
ASYMPTOTIC ANALYSIS OFTWO REDUCTION METHODS FORSYSTEMS OF CHEMICAL REACTIONSHans G. Kaper1 and Tasso J. Kaper21 Mathematics and Computer Science DivisionArgonne National Laboratory, Argonne, Illinois, USA2 Department of Mathematics and Center for BioDynamicsBoston University, Boston, Massachusetts, USAAbstract. This article concerns two methods for reducing large systems of chem-ical kinetics equations, namely, the method of intrinsic low-dimensional manifolds(ILDMs) due to Maas and Pope [U. Maas and S. B. Pope, Combustion and Flame 88(1992) 239{264] and an iterative method due to Fraser [S. J. Fraser, J. Chem. Phys.88 (1988) 4732{4738] and further developed by Roussel and Fraser. Both methodsexploit the separation of fast and slow reaction time scales to �nd low-dimensionalmanifolds in the space of species concentrations where the long-term dynamics areplayed out. The analysis is carried out in the context of systems of ordinary dif-ferential equations with multiple time scales and geometric singular perturbationtheory (GSPT). A small parameter " measures the separation of time scales. Theunderlying assumption is that the system of equations has an asymptotically stableslow manifoldM0 in the limit as " # 0. Then it follows from GSPT that there existsa slow manifoldM" for all su�ciently small positive ", which is asymptotically closetoM0.It is shown that the ILDM method yields a low-dimensional manifold whoseasymptotic expansion agrees with the asymptotic expansion of M" up to and in-cluding terms of O("). At O("2), an error appears that is proportional to the localcurvature ofM0; it vanishes if and only if the curvature is zero everywhere.The iterative method generates, term by term, the asymptotic expansion of theslow manifold M". Starting from M0, the ith application of the algorithm yieldsthe correct expansion coe�cient at O("i), while leaving the lower-order coe�cientsat O(1) through O("i�1) invariant. Thus, after ` applications, the expansion isaccurate up to and including the terms of O("`).The analytical results are illustrated in two examples: a planar system fromenzyme kinetics (Michaelis{Menten{Henri) and a model planar system due to Davisand Skodje. 1



AMS Classi�cation (MSC2000). Primary: 80A30, 34E13. Secondary: 92C45,34C20, 34E15.PACS Numbers. 05.45.-a, 05.10.-a, 82.20, 82.33.V, 87.15.R, 82.33.T, 02.60.Lj.Keywords. Chemical kinetics, combustion, atmospheric chemistry, enzyme kinet-ics, biophysics, reduction methods, slow manifolds, intrinsic low-dimensional mani-folds, geometric singular perturbation theory, multiple time scales, asymptotic anal-ysis, Michaelis{Menten{Henri mechanism.1 Introduction and Summary of ResultsMany chemical reaction mechanisms in combustion [73, 48, 39], atmosphericscience [63], enzyme kinetics [12], and biochemistry [26] involve large numbersof species, multiple chains of chemical reactions, and widely disparate timescales. A typical model of hydrocarbon combustion, for example, may wellinvolve several hundred species, which participate in hundreds of reactionsthat proceed on time scales ranging from nanoseconds to minutes. The sizeand complexity of these mechanisms has stimulated the search for methodsthat reduce the number of species and chemical reactions but retain a desireddegree of accuracy. Typically, these reduction methods select a small numberof species, which are marked as reaction progress variables, and determine theconcentrations of the remaining species as functions of the latter, either bytable look-ups or by direct computation. The critical step in these methodsis, of course, the de�nition of the reaction progress variables, which may beactual concentrations of selected species or combinations thereof.Research into reduction methods has increased dramatically over the pastdecade, and several methods have been proposed in the literature and imple-mented in computer codes. We mention the quasi-steady state approxima-tion [62, 71, 78], the partial-equilibrium approximation [66], methods based ondetails of the chemistry [66, 48], an iterative method [15, 53], the method ofintrinsic low-dimensionalmanifolds [36, 37], the computational singular pertur-bation method [18, 27, 28, 19, 40, 32], a principal-component analysis, lump-ing techniques [31], repro-modeling [70], an inertial-manifold approach [77], adynamic dimension-reduction method [8, 9], a saddle-point method [6, 7], apredictor-corrector method [6, 7], an optimization method [49], and a global-eigenvalue method [65].In this article, we focus on two reduction methods, namely, the intrinsiclow-dimensional manifold (ILDM) method due to Maas and Pope [36, 37]and the iterative method due to Fraser and further developed by Roussel2



and Fraser [15, 53]. Both methods have been developed for and extensivelyapplied to problems with slow manifolds that attract nearby initial conditions.The long-time behavior of such systems is governed by the dynamics on theslow manifold, whose dimension is generally much less than that of the totalcomposition space, resulting in a considerable reduction of complexity.Given the importance of slow manifolds, a central question for any reduc-tion method is: How accurately does it approximate a slow manifold? Thepresent investigation answers this question for the ILDM method of Maas andPope and the iterative method of Fraser and Roussel.In the ILDM method, the Jacobian of the vector �eld is partitioned ateach point of phase space into a fast and a slow component, and bases for thecorresponding subspaces are generated by means of a Schur decomposition.The intrinsic low-dimensional manifold is de�ned as the locus of points wherethe vector �eld lies entirely in the slow subspace and is an approximation ofthe slow manifold. The e�cacy of the ILDM method is evident, for example,by the reduction achieved in the prototypical example of a CO-H2-O2-N2 com-bustion model [37, 34]. Disregarding only the production of NO, the modelcomprises evolution equations for the enthalpy, pressure, and concentrationof each of thirteen species, making for a �fteen-dimensional phase space, anda total of sixty-seven chemical reactions. With the proper choice of the re-action progress variable (CO2), a reduction to a one-dimensional ILDM canbe achieved that retains a certain accuracy after an initial transient [37, 34].Reduction to a two-dimensional ILDM gives a better approximation, albeit atthe expense of keeping track of two reaction progress variables and the stor-age of a correspondingly larger look-up table. Re�nements, applications, andevaluations of the ILDM method against direct numerical simulations can befound in Refs. [38, 33, 10, 60, 61, 11, 3, 43, 75, 76, 4, 59, 50, 1, 2, 74, 35, 64].The iterative method was inspired by the phase-space geometry of anenzyme-kinetics model involving a fast and a slow species, where the slowmanifold is a curve in the phase plane. The method is derived formally fromthe invariance equation|an equation that is satis�ed on any trajectory of thedynamical system and, in particular, on the slow manifold and extends nat-urally to multidimensional systems with (possibly) higher-dimensional slowmanifolds. The procedure is explicit if the force �eld is linear in the fastvariable, and implicit otherwise; hence, it generally requires the use of anonlinear equation solver. The method has been developed further and ap-plied, in particular, to several problems of enzyme kinetics and metabolism inRefs. [44, 51, 52, 16, 54, 55, 56, 57].A natural framework for the analysis of these and similar reduction meth-3



ods is provided by geometric singular perturbation theory (GSPT) [14, 58,22, 25]. The presence of a fast and a slow time scale leads naturally to theintroduction of a small positive parameter " measuring the ratio of the char-acteristic times. If, in the limit as " # 0 (in�nite separation of time scales), thesystem of kinetics equations has a slow manifold,M0, in phase space and thismanifold is asymptotically stable, then GSPT identi�es a (usually nonunique)slow manifold M" for " su�ciently small positive and gives a complete ge-ometric and analytical description of all solutions in the vicinity of the slowmanifold, including how trajectories approach the manifold. By comparingthe asymptotics of the slow manifold M" found by GSPT with the asymp-totics of the low-dimensional manifolds generated by the ILDM method andthe iterative method we can evaluate the accuracy of these reduction methodsfor small values of " (�nite but large separation of time scales). The evaluationleads to the following conclusions.ILDM Method. (i) The asymptotic expansion of the ILDM agrees with theasymptotic expansion of the slow manifoldM" up to and including theO(") term, for all fast-slow systems. In general, however, the O("2)terms di�er.(ii) The error at O("2) is proportional to the local curvature of the slowmanifold M0. It vanishes if and only if the curvature of M0 is zeroeverywhere. (The \if" part was observed previously in Ref. [37].)Iterative Method. (i) The iterative method, if started from M0, generatesterm by term the asymptotic expansion of the slow manifold M". Inparticular, ` applications of the iterative method generate an approxi-mation to the slow manifoldM" that is asymptotically correct up to andincluding the O("`) term, albeit with extraneous terms at O("`+1).(ii) The `th iteration leaves the terms at O(1) through O("`�1) invari-ant. (This observation is important because the lower-order terms havealready been determined correctly in the preceding iterations.)Remark. In Ref. [50], it is shown that the ILDM coincides with the slowmanifoldM0 in the limit of in�nite separation of the fast and slow time scales(" = 0).Remark. The slow manifoldM0 can often be found analytically; otherwise, itcan be obtained by one application of the iterative method to the steady-stateapproximation. The latter is readily found numerically; see Refs. [15, 53].The present article is organized as follows. In Section 2, we review the4



