
MATHEMATICAL ANALYSIS FOR THE RATIONALLARGE EDDY SIMULATION MODELLUIGI C. BERSELLIDipartimento di Matematica Applicata \U.Dini", Universit�a di PisaV. Bonanno 25/b, 56126 Pisa, ITALY, email: berselli@dma.unipi.itGIOVANNI P. GALDIDepartment of Mechanical Engineering, University of PittsburghPittsburgh, PA 15260, U.S.A., email: galdi@engnrg.pitt.eduTRAIAN ILIESCUMathematics and Computer Science Division, Argonne NationalLaboratory, Argonne, IL 60439, U.S.A., email: iliescu@mcs.anl.govWILLIAM J. LAYTONDepartment of Mathematics, University of PittsburghPittsburgh, PA 15260, U.S.A., email: wjl+@pitt.eduIn this paper we consider the Rational Large Eddy Simulationmodel recently introducedby Galdi and Layton. We briey present this model, which (in principle) is similar toothers commonly used, and we prove the existence and uniqueness of a class of strong so-lutions. Contrary to the gradientmodel, the main feature of this model is that it allows abetter control of the kinetic energy. Consequently, to prove existence of strong solutions,we do not need subgrid-scale regularization operators, as proposed by Smagorinsky. Wealso introduce some breakdown criteria that are related to the Euler and Navier-Stokesequations.Keywords: Large eddy simulation, strong solutions, existence, uniqueness, blow up.1. IntroductionWe consider the well-known Navier-Stokes equations for a uid �lling a smooth,bounded open set 
 � R3,8>>>><>>>>:@u@t � 1Re�u+ (u � r)u+rp = f in 
 � (0; T );r � u = 0 in 
 � (0; T );u = 0 on @
� (0; T );u(x; 0) = u0(x) in 
; (1.1)where Re > 0 is the Reynolds number. The phenomena of instability of uid1



2 L.C. Berselli, G.P. Galdi, T. Iliescu, & W.J. Laytonmotion at high Reynolds number lead to the study of turbulent ows. The mainidea underlying the study of turbulent motion can be traced back to Leonardo daVinci34 (at the beginning of the 16th century), who was the �rst to observe that themotion of vortices trailing a blunt body can be understood as a mean motion plussome turbulent uctuations (this term being introduced by Lord Kelvin19 though;see also Chapter 11 in Lamb23). The �rst mathematical model using this idea wasintroduced by Reynolds29. In fact, Reynolds proposed to consider the velocity asdecomposed in u = u+ u0; (1.2)where the mean velocity u is the time average of the real velocity, while u0 representsthe turbulent uctuations. It is clear that the averaging operator commutes withlinear di�erential operators, but u
 u 6= u
 u:Substituting the decomposition (1.2) into the Navier-Stokes equations (1.1), we donot have a closed set of equation, and some extra assumptions are needed. Inparticular, we need to model the Reynolds stress tensor� = �u
 u:Using the assumption that a turbulent ow is \dissipative in mean", Boussinesq7proposed the tensor � = �t(ru+ruT);where �t is function of the turbulent ow. Later Smagorinsky31 (see also the workof Lady�zhenskaya20 in the context of regularity results) proposed the following con-stitutive relation for the turbulent stress tensor:� = �c1 + c2jru+ruTj2�� (ru+ruT) 0 < c1; c2 2 R: (1.3)An approach di�erent from that of Reynolds is so-called Large Eddy Simulation(LES), which uses space averaging instead of time averaging. The main objectiveof LES is to derive equations for a "mean velocity" that does not have high fre-quencies in its spectrum; equivalently, the LES equations resolve only scales biggerthan a given positive averaging radius. The methods of LES were introduced byDeardor�12, and they are essentially based on averaging operators acting as low-pass �lters (see Section 2). In this paper we analyze the \Rational" LES (RLES)model, recently introduced by Galdi and Layton16:8>>>>>><>>>>>>: @w@t +rq + (w � r)w +r ��I � �24���1 � �22rwrw�� 1Re�w = f ;r �w = 0;w(x; 0) = w0(x): (1.4)



