Remote Accessto Mathematical Software

Elizabeth Dolan, Paul Hovland, Jorge Moré,
Boyana Norris, and Barry Smith
Mathematics and Computer Science Division
Argonne National Laboratory
9700 S. Cass Avenue, Argonne, IL 60439-4844
[dolan,hovland,more,norris,bsmithj@mcs.anl.gov

Abstract

The network-oriented application services paradigm isdoeieg increasingly common for scientific computing. The
popularity of this approach can be attributed to the numeradvantages to both user and developer provided by network-
enabled mathematical software. The burden of installind araintaining complex systems is lifted from the user, while
enabling developers to provide frequent updates withartgiting service. Access to software with similar funcidy can
be unified under the same interface. Remote servers capeupititentially more powerful computing resources than ngay b
available locally. We discuss some of the application ses/developed by the Mathematics and Computer Sciencedbivis
at Argonne National Laboratory, including the Network EfebOptimization System (NEOS) Server and the Automatic
Differentiation of C (ADIC) Server, as well as preliminargsk on Web access to the Portable Extensible Toolkit fontifie
Computing (PETSc). We also provide a brief survey of relaterk.

1 Introduction

Network application services for business applicationselzecome very popular in recent years. Systems that enable
Internet access to scientific software have also emerged.

Several principal approaches to making software availabée the network exist. One approach is to enable Web-based
remote use of hardware and software resources in a fastgealglresembling local use. Users may need to have accounts
on the remote machines. For example, the Grid Portal To@B«itdPort) [13, 19] provides access to a collection of sersj
scripts, and tools that allow NPACI users to run codes, acdata, and communicate with NPACI's Globus-ready systems.

Other servers, such as the NEOS Server, may transfer the psegram or the problem specification and data from the
user's machine to a remote machine, which then runs the codleecdata and transfers back the result. The user does not
necessarily need an account on the remote machine.

Another approach is to download the application from theeseto the user's machine, where it operates on the user’s
data and generates the result locally. Finally, in a remoteputing environment, only the user’s data travels to theese
where programs based on numerical libraries operate od itteen return the result to the user. Some service provigecs,
as NetSolve [9], use this approach.

We have identified a number of issues in making our scientifitsgre accessible on the Internet. Each of the three
servers discussed in this paper addresses a subset ofdbess. i

o User interface and problem representation. A good user interface design is crucial to any network-egblpli-
cation. The benefit of providing Internet access to mathiadagnd scientific software would be diminished if the
learning curve for using it remotely is too steep. Makingséixig software accessible over the network offers an oppor-
tunity for designing an interface which can serve a doublppse—hiding the complexity of scientific software and
providing secure access to remote resources. In genezalsdr’s input must be transformed to the format accepted by
the mathematical software. If a server provides access te than one type of software, as in the case of the NEOS

Server, providing a standard format for the problem repriedion makes it possible to extend the functionality of the
server without having to modify its implementation.

e Security. Offering any type of service over the Internet exposes thevape and hardware to malicious attacks.
Internet-accessible software can potentially be used ito @zcess to protected system resources. On machines pro-
viding more than one service, a breach of one applicatiorbeamsed to disrupt the operations of another. We focus
on security issues directly related to the servers discussthis paper; although Web servers and browsers may be
vulnerable to malicious attacks, we do not offer any gersshltions for this type of problem.

One possible general solution is to use an operating systemas Trusted Linux, HP Laboratiories’ implementation
of a secure version of Linux, which contains kernel-enfdrcentrols [11]. In a trusted OS implementation, services
and applications are run within separate compartmentskametl-level mandatory checks ensure that processes from
one compartment cannot interfere with processes from anattmpartment. Each compartment has a file system
section associated with it and can access files only witlahdection. Network access is provided via narrow, kernel-
controlled interfaces governed by compartment-specifesrspecified by the system administrator. The idea is simila
to that of Java security via a “sandbox”; however, while aused&ernel implementation controls the execution of all
applications, the Java model relies on the application terdene and enforce its security policy. For example, when
an applet runs inside the HotJava browser, HotJavaTM isabe dpplication that has determined the security policy
for that applet.

Other OS-based solutions focus on remedies for applicap@eific security vulnerabilities. One such approaches th
system-call monitoring system (SMS) [8] developed coltaliwely at Telcordia and SUNY. SMS augments the ker-
nel’'s general-purpose implementation of system calls withpplication-specific one, which incorporates explmitat
detection and damage prevention mechanisms. While thioaplp eliminates reliance on software vendor security
updates, it may cause significant performance degradatisome applications.