general framework of fast-slow systems of ordinary di�erential equations andrecall the asymptotic expansion of the slow manifold. In Section 3, we de�nethe ILDM and indicate briey how it is computed. We present the asymptoticexpansion of the ILDM for planar fast-slow systems (one fast and one slowvariable) in Section 4 and for general fast-slow systems (n fast and m slowvariables) in Section 5. The results are summarized in Corollary 5.1. InSection 6, we describe the iterative method of Fraser and Roussel. We discussits asymptotics in Section 7. The results are summarized in Corollary 7.1.We illustrate the analytical results with two planar examples, namely theMichaelis{Menten{Henri mechanism of enzyme kinetics (Section 8) and anexample due to Davis and Skodje (Section 9). In Section 10 we remark onseveral generalizations and discuss some remaining issues.2 Fast-Slow Systems of ODEsWe consider reaction mechanisms in homogeneous media, where the concentra-tions of the chemical species depend on time only. The concentrations evolveon two distinct and widely separated time scales. The slowly evolving con-centrations are the entries of the vector y, the remaining concentrations theentries of the vector z; the former has m components, the latter n (m;n � 1).The separation of time scales is measured by ", an arbitrarily small positiveparameter. The limit " # 0 corresponds to in�nite separation. The reac-tion mechanism is thus modeled by a system of ordinary di�erential equations(ODEs), y0 = "f(y; z; "); (2.1)z0 = g(y; z; "): (2.2)The unknowns y and z are functions of t with values in Rm and Rn, respec-tively; 0 denotes di�erentiation with respect to t; and f and g are smoothfunctions with values in Rm and Rn, respectively. We assume that f and g,as well as all their derivatives, are O(1) as " # 0.Remark. The system of Eqs. (2.1){(2.2) is, of course, an idealization of thecomplex systems that occur in chemical kinetics. The model is adopted herebecause it is suitable for mathematical analysis. We claim, however, that italso captures the essential elements of any reaction mechanism whose long-term dynamics evolve on slow manifolds and o�ers a paradigm for the analysisof reduction methods. The validity of our conclusions extends therefore wellbeyond the idealized system of Eqs. (2.1){(2.2). We comment on the implica-tions for more realistic systems in Section 10.5



The independent variable t is called the fast time because it de�nes thetime scale on which the fast variables evolve, and the system of Eqs. (2.1){(2.2) is labeled the fast system. While the fast time scale is appropriate for thestudy of the transient dynamics, the long-time dynamics are more naturallystudied in terms of the slow time � = "t. On the scale of � , the system ofEqs. (2.1){(2.2) assumes the form_y = f(y; z; "); (2.3)" _z = g(y; z; "): (2.4)Here, _ denotes di�erentiation with respect to � . We refer to the system ofEqs. (2.3){(2.4) as the slow system.The fast system (2.1){(2.2) and the slow system (2.3){(2.4) are, of course,equivalent as long as " > 0, but they approach di�erent limits as " # 0|thatis, as the separation of the fast and slow time scales becomes in�nite. The fastsystem reduces to y0 = 0; (2.5)z0 = g(y; z; 0); (2.6)which is essentially a single equation for the fast variable z with y as a param-eter. The slow system, on the other hand, reduces to_y = f(y; z; 0); (2.7)0 = g(y; z; 0): (2.8)The �rst equation describes the motion of the slow variable y, and the secondequation is an algebraic constraint that forces the motion to take place on thezero set of g.Our focus is on systems for which the zero set of g is represented bythe graph of a function. That is, we assume that there exists a single-valuedfunction h0, which is de�ned on a compact domain K = [0; Y ]m in Rm, suchthat g(y; h0(y); 0) = 0; y 2 K: (2.9)The zero set of g thus de�nes a manifold, M0, in phase space,M0 = f(y; z) 2 Rm+n : z = h0(y); y 2 Kg; (2.10)to which the motion of the reduced slow system is con�ned.Our analysis requires a second assumption that holds for many, thoughnot all, of the systems in which reductions have been sought, namely, that6



each point (y; h0(y)) onM0 is an asymptotically stable �xed point of Eq. (2.6).The assumption guarantees that the eigenvalues of the matrix Dzg(y; h0(y); 0)all have negative real parts.Remark. The two assumptions are justi�ed in most enzyme kinetics and somecombustion and atmospheric chemistry problems. In certain more complexreaction mechanisms, however, they may need justi�cation. Toward this end,we observe that, in those cases where reduction methods are expected to bee�ective, h0 can be found locally by the Implicit Function theorem (since thesecond assumption guarantees that the matrix (Dzg)(y; h0(y); 0) is invertiblefor each y 2 K), and GSPT can be applied to each local portion. In theabsence of singularities, these local functions can be pieced together to form asmooth global function over the entire domain under consideration.Under the above conditions, standard asymptotic theory (see, for exam-ple, Refs. [69, 30, 14, 5, 45, 41, 22]) guarantees that, when " is positive butarbitrarily small, there exists a slow manifold M" that is invariant under thedynamics of the system of Eqs. (2.1){(2.2), has the same dimension as M0,and lies near M0. All nearby solutions relax exponentially fast to M", andtheir long-term evolution is determined by an associated solution on the slowmanifold itself. The manifold M" is usually not unique; there typically is afamily of slow manifolds, all exponentially close (O(e�c=") for some c > 0).Theorem 2.1 (Fenichel, asymptotically stable slow manifolds). For any suf-�ciently small ", there is a function h" that is de�ned on K such that thegraph M" = f(y; z) : z = h"(y); y 2 Kg (2.11)is locally invariant under the dynamics of Eqs. (2.1){(2.2). The function h"admits an asymptotic expansion,h"(y) = h0(y) + "h(1)(y) + "2h(2)(y) + � � � as " # 0; (2.12)where the coe�cients h(`) : K ! Rn are found successively from the equation(Dzg)h(`) = `�1Xi=0(Dh(i))f (`�1�i) � X̀j=2 1j! (Djzg)Xjij=`(h(i1); : : : ; h(ij))� `�1Xk=1 1k! `�kXj=1 1j!(Djz(@k" g)) Xjij=`�k(h(i1); : : : ; h(ij))� 1̀! (@"̀g) (2.13)for ` = 1; 2; : : : , with h(0) = h0. Here, the functions f and g and their deriva-tives are evaluated at (y; z = h0(y); 0), and it is understood that a sum is empty7



