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1. Introduction

We consider the well-known Navier-Stokes equations for a fluid filling a smooth,
bounded open set Q@ C R3,

Ju 1 .
E—EAU—F@rV)u—I—Vp—f in Q x (0,7,

V- -u=0 in Q x (0,7, (1.1)
u=20 on IQ x (0,1,

u(z,0) = ug(x) in €2,

where Re > 0 is the Reynolds number. The phenomena of instability of fluid
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motion at high Reynolds number lead to the study of turbulent flows. The main
idea underlying the study of turbulent motion can be traced back to Leonardo da
Vinci®? (at the beginning of the 16" century), who was the first to observe that the
motion of vortices trailing a blunt body can be understood as a mean motion plus
some turbulent fluctuations (this term being introduced by Lord Kelvin'? though;
see also Chapter 11 in Lamb?3). The first mathematical model using this idea was
introduced by Reynolds?®. In fact, Reynolds proposed to consider the velocity as
decomposed in

u=7u+u, (1.2)

where the mean velocity W is the time average of the real velocity, while u’ represents
the turbulent fluctuations. It is clear that the averaging operator commutes with
linear differential operators, but

URQUA TR

Substituting the decomposition (1.2) into the Navier-Stokes equations (1.1), we do
not have a closed set of equation, and some extra assumptions are needed. In
particular, we need to model the Reynolds stress tensor

T=—-u®u.

Using the assumption that a turbulent flow is “dissipative in mean”, Boussinesq”
proposed the tensor

T =u(Va+ Val),

where v is function of the turbulent flow. Later Smagorinsky®! (see also the work
of Ladyzhenskaya?’ in the context of regularity results) proposed the following con-
stitutive relation for the turbulent stress tensor:

7= (c1 +ea|Va+ VU |?) (Va+Va')  0<ep,e0 €R. (1.3)

An approach different from that of Reynolds is so-called Large Eddy Simulation
(LES), which uses space averaging instead of time averaging. The main objective
of LES is to derive equations for a "mean velocity” that does not have high fre-
quencies in its spectrum; equivalently, the LES equations resolve only scales bigger
than a given positive averaging radius. The methods of LES were introduced by
Deardorff'?, and they are essentially based on averaging operators acting as low-
pass filters (see Section 2). In this paper we analyze the “Rational” LES (RLES)
model, recently introduced by Galdi and Layton'S:
Ow

82 N\ [ 1 -
v : N AN R ——Aw=
p” +Ve+(w- Vw4V ( 7™ ) [27 VwVw] i 7,

V-w =0,

w(z,0) = wo(x).
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This model is based (see Section 2.1) on a rational approximation of the Fourier
transform of the Gaussian filter. The positive averaging radius is denoted by §, and
7y is a positive constant (generally v = 6).

The variables (w, ¢) are approximations of the averaged flow variables (%, 7). In
fact, the system (1.4) is obtained by disregarding, from the exact filtered equations,
terms that are formally O(6%); consequently, the above system models the motion in
which the solution does not contain scales of size smaller than O(d). Here, to avoid
the delicate problems related with the boundary conditions, we consider the case
of space-periodic boundary conditions. Other boundary conditions of Navier type

were introduced by Galdi and Layton'®.

For a recent study that also introduces
nonlinear boundary conditions, see Sahin3°.

The main result we prove is an existence theorem for a class of solutions that
have the same regularity as the strong solutions to the Navier-Stokes equations. OQur
results differ from other LES models proposed in literature, in which the existence
for weak solutions is obtained by adding an extra dissipative term of Smagorinsky
type.

In Section 2 we briefly introduce the model we will study, with its physical
justification. In Section 3 we prove a result of existence and uniqueness of strong
solution. In Section 4 we consider the problem of the global existence of strong
solutions, and we mention some numerical results.

2. Large Eddy Simulation Models

We present some basic facts related to LES; we refer the readers to Aldama? for
other details. Complete derivation of the model we will consider can be found in
the recent study by Galdi and Layton'S.

Given a function (as well as a vector field) f(z,?), one can define its correspond-
ing filtered variable f(z,t) by means of a convolution integral

Flat)=[H«fl(x,t)= | H(x-¢&) f(E1)dE, (2.5)

R3
where H is a suitably defined smooth filter function. An ideal low-pass filter 1s
one such that H = 0 for |k| > k., where the hat denotes the Fourier transform
of a function. For our purposes (as well as for the practical purposes of numerical
simulations) a filter that is rapidly decreasing is enough. In particular, we consider
in (2.5) convolution with a Gaussian filter

2 2
gé(x) = (%)3/2(5% e_'ﬂ;l and @;(k’) = e_i_’Y|k|2,
Extending all the variables by zero outside €2, we can study the system (1.1) by
means of the Fourier transform and @ = gs * u. Recall that convolution in the
physical space becomes multiplication in the frequency space. Then, the Fourier
transform of (1.2) gives

u(k) = ga(k)u(k) + ga (k)i (k).
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Thus, ' is given exactly, in terms of u, by

a’:(ﬁq)ﬁ.