Mathematical analysis for the Rational Large Eddy Simulation model 3This model is based (see Section 2.1) on a rational approximation of the Fouriertransform of the Gaussian �lter. The positive averaging radius is denoted by �, and is a positive constant (generally  = 6).The variables (w; q) are approximations of the averaged ow variables (u; p): Infact, the system (1.4) is obtained by disregarding, from the exact �ltered equations,terms that are formallyO(�4); consequently, the above system models the motion inwhich the solution does not contain scales of size smaller than O(�): Here, to avoidthe delicate problems related with the boundary conditions, we consider the caseof space-periodic boundary conditions. Other boundary conditions of Navier typewere introduced by Galdi and Layton16. For a recent study that also introducesnonlinear boundary conditions, see Sahin30.The main result we prove is an existence theorem for a class of solutions thathave the same regularity as the strong solutions to the Navier-Stokes equations. Ourresults di�er from other LES models proposed in literature, in which the existencefor weak solutions is obtained by adding an extra dissipative term of Smagorinskytype.In Section 2 we briey introduce the model we will study, with its physicaljusti�cation. In Section 3 we prove a result of existence and uniqueness of strongsolution. In Section 4 we consider the problem of the global existence of strongsolutions, and we mention some numerical results.2. Large Eddy Simulation ModelsWe present some basic facts related to LES; we refer the readers to Aldama2 forother details. Complete derivation of the model we will consider can be found inthe recent study by Galdi and Layton16.Given a function (as well as a vector �eld) f(x; t); one can de�ne its correspond-ing �ltered variable f(x; t) by means of a convolution integralf (x; t) = [H � f ](x; t) = ZR3 H(x� �) f(�; t) d�; (2.5)where H is a suitably de�ned smooth �lter function. An ideal low-pass �lter isone such that bH = 0 for jkj > kc; where the hat denotes the Fourier transformof a function. For our purposes (as well as for the practical purposes of numericalsimulations) a �lter that is rapidly decreasing is enough. In particular, we considerin (2.5) convolution with a Gaussian �lterg�(x) = ���3=2 1�3 e�jxj2�2 and bg�(k) = e� �24 jkj2:Extending all the variables by zero outside 
; we can study the system (1.1) bymeans of the Fourier transform and u = g� � u: Recall that convolution in thephysical space becomes multiplication in the frequency space. Then, the Fouriertransform of (1.2) gives bu(k) = bg�(k)bu(k) + bg�(k)bu0(k):



4 L.C. Berselli, G.P. Galdi, T. Iliescu, & W.J. LaytonThus, bu0 is given exactly, in terms of bu; bybu0 = � 1bg�(k) � 1�bu:One possible approach to model the terms arising from the �ltering of uu is to usea Taylor series expansion with respect to �: The �rst model obtained by using thisapproach was proposed by Leonard24. Further studies by Clark et al.9, Bedford andYeo4, and Cantekin et al.8 led to the following expansions:bg�(k) = 1� �24 jkj2 + O(�4) and 1bg�(�) � 1 = �24 jkj2 +O(�4): (2.6)Disregarding terms that are O(�4), we have a poor �ltering operator. In fact, theFourier transform of the averaging kernel satis�es bg�(k) ! 0 as jkj ! 1; on theother hand �1� �24 jkj2� ! 1 as jkj ! 1: Consequently, for high wave numbersthe Taylor approximation may act as an antismoothing operator: the velocity ubelongs to L2; while the u may not belong to the same space.When one disregards terms that are O(�4) and applies the inverse Fourier trans-form, the Taylor approximation (2.6) leads to the following nonlinear system ofpartial di�erential equations, known as the gradient model9, for U ' g� � u;@U@t + (U � r)U � 1Re�U +r � � �22rUrU� = f; (2.7)together with the incompressibility condition r � U = 0: In the notation that wewill use in the sequel, we have, for a given vector �eld �;[r�r�]ij def= 3Xl=1 @�i@xl @�j@xl :Unfortunately, for the reason explained above, the model (2.7) might have un-bounded kinetic energy. Hence the existence theorems for the mean velocity U need,for instance, an additional Smagorinsky dissipative term; see Coletti10. Moreover,the numerical experiments performed by Coletti11 and Iliescu et al.18 show that thekinetic energy of the solution to (2.7) blows up in �nite time if there is not a (veryaccurately tuned) additional dissipative term.2.1. The Rational LES ModelIn this section we introduce the RLES model (1.4). This model is based on thefollowing (0,1) subdiagonal Pad�e approximation of the exponential function:bg�(k) = 11 + �24 jkj2 +O(�4): (2.8)



Mathematical analysis for the Rational Large Eddy Simulation model 5The term 1=bg�(�)�1 is approximated as in (2.6). When we disregard terms that areO(�4) in the (0; 1) Pad�e approximant, the resulting expression in (2.8) vanishes asjkj goes to in�nity. This seems a more promising method of approximate �ltering.In fact, the weak solutions to the Navier-Stokes equations satisfy u 2 L2(R3), andthe Plancherel theorem implies that bu 2 L2(R3): Consequently, we have also thatbu(1+ �24 jkj2) belongs to L2(R3): By using this approximation and by applying theinverse-Fourier transform in the same way used to derive (2.7), one obtains thesystem RLES (1.4). This is not simply a di�erential system.In fact, the system (1.4) is identical to (2.7) except for the presence of thenonlocal regularizing term �I � �24���1: (2.9)This term, which at �rst glance makes the equations more complicated, is in e�ecta smoothing term and is responsible for better existence results from the analyticalpoint of view. From the numerical point of view, the presence of this term (which isnot di�cult to handle with a Fast Poisson Solver) requires one to solve an additionallinear problem. The particular form of the term (2.9) and the way (1.4) has beenderived make the use of spectral methods very promising. This is the topic of workin progress.Regarding the known analytical results, if a Smagorinsky term is added to system(1.4), Galdi, Iliescu, and Layton17 proved the following result of existence of weaksolutions.Theorem 1. Let � be greater than or equal to 0:1: Let w0 2 L2; wt(0) 2 L2; rw0 2L2+2�; f 2 L2(0; T ;L2); and f t 2 L2(0; T ;L2): Moreover, assume that kw0kL2 andkfkL2(0;T ;L2) are small enough. Then, there exists a unique weak solution to (1.4)(together with the additional term (1.3)) in L1(0; T ;L2) \L2+2�(0; T ;W 1;2+2�0 ):Remark 1. The hypotheses assumed in Theorem 1 are weaker than that requiredby Coletti10;11 for the system (2.7). In particular, � � 0:1 is needed for the modelwe consider, while for the gradient model9 (2.7) a Smagorinsky dissipative termwith � � 0:5 is required. For our RLES model (1.4) we conjecture the existence ofweak solutions also for � = 0; that is, without extra dissipative terms.Indeed, the main purpose of this paper is to prove the existence of strong solu-tions to (1.4) without additional dissipative terms.Remark 2. For the sake of completeness, we mention the Approximate Deconvo-lution Models (ADM) recently introduced and studied numerically by Stolz andAdams33 and Adams et al.1, and references therein. These models are based on theapproximate inversion of the �ltering operation through repeated �ltering. For theparticular case of Gaussian �ltering, Adams, Stolz, and Kleiser1 noticed that theADM coincides up to O(�4) with the model (2.7) (Appendix B, pp. 1013{1014).An approach similar (at least in principle) to the Fourier transform is that of thewavelets transform. This method is expected to be able to capture di�erent patterns