when the lower bound exceeds the upper bound. In particular, h(1) and h(2) aregiven by (Dzg)h(1) = (Dh0)f � g"; (2.14)(Dzg)h(2) = (Dh(1))f + (Dh0) �(Dzf)h(1) + f"�� 12(D2zg) �h(1); h(1)�� (Dzg")h(1) � 12g"": (2.15)Furthermore, h" 2 Cr(K) for any �nite r, and the dynamics of the system ofEqs. (2.1){(2.2) on M" are given by the reduced equation_y = f(y; h"(y); "): (2.16)Proof. The theorem is a direct restatement of Theorem 2 in Ref. [22] forthe special case in whichM0 is asymptotically stable. It also follows directlyfrom [45, Theorem] and is a special case of the Fenichel theory [14]. Theasymptotics of the slow manifold M" are given explicitly, for example, inRefs. [46, 41].Remark. In many instances|for example, in the Michaelis{Menten{Henrireaction mechanism discussed in Section 8 and various combustion problems|the reduced slow system _y = f(y; h0(y); 0) has an asymptotically stable �xedpoint at (y0; h0(y0)), say. In such cases, the reaction scheme has a globalattracting equilibrium. Under the hypotheses made above, the system ofEqs. (2.1){(2.2) has a �xed point at (y0;"; h"(y0;")), and the slow manifoldM" is its weak stable manifold.Remark. While we have used it here only for the case of attracting manifolds,the Fenichel theorem and Theorem 2 in Ref. [22] hold for the more generalcase of fast-slow systems of ODEs for which the manifold M0 is normallyhyperbolic|that is, where there can be both fast stable (exponentially con-tracting) and fast unstable (exponentially expanding) dynamics in the direc-tions transverse toM0. In the more general case, the matrix (Dzg)(y; h0(y); 0)has s eigenvalues with a negative real part and u eigenvalues with a positive realpart, the fast variable z decomposes into a u-dimensional and a s-dimensionalcomponent with u + s = n, and the dynamics of all solutions near M" aregoverned by the Fenichel normal form [23]. The asymptotics of M" remainsunchanged.Remark. The articles of Tikhonov [69] and Levinson [30, 29] present the origi-nal theory of persistence of asymptotically stable manifolds (see also Ref. [47]).8



The theory of persistence of normally hyperbolic manifolds can be found inthe monographs of Fenichel [13, 14] and Hirsch, Pugh, and Shub [21]; see alsoRef. [72]. Other relevant references are [45] and [41] for singularly perturbedsystems of ODEs with asymptotically stable slow manifolds and [58] and [22]for singularly perturbed systems of ODEs with general normally hyperbolicslow manifolds. An introductory exposition of GSPT is given in Ref. [25].Remark. A numerical procedure for �nding asymptotically stable slow mani-folds in fast-slow systems, which is stable and highly accurate for small valuesof ", has been given by Nipp [46].3 The ILDM Method of Maas and PopeThe ILDM method starts from the slow system, Eqs. (2.3){(2.4), takes thelocal vector �eld F and the associated Jacobian J , and reduces the latter ateach point to a fast and a slow component. The vector �eld F and its JacobianJ are F =  f"�1g ! ; J =  Dyf Dzf"�1Dyg "�1Dzg ! ; (3.1)where Dyf is the m�m matrix of partial derivatives @fi=@yj, Dzf the m� nmatrix of partial derivatives @fi=@zj, Dyg the n�m matrix of partial deriva-tives @gi=@yj, and Dzg the n� n matrix of partial derivatives @gi=@zj.By assumption, the real part of each eigenvalue of J is negative. The sumof the eigenvalues is equal to the trace of J , which is O("�1) as " # 0, andtheir product is equal to the determinant of J , which is O("�n) as " # 0. Theeigenvalues of J fall therefore into two groups: one group of m eigenvalueswith O(1) negative real parts and another group of n eigenvalues with O("�1)negative real parts. The eigenvectors associated with the �rst group span theslow subspace, those associated with the second group the fast subspace. TheMaas and Pope algorithm de�nes the ILDM as the locus of all points (y; z)where the vector �eld F lies entirely in the slow subspace.The algorithm uses a Schur decomposition [67, Section 6.3] of J ,J = QNQ0; (3.2)with Q unitary (QQ0 = Q0Q = Im+n, 0 denoting the transpose) and N uppertriangular, Q = (Qs Qf); N =  Ns Nsf0 Nf ! : (3.3)9



The dimensions of Qs and Qf are (m+ n)�m and (m+ n)� n, respectively;Ns is an m�m upper triangular matrix, Nf an n�n upper triangular matrix,and Nsf an m � n full matrix. The eigenvalues of J appear on the diagonalof N in descending order of their real parts, from least negative at the (1; 1)position to most negative at the (m + n;m + n) position. This particularordering is accomplished in Ref. [37] by means of a modi�cation of Stewart'simplementation of the Schur algorithm [68] and in Ref. [34] by means of astandard Schur decomposition followed by a sequence of Givens rotations [17,Section 5.1].The �rstm Schur vectors|that is, the columns of Qs|form an orthogonalbasis for the slow subspace, while the remaining n Schur vectors|the columnsof Qf|form an orthogonal basis for the orthogonal complement of the slowsubspace. The vector �eld F is entirely in the slow subspace if it is orthogonalto the orthogonal complement of the slow subspace|that is, ifQ0fF = 0: (3.4)This equation de�nes the ILDM, the latter being an approximation of the slowmanifoldM". We analyze its asymptotics (as " # 0) in the following sections.Remark. The matrix Q0f corresponds to QTL, the number n to nf , and thesum m+ n to n in Ref. [37].In the numerical implementation of the ILDM method for general, closed,adiabatic, and isobaric reaction mechanisms, the system of equations is closedby supplementing the ILDM equation, Eq. (3.4), by a set of parameter equa-tions. The parameter equations �x the enthalpy, pressure, and element compo-sition. In addition, the reaction progress variables are treated as parameters.Each �xed set of parameters yields one point of the ILDM, and the entireILDM is obtained by sweeping over the admissible set of parameter values.As noted in Ref. [37], the parameters can generally be chosen so the ILDM isat least de�ned piecewise, and, most important, the choice of the parameterequations does not inuence the construction of the manifold.In Eqs. (2.1){(2.2), the enthalpy, pressure, and conserved quantities havebeen neglected. In this case, the parameter equations �x the values of the slowvariables y, and the ILDM is obtained by sweeping over all points y 2 K.10



4 Asymptotics of the ILDM | Planar CaseWe �rst restrict our attention to planar fast-slow systems, Eqs. (2.3){(2.4)with m = n = 1, for which the computations are relatively straightforwardand the asymptotic analysis more transparent. We address the general case inSection 5.In the planar case, the vector �eld F and its Jacobian J areF =  f"�1g ! ; J =  fy fz"�1gy "�1gz ! : (4.1)The eigenvalues of J are�s;f = 12 �"�1gz + fy��q14 ("�1gz + fy)2 � "�1 (fygz � fzgy); (4.2)where the upper (lower) sign is associated with �s (�f ). Thus,�s = fy � fzgygz +O("); �f = "�1gz +O(1) as " # 0: (4.3)The derivatives of f and g, which are evaluated at (y; z; "), are all O(1) as" # 0. The (nonnormalized) slow eigenvector isvs =  �s � "�1gz"�1gy ! ; (4.4)and there is a corresponding fast eigenvector vf . The vector vs spans theslow subspace, vf the fast subspace. The vectors vs and vf are not necessar-ily orthogonal. To determine the points (y; z) in the phase plane where thevector �eld F lies entirely in the slow subspace, we work with the orthogonalcomplement of the slow subspace, which is spanned by the row vectorv?s = ("�1gy; "�1gz � �s): (4.5)The locus of all points in the phase plane where the vector �eld F is in theslow subspace coincides with the set of all points (y; z) where F is orthogonalto v?s |that is, where fgy + g("�1gz � �s) = 0: (4.6)This equation de�nes the ILDM.Remark. A Schur decomposition of the matrix J gives the vectors qf =vf=jvf j and q?f = v?f =jvf j directly. The algorithm must be modi�ed to �nd thevectors qs = vs=jvsj and q?s = v?s =jvsj, as described in Section 3.11



