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1 Introduction

Computational scientists have benefited from the encapsulation of expertise in nu-
merical libraries for many years. However, the complexity and scale of today’s
high-fidelity, multidisciplinary scientific simulations imply that development work
often must be leveraged over many individual projects, because writing and main-
taining a large custom application usually exceed the resources of a single group.
These issues, along with the multilevel memory hierarchies of distributed-memory
architectures, create ever more challenging demands for high-performance numer-
ical software tools that are flexible, extensible, and interoperable with complemen-
tary research and industry technologies.

The Common Component Architecture (CCA) Forum [1,2], which includes re-
searchers in various U.S. Department of Energy (DOE) laboratories and collab-
orating academic institutions, is developing a component architecture specification
to address the unique challenges of high-performance scientific computing, with
emphasis on scalable parallel computations that use possibly distributed resources.
In addition to developing this specification, a reference framework, various com-
ponents, and supplementary infrastructure, the CCA Forum is collaborating with
practitioners in the high-performance computing community to design suites of
domain-specific abstract component interface specifications.

This paper discusses initial experiences in developing CCA-compliant numerical
component interfaces and implementations; see [1] for an introduction to the CCA
approach and [3] for a discussion of related issues, including the design of a CCA-
compliant framework. In this paper, we focus on interfaces at moderate granulari-
ties (for example, a linear solve or gradient evaluation) with support for multiple un-
derlying implementations (for example, various mesh management techniques and
algebraic solvers). In particular, we explore how well-defined interfaces in partial
differential equation (PDE) solver and optimization components facilitate the use
of external linear solver components that employ the Equation Solver Interface [4],
under development by a multi-institution working group. We also explore the use
of abstract interfaces for mesh management under development by the Terascale
Simulation Tools and Technologies center [5]. In addition, we discuss experiences
in adapting parts of existing parallel toolkits to function as CCA-compliant compo-
nents that support these community-defined abstract interfaces.

The remainder of this paper motivates and explains our design strategy. Section 2
introduces several motivating applications, while Section 3 discusses recent work in
numerical libraries and community-defined abstract interfaces. Section 4 presents
background about component technologies for scientific computing, including the
approach under development by the CCA Forum. In Section 5, we present newly
developed components for mesh management, discretization, linear algebra, and
optimization, and in Section 6 we evaluate component reuse and performance in
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several applications. Section 7 discusses observations and directions for future
work. Throughout the paper, we adhere to some simple conventions for differentiat-
ing between interfaces and implementations: abstract interfaces are italicized, while
components and other concrete implementations use a fixed-width font.

2 Motivating Simulations

The complexity of large-scale scientific simulations often necessitates the com-
bined use of multiple software packages developed by different groups. For ex-
ample, several multidisciplinary projects that motivate this work involve computa-
tional astrophysics [6], chemistry [7,8], and fusion [9]; each has challenging reso-
lution and complexity requirements that demand massively parallel computing re-
sources and a range of sophisticated software. Such applications typically involve
areas such as discretization, partitioning, load balancing, adaptive mesh manipula-
tions, scalable algebraic solvers, optimization, parallel data redistribution, parallel
input/output, performance diagnostics, computational steering, and visualization.
Moreover, the state of the art in each of these areas is constantly evolving, necessi-
tating frequent software updates during the lifetime of a given application.

To assist in explaining the design and evaluating the performance of newly de-
veloped prototype high-performance numerical components that are the focus of
this paper, we consider three motivating applications: a steady-state PDE, a time-
dependent PDE, and an unconstrained minimization problem. We have deliberately
chosen these examples to be relatively simple and therefore straightforward to ex-
plain, yet they incorporate numerical kernels and phases of solution that commonly
arise in the more complicated scientific simulations that motivate our work.

Steady-State PDE Application. The first example is a simple application that
solves ������ �� � �� � � ��� ��� � � ��� ��� with ���� �� � �, ���� �� �
sin�����, and ��

��
��� �� � ��

��
��� �� � �, using mesh, discretization, and linear solver

components. We employ a linear finite element discretization and an unstructured
triangular mesh generated using the Triangle package [10]. This example has char-
acteristics of the large, sparse, linear systems that are at the heart of many scientific
simulations, yet it is sufficiently compact to enable the demonstration of CCA con-
cepts and code in Section 4.2.