6 L.C. Berselli, G.P. Galdi, T. Iliescu, & W.J. Laytonand not only to cuto� small eddies or high frequencies, but its use is far di�erentfrom the purposes of this paper. For a recent review regarding wavelets methods inturbulence, see Farge et al.13.3. Existence and Uniqueness of Strong SolutionsIn this section we prove the existence of strong solutions for the RLES sys-tem (1.4). The main result is that we prove the existence of such solutions withoutextra dissipative terms, as are required in other LES models previously proposed10;11;17.3.1. Functional SettingSince we will consider the problem in the space-periodic setting, we recall thebasic function spaces needed to deal with this functions. We denote by Hmper(Q);m 2N; the space of functions that are in (Hmloc(R3))3 (i.e., ujO 2 Hm(O) for everybounded set O) and that are periodic with period L > 0 :u(x+ L ei) = u(x); i = 1; 2; 3;where < e1; e2; e3 > represents the canonical basis of R3; and Q =]0;L[3 is a cubeof side length L:For m = 0; H0per(Q) coincides simply with the Lebesgue space L2(Q): For anarbitrary m 2 N; Hmper(Q) is a Hilbert space. The functions in Hmper(Q) are easilycharacterized by the Fourier expansionHmper(Q) = (u = Xk2Z3 cke 2i�k�xL ; ck = c�k; Xk2Z3(1 + jkj)2mjckj2 <1) :(3.10)The de�nition (3.10) allows also us to consider m 2 R: We setHm = �u 2 Hmper(Q) of type (3.10), such that c0 = 0	 :Form 2 R; Hm is a Hilbert space for the norm fPk2Z3 jkj2mjckj2g1=2; furthermore,Hm and H�m are in duality.The norm (of functions, vectors, and tensors) in the Lebesgue space L2 := L2(Q)is denoted by k : k; while the scalar product is written simply ( : ; : ): The norm ofLp; p 6= 2; is denoted by k : kLp: We also use the customary Sobolev spaces W k;p;k 2 N; de�ned as the closure of smooth, periodic functions with respect to the normkfkWk;p = 24Xj�j�k kD�fkLp351=p;the space W�k;q; for q = p=(p� 1); denotes the topological dual of W k;p:Two spaces frequently used in the theory of Navier-Stokes equations areV = �u 2 H1; r � u = 0	 and H = �u 2 H0; r � u = 0	 :



Mathematical analysis for the Rational Large Eddy Simulation model 7If �i = @Q \ fxi = 0g; while �i+3 = @Q \ fxi = Lg; we have that if u 2 V; thenuj�j+3 = uj�j : Let G be the orthogonal complement of H in H0: We haveG = �u 2 L2 : u = rq; q 2 H1per(Q)	 :The Stokes operator associated with the space-periodic functions is the followingone. Given f 2 H�1, we solve��u+rp = f in Q; r � u = 0 in Q: (3.11)We observe that if f belongs to H (in particular Pk2Z3 k � fk = 0; where fk arethe Fourier coe�cients of f), then the Fourier coe�cients fuk; pkg of the solutionof (3.11) are given byuk = � fk L24�2jkj2 and pk = 0; k 2 Z3:We de�ne a one-to-one mapping f ! u from H ontoD(A) = fu 2 H; �u 2 Hg = H2 \H:Its inverse from D(A) onto H is denoted by A and, in fact,Au = ��u; 8u 2 D(A):Remark 3. In absence of boundaries (in this case, the space-periodic setting) theStokes and the Laplace operator coincide, apart from the domain of de�nition.If D(A) is endowed with the norm induced by L2; then A becomes an isomor-phism from D(A) onto H: It follows that the norm kAuk on D(A) is equivalentto the norm induced by H2: It is well known that A is an unbounded, positive,linear, and self-adjoint operator on H: We can de�ne the powers A� and, if we setV� = D(A�=2); V� = fv 2 H�; r � v = 0g :Furthermore, the operator A�1 is linear continuous and compact. Hence A�1 pos-sesses a sequence of eigenfunctions fWjgj2N that form an orthonormal basis ofH; 8<: AWj = �jWj; Wj 2 D(A);0 < �1 � �2 � �3 : : : ; and �j !1 for j !1: (3.12)In the sequel we denote by c several (possibly di�erent also in the same line) positiveconstants not depending on w; but at most on Re; f; and L: All the norms thatappear in the paper are evaluated on Q =]0;L[3:3.2. Proof of the Existence and Uniqueness TheoremsIn this section we prove the existence and uniqueness of a particular class ofsolutions for system (1.4).