Theorem 4.1 (Planar Case). The equation for the ILDM, Eq. (4.6), admitsan asymptotic solution in the form of a power series expansion,z =  (y; ") =  (0)(y) + " (1)(y) + "2 (2)(y) + � � � as " # 0: (4.7)The functions  (0),  (1), and  (2) are de�ned by the equations (0) = h0; (4.8)gz (1) = fh00 � g"; (4.9)gz (2) = f (1)0 � f2gz h000 + (fz (1) + f")h00� 12gzz( (1))2 � gz" (1) � 12g"": (4.10)Here, h0 � h0(y) is de�ned by the equation g(y; h0(y); 0) = 0, 0 denotes dif-ferentiation with respect to y, and the functions f and g and their derivativesare evaluated at (y; h0(y); 0).Proof. Assume that z =  (y; "), where  is given by the power series expan-sion (4.7). Thenf(y;  (y; "); ") = f + " �fz (1)+ f"�+ "2 �fz (2) + 12fzz( (1))2 + fz" (1) + 12f""�+ � � � ; (4.11)where, in the right member, f and its derivatives are evaluated at (y;  (0)(y); 0).Similar expansions hold for g and the derivatives of f and g. The leading termin the expansion of �s follows immediately from Eq. (4.3),�s = �(0)s +O("); �(0)s = fy � fzgygz ; (4.12)where the derivatives of f and g are similarly evaluated at (y;  (0)(y); 0). Wesubstitute the various expansions into Eq. (4.6) and equate the coe�cients oflike powers of ".O("�1). The ILDM equation, Eq. (4.6), gives(ggz)(y; z =  (0)(y); 0) = 0; (4.13)which is satis�ed if  (0) = h0. This result con�rms Eq. (4.8).O(1). From the equation for the ILDM, Eq. (4.6), we obtainfgy + (gz (1)+ g")gz = 0: (4.14)12



Here, we have used the identity g � g(y; h0(y); 0) = 0. The same identityimplies that gy + gzh00 = 0; (4.15)so Eq. (4.14) reduces to �gz (1) + g" � fh00� gz = 0: (4.16)The assumption of attractive manifolds implies that gz < 0, so Eq. (4.9)follows.O("). From the equation for the ILDM, Eq. (4.6), we obtainf �gyz (1) + gy" + (gzz (1)+ gz" � �(0)s )h00�� (fz (1)+ f")gzh00+ (gz (2) + 12gzz( (1))2 + gz" (1)+ 12g"")gz = 0: (4.17)Here, we have used Eqs. (4.8) and (4.9) and the identity (4.15). The sameidentity also results in a simpli�cation of the expression (4.12) for �(0)s ,�(0)s = fy + fzh00: (4.18)Furthermore, di�erentiating Eq. (4.16) with respect to y, we �ndgyz (1) + gy" + (gzz (1) + gz")h00 + gz (1)0 = fh000 + (fy + fzh00)h00: (4.19)With Eqs. (4.18) and (4.19), Eq. (4.17) simpli�es to�gz (2) + 12gzz( (1))2 + gz" (1)+ 12g""� f (1)0 + (f2=gz)h000 � (fz (1) + f")h00� gz = 0: (4.20)Since gz < 0, Eq. (4.10) follows.In the following section, we will generalize Theorem 4.1 to the multidi-mensional case (Theorem 5.1) and compare the asymptotics of the ILDM withthe asymptotics of the slow manifoldM" (Corollary 5.1).5 Asymptotics of the ILDM | General CaseThe de�nition of the ILDM, Eq. (3.4), is based on a partition of the Jacobian,Eq. (3.2), into a fast and a slow component at each point of phase spaceand a Schur decomposition to generate bases for the corresponding fast andslow subspaces. Practical implementations of the Schur decomposition rely13



typically on the method of deation [17, Chapter 7]; hence, the eigenvalues aregenerated in the order of descending absolute values of their real parts. Thisprocedure yields a unitary matrix of the form Q = (Qf Qs). The columns ofQ are then reordered, for example by a sequence of Givens rotations, as inRef. [34].Although this procedure is practical for numerical computations, it is notamenable to analysis. We start therefore from the standard Schur decomposi-tion before reordering, J = QTQ0; (5.1)where T =  �f �0 �s ! ; (5.2)with �f an n � n upper triangular matrix, �s an m � m upper triangularmatrix, and � an n�m full matrix. The diagonal elements of �f are theO("�1)eigenvalues of J , and the diagonal elements of �s are the O(1) eigenvalues ofJ . The structure of the unitary matrix Q isQ =  Q11 Q12Q21 Q22 ! ; (5.3)where Q11 is an m�n matrix, Q12 an m�m matrix, Q21 an n�n matrix, andQ22 an n�m matrix. The columns of  Q11Q21 ! and  Q12Q22 ! form an orthog-onal basis of the fast subspace and its orthogonal complement, respectively.Since the fast and slow subspaces are not necessarily mutually orthogonal,the orthogonal complement of the fast subspace does not necessarily coincidewith the slow subspace, and a further operation is needed to identify a basis forthe slow subspace. This operation consists of solving the Sylvester equation�fX �X�s = �� (5.4)for the n�m matrix X. With the de�nitionY =  In X0 Im ! ; (5.5)we obtain a block diagonalization of J ,J = (QY )Td(QY )�1; (5.6)where Td =  �f 00 �s ! ; (5.7)14



QY =  Q11 Q11X +Q12Q21 Q21X +Q22 ! ; (QY )�1 =  Q011 �XQ012 Q021 �XQ022Q012 Q022 ! :(5.8)Thus, QY reduces the matrix J to its fast and slow components, and thecondition that the vector �eld F given in Eq. (3.1) must lie entirely in theslow subspace is satis�ed if(Q011 �XQ012)f + "�1(Q021 �XQ022)g = 0: (5.9)The ILDM obtained from Eq. (5.9) is the same as the ILDM obtained fromEq. (3.4) and also the same as the ILDMs obtained in Refs. [37] and [34].Theorem 5.1 (General Case). The equation for the ILDM, Eq. (3.4), admitsan asymptotic solution in the form of a power series expansion,z =  (y; ") =  (0)(y) + " (1)(y) + "2 (2)(y) + � � � as " # 0: (5.10)The Rn-valued functions  (0),  (1), and  (2) are de�ned by the equations (0) = h0; (5.11)(Dzg) (1) = (Dh0)f � g"; (5.12)(Dzg) (2) = (D (1))f � (Dzg)�1(D2h0)(f; f) + (Dh0) �(Dzf) (1) + f"�� 12(D2zg)( (1);  (1))� (Dzg") (1) � 12g"": (5.13)Here, h0 � h0(y) is the Rn-valued function de�ned by Eq. (2.9), g(y; h0(y); 0) =0; Dh0 � (Dh0)(y) is a linear operator from Rm to Rn, which is representedby the n �m matrix of partial derivatives @h0;i=@yj, and D2h0 = D(Dh0) �(D2h0)(y) is a bilinear map from Rm�Rm to Rn, (D2h0)(u; v) = ((D2h0)u)vfor all u; v 2 Rm. The functions f and g and their derivatives are evalu-ated at (y; h0(y); 0); Dzf � Dzf(y; h0(y); 0) is a linear operator from Rn toRm, Dzg � Dzg(y; h0(y); 0) a linear operator from Rn to Rn, and D2zg =Dz(Dzg) � D2zg(y; h0(y); 0) a bilinear map from Rn �Rn to Rn.Proof. Assume that z =  (y; ") and that  is given by the expansion (5.10).For the asymptotic analysis of Eq. (5.9), we takeQ � Q(") =  0 ImQ(0)21 0 !+ " Q(1)11 00 �Q(0)21Q(1)011 !+ � � � ; (5.14)with Q(0)21 a unitary n� n matrix and Q(1)11 an m� n matrix to be determined.Thus, Q is unitary to O("). Higher-order terms can be found in a consistent15



manner so Q(") is unitary to any desired order. We take, furthermore,�f � �f(") = "�1�(�1)f + �(0)f + � � � ; (5.15)� � �(") = "�1�(�1) + �(0) + � � � ; (5.16)�s � �s(") = �(0)s + � � � ; (5.17)X � X(") = X(0) + "X(1) + � � � : (5.18)The generalization of the expansion (4.11) to the present case isf(y;  (y; "); ") = f + " �(Dzf) (1) + f"�+ "2 �(Dzf) (2)+ 12(D2zf)( (1);  (1)) + (Dzf") (1) + 12f""�+ � � � : (5.19)In the right member, f and its derivatives are evaluated at (y;  (0)(y); 0).Similar expansions hold for g and the derivatives of f and g.To prove the theorem, we substitute the various expansions into Eq. (5.9)and equate the coe�cients of like powers in " in the usual manner.O("�1). The ILDM equation, Eq. (5.9), givesQ(0)021 g = 0: (5.20)Since Q(0)21 is unitary, Eq. (5.20) reduces tog(y;  (0)(y); 0) = 0: (5.21)This equation is satis�ed if  (0) = h0, which con�rms Eq. (5.11).O(1). From the ILDM equation, Eq. (5.9), we obtain�X(0)f +Q(0)021 �(Dzg) (1) + g"� = 0: (5.22)Here, we have already used the identity g = 0.The matrix X(0) is determined from the O("�1) terms in the Sylvesterequation, Eq. (5.4), �(�1)f X(0) = ��(�1): (5.23)The matrices �(�1)f and �(�1), in turn, follow from the O("�1) terms in theSchur decomposition, Eq. (5.1),Q(0)21�(�1) = Dyg; Q(0)21 �(�1)f Q(0)021 = Dzg: (5.24)The second equation is the Schur decomposition of Dzg, so Q(0)21 is determinedby the ordering of the elements of �(�1)f . Both equations can be inverted,�(�1) = Q(0)021 (Dyg); �(�1)f = Q(0)021 (Dzg)Q(0)21 : (5.25)16