One possible approach to model the terms arising from the filtering of ww is to use
a Taylor series expansion with respect to 4. The first model obtained by using this
approach was proposed by Leonard?*. Further studies by Clark et al.®, Bedford and
Yeo*, and Cantekin et al.® led to the following expansions:

-~ LTRE 4 1 LT 4

gs(k) =1 47|l<7| + 0(6%) and D) 1= 47|l<7| + O(6%). (2.6)
Disregarding terms that are O(6%), we have a poor filtering operator. In fact, the
Fourier transform of the averaging kernel satisfies g5(k) — 0 as |k| — oo; on the
other hand (1 - %|k|2) — 00 as |k| = oo. Consequently, for high wave numbers
the Taylor approximation may act as an antismoothing operator: the velocity u
belongs to L?, while the @ may not belong to the same space.

When one disregards terms that are O(d%) and applies the inverse Fourier trans-

form, the Taylor approximation (2.6) leads to the following nonlinear system of
partial differential equations, known as the gradient model®, for U ~ g5 * u,

ou 1 e _
o T VU= AU+ V- [EVUVU] =7, (2.7)

together with the incompressibility condition V - U = 0. In the notation that we
will use in the sequel, we have, for a given vector field ¢,

3

VoVl Y 9090
=1

3l‘l 3l‘l ’

Unfortunately, for the reason explained above, the model (2.7) might have un-
bounded kinetic energy. Hence the existence theorems for the mean velocity U need,
for instance, an additional Smagorinsky dissipative term; see Colettil®. Moreover,
the numerical experiments performed by Coletti'! and Iliescu et al.'® show that the
kinetic energy of the solution to (2.7) blows up in finite time if there is not a (very
accurately tuned) additional dissipative term.

2.1. The Rational LES Model

In this section we introduce the RLES model (1.4). This model is based on the
following (0,1) subdiagonal Padé approximation of the exponential function:

- 1
Gs (k) = ——7—+0(3"). (2.8)
e 2
1+ LI
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The term 1/gs(x)—1 is approximated as in (2.6). When we disregard terms that are
O(6%) in the (0,1) Padé approximant, the resulting expression in (2.8) vanishes as
|k| goes to infinity. This seems a more promising method of approximate filtering.
In fact, the weak solutions to the Navier-Stokes equations satisfy u € L?(R?), and
the Plancherel theorem implies that u € L?(R?). Consequently, we have also that

@
(1+521k2)
inverse-Fourier transform in the same way used to derive (2.7), one obtains the

belongs to L*(R?). By using this approximation and by applying the

system RLES (1.4). This is not simply a differential system.
In fact, the system (1.4) is identical to (2.7) except for the presence of the

(1 - %A)_l. (2.9)

This term, which at first glance makes the equations more complicated, 1s in effect

nonlocal regularizing term

a smoothing term and is responsible for better existence results from the analytical
point of view. From the numerical point of view, the presence of this term (which is
not difficult to handle with a Fast Poisson Solver) requires one to solve an additional
linear problem. The particular form of the term (2.9) and the way (1.4) has been
derived make the use of spectral methods very promising. This is the topic of work
in progress.

Regarding the known analytical results, if a Smagorinsky term is added to system
(1.4), Galdi, Hiescu, and Layton!? proved the following result of existence of weak
solutions.

Theorem 1. Let pu be greater than or equal to 0.1. Let Wy € L?, w(0) € L?, Vi, €
L2220 f € L2(0,T; L), and f, € L2(0,T; L?). Moreover, assume that ||[wo||z> and
||7||L2(0,T;L2) are small enough. Then, there exists a unique weak solution to (1.4)
(together with the additional term (1.3)) in L*(0,T; L?) N L?>T2#(0,T; W01’2+2“).
Remark 1. The hypotheses assumed in Theorem 1 are weaker than that required
by Colettil®! for the system (2.7). In particular, g > 0.1 is needed for the model
we consider, while for the gradient model? (2.7) a Smagorinsky dissipative term
with g > 0.5 is required. For our RLES model (1.4) we conjecture the existence of
weak solutions also for g = 0, that is, without extra dissipative terms.

Indeed, the main purpose of this paper is to prove the existence of strong solu-
tions to (1.4) without additional dissipative terms.