Time-Dependent PDE Application. The second PDE that we consider is the heat
equation, given by ��

��
� ������ �� ��� � � ��� ��� � � ��� ��� with ���� �� �� � �,

���� �� �� � �

�
sin����� cos�����, ��

��
��� �� �� � ��

��
��� �� �� � �. The initial condition

is ���� �� �� � sin��
�
��� sin�����. As discussed in Section 6.1, this application

reuses the mesh, discretization, and linear algebra components employed by the
steady-state PDE example and introduces a time integration component.
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Unconstrained Minimization Application. We also consider an unconstrained
minimization example taken from the MINPACK-2 test suite [11]. Given a rectan-
gular two-dimensional domain and boundary values along the edges of the domain,
the objective is to find the surface with minimal area that satisfies the boundary
conditions, that is, to compute �	
 ����, where � 	 �� �� �. This example,
which is analogous in form to several computational chemistry applications [7,8]
that motivate this work, reuses the linear algebra components employed for the
PDE examples and introduces a component for unconstrained minimization.

3 Parallel Numerical Libraries and Common Interface Efforts

As the complexity of computational science applications has increased, the use
of object-oriented software methods for the development of both applications and
numerical toolkits has also increased. The migration toward this approach can be
attributed in part to the encapsulation and reusability provided by well-designed
objects, which enable developers to focus on a small part of a complex system
rather than attempting to develop and maintain a monolithic application. Further-
more, reuse justifies expending significant effort on the development of highly
optimized toolkits encapsulating expert knowledge, such as Diffpack [12], Over-
ture [13], ParPre [14], SAMRAI [15], and PETSc [16,17].

As previously discussed, the applications of interest within high-performance sci-
entific computing often require the combined use of software tools that encapsu-
late the expertise of multidisciplinary teams. Current-generation tools have demon-
strated good success in pairwise coupling, whereby one tool directly calls an-
other by using well-defined interfaces that are known at compile time. Our earlier
work on building two-way interfaces between SUMAA3d [18] and PETSc (dis-
cussed in [19]), between Overture [13] and PETSc (discussed in [20]), and between
PVODE [21] and PETSc (discussed in [22]), showed that interfacing two sophis-
ticated numerical software tools typically requires an in-depth understanding of
each tool’s interface and implementation. Since developing these interfaces is of-
ten labor-intensive, experimentation with tools providing alternative technologies is
severely inhibited. For example, the left-hand portion of Figure 1 shows the current
situation in which � � 
 individual interfaces are needed to experiment with dif-
ferent combinations of mesh management infrastructures, such as Distributed Ar-
rays [17], Overture [13], PAOMD [23], and SUMAA3d [18], and algebraic solvers
in packages such as ISIS++ [24], PETSc [17], and Trilinos [25].

Common interfaces enable users to leverage expertise encapsulated within vari-
ous underlying implementations without needing to commit to a particular solution
strategy and to risk making premature choices of data structures and algorithms. To
enable this flexibility, various communities are beginning to define domain-specific
suites of common interfaces. Once such interfaces have been developed, application
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Fig. 1. (Left): The current interface situation connecting�mesh management systems to �
linear system solvers through�� � interfaces. (Right): The desired interface situation, in
which many tools that provide similar functionality are compliant with a single interface.

scientists may employ them in their codes and then easily explore the use of any
compliant toolkit. This approach reduces the interface development effort needed to
experiment with a number of software tools, as is illustrated in the right-hand por-
tion of Figure 1. In this scenario, the mesh management infrastructures and linear
solvers would each write to abstract interfaces defined by their respective commu-
nities. These interfaces then would serve as the point of entry to many different
underlying implementations for tool-to-tool and tool-to-application interactions.

We note that interface definition efforts are complex and time-consuming endeav-
ors, which are complicated by the need to provide a rich set of functionalities while
preserving the commonality of the interfaces. Additional challenges include the
need to maintain high efficiency and to support a variety of scientific programming
languages. Current research in creating common interface specifications for nu-
merical tools includes efforts in the algebraic solver community through the Equa-
tion Solver Interface (ESI) working group and the mesh management community
through the Terascale Simulation Tools and Technologies (TSTT) SciDAC center.