8 L.C. Berselli, G.P. Galdi, T. Iliescu, & W.J. LaytonDe�nition 1. We say that w is a strong solution to system (1.4) ifw 2 L1(0; T ;V ) \ L2(0; T ;D(A)) and @w@t 2 L2(0; T ;H) (3.13)and if w satis�es, for each � 2 V;ddt (w; �)+ 1Re (rw;r�) + ((w � r)w; �)�  �I � �24���1 � �22rwrw� ;r�! = (f ; �): (3.14)Since w satis�es (3.13), we have that w 2 C([0; T ];V ) and the condition w(x; 0) =w0(x) makes sense.The main result we prove is the following.Theorem 2. Let be given w0 2 V and f 2 L2(0; T ;H): Then there exists a strictlypositive T � = T �(w0; Re; f) such that there exists a strong solution to (1.4) in[0; T �): A lower bound for T � depending on krw0k; Re; kfkL2(0;T ;L2) is obtained in(3.23).Proof. We consider the Faedo-Galerkin approximation of problem (1.4), that is, welook for approximate functionswm(x; t) = mXk=1gim(t)Wi(x);satisfying for k = 1; : : : ;m8>>>>>>>>>>><>>>>>>>>>>>: ddt (wm;Wk) + 1Re (rwm;rWk) + ((wm � r)wm;Wk)� �I� �24���1 � �22rwmrwm� ;rWk! = (f ;Wk);wm(x; 0) = Pm(w0(x)); (3.15)with the gim(t) functions of class C1; while fWigi2N is the basis of eigenfunctionsin (3.12). The operator Pm denotes the orthogonal projectionPm : H ! Span <W1; : : : ;Wm > :To obtain a priori estimates, we multiply (3.15) by Awm; de�ned byAwm := wm + �24 Awm;



Mathematical analysis for the Rational Large Eddy Simulation model 9and use suitable integration by parts to get12 ddt �kwmk2 + �24 krwmk2�+ 1Re �krwmk2 + �24 kAwmk2� = (f ;Awm)� ((wm � r)rwm;Awm) + �I� �24���1 � �22rwmrwm� ;rAwm! :The �rst term on the right-hand side can be estimated simply by the Schwartzinequalityj(f ;Awm)j � j(f; wm)j+ �24 j(f;Awm)j � 16Re �krwmk+ �24 kAwmk2�+ ckfk2:(3.16)We also use the fact that AWm = �mWm to increase the L2 norm of wm with thatin V: The second term can be estimated by observing that((wm � r)wm; wm) = 0and by using the following classical inequality (see, for instance, Prodi28):j((u � r) v; w)j � ckrukkrvk1=2kAvk1=2kwk; 8u 2 V; 8 v 2 D(A); 8w 2 H:(3.17)We obtainj((wm � r)rwm;Awm)j � c �24 krwmk3=2kAwmk3=2� 1Re �224 kAwmk2 + c �2Re34 krwmk6: (3.18)Concerning the last term, we use the following identity. Given a linear, self-adjoint, and unbounded operator B acting from D(B) � X into the Hilbert spaceX, then we have (Bx; y) = (x;By) 8x; y 2 D(B): (3.19)In particular, if B = A�1, we have(A�1x;Ay) = (x; y):We observe that, since we are working in the space periodic setting, ifWk is in thedomain of A; its partial derivatives also belong to the same subspace of H:We have



