
Learning from the Success of MPIWilliam D. GroppMathematics and Computer Science Division, Argonne National Laboratory,Argonne, Illinois 60439, gropp@mcs.anl.gov,WWW home page: www.mcs.anl.gov/~groppAbstract. The Message Passing Interface (MPI) has been extremelysuccessful as a portable way to program high-performance parallel com-puters. This success has occurred in spite of the view of many that mes-sage passing is di�cult and that other approaches, including automaticparallelization and directive-based parallelism, are easier to use. Thispaper argues that MPI has succeeded because it addresses all of theimportant issues in providing a parallel programming model.1 IntroductionThe Message Passing Interface (MPI) is a very successful approach for writingparallel programs. Implementations of MPI exist for most parallel computers,and many applications are now using MPI as the way to express parallelism (see[1] for a list of papers describing applications that use MPI). The reasons for thesuccess of MPI are not obvious. In fact, many users and researchers complainabout the di�culty of using MPI. Commonly raised issues include the complexityof MPI (often as measured by the number of functions), performance issues(particularly the latency or cost of communicating short messages), and thelack of compile or runtime help (e.g., compiler transformations for performance;integration with the underlying language to simplify the handling of arrays,structures, and native datatypes; and debugging). More subtle issues, such asthe complexity of nonblocking communication and the lack of elegance relative toa parallel programming language, are also raised [2]. With all of these criticisms,why has MPI enjoyed such success?One might claim that MPI has succeeded simply because of its portability,that is, the ability to run an MPI program on most parallel platforms. Butwhile portability was certainly a necessary condition, it was not su�cient. Af-ter all, there were other, equally portable programming models, including manymessage-passing and communication-based models. For example, the socketinterface was (and remains) widely available and was used as an underlyingcommunication layer by other parallel programming packages, such as PVM [3]and p4 [4]. An obvious second requirement is that of performance: the ability ofthe programming model to deliver the available performance of the underlyinghardware. This clearly distinguishes MPI from interfaces such as sockets. How-ever, even this is not enough. This paper argues that six requirements must allbe satis�ed for a parallel programming model to succeed, that is, to be widely



adopted. Programming models that address a subset of these issues can be suc-cessfully applied to a subset of applications, but such models will not reach awide audience in high-performance computing.2 Necessary PropertiesThe MPI programming model describes how separate processes communicate.In MPI-1 [5], communication occurs either through point-to-point (two-party)message passing or through collective (multiparty) communication. Each MPIprocess executes a program in an address space that is private to that process.2.1 PortabilityPortability is the most important property of a programming model for high-performance parallel computing. The high-performance computing communityis too small to dictate solutions and, in particular, to signi�cantly inuence thedirection of commodity computing. Further, the lifetime of an application (oftenten to twenty years, rarely less than �ve years) greatly exceeds the lifetime ofany particularly parallel hardware. Hence, any application must be prepared torun e�ectively on many generations of parallel computer, and that goal is mosteasily achieved by using a portable programming model.Portability, however, does not require taking a \lowest common denomina-tor" approach. A good design allows the use of performance-enhancing featureswithout mandating them. For example, the message-passing semantics of MPIallows for the direct copy of data from the user's send bu�er to the receive bu�erwithout any other copies.1 However, systems that can't provide this direct copy(because of hardware limitations or operating system restrictions) are permitted,under the MPI model, to make one or more copies. Thus MPI programs remainportable while exploiting hardware capabilities.Unfortuately, portability does not imply portability with performance, oftencalled performance portability. Providing a way to achieve performance whilemaintaining portability is the second requirement.2.2 PerformanceMPI enables performance of applications in two ways. For small numbers ofprocessors, MPI provides an e�ective way to manage the use of memory. Tounderstand this, consider a typical parallel computer as shown in Figure 1.The memory near the CPU, whether it is a large cache (symmetric mul-tiprocessor) or cache and memory (cluster or NUMA), may be accessed morerapidly than far-away memory. Even for shared-memory computers, the ratio ofthe number of cycles needed to access memory in L1 cache and main memory isroughly a hundred; for large, more loosely connected systems the ratio can ex-ceed ten to one hundred thousand. This large ratio, even between the cache and1 This is sometimes called a zero-copy transfer.2



