02

1/4 2.686117e-01 3.520 | 1.657113e+01 2.671
1/8 4.133357e-02 2.700 | 4.645197e4-00 1.835
1/16 6.429026e-03 2.685 | 1.051972e4-00 2.143