Hence, X(0) = �Q(0)021 (Dzg)�1(Dyg): (5.26)We can simplify this expression if we use the identity g(y; h0(y); 0) = 0, whichholds for all y. Upon di�erentiation, the identity gives a relation between Dygand Dzg, Dyg + (Dzg)(Dh0) = 0: (5.27)Note that this is a relation in the space of linear operators from Rm to Rn.With this identity, Eq. (5.26) becomesX(0) = Q(0)021 (Dh0); (5.28)and Eq. (5.22) reduces toQ(0)021 h(Dzg) (1) + g" � (Dh0)fi = 0: (5.29)Since Q(0)21 is unitary, Eq. (5.12) follows.O("). From the ILDM equation, Eq. (5.9), we obtain�Q(1)011 �X(1) +Q(0)021 (Dh0)Q(1)11Q(0)021 (Dh0)� f �Q(0)021 (Dh0) �(Dzf) (1) + f"�+Q(0)021 �(Dzg) (2)+ 12(D2zg)( (1);  (1)) + (Dzg") (1) + 12g""� = 0: (5.30)Here, we have already made use of Eqs. (5.11) and (5.12) and substituted theexpression (5.28) for X(0).The matrixX(1) is determined from the O(1) terms in the Sylvester equa-tion, Eq. (5.4), �(�1)f X(1) + �(0)f X(0) �X(0)�(0)s = ��(0): (5.31)The matrices �(0)f , �(0)s , and �(0) follow in turn from the O(1) terms in theSchur decomposition, Eq. (5.1),Q(1)11 �(�1) + �(0)s = Dyf; (5.32)Q(1)11 �(�1)f Q(0)021 = Dzf; (5.33)Q(0)21 ��(�1)f Q(1)011 + �(0)� = (Dz(Dyg)) (1) +Dyg"; (5.34)Q(0)21 ���(�1)Q(1)11Q(0)021 + �(0)f Q(0)021 � = (D2zg) (1) +Dzg": (5.35)We proceed as follows. First, we solve Eq. (5.33) for Q(1)11 ,Q(1)11 = (Dzf)Q(0)21 ��(�1)f ��1 = (Dzf)(Dzg)�1Q(0)21 : (5.36)17



Then, we obtain �(0)s from Eq. (5.32),�(0)s = Dyf �Q(1)11 �(�1) = Dyf + (Dzf)(Dh0): (5.37)(We have used the relation (5.27) to rewrite the expression (5.25) for �(�1).)Next, we solve Eqs. (5.34) and (5.35) for �(0) and �(0)f ,�(0) = Q(0)021 �(Dz(Dyg)) (1) +Dyg" �Q(0)21�(�1)f Q(1)011 �= Q(0)021 �(Dz(Dyg)) (1) +Dyg" � (Dzg) �(Dzf)(Dzg)�1�0� ; (5.38)�(0)f = Q(0)021 �(D2zg) (1) +Dzg" +Q(0)21 �(�1)Q(1)11Q(0)021 �Q(0)21= Q(0)021 �(D2zg) (1) +Dzg" � (Dzg)(Dh0)(Dzf)(Dzg)�1�Q(0)21 :(5.39)After these steps, we �nd X(1) from Eq. (5.31),X(1) = (�(�1)f )�1 ���(0) � �(0)f X(0) +X(0)�(0)s �= Q(0)021 (Dzg)�1 �� �(Dz(Dyg)) (1) +Dyg"�+ (Dzg) �(Dzf)(Dzg)�1�0� �(D2zg) (1) +Dzg" � (Dzg)(Dh0)(Dzf)(Dzg)�1� (Dh0)+ (Dh0) (Dyf + (Dzf)(Dh0)) � : (5.40)Substituting Q(1)11 from Eq. (5.36) and X(1) from Eq. (5.40) into Eq. (5.30), weobtainQ(0)021 h(Dzg)�1 �(Dz(Dyg))( (1); f) + (Dyg")f + (D2zg)( (1); (Dh0)f)+ (Dzg")((Dh0)f)� (Dh0) (Dyf + (Dzf)(Dh0)) f�� (Dh0) �(Dzf) (1) + f"�+ (Dzg) (2) + 12(D2zg)( (1);  (1)) + (Dzg") (1) + 12g""i = 0: (5.41)The bilinear maps Dz(Dyg) and D2zg satisfy the symmetry relations(Dz(Dyg))(u; v) = (Dy(Dzg))(v; u); u 2 Rn; v 2 Rm; (5.42)(D2zg)(u; v) = (D2zg)(v; u); u; v 2 Rn; (5.43)so Eq. (5.41) is equivalent withQ(0)021 h(Dzg)�1 �(Dy(Dzg))(f;  (1)) + (Dyg")f + (D2zg)((Dh0)f;  (1))+ (Dzg")((Dh0)f) � (Dh0) (Dyf + (Dzf)(Dh0)) f�� (Dh0) �(Dzf) (1) + f"�+ (Dzg) (2) + 12(D2zg)( (1);  (1)) + (Dzg") (1) + 12g""i = 0: (5.44)18



We simplify this expression by means of Eq. (5.12). Upon di�erentiation, thisequation gives the identity(Dy(Dzg)) (1) + Dyg" + (D2zg)(Dh0) (1)+ (Dzg")(Dh0) + (Dzg)(D (1))= (D2h0)f + (Dh0) (Dyf + (Dzf)(Dh0)) : (5.45)This is a relation in the space of linear operators from Rm to Rn. Whenapplied to the vector f , it gives the identity(Dy(Dzg))(f;  (1)) + (Dyg")f + (D2zg)((Dh0)f;  (1)) + (Dzg")((Dh0)f)+ (Dzg)((D (1))f) = (D2h0)(f; f) + (Dh0) (Dyf + (Dzf)(Dh0)) f: (5.46)With this result, Eq. (5.44) simpli�es toQ(0)021 h(Dzg) (2)+ 12(D2zg)( (1);  (1)) + (Dzg") (1) + 12g""� (D (1))f + (Dzg)�1(D2h0)(f; f)� (Dh0) �(Dzf) (1) + f"�i = 0: (5.47)Since Q(0)21 is unitary, Eq. (5.13) follows.The following corollary summarizes the result of the asymptotic analysis.Corollary 5.1 The ILDM is an approximation to the slow manifold M" ofthe fast-slow system of Eqs. (2.1){(2.2), which is asymptotically accurate upto and including the O(") term as " # 0. The approximation is asymptoticallyaccurate up to and including the O("2) term if and only ifD2h0(y) = 0 for all y.The asymptotic expansion of the ILDM is given by Eq. (5.10). A comparisonof the coe�cients in the expansion with the coe�cients in the expansion of theslow manifold M", Eq. (2.12), shows that (0) = h0; (5.48) (1) = h(1); (5.49) (2) = h(2) � (Dzg)�2(D2h0)(f; f): (5.50)The di�erence  (2) � h(2) involves the bilinear form D2h0, which is pro-portional to the curvature of the zero set of g at " = 0. It is present inany fast-slow system, unless the curvature vanishes everywhere. Because ofit, the ILDM is in general not invariant under the dynamics of the system ofEqs. (2.1){(2.2). 19