CPU

Mem N
IC

N
IC

Mem

CPUCPU

Mem N
IC

N
IC

Mem

CPU

InterconnectFig. 1. A typical parallel computerlocal memory, means that applications must carefully manage memory localityif they are to achieve high performance.The separate processes of the MPI programming model provide a naturaland e�ective match to this property of the hardware.This is not a new approach. The C language provides register, originallyintended to aid compilers in coping with a two-level memory hierarchy (regis-ters and main memory). Some parallel languages, such as HPF [6], UPC [7],or CoArray Fortran [8], distiguish between local and shared data. Even pro-gramming models that do not recognize a distinction between local and remotememory, such as OpenMP, have implementations that often require techniquessuch as \�rst touch" to ensure that operations make e�ective use of cache. TheMPI model, based on communicating processes, each with its own memory, is agood match to current hardware.For large numbers of processors, MPI also provides e�ective means to developscalable algorithms and programs. In particular, the collective communicationand computing routines such as MPI Allreduce provide a way to express scalableoperations without exposing system-speci�c features to the programmer. Alsoimportant for supporting scalability is the ability to express the most powerfulscalable algorithms; this is discussed in Section 2.4.Another contribution to MPI's performance comes from its ability to workwith the best compilers; this is discussed in Section 2.5. Also discussed there ishow MPI addresses the performance-tradeo�s in using threads with MPI pro-grams.Unfortunately, while MPI achieves both portability and performance, it doesnot achieve perfect performance portability, de�ned as providing a single sourcethat runs at (near) acheivable peak performance on all platforms. This lack issometimes given as a criticism of MPI, but it is a criticism that most other pro-gramming models also share. For example, Dongarra et al [9] describe six di�er-ent ways to implement matrix-matrix multiply in Fortran for a single processor;not only is no one of the six optimal for all platforms but none of the six areoptimal on modern cache-based systems. Another example is the very existenceof vendor-optimized implementations of the Basic Linear Algebra Subroutines(BLAS). These are functionally simple and have implementations in Fortranand C; if compilers (good as they are) were capable of producing optimal codefor these relatively simple routines, the hand-tuned (or machined-tuned [10])versions would not be necessary. Thus, while performance portability is a desir-3



able goal, it is unreasonable to expect parallel programming models to provideit when uniprocessor models cannot. This di�culty also explains why relyingon compiler-discovered parallelism has usually failed: the problem remains toodi�cult. Thus a successful programming model must allow the programmer tohelp.2.3 Simplicity and SymmetryThe MPI model is often criticized as being large and complex, based on thenumber of routines (128 in MPI-1 with another 194 in MPI-2). The number ofroutines is not a relevant measure, however. Fortran, for example, has a largenumber of intrinsic functions; C and Java rely on a large suite of library routinesto achieve external e�ects such as I/O and graphics; and common developmentframeworks have hundreds to thousands of methods.A better measure of complexity is the number of concepts that the user mustlearn, along with the number of exceptions and special cases. Measured in theseterms, MPI is actually very simple.Using MPI requires learning only a few concepts. Many MPI programs canbe written with only a few routines; several subsets of routines are commonlyrecommended, including ones with as few as six functions. Note the plural: fordi�erent purposes, di�erent subsets of MPI are used. For example, some recom-mend using only collective communiation routines; others recommend only a fewof the point-to-point routines. One key to the success of MPI is that these subsetscan be used without learning the rest of MPI; in this sense, MPI is simple. Notethat a smaller set of routines would not have provided this simplicity because,while some applications would �nd the routines that they needed, others wouldnot.Another sign of the e�ective design in MPI is the use of a single concept tosolve multiple problems. This reduces both the number of items that a user mustlearn and the complexity of the implementation. For example, the MPI com-municator both describes the group of communicating processes and providesa separate communication context that supports component-oriented software,described in more detail in Section 2.4. Another example is the MPI datatype;datatypes describe both the type (e.g., integer, real, or character) and layout(e.g., contiguous, strided, or indexed) of data. The MPI datatype solves the twoproblems of describing the types of data to allow for communication between sys-tems with di�erent data representations and of describing noncontiguous datalayouts to allow an MPI implementation to implement zero-copy data transfersof noncontiguous data.MPI also followed the principle of symmetry : wherever possible, routines wereadded to eliminate any exceptions. An example is the routine MPI Issend. MPIprovides a number of di�erent send modes that correspond to di�erent, well-established communication approaches. Three of these modes are the regularsend (MPI Send) and its nonblocking versions (MPI Isend), and the synchronoussend (MPI Ssend). To maintain symmetry, MPI also provides the nonblockingsynchronous send MPI Issend. This send mode is meaningful (see [11, Section4