Remark 2. For the sake of completeness, we mention the Approximate Deconvo-
lution Models (ADM) recently introduced and studied numerically by Stolz and
Adams®® and Adams et al.', and references therein. These models are based on the
approximate inversion of the filtering operation through repeated filtering. For the
particular case of Gaussian filtering, Adams, Stolz, and Kleiser! noticed that the
ADM coincides up to O(d*) with the model (2.7) (Appendix B, pp. 1013-1014).
An approach similar (at least in principle) to the Fourier transform is that of the
wavelets transform. This method is expected to be able to capture different patterns
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and not only to cutoff small eddies or high frequencies, but its use is far different
from the purposes of this paper. For a recent review regarding wavelets methods in

turbulence, see Farge et al.!3.

3. Existence and Uniqueness of Strong Solutions

In this section we prove the existence of strong solutions for the RLES sys-
tem (1.4). The main result is that we prove the existence of such solutions without

extra dissipative terms, as are required in other LES models previously proposed!®H17,

3.1. Functional Setting

Since we will consider the problem in the space-periodic setting, we recall the
basic function spaces needed to deal with this functions. We denote by H;’;T(Q),
m € N, the space of functions that are in (H]”.(R?))3 (i.e., ujo € H™(O) for every
bounded set @) and that are periodic with period £ > 0:

u(z + Le;) = u(z), i=1,2,3,

where < e1, s, e3 > represents the canonical basis of R3, and @ =]0, £[? is a cube
of side length L.
For m = 0, H?,.(Q) coincides simply with the Lebesgue space L?(Q). For an

per
arbitrary m € N, H}%,(Q) is a Hilbert space. The functions in H,.(Q) are easily
characterized by the Fourier expansion
m 2ink-x¢ _ 2m 9
HR(Q) =qu=Y e £, T=cp, > (1+][k])"|e|> <oop.
keZ® keZ®

(3.10)

The definition (3.10) allows also us to consider m € R. We set
H™ = {u € H:,.(Q) of type (3.10), such that ¢; = 0} .

For m € R, H™ is a Hilbert space for the norm {3, .- |k|>™ |ex]?}1/?; furthermore,
H™ and H~" are in duality.

The norm (of functions, vectors, and tensors) in the Lebesgue space L? := L?(Q)
is denoted by || .||, while the scalar product is written simply (., .). The norm of
LP  p # 2, is denoted by ||.||z». We also use the customary Sobolev spaces W¥?,
k € N, defined as the closure of smooth, periodic functions with respect to the norm

1/p

1P lwrn = | D 1D llze |

la|<k

the space W54 for ¢ = p/(p — 1), denotes the topological dual of W*:?.
Two spaces frequently used in the theory of Navier-Stokes equations are

V={ueH" V-u=0} and H={ueH’ V-u=0}.
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If Ty = 0Q N {x; = 0}, while T';43 = 0Q N{x; = L}, we have that if u € V| then
ur,,, = ur;. Let G be the orthogonal complement of H in HY. We have

G:{UEL23 U:v(]a qEH;er(Q)}

The Stokes operator associated with the space-periodic functions is the following
one. Given f € H~', we solve

—Au+Vp=fFfin@, V-u=0inQ. (3.11)

We observe that if f belongs to H (in particular Zkezg, k- fr = 0, where f; are
the Fourier coefficients of f), then the Fourier coefficients {uy, pr} of the solution
of (3.11) are given by

e £?
PROE

U = and pi =0, ke Z3.

We define a one-to-one mapping f — u from H onto
DA ={ucH Auc H}=H"NH.
Tts inverse from D(A) onto H is denoted by A and, in fact,
Au=—Au, YueD(A).

Remark 3. In absence of boundaries (in this case, the space-periodic setting) the
Stokes and the Laplace operator coincide, apart from the domain of definition.

If D(A) is endowed with the norm induced by L? then A becomes an isomor-
phism from D(A) onto H. It follows that the norm ||Aul|| on D(A) is equivalent
to the norm induced by HZ. It is well known that A is an unbounded, positive,
linear, and self-adjoint operator on H. We can define the powers A% and, if we set
Vo = D(AY/?),

Vo={veH* V-v=0}.

Furthermore, the operator A™! is linear continuous and compact. Hence A~' pos-
sesses a sequence of eigenfunctions {W;};en that form an orthonormal basis of

H

AW; =MW, WjED(A),
(3.12)
0<A <A< Az..., and A; = oo for j = oo.

In the sequel we denote by ¢ several (possibly different also in the same line) positive
constants not depending on w, but at most on Re, f, and £. All the norms that
appear in the paper are evaluated on @ =]0, L[>.