3.1 The Equation Solver Interface

One of the most computationally intensive phases that arises in many scientific
applications is the solution of discretized linear systems of the form �� � 
. Pre-
conditioned Krylov methods are effective for the parallel solution of such problems,
although algorithmic performance varies considerably depending on the underly-
ing physics being modeled. Scientists could benefit from the ability to experiment
more easily with the variety of preconditioners and Krylov methods provided in dif-
ferent parallel linear solver libraries without having to perform the labor-intensive
task of manually writing a different interface from application code to each linear
algebra toolkit. Such flexibility would enable applications to incorporate new algo-
rithms with better latency tolerance or more efficient cache utilization as these are
discovered and encapsulated within toolkits.

The Equation Solver Interface Forum [4] is one effort addressing these issues; other
related work includes [26]. The ESI working group, which was formed in 1997 by
researchers in various DOE laboratories, continues to meet regularly and welcomes
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participation from the scientific community. The ESI specification defines abstract
interfaces for manipulating objects that are commonly used in the scalable solution
of linear systems. For example, the Operator interface supports matrices, precon-
ditioners, and solvers by viewing them as linear operators. The Operator interface
defines the setup method for initializing the operator and the apply method for
applying the operator to an ESI Vector and storing the result in another ESI Vector.
The base ESI class Object, from which all other interfaces are subclassed, contains
mechanisms for reference counting and specifying supported interfaces.

3.2 The TSTT Mesh Interface

Just as many different algebraic solvers provide similar functionality, many tools
are available that generate a variety of mesh types, ranging from unstructured
meshes to overlapping structured meshes and hybrid meshes [27]. Approximation
techniques used on these meshes include finite difference, finite volume, finite ele-
ment, spectral element, and discontinuous Galerkin methods. Various combinations
of these mesh and approximation types may be used to solve PDE-based problems.
The fundamental concepts are the same for all approaches: some discrete represen-
tation of the geometry (the mesh) is used to approximate the physical domain, and
some discretization procedure is used to represent approximate solutions and differ-
ential operators on the mesh. In addition, the concepts of adaptive mesh refinement,
time-varying meshes, data transfer between different meshes, and parallel mesh de-
composition are the same regardless of their implementations. The software tools
providing these capabilities are becoming increasingly accepted by the scientific
community, but their application interfaces are incompatible. Common interface
specification would enable significantly more experimentation by application sci-
entists to determine which discretization strategy most accurately and efficiently
captures the physical phenomenon of interest.

To facilitate the development of such interfaces, the Department of Energy has re-
cently funded the Terascale Simulation Tools and Technologies center [5], which
has a pervading theme of developing interoperable and interchangeable meshing
and discretization software. Current emphasis is on creating common interfaces for
querying existing TSTT mesh management technologies that will allow them to in-
teroperate with each other. The interfaces focus on access to information pertaining
to low-level mesh objects such as vertices, edges, faces, and regions. A small set of
interfaces for accessing spatial (e.g., vertex coordinates) and topological (e.g., adja-
cency information) is also being developed. Discussions are under way to determine
interfaces for mesh services, canonical ordering of entities, and query interfaces for
distributed meshes in a parallel computing environment.
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4 High-Performance Component Technologies

Even with well-designed libraries and suites of standard interfaces, sharing object-
oriented code developed by different groups is difficult because of language incom-
patibilities, the lack of standardization for interobject communication, and the need
for compile-time coupling of interfaces. Component-based software design com-
bines object-oriented design with the powerful features of well-defined interfaces,
programming language interoperability, and dynamic composability [28]. While
component-based design was initially motivated by the needs of business appli-
cation developers, it also offers enormous potential benefits to the computational
science community by encouraging the development of interoperable software and
the dynamic construction of new algorithms and applications.