7.6.1]) but is rarely used. Eliminating it would have removed a routine, slightlysimplifying the MPI documentation and implementation. It would have createdan exception, however. Instead of each MPI send mode having a nonblockingversion, only some send modes would have nonblocking versions. Each such ex-ception adds to the burden on the user and adds complexity: it is easy to forgetabout a routine that you never use; it is harder to remember arbitrary decisionson what is and is not available.A place where MPI may have followed the principle of symmetry too far is inthe large collection of routines for manipulating groups of processes. Particularlyin MPI-1, the single routine MPI Comm split is all that is needed; few usersneed to manipulate groups at all. Once a routine working with MPI groups wasintroduced, however, symmetry required completing the set. Another place is incanceling of sends, where signi�cant implementation complexity is required foran operation of dubious use.Of course, more can be done to simplify the use of MPI. Some possibleapproaches are discussed in Section 3.1.2.4 ModularityComponent-oriented software is becoming increasingly important. In commecialsoftware, software components implementing a particular function are used toimplement a clean, maintainable service. In high-performance computing, com-ponents are less common, with many applications being built as a monolithiccode. However, as computational algorithms become more complex, the need toexploit software components embodying these algorithms increases.For example, many modern numerical algorithms for the solution of partialdi�erential equations are hierarchical, exploiting the structure of the underlyingsolution to provide a superior and scalable solution algorithm. Each level in thathierarchy may require a di�erent solution algorithm; it is not unusual to haveeach level require a di�erent decomposition of processes. Other examples areintelligent design automation programs that run application components suchas uid solvers and structural analysis codes under the control of a optimizationalgorithm.MPI supports component-oriented software. Both describe the subset of pro-cesses participating in a component and to ensure that all MPI communication iskept within the component, MPI introduced the communicator.2 Without some-thing like a communicator, it is possible for a message sent by one componentand intended for that component to be received by another component or byuser code. MPI made reliable libraries possible.Supporting modularity also means that certain powerful variable layout tricks(such as assuming that the variable a in an SPMD program is at the same addresson all processors) must be modi�ed to handle the case where each process mayhave a di�erent stack-use history and variables may be dynamically allocatedwith di�erent base addresses. Some programming models have assumed that all2 The context part of the communicator was inspired by Zipcode [12].5