6 The Iterative Method of Fraser and RousselThe iterative method of Fraser and Roussel was developed originally for planarfast-slow systems that are linear in the fast variable,_y = f1(y; ")z + f2(y; "); (6.1)" _z = g1(y; ")z + g2(y; "): (6.2)Here, y and z are scalar-valued functions of time. These systems of equationsare typical for enzyme kinetics [12] and other biochemical systems whose dy-namics can be reduced to slow manifolds. In this case, the slow manifolds arecurves in the phase plane.On any trajectory z = z(y; ") in the phase plane, we have the identity_z = zy _y, or, in terms of the functions f and g,"zy(f1z + f2) = g1z + g2: (6.3)This identity is known as the invariance equation. In the present case, it canbe solved for z in terms of y and zy,z = �g2 + "f2zyg1 � "f1zy : (6.4)The equation holds, in particular, along trajectories on invariant manifolds.Fraser used Eq. (6.4) to propose the following functional iteration procedureto approximate the slow manifold.Starting from an initial function '(0), one computes a sequence of func-tions f'` : ` = 1; 2; : : :g using the de�nitions'(`) = �g2 + "f2'(`�1)yg1 � "f1'(`�1)y ; ` = 1; 2; : : : : (6.5)Under appropriate conditions, the sequence f'(`)(y; ") : ` = 1; 2; : : :g ap-proaches z(y; ") (in a sense to be made precise) as ` goes to in�nity, so thealgorithm generates successive approximations to a slow manifold.The iterative procedure generalizes to the fast-slow system of Eqs. (2.1){(2.2). The invariance equation is"(Dyz)(y; ")f(y; z(y; "); ") = g(y; z(y; "); "); (6.6)20



for any trajectory z = z(y; ") in phase space. Starting from a function '(0), onecomputes a sequence of functions f'(`) : ` = 1; 2; : : :g by solving the equation"(Dy'(`�1))(y; ")f(y; '(`)(y; "); ") = g(y; '(`)(y; "); "): (6.7)The sequence f'(`)(y; ") : ` = 1; 2; : : :g approaches z(y; ") (again, in a sense tobe made precise) as ` goes to in�nity.Notice that Eq. (6.7) amounts to an implicit de�nition of '(`), unless bothf and g are linear in the fast variable z, as in the planar case discussed above,Eqs. (6.1){(6.2). Hence, the numerical computation of '(`) generally requiresthe solution of a nonlinear equation.7 Asymptotics of the Iterative MethodBeacuse the iterative method of Fraser and Roussel is closely related to the in-variance equation, its asymptotic properties are most easily analyzed in termsof those of Eq. (6.6).Lemma 7.1 The invariance equation, Eq. (6.6), admits an asymptotic solu-tion in the form of a power series expansion,z(y; ") = z(0)(y) + "z(1)(y) + � � � as " # 0; (7.1)where z(0) = h0; (7.2)and the functions z(l) : K ! Rn, l = 1; 2; : : : , are found successively fromEq. (7.17) below. In particular, z(1) and z(2) are found from the equations(Dzg)z(1) = (Dz(0))f � g"; (7.3)(Dzg)z(2) = (Dz(1))f + (Dz(0)) �(Dzf)z(1) + f"�� 12(D2zg)(z(1); z(1))� (Dzg")z(1) � 12g""; (7.4)where f and g and their derivatives are evaluated at (y; z(0)(y); 0).Proof. We begin by expanding the function f ,f(y; z(y; "); ") = f (0)(y) + "f (1)(y) + "2f (2)(y) + � � � ; (7.5)where f (0)(y) = f(y; z(0)(y); 0) (7.6)21



andf (l)(y) = lXj=1 1j!(Djz)f(y; z(0)(y); 0)Xjij=l(z(i1)(y); : : : ; z(ij)(y))+ l�1Xk=1 1k! l�kXj=1 1j! (Djz(@k" f))(y; z(0)(y); 0) Xjij=l�k(z(i1)(y); : : : ; z(ij)(y))+ 1l!(@l"f)(y; z(0)(y); 0); l = 1; 2; : : : : (7.7)The derivative (Djzf)(y; z(0)(y); 0) in the �rst term is a j-linear map from(Rn)j to Rm. The inner sums are taken over all multiindices i = (i1; : : : ; ij) ofpositive integers i1; : : : ; ij with length jij = Pjk=1 ik = l and l�k, respectively.The �rst few coe�cients aref (1)(y) = (Dzf)z(1) + f"; (7.8)f (2)(y) = (Dzf)z(2) + 12(D2zf)(z(1); z(1)) + (Dzf")z(1) + 12f""; (7.9)f (3)(y) = (Dzf)z(3) + (D2zf)(z(1); z(2)) + 16(D3zf)(z(1); z(1); z(1))+ (Dzf")z(2) + 12(D2zf")(z(1); z(1))+ 12(Dzf"")z(1) + 16f"""; (7.10)where f and its derivatives are evaluated at (y; z(0)(y); 0), and the argumentof each z(i); i = 1; 2; : : : ; is y. A similar expansion holds for g(y; z(y; "); "),g(y; z(y; "); ") = g(0)(y) + "g(1)(y) + "2g(2)(y) + � � � ; (7.11)where g(0)(y) = g(y; z(0)(y); 0); (7.12)andg(l)(y) = lXj=1 1j!(Djzg)(y; z(0)(y); 0)Xjij=l(z(i1)(y); : : : ; z(ij)(y))+ l�1Xk=1 1k! l�kXj=1 1j! (Djz(@k" g))(y; z(0)(y); 0) Xjij=l�k(z(i1)(y); : : : ; z(ij)(y))+ 1l!(@l"g)(y; z(0)(y); 0); l = 1; 2; : : : : (7.13)Termwise di�erentiation of the asymptotic expansion (7.1) gives(Dyz)(y; ") = Dz(0) + "Dz(1) + � � � : (7.14)22



Equating the coe�cients of like powers of " in the left and right members of theinvariance equation, Eq. (6.6), we obtain a sequence of functional identities,g(0) = 0; (7.15)g(`) = `�1Xi=0(Dz(i))f (`�1�i); ` = 1; 2; : : : : (7.16)We satisfy the O(1) equation, Eq. (7.15), by taking z(0) = h0; see Eq. (7.2).Then f (0)(y) = f(y; h0(y); 0), and f (`)(y) and g(`)(y) are given by Eqs. (7.7)and (7.13), respectively, with z(0)(y) replaced by h0(y).Next, we turn to the O("`) equation, Eq. (7.16). We observe that z(`)occurs in g(`) only in the �rst term with j = 1; the remaining terms involvez(1) through z(`�1) but not z(`). The right member of Eq. (7.16) similarlyinvolves z(1) through z(`�1) but not z(`). Therefore, the identities (7.16) canbe solved successively for z(1), z(2), and so on. Thus we �nd(Dzg)z(`) = `�1Xi=0(Dz(i))f (`�1�i) � X̀j=2 1j! (Djzg)Xjij=`(z(i1); : : : ; z(ij))� `�1Xk=1 1k! `�kXj=1 1j! (Djz(@k" g)) Xjij=`�k(z(i1); : : : ; z(ij))� 1̀! (@"̀g) (7.17)for ` = 1; 2; : : : . Here, the functions f and g and their derivatives are evaluatedat (y; z = h0(y); 0), and it is understood that a sum is empty when the lowerbound exceeds the upper bound. The equations for ` = 1 and ` = 2 are givenin the statement of the theorem.The following theorem shows that ` successive applications of the iterativealgorithm of Fraser and Roussel, starting from '(0) = h0, generate an approx-imation '(`) to the slow manifoldM" that is accurate up to and including theO("`) term as " # 0.Theorem 7.1 Let '(`) and z(`) be de�ned recursively for ` = 1; 2; : : : byEq. (6.7) and (7.17), respectively. If '(0) = z(0) = h0, then'(`) � '(`)(y; ") = X̀i=0 "iz(i)(y) +O("`+1); ` = 1; 2; : : : : (7.18)Proof. The proof is by induction. Taking ` = 1, we have"(D'(0))(y)f(y; '(1)(y; "); ") = g(y; '(1)(y; "); "):23