3.2. Proof of the Existence and Uniqueness Theorems

In this section we prove the existence and uniqueness of a particular class of
solutions for system (1.4).
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Definition 1. We say that w is a strong solution to system (1.4) if

we L®0,T;VYNL*(0,T;D(A)  and %—ZJ € L*0,T; H) (3.13)

and if w satisfies, for each ¢ €V,

d 1
E(w’(b)—i—ﬁ

_ ((1 — %A)_l [%VwVw] ,V¢>) =(f,9).

Since w satisfies (3.13), we have that w € C([0,T]; V) and the condition w(x,0) =
wo(x) makes sense.

(Vw, V) + ((w- V) w,9)

(3.14)

The main result we prove is the following.
Theorem 2. Let be given wy € V and f € L2(0,T; H). Then there exists a strictly
positive T* = T*(wo, Re, f) such that there exists a strong solution to (1.4) in
[0,T%). A lower bound for T* depending on ||Vwgl|, Re, ||7||L2(0,T;L2) is obtained in

(3.23).

Proof. We consider the Faedo-Galerkin approximation of problem (1.4), that is, we
look for approximate functions

W (@, 1) = Y g () Wi(2),
k=1
satisfying for k =1,...,m

d 1

W (2,0) = P (wo(2)),

with the g%, (¢) functions of class C'*, while {W;};en is the basis of eigenfunctions
in (3.12). The operator P, denotes the orthogonal projection

Pon: H—oSpan< Wy,...,. Wy > .

To obtain a priori estimates, we multiply (3.15) by A wy,, defined by

62
Awpy, = w,, + —Aw,y,,
4y
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and use suitable integration by parts to get

1d 5 62 5 1 , 67 5 -
_ m JR— m e m —_— A m == y m
s (Nl 419 wnl?) + = (9l + Tl ?) = (7o)
§2 \7's2
= ((wm - V) Vg, Awp,) + (I—HA) [ﬂVmewm],V.Awm .

The first term on the right-hand side can be estimated simply by the Schwartz
inequality

- - 5 1 5? N
(7. Ao < Tl + AT Awn) < g (Il + S wn?) + 7
(3.16)

We also use the fact that AW,, = A,,W,, to increase the L? norm of w,, with that
in V. The second term can be estimated by observing that

(- V) W, W) =0
and by using the following classical inequality (see, for instance, Prodi?®):

(- V) v,w)| < e|Vull||[Vol[2|[Av]|?||w]], YueV, YveDA), Ywe H.

(3.17)
We obtain
62
(w0 - V) Voo, Awm)] < T[] Aw [/
2
(3.18)
1 42 c62Re3
< frgg 1wl + ===Vl
2 2

Concerning the last term, we use the following identity. Given a linear, self-
adjoint, and unbounded operator B acting from D(B) C X into the Hilbert space
X, then we have

(Br,y) = (v, By)  Va,y€D(B). (3.19)
In particular, if B = A~', we have
(A~ e, Ay) = (x,y).

We observe that, since we are working in the space periodic setting, if Wy is in the
domain of A, its partial derivatives also belong to the same subspace of H. We have



10 L.C. Berselli, G.P. Galdi, T. Iliescu, & W.J. Layton

then, by using (3.19),
2 =12
‘ ((I — 6—A) [inmem] , VA wm) ‘
4y 2y
2

52 )
= ‘(A—l [ﬂVmewm] ,.AVwm)‘ = ﬂ|(Vmewm,Vwm)|

2 2
< IV TVl < AT all Tl
Now, by using the classical interpolation inequality,
l[ullzs < elful VUt VueV, (3.20)
(see, for instance, Ladyzhenskaya®!), we obtain

52 \ "' [42
(I — —A) [—Vmewm] ,VAw,,
4y 2y

62
< G IVl A P

(3.21)
1 42 c62Re>
< —|[Awn ||? mll®.
<ty gl + S T
By collecting estimates (3.16), (3.18), and (3.21), we get
d ) O 2 1 2
a7 (el + ST 0,1 ) + V]
(3.22)

2

e g Al < AP + e Re [l

The Gronwall lemma (provided f belongs to L?(0,7T; H)) and the results of existence
for systems of ordinary differential equations imply that there exists 7 > 0 such
that there exists a solution wy, to (3.15) in [0,7™) and

{wpm} is bounded uniformly with respect to m in L (0,7%; V) N L*(0,T*; D(A)).