processes have the same layout of local variables, making it di�cult or impossibleto use those programming models with modern adaptive algorithms.Modularity also deals with the complexity of MPI. Many tools have been builtusing MPI to provide the communication substrate; these tools and librariesprovide the kind of easy-to-use interface for domain-speci�c applications thatsome developers feel are important; for example, some of these tools eliminateall evidence of MPI from the user program. MPI makes those tools possible.Note that the user base of these domain-speci�c codes may be too small tojustify vendor-support of a parallel programming model.2.5 ComposabilityOne of the reasons for the continued success of Unix is the ease with which newsolutions can be built by composing existing applications.MPI was designed to work with other tools. This capability is vital, becausethe complexity of programs and hardware continues to increase. For example,the MPI speci�cation was designed from the beginning to be thread-safe, sincethreaded parallelism was seen by the MPI Forum as a likely approach to sys-tems built from a collection of SMP nodes. MPI-2 took this feature even further,acknowledging that there are performance tradeo�s in di�erent degrees of thread-edness and providing a mechanism for the user to request a particular level ofthread support from the MPI library. Speci�cically, MPI de�nes several degreesof thread support. The �rst, called MPI THREAD SINGLE, speci�es that there isa single thread of execution. This allows an MPI implementation to avoid theuse of thread-locks or other techniques necessary to ensure correct behavior withmultithreaded codes. Another level of thread support, MPI THREAD FUNNELLED,speci�es that the process may have multiple threads but all MPI calls are madeby one thread. This matches the commonuse of threads for loop parallelism, suchas the most common uses of OpenMP. A third level, MPI THREAD MULTIPLE, al-lows multiple threads to make MPI calls. While these levels of thread support dointroduce a small degree of complexity, they reect MPI's pragmatic approachto providing a workable tool for high-performance computing.The design of MPI as a library means that MPI operations cannot be opti-mized by a compiler. However, it also means that any MPI library can exploitthe newest and best compilers and that the compiler can be developed withoutworrying about the impact of MPI on the generated code|from the compiler'spoint of view, MPI calls are simply generic function calls.3 The ability of MPIto exploit improvements in other tools is called composability. Another exampleis in debuggers; because MPI is simply a library, any debugger can be used withMPI programs. Debuggers that are capable of handling multiple processes, suchas TotalView [14], can immediately be used to debug MPI programs. Additionalre�nements, such as an interface to an abstraction of message passing that is3 There are some conicts between the MPI model and the Fortran language; these arediscussed in [13, Section 10.2.2]. The issues are also not unique to MPI; for example,any asynchronous I/O library faces the same issues with Fortran.6



described in [15], allows users to use the debugger to discover information aboutpending communication and unreceived messages.More integrated approaches, such as language extensions, have the obviousbene�ts, but they also have signi�cant costs. A major cost is the di�culty ofexploiting advances in other tools and of developing and maintaining a large,integrated system.OpenMP is an example of a programming model that achieves the e�ect ofcomposability with the compilers because OpenMP requires essentially orthog-onal changes to the compiler; that is, most of the compiler development canignore the addition of OpenMP in a way that more integrated languages cannot.2.6 CompletenessMPI provides a complete programming model. Any parallel algorithm can beimplemented with MPI. Some parallel programming models have sacri�ed com-pleteness for simplicity. For example, a number of programming models have re-quired that synchronization happens only collectively for all processes or tasks.This requirement signi�cantly simpli�es the programming model and allows theuse of special hardware a�ecting all processes. Many existing programs also �tinto this model; data-parallel programs are natural candidates for this model.But as discussed in Section 2.4, many programs are becoming more complexand are exploiting software components. Such applications are di�cult, if notimpossible, to build using restrictive programming models.Another way to look at this is that while many programs may not be easyunder MPI, no program is impossible. MPI is sometimes called the \assemblylanguage" of parallel programming. Those making this statement forget thatC and Fortran have also been described as portable assembly languages. Thegenerality of the approach should not be mistaken for an unnecessary complexity.2.7 SummarySix di�erent requirements have been discussed, along with how MPI addresseseach. Each of these is necessary in a general-purpose parallel programming sys-tem.Portability and performance are clearly required. Simplicity and symmetrycater to the user and make it easy to learn and use safely. Composibility isrequired to prevent the approach from being left behind by the advance of othertools such as compilers and debuggers.Modularity, like completeness, is required to ensure that tools can be builton top of the programmingmodel. Without modularity, a programmingmodel issuitable only for turnkey applications. While those may be important and easyto identify as customers, they represent the past rather than the future.Completeness, like modularity, is required to ensure that the model supportsa large enough community. While this does not mean that everyone uses everyfunction, it means that the functionality that a user may need is likely to be7