Since '(0) = z(0), this equation is the same as"(Dz(0))(y)f(y; '(1)(y; "); ") = g(y; '(1)(y; "); "):We expand the terms in this equation in powers of " and equate the coe�cientsof like powers of ". To leading order, we �nd the equationg(y; '(1)(y; 0); 0) = 0;which is precisely the equation for z(0), so'(1)(y; 0) = z(0)(y):To the next order, we �nd the equation(Dzg)(y; z(0); 0)'(1)" (y; 0) + g"(y; z(0); 0) = (Dz(0))(y)f(y; z(0)(y); 0);which is precisely Eq. (7.3), so'(1)" (y; 0) = z(1)(y):Thus, '(1)(y; ") = z(0)(y) + "z(1)(y) +O("2);and the theorem is true for ` = 1.Suppose the theorem is true for ` � 1, '(`�1) = P`�1i=0 "iz(i) +O("`). Thefunction '(`) is de�ned by Eq. (6.7),"(Dy'(`�1))(y; ")f(y; '(`)(y; "); ") = g(y; '(`)(y; "); "):We expand each term in powers of " and equate the coe�cients of like powers,j�1Xi=0(Dyz(i))f (j�1�i) = g(j); j = 1; 2; : : : ; `;where f (�) and g(�) are the functions de�ned after Eq. (7.5). For j = 1; : : : ; `,these are exactly the same functional identities as we derived above. Hence,order by order, the solution is@i"'(`)(y; 0) = z(i)(y); i = 0; 1; : : : ; `:This proves that the theorem is true for `.Remark. In general, the coe�cient of "2 in '(1) will not be equal to z(2). Thismay be seen by direct examination of the O("2) equation,(Dz(0))(y) �(Dzf)z(1) + f"� = 12(D2zg)(z(1); z(1)) + (Dzg")z(1) + 12g"";24



which di�ers from Eq. (7.4). The latter has two additional terms, namely,(Dzg)z(2) and (Dz(1))f . Hence, the �rst iterate generally involves an error ofO("2). Similarly, the `th iterate does not give the same equation for the term atorder O("`+1) as compared with that obtained from invariant manifold theory;hence, the error in the approximation at this stage is generally O("`+1).A comparison of the results given in Theorem 7.1 with Theorem 2.1 leadsto the following conclusions.Corollary 7.1 The iterative method of Fraser and Roussel gives successivelyhigher-order asymptotic approximations to the slow manifold M". Startingfrom '(0) = h0, ` applications of the iterative procedure give an approximation'(`) that satis�es '(`) = X̀i=0 "ih(i) +O("`+1); ` = 1; 2; : : : ; (7.19)where the functions h(i) are the coe�cients in the asymptotic expansion ofM"given in Theorem 2.1, Eq. (2.12).Remark. In Ref. [54], Roussel and Fraser noted the connection betweenthe iterative approach developed by Fraser and Roussel and techniques fromdynamical systems theory, such as deriving the existence of certain invariantmanifolds via application of the contraction mapping principle to appropriateintegral equations.8 The Michaelis{Menten{Henri ModelIn this section, we illustrate the analytical results of the preceding sections onthe Michaelis{Menten{Henri (MMH) model. The MMH model is a prototypereaction mechanism for enzyme kinetics in biochemistry [20]. It is a planarfast-slow system, which is given in nondimensional form by the equations_y = �y + (y + a� b)z; (8.1)" _z = y � (y + a)z: (8.2)The variables are y, the concentration of the substrate, and z, the concentra-tion of an intermediate substrate-enzyme complex. The parameters a and bsatisfy the inequalities a > b > 0. 25



Remark. The MMH model, Eqs. (8.1){(8.2), is derived from a more com-plicated system involving four species (enzyme, substrate, enzyme-substratecomplex, and product) and two reactions (one reversible, one irreversible). Thefull system can be reduced to the planar system, because it has two conservedquantities; see Ref. [44].The system of Eqs. (8.1){(8.2) has a family of slow manifoldsM", whoseasymptotics are given by Eq. (2.12),h"(y) = h0(y) + "h(1)(y) + "2h(2)(y) + � � � ; y > 0; (8.3)where h0(y) = yy + a; (8.4)h(1)(y) = aby(y + a)4 ; (8.5)h(2)(y) = aby(2ab� 3by � ay � a2)(y + a)7 : (8.6)We now show that the ILDM method yields an approximation of the slowmanifold that is accurate up to and including the O(") term, but di�ers atO("2) because of the curvature of h0.The Jacobian of the vector �eld associated with Eqs. (8.1){(8.2) isJ =  �(1� z) y + a� b"�1(1� z) �"�1(y + a) ! ; (8.7)and its eigenvalues are�s;f (y; z) = � 12 �y + a" + 1 � z��s14 �y + a" + 1 � z�2 � b(1 � z)" : (8.8)The (nonnormalized) slow eigenvector isvs =  �s + "�1(y + a)"�1(1� z) ! ; (8.9)and there is a corresponding fast eigenvector. The vector vs spans the slowsubspace. As noted before, the fast and slow subspace are not orthogonal, sowe work with v?s and de�ne the ILDM as the set of points where the vector�eld is orthogonal to v?s ,(1� z)[�y + (y + a� b)z]� (�s + "�1(y + a))[y� (y + a)z] = 0: (8.10)26



Asymptotically, the ILDM is given byz =  (y; ") =  (0)(y) + " (1)(y) + "2 (2)(y) + � � � ; (8.11)where  (0)(y) = yy + a; (8.12) (1)(y) = aby(y + a)4 ; (8.13) (2)(y) = aby(2ab� by � ay � a2)(y + a)7 : (8.14)A comparison of the coe�cients in the expansions (8.3) and (8.11) shows agree-ment of the O(1) and O(") terms. On the other hand, the O("2) terms di�er;their di�erence is proportional to the curvature of h0, (2) � h(2) = 2ab2y2(y + a)7 = �f2g2z h000: (8.15)The iterativemethod of Fraser and Roussel starts from the invariance equation,z = y + "zyyy + a+ "zy(y + a� b) (8.16)or, equivalently,z = yy + a + " byzy(y + a)2 � "2 by(y + a� b)z2y(y + a)3+ "3 by(y + a� b)2z3y(y + a)4 + "(y + a)3(y + a� b)zy : (8.17)Successive applications of the iterative algorithm lead to the approximations'(0) = yy + a; (8.18)'(1) = yy + a + " aby(y + a)4 � "2a2by(y + a� b)(y + a)7 +O("3); (8.19)'(2) = yy + a + " aby(y + a)4 + "2aby(2ab� 3by � ay � a2)(y + a)7 +O("3): (8.20)A comparison with Theorem 2.1 (and Eqs. (8.4){(8.6)) shows that '(`) isasymptotically correct up to and including terms of O("`) for ` = 1; 2 (andbeyond), as predicted by the analysis.Remark. The analysis of the full MMH model has been signi�cantly extendedin Ref. [62]. 27



9 The Davis-Skodje ModelThe planar fast-slow system_y = �y; (9.1)" _z = �z + y1 + y � "y(1 + y)2 ; (9.2)was introduced by Davis and Skodje [6] as a model on which to comparevarious reduction methods. (The inverse "�1, which is large, equals the largeparameter  of Ref. [6].)For any ", the curvez = h"(y) = y1 + y ; y � 0; (9.3)is invariant under the dynamics of Eqs. (9.1){(9.2). Therefore, the functionh" represents the slow manifold exactly on y � 0 for all small " > 0. (Thenonlinearity in Eqs. (9.1){(9.2) was, in fact, chosen so the slow manifold isgiven by the simple expression of Eq. (9.3).)The Jacobian of the vector �eld isJ =  �1 0"�1((1 + y) + "(y � 1))(1 + y)�3 � "�1 ! ; (9.4)and the eigenvalues are �s = �1 and �f = �1=" for all (y; z). The correspond-ing (nonnormalized) eigenvectors arevs =  1(1� ")�1(1 + y + "(y � 1))(1 + y)�3 ! ; vf =  01 ! : (9.5)The ILDM is given by the expressionz =  (y; ") = y1 + y + 2"2y2(1 � ")(1 + y)3 ; (9.6)cf. [6, Eq. (3.8)]. Its asymptotic expansion isz = y1 + y + "2 2y2(1 + y)3 + � � � : (9.7)The error in the expansion is O("2) and proportional to the curvature, h000 =�2=(1 + y)3. 28