In all three servers described in this paper, the issue afrggds addressed by providing a narrow interface to the

underlying software, without significantly reducing thenétionality of the remote service. Each server implements
additional measures, some of which are described in moegl desubsequent sections. While some security issues
are common to most Internet application services, ofterethee unique challenges to providing secure access to
mathematical software. In this paper we forego discussigemeric security issues and focus more on the application-
specific details.

o Distributed resource management. While the Automatic Differentiation of C (ADIC) Server ancetwork-Enabled
Optimization System (NEOS) Server provide access to soéweat usually runs on a single processor, the network-
enabled servers themselves are distributed. The Portakiensible Toolkit for Scientific Computing (PETSc) is a
parallel toolkit whose corresponding application serv@vpes access to a distributed set of resources for each use
request. A shared goal of all three servers is to provide gesponse times for user requests. Thus, some distributed
resource management strategy is needed. We describe tioaelpgs used in our server implementations in subsequent
sections.

In the remainder of this paper we discuss the individual iregquents, challenges, and implementation highlights ef th
ADIC, PETSc, and NEOS Servers.

2 TheADIC Server

The ADIC Server makes automatic differentiation (AD) aable via the Web. Derivatives play an important role in a
variety of scientific computing applications, includingimpization, solution of nonlinear equations, sensitiahalysis, and
nonlinear inverse problems. AD technology provides a meicha for augmenting computer programs with statements for
computing derivatives [15, 16]. In general, given a codthat computes a functiofi: z € R — y € R™ with n inputs
andm outputs, an AD tool produces codé that computeg’ = dy/0x, or the derivatives of some of the outpytsvith
respect to some of the inputs In order to produce derivative computations automaticAlD tools systematically apply the
chain rule of differential calculus at the elementary opmrkevel.

ADIC is a source transformation tool for the automatic défgiation of ANSI C code [7, 17]. Source transformation
AD tools extend the notion of a compiler by altering the fuoisality of the original program, augmenting it with deriive
computations. Given a set of C source files, ADIC producesva set of source code files augmented with derivative

computations. Limited C++ support is also available. Thel®@ldesign allows easy expansion of its functionality thrdoug
plug-in modules. A module specified at runtime interactlie rest of the system via machine- and language-indepéende
file interfaces. Language independence is achieved thrthegghise of an intermediate representation, known as the AIF
(Automatic differentiation Interface Form) [1, 18], whiabstracts AD-relevant information from the more genenaglsage
features. Although most modules target derivative contprteby exploiting the chain rule, modules can be written to
perform any language-independent transformation. Eactiuleausually has a set of associated runtime libraries, lwhic
must be linked with the differentiated code.

The ADIC Server aims to provide an easy-to-use, highly aibksinterface to ADIC and, potentially, other AD tools.
Our goals include developing and implementing mechanismsemote file management, fast response to user requests,
scheduling of requests in a distributed environment, asist@sce with tasks the user must perform after downloading
differentiated files from the server. The URL for the ADIC @aris www.mcs.anl.gov/autodiff/adicserver.

We discuss the requirements of source transformation@gifan server, including account and file management, user
interface and server implementation. Users of the ADIC &ecan upload source code written in ANSI-C, manage remote
files, differentiate selected functions, and download @dgmented with derivative computations. Using a simphesdiand
linking to the appropriate libraries, the user can then dtevgnd run the differentiated code locally.

\(Scheduler Daemont
(5

CGI Client D_,——[Server Daemon

Server Daemon

-~ Command Line cnenﬂ []%
L Server Daemon %

Figure 1: ADIC Server components.

Figure 1 illustrates the organization of the ADIC applioatserver. The ADIC Server is the abstract entity that corre-
sponds to a set of processes executing on different hostsiding one scheduler daemon, multiple server daemons, and
multiple clients. All processes communicate using TCPA&ksts. The main ADIC Server components are

¢ Clients, including a CGlI-based Web client and a prototype commarehansion. The client handles user requests by
first contacting the scheduler to obtain a server host nardeart number. Then the client connects directly to the
assigned server daemon and submits the request using ancunsésmediate representation. Once the server begins
fulfilling the request by applying ADIC to the files selecteglthe user, the client dynamically displays the server’s
output.

e Scheduler daemon, responsible for accepting job requests and selecting thss{lply) remote host on which to execute
ADIC. The scheduler receives periodic updates from theesetgemons, based on which the host with the smallest
load (adjusted for the number of processors) is selecteertice the client’s request.

o Server daemons, responsible for receiving the user’s request, parsingubking ADIC, and transmitting the resulting
code back to the client.

2.1 User Interface

The ADIC Server's Web interface is designed to enable a as&btain derivative-enhanced versions of functions withou
being familiar with the AD process and the command-linerfiaiees of the tools. The main page contains virtually all