present. An early poll of MPI users [16] in fact found that while no one wasusing all of the MPI-1 routines, essentially all MPI-1 routines were in use bysomeone.The open standards process (see [17] for a description of the process usedto develop MPI) was an important component in its success. Similar processesare being adopted by others; see [18] for a description of the principles andadvantages of an open standards process.3 Where Next?MPI is not perfect. But any replacement will need to improve on all that MPIo�ers, particularly with respect to performance and modularity, without sacri-�cing the ability to express any parallel program. Three directions are open toinvestigation: improvements in the MPI programming model, better MPI imple-mentations, and fundamentally new approaches to parallel computing.3.1 Improving MPIWhere can MPI be improved? A number of evolutionary enhancements are pos-sible, many of which can be made by creating tools that make it easier to buildand maintain MPI programs.1. Simpler interfaces. A compiler (or a preprocessor) could provide a simpler,integrated syntax. For example, Fortran 90 array syntax could be supportedwithout requiring the user to create special MPI datatypes. Similarly, theMPI datatype for a C structure could be created automatically. Some toolsfor the latter already exist. Note that support for array syntax is an ex-ample of support for a subset of the MPI community, many of whom usedata structures that do not map easily onto Fortran 90 arrays. A precom-piler approach would maintain the composability of the tools, particularly ifdebuggers understood preprocessed code.2. Elimination of function calls. There is no reason why a sophisticated systemcannot remove the MPI routine calls and replace them with inline opera-tions, including handling message matching. Such optimizations have beenperformed for Linda programs [19] and for MPI subsets [20]. Many compil-ers already perform similar operations for simple numerical functions likeabs and sin. This enhancement can be achieved by using preprocessors orprecompilers and thus can maintain the composability of MPI with the bestcompilers.3. Additional tools and support for correctness and performance debugging.Such tools include editors that can connect send and receive operations sothat both ends of the operation are presented to the programmer, or per-formance tools for massively parallel programs. (Tools such as Vampir andJumpshot [21] are a good start, but much more can be done to integrate theperformance tool with source-code editors and performance predictors.)8



4. Changes to MPI itself, such as read-modify-write additions to the remotememory access operations in MPI-2. It turns out to be surprisingly di�cultto implement an atomic fetch-and-increment operation [22, Section 6.5.4] inMPI-2 using remote memory operations (it is quite easy using threads, butthat usually entails a performance penalty).3.2 Improving MPI ImplementationsHaving an implementation of MPI is just the beginning. Just as the �rst com-pilers stimulated work in creating better compilers by �nding better ways toproduce quality code, MPI implementations are stimulating work on better ap-proaches for implementing the features of MPI. Early work along this line lookedat better ways to implement the MPI datatypes [23, 24]. Other interesting workincludes the use of threads to provide a lightweight MPI implementation [25, 26].This work is particularly interesting because it involves code transformations toensure that the MPI process model is preserved within a single, multithreadedUnix process.In fact, several implementations of MPI fail to achieve the available asymp-totic bandwidth or latency. For example, at least two implementations fromdi�erent vendors perform unnecessary copies (in one case because of layeringMPI over a lower-level software that does not match MPI's message-passingsemantics). These implementations can be signi�cantly improved. They also un-derscore the risk in evaluating the design of a programming model based on aparticular implementation.1. Improvement of the implementation of collective routines for most platforms.One reason, ironically, is that the MPI point-to-point communication rou-tines on which most MPI implementations build their collective routines aretoo high level. An alternative approach is to build the collective routines ontop of stream-oriented methods that understand MPI datatypes.2. Optimization for new hardware, such as implementations of VIA or In�ni-band. Work in this direction is already taking place, but more can be done,particularly for collective (as opposed to point-to-point) communication.3. Wide area networks (1000 km and more). In this situation, the steps usedto send a message can be tuned to this high-latency situation. In particular,approaches that implement speculative receives [27], strategies that make useof quality of service [28], or alternatives to IP/TCP may be able to achievebetter performance.4. Scaling to more than 10,000 processes. Among other things, this requiresbetter handling of internal bu�ers; also, some of the routines for managingprocess mappings (e.g., MPI Graph create) do not have scalable de�nitions.5. Parallel I/O, particularly for clusters. While parallel �le systems such asPVFS [29] provide support for I/O on clusters, much more needs to be done,particularly in the areas of communication aggregation and in reliability inthe presence of faults. 9