10 L.C. Berselli, G.P. Galdi, T. Iliescu, & W.J. Laytonthen, by using (3.19),����� �I � �24���1 � �22rwmrwm� ;rAwm!�����= �����A�1 � �22rwmrwm� ;Arwm����� = �22 j(rwmrwm;rwm)j� �22 krwmrwmk krwmk � �22 krwmk2L4krwmk:Now, by using the classical interpolation inequality,kukL4 � ckuk1=4kruk3=4 8u 2 V; (3.20)(see, for instance, Lady�zhenskaya21), we obtain����� �I� �24���1 � �22rwmrwm� ;rAwm!����� � c �22 krwmk3=2kAwmk3=2� 112Re �22 kAwmk2 + c �2Re32 krwmk6: (3.21)By collecting estimates (3.16), (3.18), and (3.21), we getddt �kwmk2 + �24 krwmk2�+ 1Rekrwmk2+ 1Re �24 kAwmk2 � ckfk2 + c �2Re3krwmk6: (3.22)The Gronwall lemma(provided f belongs to L2(0; T ;H)) and the results of existencefor systems of ordinary di�erential equations imply that there exists T � > 0 suchthat there exists a solution wm to (3.15) in [0; T �) andfwmg is bounded uniformly with respect to m in L1(0; T �;V ) \ L2(0; T �;D(A)):A lower bound on the time T � can be deduced as follows. Let us set y(t) =kwmk+ �2=4 kwmk2: Then we study (recall (3.22)) the di�erential inequalitydydt � c1kfk2 + c2Re3�4 y3:Dividing both sides by (1 + y)3 � 1, we obtaindydt 1(1 + y)3 � c1kfk2 + c2Re3�4 :



Mathematical analysis for the Rational Large Eddy Simulation model 11This equation can be explicitly integrated to get1 + y(t) � 1 + y(0)r1� (1 + y(0))2 hc1 R t0 kf (� )k2 d� + c2Re3�4 ti :Consequently, a condition that bounds T � from below is the following:c1 Z T�0 kf(� )k2 d� + c2Re3�4 T � � 1(1 + krw0k2)2 : (3.23)Remark 4. The same result can be written also as follows: There exists � =�(T; f ;Re) > 0 such that if krw0k < � and kfkL2(0;T ;L2) < �; then fwmg is uni-formly bounded in L1(0; T ;V ) \ L2(0; T ;D(A)): (3.24)Remark 5. The result of existence is given for a �xed averaging radius �: The basictheory of di�erential inequalities implies that, if all the other quantities (w0; Re;and f) are �xed, then the life-span of wm is O(�4):Let us turn to an estimate of the time derivative of wm: By comparison, we haveto estimate�����@wm@t ;Wj����� � j((wm � r)wm;Wj)j+ 1Re j(Awm;Wj)j+ ����� r ��I� �24���1 � �22rwmrwm� ;Wj!�����+ ���f ;Wj��� :Some care is needed to estimate the highly nonlinear term, while the others aretreated in a standard way (see, for instance, Galdi15). This one can be estimatedas follows: ����� r ��I� �24���1 � �22rwmrwm� ;Wj!������ r ��I� �24���1 � �22rwmrwm� kWjk� �I� �24���1 � �22rwmrwm�W1;2 kWjk: (3.25)



12 L.C. Berselli, G.P. Galdi, T. Iliescu, & W.J. LaytonRecalling the Sobolev embedding W 2;3=2 ,! W 1;2; and classical results of ellipticregularity, the expression in (3.25) is bounded byc �I� �24���1 � �22rwmrwm�W2;3=2 kWjk � ckrwmrwmkL3=2kWjk:Next, we use the convex-interpolation inequality that holds for f 2 Lp(
)\Lq (
) :if p � r � q, then kfkLr � kfk�Lpkfk1��Lq ; for � = pq � prr(q � p) : (3.26)The latter, together with the Sobolev embedding H1(Q) � L6(Q); implies that theterm in (3.25) is bounded byckrwmk2L3kWjk � ckrwmk krwmkL6kWjk � ckrwmk kAwmkkWjk:Multiplying (3.15) by dgim(t); summing over i = 1; : : : ;m; and using the last in-equality (together with well-known estimates for the other terms), we obtain12Re ddtkrwmk2 + @wm@t 2 � c(1 + krwmk2)kAwmk2 + ckrwmk6 + ckfk2:The last di�erential inequality, together with (3.24), shows that @wm=@t is uniformlybounded in L2(0; T �;L2):We now recall the following compactness result (see, for instance, Lions25, Chap.1).Lemma 1. Let, for some p > 1; the set Y be bounded inX := �u 2 Lp(0; T �;X1) : dudt 2 Lp(0; T �;X3)� :If X1 � X2 � X3 are reexive Banach spaces and the �rst inclusion is compact,while the second is continuous, then Y is compactly included in Lp(0; T �;X2):By using the above lemma withp = 2; X1 = D(A); X2 = V; and X3 = H;we see that it is possible to extract from fwmgm2N a subsequence (relabeled fornotational convenience again as fwmg) such that8>>>><>>>>: wm �* w in L1(0; T �;V )wm * w in L2(0; T �;D(A))wm ! w in L2(0; T �;V ) and a.e. in (0; T )� Q: (3.27)