4.1 Overview of the Common Component Architecture

The most popular frameworks for component-based software engineering, name-
ly Microsoft’s Component Object Model (COM) [29] and Sun’s (Enterprise) Jav-
aBeans (EJB) [30,31], are suitable for some computational science applications [32].
As discussed in [1,22], however, many large-scale scientific applications require
features not provided by these industry component technologies. For example,
these frameworks were not designed to enable tight coupling of components exe-
cuting on massively parallel machines that may be networked in a distributed envi-
ronment and hence do not address issues of collective connections and parallel data
redistribution among distributed components. Furthermore, some of these frame-
works are either architecture-specific (e.g., COM), or language-specific (e.g., EJB).
Finally, industry component approaches do not support interoperability with impor-
tant scientific languages, such as Fortran 90, or lightweight connections between
parallel components. To address this need, the Common Component Architecture
Forum [1,2] is developing a component model specification that provides the fea-
tures required by advanced computational science applications while remaining
compatible with COM, EJB, and the CORBA component architecture [33,34] to
the fullest extent possible. The CCA model defines a very lightweight mechanism
for interactions between massively parallel components and supports interoperabil-
ity between languages widely used in scientific applications. This effort builds on
the experience of research groups who study high-performance component archi-
tectures and related design issues, including [35–42]. Other related work in high-
performance scientific computing includes [43–46].

The current CCA specification consists of (1) a core portion defining an interface
that a component must implement to connect to another component and (2) a col-
lection of public interfaces, or ports [1,47]; these concepts are demonstrated in an
example in Section 4.2. Ports can define the interactions between relatively tightly

7



coupled parallel numerical components, which typically require very fast commu-
nication for scalable performance; ports can also define loosely coupled interac-
tions with possibly remote components for monitoring, analysis, and visualization.
CCA ports employ a provides/uses paradigm, whereby a component provides a set
of interfaces that other components can use; Section 5.1 presents some examples. A
provides port is essentially a set of functions that are executed by the component on
behalf of the component’s “users”. An external “builder” tool, which may also be
implemented as a CCA component, connects the provides ports of one component
to the uses ports of another. The uses ports of a component can be viewed as the
connection points available to other components as well as the framework, where
we consider a CCA framework to be a software environment that enables dynamic
instantiation, coupling, and method invocation on components. The simulations in
this work employ the CCAFFEINE framework [3], which is further discussed in
Section 4.3. In the remainder of this paper, we also refer to ports as interfaces or
abstract interfaces, since ports are abstract by definition.

Another key facet of the CCA approach is the development of an interface language
called SIDL (Scientific Interface Definition Language) [35,48], which provides lan-
guage interoperability for CCA ports. Since scientific applications often require the
integration of components written in a variety of languages, such as Fortran, C,
C++, Python, and Java, support for language interoperability is critical. While the
prototype component applications presented in this work all use port interfaces
written in C++, we plan to incorporate SIDL interfaces in future versions.

4.2 CCA Components

A software component is an encapsulated software object that provides a certain set
of functionalities or services and can be used in conjunction with other components
to build applications. In general, a component consists of one or more abstract in-
terfaces and one or more implementations, and conforms to a prescribed behavior
within a given computational framework. The CCA component specification de-
fines a set of rules for implementing components and for the behavior components
must exhibit to coexist with other components in a CCA-compliant framework. In
particular, to be CCA-compliant, a C++ component class must

� inherit from the abstract Component interface,
� contain a private data member of type Services*, which is a handle to the
Services object provided by a CCA-compliant framework, and

� declare a public function setServices(Services *cc), which is used by
the framework to set the Services handle.

To illustrate these requirements in more detail, we consider the driver compo-
nent for the steady-state PDE application described in Section 2. This compo-
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nent uses mesh, discretization, solver, and visualization components and provides
a gov::cca::GoPort, a standard CCA port that provides an entry point to the appli-
cation, similar to a traditional main routine in Fortran or C. The class definition
file for the driver component is shown in Figure 2. Two include files are needed:
cca.h and stdPorts.h, which contain the CCA specification and several stan-
dard ports such as the GoPort, respectively. The DriverComponent class inher-
its from gov::cca::Component and gov::cca::GoPort and implements their public
methods setServices and go, respectively. In addition, the DriverComponent
class has a private data member of type gov::cca::Services.