A lower bound on the time 7™ can be deduced as follows. Let us set y(t) =
||wml|| + 62 /47 ||wm]|?. Then we study (recall (3.22)) the differential inequality

ey Re3 3

dy -
W< el + 25

dt —
Dividing both sides by (1 + y)® > 1, we obtain

dy 1 —2 . C2 Re?
—_— < .
at (1 gp = W+
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This equation can be explicitly integrated to get
1+ y(0)
YL (002 [ed [T dr -+ i

L+y(t) <

Consequently, a condition that bounds 7™ from below is the following:

T* 3
— Re 1
Ydr+ 2 < . 3.23
Cl/o ||f(T)|| T 34 >~ (1_|_ ||vw0||2)2 ( )

Remark 4. The same result can be written also as follows: There exists ¢ =
(T, f, Re) > 0 such that if ||[Vwg|| < € and ||7||L2(0,T;L2) < ¢, then {w,,} is uni-
formly bounded in

L0, T; V) N L2(0,T; D(A)). (3.24)

Remark 5. The result of existence is given for a fixed averaging radius 4. The basic
theory of differential inequalities implies that, if all the other quantities (wg, Re,
and f) are fixed, then the life-span of w,, is O(5%).

Let us turn to an estimate of the time derivative of w,,. By comparison, we have
to estimate

Owp, 1
(Zom )| < It 9y W1+ 1 )

82 N\l s

Some care is needed to estimate the highly nonlinear term, while the others are

+ + (£, W5)]-

treated in a standard way (see, for instance, Galdi'®). This one can be estimated

5?2 g2
S I-—A o m m| j
Vv ( ™ ) [QVVw Vw ] W;

as follows:

62 N\ 42
< V~<I—HA) [ﬂVmewm] Wi || (3.25)
62 \"1[62
< (I——A) [_vwmwm] Wl
4y 27 W
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Recalling the Sobolev embedding W?3/? < W12 and classical results of elliptic
regularity, the expression in (3.25) is bounded by

82 N\

I-—A o m m
( 4y ) [%vw e ]
Next, we use the convex-interpolation inequality that holds for f € LP ()N L1(Q) :
if p<r <gq, then

C

Wil < ellVewm Vwn|| Lz [ Wl

W2,3/2

_ Pq—pr
s <IN IFILZY, for 6 = —F——. 3.26
Az < Az 111 wp— (3.26)
The latter, together with the Sobolev embedding H!(Q) C L°(Q), implies that the
term in (3.25) is bounded by

IV w3l < ellVwm| [ [Vwm] 2o V5] < el [V wm] [ [ Awn W11

Multiplying (3.15) by dgi,(t), summing over i = 1,...,m, and using the last in-
equality (together with well-known estimates for the other terms), we obtain

1 d

2
a 2 2 6 112
— < 1+ [V ) At 2+ €l| Ve + el T2

ow
2 Zm
||V wml|” + H o

The last differential inequality, together with (3.24), shows that Jw,y, /9t is uniformly
bounded in L?(0,7*; L?).
We now recall the following compactness result (see, for instance, Lions?®, Chap.

).

Lemma 1. Let, for some p > 1, the set Y be bounded in
* du *
X :=<ueLP(0, T Xy) : EEL”(O,T;X;),) .

If X1 C Xs C X3 are reflerive Banach spaces and the first inclusion is compact,
while the second is continuous, then'Y is compactly included in LP(0,T*; X3).

By using the above lemma with
p:?, Xlzp(A), XQZV, and X3:H,

we see that it is possible to extract from {wm}men a subsequence (relabeled for
notational convenience again as {wy, }) such that

Wy = w in L(0,7%; V)
wm — w in L%(0,T*;D(A)) (3.27)

wm —w in L2(0,7*;V) and a.e. in (0,T) x Q.
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With this convergence it is easy to pass to the limit in (3.15) and to prove that w
satisfies (1.4); hence, it is a solution to (1.4). Without loss of generality, along the
same subsequence, we have also

ow, Ow . . 72
W E m L (O,T ,L )

By using a classical interpolation argument (see Lions and Magenes?®), the function
w belongs also to

C(0, 7, V).

For the reader’s convenience, we show how the proof concludes; namely, that w
satisfies (3.14), and hence it is a strong solution. The passage to the limit is done
in a standard way (the same as for the Navier-Stokes equations; see, for instance,
Galdi'®) for all terms appearing in (3.15), except for

82 N\l
(1 - —A) [—Vmewm] W]
4y 2y
To pass to the limit in the above expression, we recall (see, for instance, Lemma
6.7, Chap. 1, in Lions?®) that

VfeL®0,7 L% NL0,T* HY)
implies, by the Holder inequality,
Ve 0,7 L.
Thus, YV, Vw,, is bounded in L*(0,T*; L3/?), and (3.27)3 implies that
YV, Vi, = VwVw in L2(0,T%; L3/?).