Mathematical analysis for the Rational Large Eddy Simulation model 13With this convergence it is easy to pass to the limit in (3.15) and to prove that wsatis�es (1.4); hence, it is a solution to (1.4). Without loss of generality, along thesame subsequence, we have also@wm@t * @w@t in L2(0; T �;L2):By using a classical interpolation argument (see Lions and Magenes26), the functionw belongs also to C(0; T �;V ):For the reader's convenience, we show how the proof concludes; namely, that wsatis�es (3.14), and hence it is a strong solution. The passage to the limit is donein a standard way (the same as for the Navier-Stokes equations; see, for instance,Galdi15) for all terms appearing in (3.15), except for �I� �24���1 � �22rwmrwm� ;rWk! :To pass to the limit in the above expression, we recall (see, for instance, Lemma6.7, Chap. 1, in Lions25) thatrf 2 L1(0; T �;L2) \L2(0; T �;H1)implies, by the H�older inequality,rf 2 L4(0; T �;L3):Thus, rwmrwm is bounded in L2(0; T �;L3=2), and (3.27)3 implies thatrwmrwm * rwrw in L2(0; T �;L3=2):This implies that 8� 2 C1per(Q) �I� �24���1 � �22rwmrwm� ;r�! = �22rwmrwm;�I � �24���1r�!!  �22rwrw;�I� �24���1r�!in L2(0; T �): The proof concludes with a density argument.Theorem 3. Under the same hypotheses as in Theorem 2, there exists at most onestrong solution to (1.4).



14 L.C. Berselli, G.P. Galdi, T. Iliescu, & W.J. LaytonProof. Let us suppose that we have two solutions w1; w2 relative to the same ex-ternal force f and the same initial datum w0: Furthermore, let us suppose thatboth the solutions exist in some interval [0; T ]: We subtract the equation satis�edby w2 from that one satis�ed by w1; and we multiply the equations by Aw; wherew : =w1 � w2: The most dangerous term is that corresponding to r ��I� �24���1 �22 [rw1rw1 �rw2rw2] ; A(w1 � w2)! :By adding and subtracting r � �I� �24���1 h �22rw1rw2i on the left term, we get r ��I� �24���1 �22 [rw1rw �rwrw2] ; A(w1 �w2)! : (3.28)The �rst term in (3.28) can be estimated as follows:I1 = ����� r ��I� �24���1 � �22rw1rw� ; A(w1 �w2)!������ �I� �24���1 � �22rw1rw�W2;2 krA(w1 � w2)kW�2;2� c krw1rwkkrwk � ckrw1kL4krwkL4krwk:By using again the interpolation inequality (3.20), we obtainI1 � ckrw1kL4krwk5=4kAwk3=4 � 18RekAwk2 + ckrw1k8=5L4 krwk2:The other term leads, mutatis mutandis, toI2 = ����� r ��I� �24���1 � �22rwrw2� ; Aw!����� � 18RekAwk2 + ckrw2k8=5L4 krwk2:For the sake of completeness let us see how to estimate the other nonlinear termsI3 = j((w1 � r)w1 � (w2 � r)w2; Aw)j :Again, by adding and subtracting the term (w2 � r)w1, we obtainI3 = j((w � r)w1 � (w2 � r)w;Aw)j :Using again estimate (3.17), we obtainj((w2 � r)w;Aw)j � krw2k krwk1=2kAwk3=2 � 18RekAwk2 + ckrw2k4krwk2:



Mathematical analysis for the Rational Large Eddy Simulation model 15The other term is easier to handle, sinceI4 = j((w � r)w1; Aw)j � kwkL4kw1kL4kAwk� ckw1kL4kAwk krwk by a Sobolev embedding theorem� 18RekAwk2 + ckrw1k2L4krwk2 by the Young inequality:Collecting all the above estimates, we obtainddtkrwk2 + 1RekAwk2 � c�krw1k8=5L4 + krw2k8=5L4 + krw2k4 + krw1kL4� krwk2:We recall that w(x; 0) = w1(x; 0)� w2(x; 0) = 0; by (3.24) we get�krw1k8=5L4 + krw2k8=5L4 + krw2k4 + krw1kL4� 2 L1(0; T );and since kuk � 1=�1 kruk; for each u 2 V; the Gronwall lemma directly impliesthat w � 0 in V:4. Analytical and NumericalResults concerning the Breakdown of StrongSolutionsIn this section we introduce some criteria for the breakdown (and also for thecontinuation) of strong solutions, and we report some numerical results recentlyobtained. We compare these criteria with others in the literature, and we use themin interpreting the numerical simulations.4.1. On the Breakdown of Strong SolutionsIn this section, for simplicity (but it is easy to include a smooth external force),we set f = 0: We start with the following theorem.Theorem 4. Let w be a strong solution in the time interval [0; T ). If it cannot becontinued in (3.13) to t = T ; then we havelimt!T� krw(t)k = +1: (4.29)Furthermore, we have the following blow-up estimatekrw(t)k � C�Re3=4 1(T � t)1=4 ; t < T : (4.30)Proof. We observe that if f = 0, the estimate (3.23) of the life span of the strongsolution such that w(x; 0) = w0 can be replaced by the more explicitT � � C�4Re3krw0k4 ;