6. Fault tolerance. The MPI intercommunicator (providing for communicationbetween two groups of processes) provides an elegant mechanism for general-izing the usual \two party" approach to fault tolerance. Few MPI implemen-tations support fault tolerance in this situation, and little has been done todevelop intercommunicator collective routines that provide a well-speci�edbehavior in the presence of faults.7. Thread-safe and e�cient implementations for the support of \mixed model"(message-passing plus threads) programming. The need to ensure thread-safety of an MPI implementation used with threads can signi�cantly increaselatency. Architecting an MPI implementation to avoid or reduce these penal-ties remains a challenge.3.3 New DirectionsIn addition to improving MPI and enhancing MPI implementations, more revo-lutionary e�orts should be explored.One major need is for a better match of programmingmodels to the multilevelmemory hierarchies that the speed of light imposes, without adding unmanage-able complexity. Instead of denying the importance of hierarchical memory, weneed a memory centric view of computing.MPI's performance comes partly by accident; the two-level memory model isbetter than a one-level memory model at allowing the programmer to work withthe system to achieve performance. But a better approach needs to be found.Two branches seem promising. One is to develop programming models tar-geted at hardware similar in organization to what we have today (see Figure 1).The other is to codevelop both new hardware and new programming models.For example, hardware built from processor-in-memory, together with hardwaresupport for rapid communication of functions might be combined with a pro-gramming model that assumed distributed control. The Tera MTA architecturemay be a step in such a direction, by providing extensive hardware supportfor latency hiding by extensive use of hardware threads. In either case, bettertechniques must be provided for both data transfer and data synchronization.Another major need is to make it harder to write incorrect programs. Astrength of MPI is that incorrect programs are usually deterministic, simplify-ing the debugging process compared to the race conditions that plague shared-memory programming. The synchronous send modes (e.g., MPI Ssend) may alsobe used to ensure that a program has no dependence on message bu�ering.4 ConclusionThe lessons from MPI can be summed up as follows: It is more important tomake the hard things possible than it is to make the easy things easy. Future pro-gramming models must concentrate on helping programmers with what is hard,including the realities of memory hierarchies and the di�culties in reasoningabout concurrent threads of control. 10



AcknowledgmentThis work was supported by the Mathematical, Information, and ComputationalSciences Division subprogram of the O�ce of Advanced Scienti�c ComputingResearch, U.S. Department of Energy, under Contract W-31-109-Eng-38.References1. Papers about MPI (2001) www.mcs.anl.gov/mpi/papers.2. Hansen, P.B.: An evaluation of the Message-Passing Interface. ACM SIGPLANNotices 33 (1998) 65{723. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, B., Sunderam, V.:PVM: Parallel Virtual Machine|A User's Guide and Tutorial for Network ParallelComputing. MIT Press, Cambridge, MA. (1994)4. Boyle, J., Butler, R., Disz, T., Glickfeld, B., Lusk, E., Overbeek, R., Patterson,J., Stevens, R.: Portable Programs for Parallel Processors. Holt, Rinehart, andWinston, New York (1987)5. Message Passing Interface Forum: MPI: A Message-Passing Interface standard.International Journal of Supercomputer Applications 8 (1994) 165{4146. Koelbel, C.H., Loveman, D.B., Schreiber, R.S., Jr., G.L.S., Zosel, M.E.: The HighPerformance Fortran Handbook. MIT Press, Cambridge, MA (1993)7. Carlson, W.W., Draper, J.M., Culler, D., Yelick, K., Brooks, E., Warren, K.: In-troduction to UPC and language speci�cation. Technical Report CCS-TR-99-157,Center for Computing Sciences, IDA, Bowie, MD (1999)8. Numrich, R.W., Reid, J.: Co-Array Fortran for parallel programming. ACM SIG-PLAN FORTRAN Forum 17 (1998) 1{319. Dongarra, J., Gustavson, F., Karp, A.: Implementing linear algebra algorithms fordense matrices on a vector pipeline machine. SIAM Review 26 (1984) 91{11210. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated empirical optimizations ofsoftware and the ATLAS project. Parallel Computing 27 (2001) 3{3511. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programmingwith the Message Passing Interface, 2nd edition. MIT Press, Cambridge, MA(1999)12. Skjellum, A., Smith, S.G., Doss, N.E., Leung, A.P., Morari, M.: The design andevolution of Zipcode. Parallel Computing 20 (1994) 565{59613. Message Passing Interface Forum: MPI2: A message passing interface standard.International Journal of High Performance Computing Applications 12 (1998) 1{29914. TotalView Multiprocess Debugger/Analyzer (2000)http://www.etnus.com/Products/TotalView.15. Cownie, J., Gropp, W.: A standard interface for debugger access to message queueinformation in MPI. In Dongarra, J., Luque, E., Margalef, T., eds.: Recent Ad-vances in Parallel Virtual Machine and Message Passing Interface. Volume 1697 ofLecture Notes in Computer Science., Berlin, Springer (1999) 51{5816. MPI poll '95 (1995) http://www.dcs.ed.ac.uk/home/trollius/www.osc.edu/Lam/mpi/mpi poll.html.17. Hempel, R., Walker, D.W.: The emergence of the MPI message passing standardfor parallel computing. Computer Standards and Interfaces 21 (1999) 51{6211