This implies that V¢ € Cp2,.(Q)
§2 \ ' [
62 62 -1 62 62 -1
—Vwy,Vwy, |- —A Vo | = | —VwVw, [I- —A Vo
2y 4y 2y 4y

in L2(0, 7). The proof concludes with a density argument. [

Theorem 3. Under the same hypotheses as in Theorem 2, there exists at most one
strong solution to (1.4).
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Proof. Let us suppose that we have two solutions w1, wy relative to the same ex-
ternal force f and the same initial datum wg. Furthermore, let us suppose that
both the solutions exist in some interval [0, 7]. We subtract the equation satisfied
by ws from that one satisfied by wi, and we multiply the equations by Aw, where
w : =wy; — wy. The most dangerous term is that corresponding to

52 \ 62
V . (I — —A) -— [Vw1Vw1 — VwZsz] ,A(w1 — wz) .
4y 2y

By adding and subtracting V - ( — %A) {%qusz} on the left term, we get

52 \ ' a2
V- (I — HA) ﬂ [Vui Vw — VwVuws], A(w; — wa) | . (3.28)

The first term in (3.28) can be estimated as follows:

82 N\l [é?
Il = V- (I - HA) [ﬂquVw] ,A(w1 - wz)

62 N\l s2
(I_HA) [ﬂvww]

< e[V V[ ||Vl < ef[Van ||z ][ Vel | ][Vl

< IV AQw1 = ws)|lsy -2.2

w2z

By using again the interpolation inequality (3.20), we obtain
1
I < c||Vwy||pal [ VP74 Aw] ¥+ < oAl + ||V [ V][>
The other term leads, mutatis mutandis, to
8 N[
L=V (I — —A) [—Vwsz] , Aw
4y 2y

For the sake of completeness let us see how to estimate the other nonlinear terms

1
< gp 1Al + el Vw771Vl

Is = |((w1 - V) wy — (wa - V) wa, Aw)].
Again, by adding and subtracting the term (wz - V) wy, we obtain

Is = |((w- V) w1 — (w2 - V) w, Aw)|.
Using again estimate (3.17), we obtain

(w2 - V) w, Aw)| < |[Vwa| || Vo] AP < ool Aw][* 4 el [Vawa] [ Vo],

L
8 Re
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The other term is easier to handle, since

Ly =|((w - V) wi, Aw)| < [[w]|s|[wi]| 4] Aw|

< ¢||wi]|ps||Aw||[|[Vw|| by a Sobolev embedding theorem

1
< §||Aw||2 + ¢||[Vwi||2:]|[Vw||* by the Young inequality.
e

Collecting all the above estimates, we obtain

d 1 8/5 8/5
SVl + ollAw]? < ¢ (IVwul}2 + [T el + 11Vl + V]| ) 11Vl

We recall that w(xz,0) = wy(z,0) — wa(z,0) = 0; by (3.24) we get

(IFelly + 1wzl + [Vl + 19w ) € 20,7,
and since ||u|| < 1/A1 ||Vu||, for each u € V, the Gronwall lemma directly implies
that w=01n V. O

4. Analytical and Numerical Results concerning the Breakdown of Strong
Solutions

In this section we introduce some criteria for the breakdown (and also for the
continuation) of strong solutions, and we report some numerical results recently
obtained. We compare these criteria with others in the literature, and we use them
in interpreting the numerical simulations.

4.1. On the Breakdown of Strong Solutions

In this section, for simplicity (but it is easy to include a smooth external force),
we set f = 0. We start with the following theorem.
Theorem 4. Let w be a strong solution in the time interval [0,T). If it cannot be
continued in (3.13) tot =T, then we have
lim [|Vw(t)|| = +o0. (4.29)

t—T
Furthermore, we have the following blow-up estimate

cd 1 =

Proof. We observe that if f = 0, the estimate (3.23) of the life span of the strong
solution such that w(z,0) = wq can be replaced by the more explicit
Cé*
™ > —
= Re3||[Vwol[*’
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as can be easily seen by using the same technique of Section 3.2. We now prove
(4.29) by contradiction. Let us assume that (4.29) does not hold. Then, there would
exist a sequence {t;}ren (such that ¢ 1 T) and a positive number M such that

IVew(te)l| < M.

Since w(ty) € H', by using Theorem 2 we may construct a solution w with initial
datum w(fx) in a time interval [t;, 5 + T7), where

y C c o
U2 e 2
By using the uniqueness Theorem 3, we have w = W in [tg,tx + T°). We may
now select ko € IN such that ¢;, + T° > T to contradict the assumption on the
boundedness of ||[Vw(t)||. This proves (4.29).
To obtain the estimate on the growth of ||Vw(¢)||, we argue as in the proof of
Theorem 2. We multiply (1.4) by Aw, and we get that Y (¢) := ||[Vw(t)||? satisfies,

in the time interval [0, T),

dY (1) < ¢ Re3
d — 6

Y ().
Integrating the above equation, we find

1 _ 1 < cRe?’( —t)
Nw(@IF ~ [Vu(F = 0%

O<t<r<T.