16 L.C. Berselli, G.P. Galdi, T. Iliescu, & W.J. Laytonas can be easily seen by using the same technique of Section 3.2. We now prove(4.29) by contradiction. Let us assume that (4.29) does not hold. Then, there wouldexist a sequence ftkgk2N (such that tk " T ) and a positive number M such thatkrw(tk)k � M:Since w(tk) 2 H1; by using Theorem 2 we may construct a solution w with initialdatum w(tk) in a time interval [tk; tk + T �); whereT � � Ckrw(tk)k4 � CM4 := T 0:By using the uniqueness Theorem 3, we have w � w in [tk; tk + T 0): We maynow select k0 2 N such that tk0 + T 0 > T to contradict the assumption on theboundedness of krw(t)k: This proves (4.29).To obtain the estimate on the growth of krw(t)k, we argue as in the proof ofTheorem 2. We multiply (1.4) by Aw, and we get that Y (t) := krw(t)k2 satis�es,in the time interval [0; T ); dY (t)dt � cRe3�4 [Y (t)]3:Integrating the above equation, we �nd1krw(t)k4 � 1krw(� )k4 � cRe3�4 (� � t) 0 < t < � < T :Letting � ! T ; and recalling (4.29), we obtain (4.30).By using the above theorem, we can prove the following blow-up criteria, in-volving other norms of the gradient of w:Theorem 5. Let w be a strong solution to (1.4), and suppose that there exists atime T such that the solution cannot be continued in the class (3.13) to T = T :Assume that T is the �rst such time. ThenZ T0 krw(� )k�L� d� =1; for 2� + 3� = 2; 1 � � <1; 3=2 < � � 1: (4.31)Observe that the condition (4.31) is the same as that involved in the study ofthe breakdown (or the global regularity) for the 3D Navier-Stokes equations; seeBeir~ao da Veiga5 for the Cauchy problem (also in Rn) and Berselli6 for the initialboundary value problem. In the limit case � =1; condition (4.31) is related to theBeale-Kato-Majda3 criterion for the 3D Euler equations.Proof. The proof is done by contradiction. We assume thatZ T0 krw(� )k�L� d� � C <1 (4.32)



Mathematical analysis for the Rational Large Eddy Simulation model 17and we use estimates similar to that ones derived in the existence theorem. Let ussuppose that [0; T ) is the maximal interval of existence of the unique strong solutionstarting from w0 at time t = 0: We multiply (1.4) by (recall Remark 3)Aw = w + �24Aw = w � �24�w;and we obtain, with suitable integrations by parts,12 ddt �kwmk2 + �24 krwk2�+ 1Re �krwk2 + �24 kAwk2�� �24 j((w � r)rw;�w)j+ ������A�1 � �22rwrw� ;rAw�V;V 0����� ; (4.33)where < : ; : >V;V 0 denotes the pairing between V and its topological dual V 0: The�rst term on the right-hand side can be estimated with an integration by parts. Wehave, in fact,ZQ(w � r)w�wdx = � 3Xi;j;k=1�ZQ @wj@xk @wi@xj @wi@xk dx� ZQwj @2wi@xj@xk @wi@xk dx� :(4.34)The term 3Xi;j;k=1ZQwj @2wi@xj@xk @wi@xk dx = 3Xi;j;k=1 12 ZQwj @@xj �@wi@xk�2 dxis identically zero, as can be seen with another integration by parts, since r�w = 0:The other term on the right-hand side of (4.34) can be estimated in the followingmanner, for 3=2 < � � 1 :������ 3Xi;j;k=1ZQ @wj@xk @wi@xj @wi@xk dx������ � ckrwk2L2�0krwkL� for 1� + 1�0 = 1:Then, we use the interpolation inequality (3.26) (observe that 1 � �0 < 3; and if�0 = 1 there is nothing to do), together with the Sobolev embedding H1(Q) �L6(Q); to obtain������ 3Xi;j;k=1ZQ @wj@xk @wi@xj @wi@xk dx������ � ckrwk 2��3� k�wk 3� krwkL� :We use Young's inequality with exponents x = 2�=3; x0 = 2�=(2� � 3), and weobtain ������ 3Xi;j;k=1ZQ @wj@xk @wi@xj @wi@xk dx������ � 14Rek�wk2 + ckrwk 2�2��3L� krwk2: (4.35)



18 L.C. Berselli, G.P. Galdi, T. Iliescu, & W.J. LaytonThe other term in (4.33) can be estimated as follows:�A�1 � �22rwrw� ;Arw�V;V 0 = �22 (rwrw;rw);and the latter can be treated as in (4.35).The above estimates lead toddt �kwmk2 + �24 krwk2� � ckrwk�L�krwk2; where � = 2�2� � 3 ;and hence �; � are as in (4.31). The Gronwall lemma, together with (4.32), impliesthat rw 2 L1(0; T ;L2):The last condition implies (from Theorem 4) that the solution w can be uniquelycontinued beyond T ; and this contradicts the maximality of the existence interval[0; T ):Remark 6. The same techniques may be used to prove that there exists � > 0such that, if sup0<t<T krw(t)kL3=2 < �;then the strong solution exists up to T : The constant � does not depend on w butonly on Re; �; ; and L: The proof easily follows by observing that������ 3Xi;j;k=1ZQ @wj@xk @wi@xj @wi@xk dx������ � ckrwk2L6krwkL3=2 � ckAwk2krwkL3=2:Consequently, in12 ddt � kwmk2 + �24 krwk2�+ 1Re �krwk2+ �24 kAwk2� � ckAwk2krwkL3=2we can apply the Gronwall lemma to deduce a bound for krwkL1(0;T ;L2); provided� < �2c 4Re:Remark 7. From the Sobolev embedding theorem, we haveW 1;p � Lp� ; with 1p� = 1p � 13 ;for 1 � p < 3: Consequently, if rw belongs to L�(0; T ;L�) (with �; and � as inTheorem 5, � < 3), thenw 2 Lr(0; T ;Ls) for 2r + 3s = 1; 2 < r <1; 3 < s <1: (4.36)