18. Krechmer, K.: The need for openness in standards. IEEE Computer 34 (2001)100{10119. Carriero, N., Gelernter, D.: A foundation for advanced compile{time analysisof linda programs. In Banerjee, U., Gelernter, D., Nicolau, A., Padua, D., eds.:Proceedings of Languages and Compilers for Parallel Computing. Volume 589 ofLecture Notes in Computer Science., Berlin, Springer (1992) 389{40420. Ogawa, H., Matsuoka, S.: OMPI: Optimizing MPI pro-grams using partial evaluation. In: Supercomputing'96. (1996)http://www.bib.informatik.th-darmstadt.de/sc96/OGAWA.21. Zaki, O., Lusk, E., Gropp, W., Swider, D.: Toward scalable performance visu-alization with Jumpshot. High Performance Computing Applications 13 (1999)277{28822. Gropp, W., Lusk, E., Thakur, R.: Using MPI-2: Advanced Features of the Message-Passing Interface. MIT Press, Cambridge, MA (1999)23. Gropp, W., Lusk, E., Swider, D.: Improving the performance of MPI deriveddatatypes. In Skjellum, A., Bangalore, P.V., Dandass, Y.S., eds.: Proceedings ofthe Third MPI Developer's and User's Conference, MPI Software Technology Press(1999) 25{3024. Trae�, J.L., Hempel, R., Ritzdo�, H., Zimmermann, F.: Flattening on the y:E�cient handling of MPI derived datatypes. Volume 1697 of Lecture Notes inComputer Science., Berlin, Springer (1999) 109{11625. Demaine, E.D.: A threads-only MPI implementation for the development of par-allel programs. In: Proceedings of the 11th International Symposium on HighPerformance Computing Systems. (1997) 153{16326. Tang, H., Shen, K., Yang, T.: Compile/run-time support for threaded MPI exe-cution on multiprogrammed shared memory machines. In Chien, A.A., Snir, M.,eds.: Proceedings of the 1999 ACM Sigplan Symposium on Principles and Practiceof Parallel Programming (PPoPP`99). Volume 34.8 of ACM Sigplan Notices., NewYork, ACM Press (1999) 107{11827. Tatebe, O., Kodama, Y., Sekiguchi, S., Yamaguchi, Y.: Highly e�cient implemen-tation of MPI point-to-point communication using remote memory operations. In:Proceedings of the International Conference on Supercomputing (ICS-98), NewYork, ACM press (1998) 267{27328. Roy, A., Foster, I., Gropp, W., Karonis, N., Sander, V., Toonen, B.: MPICH-GQ:Quality of service for message passing programs. Technical Report ANL/MCS-P838-0700, Mathematics and Computer Science Division, Argonne National Lab-oratory (2000)29. Carns, P.H., Ligon III, W.B., Ross, R.B., Thakur, R.: PVFS: A parallel �le sys-tem for Linux clusters. In: Proceedings of the 4th Annual Linux Showcase andConference, Atlanta, GA, USENIX Association (2000) 317{327
12