Letting 7 — T, and recalling (4.29), we obtain (4.30). O

By using the above theorem, we can prove the following blow-up criteria, in-
volving other norms of the gradient of w.
Theorem 5. Let w be a strong solution to (1.4), and suppose that there exists a
time T such that the solution cannot be continued in the class (3.13) to T = T.
Assume that T is the first such time. Then

>N

T
3
/ ||Vw(T)||fsdr =00, for + 3 =2, 1<a<oo, 3/2<f<oc0. (4.31)
0

Observe that the condition (4.31) is the same as that involved in the study of
the breakdown (or the global regularity) for the 3D Navier-Stokes equations; see
Beirdo da Veiga® for the Cauchy problem (also in R™) and Berselli® for the initial
boundary value problem. In the limit case § = oo, condition (4.31) is related to the
Beale-Kato-Majda? criterion for the 3D Euler equations.

Proof. The proof is done by contradiction. We assume that

T
[ Ive@liair <o <o (1.32)
0
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and we use estimates similar to that ones derived in the existence theorem. Let us
suppose that [0, T) is the maximal interval of existence of the unique strong solution
starting from wq at time ¢ = 0. We multiply (1.4) by (recall Remark 3)

2 2
.Aw_w—l—é Aw_w—é—Aw

and we obtain, with suitable mtegratlons by parts,

1d , 4 A , 4 ,
= wm])? +—|V —(Iv S A
33t (Nl 19wl ) + 2 (17l + £ haul

2
<A—1 [inVw] VA w>
2"}/ v, v/

where < ., . >y v/ denotes the pairing between V' and its topological dual V’. The
first term on the right-hand side can be estimated with an integration by parts. We

(4.33)

2
s%|<<w~v>Vw,Aw>|+

bl

have, in fact,

3
_ 3wj 3wi 3wi 32102' 3102'
/Q(w.V)wAwdx_— Z (Qﬁ—ajkﬁxj3xkdx_/Qw‘73xj3xk3xkdx)'

ij,k=1
(4.34)

The term

0%w; 0 ow; \
> [ i e Z 3] e (5 ) e
e Oz 0z, 3xk 81‘] Ozy,
is identically zero, as can be seen with another integration by parts, since V-w = 0.

The other term on the right-hand side of (4.34) can be estimated in the following
manner, for 3/2 < f < oo

8wj 3wi 3wi 1
dz| < ¢||[Vwl||?,. ||V for —4—=1
Z/ o et da| < VulL oy Vs for 545

Then, we use the interpolation inequality (3.26) (observe that 1 < 8 < 3, and if
B = 1 there is nothing to do), together with the Sobolev embedding H(Q) C
L5(Q), to obtain

810' 3wi 3wi 28-3 3
> [ G0 ) < vl S el o
3l‘k 31‘]' 3l‘k
i,7,k=1
We use Young’s inequality with exponents # = 23/3, «' = 23/(28 — 3), and we
obtain

3

8wj 3wi 3wi
S [ gl
i k=1 Q 3l‘k 3l‘j 3l‘k - 4R

IAwII2+CIIVw||2’3 [Vl (4.35)
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The other term in (4.33) can be estimated as follows:

§? §?
<.A [ VwVw] .AVw> :ﬂ(VwVw,Vw),

VA
and the latter can be treated as in (4.35).

The above estimates lead to

20
20— 3’

d 3?2 o
% (nlP+ ST 6l?) < il Tulf, where o =

and hence o, 5 are as in (4.31). The Gronwall lemma, together with (4.32), implies
that

Vw e L=(0,T; L?).
The last condition implies (from Theorem 4) that the solution w can be uniquely

continued beyond 7', and this contradicts the maximality of the existence interval

0,7). 0

Remark 6. The same techniques may be used to prove that there exists n > 0
such that, if
sup_[[Vw(@)llzers < n,
0<t<T
then the strong solution exists up to 7. The constant 5 does not depend on w but
only on Re, §, v, and L. The proof easily follows by observing that

Ow; Ow; 6wZ
Z / 695] P el < el[Vuwl[7el [Vl par < el Aw]?[[Vew][ Lo/
i,7,k=1 k OZj