The invariance equation isz = y1 + y � " y(1 + y)2 + "yzy; (9.8)from which one readily veri�es that the iterative method of Fraser and Rousselyields the approximation '(`)(y) = y=(1 + y) for ` = 1; 2; : : : .Remark. If one restricts the variable y to a �nite interval, then the sys-tem of Eqs. (9.1){(9.2) has a family of slow manifolds, all exponentially close(O(e�c=")) for some c > 0) to the exact slow manifold, Eq. (9.3).10 DiscussionThe fast-slow system of Eqs. (2.1){(2.2) captures the essential elements of anyreaction mechanism whose long-time dynamics evolve on a slow manifold inthe composition space. As stated in Section 2, however, this system is a math-ematical idealization, and we need to consider how the results of the analysiscarry over to more general reaction mechanisms. In this subsection, we con-sider issues related to the separation of time scales (Section 10.1), the inclusionof conserved quantities (Section 10.2), and the development and analysis of re-duction mechanisms for reaction-di�usion equations (Section 10.3).10.1 Separation of Time ScalesIn this section, we discuss the partition of variables into a fast and a slowgroup and the assumption that the groups evolve on time scales that are andremain well separated at all times. This assumption underlies the de�nitionof the small parameter " in the model of Eqs. (2.1){(2.2). We also discuss thepossibility of partitioning the variables in more than two groups.While many of the systems to which reduction methods have been appliedsatisfy this assumption, there are a signi�cant number of reaction mechanismswhere the fast and slow time scales are separated, but not well separated.This is the case, for example, when " is no longer an asymptotically smallparameter but a �xed (relatively small) number. In such cases, the spectralgap between the fast and slow eigenvalues of the Jacobian of the vector �eld issmall, much smaller than the chasm between the fast O("�1) eigenvalues andthe slow O(1) eigenvalues for asymptotically small ", even at points near a low-dimensional manifold. Nevertheless, as long as there exists a nonzero spectral29



gap, the Jacobian can still be reduced to a fast and a slow component, andthe ILDM method can be (and has been) implemented numerically. Part ofour ongoing research is aimed at using spectral projection operators to analyzethese applications of the ILDM method.In addition, there are reaction mechanisms where the number of fast andslow species changes over time, as may happen, for example, when the tem-perature in the chemical reactor changes and the least-slow of the slow speciestransits to the group of fast species. To account for this type of occurrence,practical implementations of the ILDM method may use one ILDM until thecrossover occurs and another after the crossover. The two procedures can belinked by doing a numerical integration of the full system of equations duringthe crossover. The analysis presented in this article applies to each ILDMseparately. However, it should be noted that the relationship between thesetwo ILDMs (and, more generally, slow manifolds) depends on the bifurcationthat occurs at crossover. As an alternative, one may consider repartitioningthe species to avoid crossover altogether.In some systems, a component of y may evolve on an even slower timescale than that given by � = "t. For example, in Eq. (2.1) one may havey0i = "1+fi(y; z; ") with  > 0 for some index i. Such cases are accounted forby the present analysis; in fact, it su�ces to absorb the factor " in fi. On theother hand, the fact that there are slower time scales in the model may pointto the existence of still lower-dimensional slow manifolds. By systematicallyeliminating fast variables, starting with the fastest and proceeding up the hier-archy, one can reduce the dimensionality of the slow manifold in a systematicway until no further reduction is possible. Such an approach has been used,for example, in Refs. [54, 77]. The idea of a hierarchy of time scales was �rstexplored in singular perturbation theory by Tikhonov [69].10.2 Conserved Quantities and the ILDM MethodIn this section, we briey consider the ILDM method for fast-slow systemswhose dynamics are described by Eqs. (2.1){(2.2), where the unknowns satisfyone or more conservation laws. For models of chemical reactions, a conservedquantity is, typically, a linear combination of several unknowns that is constantin time. Conserved quantities give rise to zero eigenvalues of the Jacobian ofthe vector �eld, and the ILDM method groups these zero eigenvalues with theslow ones.Degeneracies in the Jacobian a�ect the analysis of the ILDM method.Consider, for example, a system given by Eqs. (2.1){(2.2) with m = 2 and30



n = 2, which has one conserved quantity. If the conserved quantity is a linearcombination of the two slow variables, then the �rst and second row of theJacobian are linearly dependent. In this case, there is e�ectively only oneslow variable, and the analysis presented in this article applies to the one-dimensional slow manifold M0. If, by contrast, the conserved quantity is alinear combination of the two fast variables, then not only is J degenerate,but also the columns of Dzg(y; h0(y); 0) are linearly dependent; hence, M0is not asymptotically stable in the four-dimensional composition space. Areduction of the number of fast variables by one lifts this degeneracy, becauseM0 is asymptotically stable in the three-dimensional reduced compositionspace. Other possibilities are that a conserved quantity depends on a mix offast and slow variables or that there are multiple conserved quantities. In eachcase, the analysis of the ILDM method presented here applies once the systemhas been reduced to a system for which the manifold M0 is asymptoticallystable.10.3 Reaction-Di�usion EquationsReduction methods have also been developed for systems of reaction-di�usionequations [27, 28, 77, 78, 19, 24, 64, 32]. The elimination of the fast speciesa�ects not only the reaction kinetics of the slow species (as is the case forthe kinetics reduction methods considered in this article) but also their dif-fusivities. The \e�ective" di�usivities di�er from the ordinary di�usivities byconcentration-dependent terms that are higher order in ".We illustrate this phenomenon on the Michaelis{Menten{Henri mecha-nism with di�usion of the slow species,_y = �y + (y + a� b)z +D�y; (10.1)" _z = y � (y + a)z: (10.2)The variables y and z depend not only on time but also on space; � is theLaplace operator. Ideas from inertial-manifold theory have been applied tothis reaction-di�usion system [77]. The slow manifold is in�nite dimensional,its asymptotics are given byz = yy + a + " " aby(y + a)4 � a(y + a)3D�y# +O("2); (10.3)and the reduced reaction-di�usion equation up to and including terms of O(")is_y = �y+(y+a�b) yy + a + " aby(y + a)4!+D  1 � "a(y + a� b)(y + a)3 !�y: (10.4)31



The regular di�usivity D is seen to be corrected by an "-dependent term thatinvolves the concentration of the slow species.Singular perturbation theory provides an alternative method to �nd thein�nite-dimensional slow manifold and, hence, the reduced reaction-di�usionequation for this and similar systems. In particular, one �nds an asymptoticexpansion for the slow manifold of the formz = h0(y) + "h(1)(y;�y) + "2h(2)(y;�y;�2y) + � � � : (10.5)For the MMH model, this procedure leads to the same expansion of the slowmanifold, Eq. (10.3), and dynamical systems theory states that M" is thein�nite-dimensional weak stable manifold of the spatially homogeneous state(0; 0).We remark that one can include di�usion of the fast variable z, but onlyif the di�usion coe�cient is O("),_y = f(y; z; ") +D1�y; (10.6)" _z = g(y; z; ") + "D2�z: (10.7)In this case, z(0) is independent of D2, and one can follow the same asymptoticprocedure as before; the di�usion coe�cient D2 enters into the equation oforder O("). However, if the di�usion term in the fast equation is O(1), theasymptotic procedure for �nding z(0) breaks down.ACKNOWLEDGMENTSWe thank Simon Fraser, Ulrich Maas, Marc Roussel, and Rex Skodje for gen-erously sharing their insights into reduction methods. We also thank ourcolleagues Michael Davis and Paul Fischer (Argonne National Laboratory) formany stimulating conversations in the course of this investigation.The work of H. K. was supported by the Mathematical, Information, and Com-putational Sciences Division subprogram of the O�ce of Advanced Scienti�cComputing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38. The work of T. K. was supported in part by the Division of Mathe-matical Sciences of the National Science Foundation via grant NSF-0072596.T. K. also thanks the Mathematics and Computer Science Division at ArgonneNational Laboratory for its hospitality and support.32
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