Mathematical analysis for the Rational Large Eddy Simulation model 19The above class (4.36) is a classical uniqueness and regularity class for weak solutionsto the 3D Navier-Stokes equations; see, for instance, Galdi15. Furthermore, in thecontext of LES scale similarity models, if the approximate mean velocity w belongsto (4.36), then w� ! w as � ! 0;where w� is the solution corresponding to the averaging radius �; see Layton22.Then, in such a class, w is a \good" approximation of u:By using some classical results on elliptic systems and on singular integrals, wecan also introduce breakdown criteria involving the vorticity ! = curlw: We startby observing that, for a divergence-free function w, we have ��w = curl (curlw);and the following estimate holds:krwkLp � cpkcurlwkLp for 1 < p <1; (4.37)with cp a positive constant depending only on p: The above estimate follows byobserving that the Biot-Savart law impliesw(x) = Z G(x� x0) curlw(x0) dx0; (4.38)where G(y) is given explicitly byG(y) = r24 14� limN!1 Xk2Z3; jkj�N � 1jy + Lkj + 1jkLj�35 :By taking the gradient of (4.38) (with respect to the variable x), we obtain thatrw = P (curlw);with P a (linear) singular operator of Calder�on-Zygmund type. The estimate (4.37)follows by using the properties of such operators; see Stein32.Using estimate (4.37) and Theorem 5, one can easily prove the following result.Corollary 1. Let w be a strong solution to (1.4) in the time interval [0; T). If itcannot be continued in (3.13) to t = T ; thenZ T0 kcurlw(� )k�L� d� =1 for 2� + 3� = 2; 1 < � <1; 3=2 < � <1:This breakdown criterion is slightly more interesting (from the physical pointof view) than that involving the gradient of the velocity. In fact, if � = 2; andconsequently � = 4; we have the blow-up criterionZ T0 kcurlw(� )k4 d� =1



20 L.C. Berselli, G.P. Galdi, T. Iliescu, & W.J. Laytoninvolving the so-called enstrophy, that is, the L2-norm of the vorticity �eld.4.2. Remarks on Some Numerical ExperimentsThe Rational LES model (1.4) was studied numerically for the 2D and 3D drivencavity18 and for the 3D channel ow14.The driven cavity is an accepted and common test problem with many bench-marks available. Its solution, however, lies outside the known mathematical theory;since the boundary values are discontinuous, no solution can have an L2 gradient.On coarse meshes the �nite element approximate solution to (1.4) was foundto give an accurate description of moderate Re laminar ow. At higher Re; theapproximate solution to (1.4) gave excellent qualitative agreement with the largeeddies observed in simulations using other, accepted models when those modelsappeared sensible. Further, a quantitative comparison of the various models' kineticenergy yielded interesting results. The kinetic energy of the solution to the model(2.7) blew up in �nite time unless very large amounts of additional dissipation wereadded to the model. At much higher Re and longer times, the kinetic energy in theRLESmodel (1.4) was also seen to blow up; a small amount of additional dissipation,modeling turbulent uctuations, was seen to su�ce to control its breakdown.The RLES model (1.4) was also applied to the 3D channel ow at a Reynoldsnumber based on the wall-shear velocity Re� = 180 (or, equivalently, at a Reynoldsnumber based on the mid-channel velocity Rec � 3300).Fischer and Iliescu14 used a spectral element code to compare the RLES model(1.4) with the Smagorinsky model with Van Driest damping. The numerical resultsincluded plots of the following space-time averaged (denoted by � � �) quantities:the mean streamwise velocity � u �, the xy-component of the Reynolds stress� u0v0 �, and the root mean square values of the streamwise � u0u0 �, wall-normal� v0v0 �, and spanwise � w0w0 � velocity uctuations.The RLES model (1.4) yielded improved results, showing good agreement withthe �ne Direct Numerical Simulations (DNS) calculation of Moser et al.27.It should be noted that, for this low Re simulation of the 3D channel ow, theRLES model (1.4) was successfully used without any additional dissipative term.Further testing for higher Re ows will probably shed new light on the need forand character of extra dissipation in the use of the RLES model (1.4) in turbulentow simulations.AcknowledgmentsL. C. Berselli was partially supported by MURST under the project "Problemsand methods in the theory of hyperbolic equations".T. Iliescu was partially supported by NSF grants INT 9814115 and INT 9805563and by the Mathematical, Information, and Computational Sciences Division sub-program of the O�ce of Advanced Scienti�c Computing Research, U.S. Dept. ofEnergy, under Contract W-31-109-Eng-38.
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