Consequently, in

1d 1 5?2
5 (onl? + 2 19u?) + - (19 + Slaal?) < awlPIVulzs

we can apply the Gronwall lemma to deduce a bound for ||Vw||L<,<,(0 T.L2)) provided

62
c4yRe’

n <

Remark 7. From the Sobolev embedding theorem, we have
. 1 1 1
WhPC LP, with —=-— -,
pop 3
for 1 < p < 3. Consequently, if Vw belongs to L%(0,7; L”) (with a, and # as in
Theorem 5, 3 < 3), then

2
we L"(0,T;L%) for ——|—§:1, 2<r<oo, 3<s<oo. (4.36)
s
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The above class (4.36) is a classical uniqueness and regularity class for weak solutions
to the 3D Navier-Stokes equations; see, for instance, Galdi'®. Furthermore, in the
context of LES scale similarity models, if the approximate mean velocity w belongs
to (4.36), then

ws — W as 4 — 0,

where w;s is the solution corresponding to the averaging radius J; see Layton??.
Then, in such a class, w is a “good” approximation of u.

By using some classical results on elliptic systems and on singular integrals, we
can also introduce breakdown criteria involving the vorticity w = curl w. We start
by observing that, for a divergence-free function w, we have —Aw = curl (curl w),
and the following estimate holds:

[[Vw||rr < epllcurl w||r» for 1<p< o, (4.37)

with ¢, a positive constant depending only on p. The above estimate follows by
observing that the Biot-Savart law implies

w(z) = /G(x —2') curl w(z') da’, (4.38)

where G(y) is given explicitly by

1 1 1
= — lim _ e
GW) =V |z dim > (|y—|—Lk|+ |kL|)
k€Z3, |k|<N

By taking the gradient of (4.38) (with respect to the variable #), we obtain that
Vw = P(curl w),

with P a (linear) singular operator of Calderén-Zygmund type. The estimate (4.37)
follows by using the properties of such operators; see Stein®?.
Using estimate (4.37) and Theorem 5, one can easily prove the following result.

Corollary 1. Let w be a strong solution to (1.4) in the time interval [0,T). If it
cannot be continued in (3.13) tot =T, then

T
2
/ [curl w(r)||$s dT =00 for ——|—%:2,1<a<oo, 3/2 < B < o0.
0 o

This breakdown criterion is slightly more interesting (from the physical point
of view) than that involving the gradient of the velocity. In fact, if 3 = 2, and
consequently a = 4, we have the blow-up criterion

T
/ ||cur1w(7')||4 dr = oo
0
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involving the so-called enstrophy, that is, the L?-norm of the vorticity field.

4.2. Remarks on Some Numerical Experiments

The Rational LES model (1.4) was studied numerically for the 2D and 3D driven
cavity'® and for the 3D channel flow'?*.

The driven cavity is an accepted and common test problem with many bench-
marks available. Its solution, however, lies outside the known mathematical theory;
since the boundary values are discontinuous, no solution can have an L? gradient.

On coarse meshes the finite element approximate solution to (1.4) was found
to give an accurate description of moderate Re laminar flow. At higher Re, the
approximate solution to (1.4) gave excellent qualitative agreement with the large
eddies observed in simulations using other, accepted models when those models
appeared sensible. Further, a quantitative comparison of the various models’ kinetic
energy yielded interesting results. The kinetic energy of the solution to the model
(2.7) blew up in finite time unless very large amounts of additional dissipation were
added to the model. At much higher Re and longer times, the kinetic energy in the
RLES model (1.4) was also seen to blow up; a small amount of additional dissipation,
modeling turbulent fluctuations, was seen to suffice to control its breakdown.

The RLES model (1.4) was also applied to the 3D channel flow at a Reynolds
number based on the wall-shear velocity Re; = 180 (or, equivalently, at a Reynolds
number based on the mid-channel velocity Re. ~ 3300).

Fischer and Iliescul?

used a spectral element code to compare the RLES model
(1.4) with the Smagorinsky model with Van Driest damping. The numerical results
included plots of the following space-time averaged (denoted by < - ) quantities:
the mean streamwise velocity < u >, the zy-component of the Reynolds stress
< u'v’' >>», and the root mean square values of the streamwise < w'u’ >3, wall-
normal < v'v’ >, and spanwise < w'w’ >> velocity fluctuations.

The RLES model (1.4) yielded improved results, showing good agreement with
the fine Direct Numerical Simulations (DNS) calculation of Moser et al.?".

It should be noted that, for this low Re simulation of the 3D channel flow, the
RLES model (1.4) was successfully used without any additional dissipative term.

Further testing for higher Re flows will probably shed new light on the need for
and character of extra dissipation in the use of the RLES model (1.4) in turbulent
flow simulations.
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