#include <cca.h>
#include <stdPorts.h>

class DriverComponent : public virtual gov::cca::Component,
public virtual gov::cca::GoPort {

private:
gov::cca::Services *svc;

public:
DriverComponent();
virtual ˜DriverComponent();
virtual void setServices(gov::cca::Services *cc);
virtual int go();

};

Fig. 2. The class definition file for the steady-state driver component.

When the component is instantiated, the framework accepts a pointer to the com-
ponent and holds the pointer for the lifetime of the component. Other components
obtain and release the component’s ports only through requests made to the frame-
work via the gov::cca::Services object. This object is passed to the setSer-
vices method when each component is created; typical usage for the Driver-

Component example is shown in Figure 3. For each uses port, two methods on the
gov::cca::Services object are called to register the request with the frame-
work. First, a PortInfo object containing a string identifier name (e.g., mesh)
and the abstract port type (e.g., MeshPort) is created with the call to createPort-
Info. The PortInfo object is then passed to the framework via the registerUs-
esPort method. The framework keeps a record of all such requests to ensure that
ports are properly matched when components are created and connected.

Although they are not shown in Figure 3, similar calls are made for the discretiza-
tion, solver, and visualization ports needed by the driver. For each port that the
driver provides, in this case a GoPort, a similar protocol is used. Again, a Port-
Info object is created using createPortInfo and passed to the framework with
the addProvidesPort method. If the component is to be shut down, the frame-
work passes in a NULL services object. In this case the driver component unregisters
and releases any uses ports and removes framework access to its provides ports.
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void DriverComponent::setServices(gov::cca::Services *cc)
{

gov::cca::Port *p;

if (cc == 0) { // Close down if not closed already
svc->unregisterUsesPort("MeshPort");
svc->releasePort("mesh");
svc->removeProvidesPort("go");
return;

}

// register the uses and provides ports
svc->registerUsesPort(svc->createPortInfo("mesh","MeshPort",0));
svc->addProvidesPort(p, svc->createPortInfo("go","gov.cca.GoPort",0));

}

Fig. 3. The setServices method for the steady-state driver component.

MeshPort *mesh_ptr;

gov::cca::Port *p = svc->getPort("mesh");
mesh_ptr = dynamic_cast< MeshPort * >(p);
...

mesh_ptr->GetVertices();
...

svc->releasePort("mesh");

Fig. 4. The methods needed to access the MeshPort in the driver component.

External ports are accessed through the Services object method getPort, as
illustrated in Figure 4 for MeshPort. The generic port returned from getPort is
dynamically cast to the MeshPort type and assigned to mesh ptr for use as il-
lustrated with the mesh ptr->GetVertices method. When the port is no longer
needed, it can be released by using the gov::cca::Services releasePort

method. If MeshPort functionality is needed later, it can be reacquired from the
same component or from a different component that also provides MeshPort.

4.3 CCA Frameworks

Until recently, the draft CCA specification did not address framework construc-
tion or the mechanisms used for instantiating and connecting components. As a
result, several different frameworks suited for different situations have been im-
plemented [3,36,37]. Some optimize the use of components distributed across a
wide-area Grid, while others target massively parallel Single Program Multiple
Data (SPMD) components. The components described in this paper were tested
in the CCAFFEINE environment [3], which supports SPMD-style computing.

The CCAFFEINE concept of SPMD component computing is a simple generaliza-
tion of the traditional SPMD approach. In conventional SPMD computing, there is
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one program per process. In the CCAFFEINE implementation of SPMD compo-
nent computing, each instance of a component class is created on all the processes
on which the framework instance is running. The concept is similar to creating
objects in an MPI environment, with the restriction that the objects comply with
the CCA interface standards. In a single CCAFFEINE framework instantiation,
components are connected in the same process address space only. This does not
preclude interactions with remote components, but such interactions are outside of
the framework’s control.

Despite the varying environments in which different framework implementations
operate, the high-level functionality provided by any given framework is largely
the same. The CCA Forum has recently adopted several framework interfaces that
abstract the implementation of component management mechanisms without limit-
ing their functionality. These interfaces allow a programmer to create applications
by manipulating a CCA-compliant framework via standard interfaces for compo-
nent discovery, instantiation, connection, and destruction.

5 Numerical Scientific Components

In this section we describe the abstract interfaces developed while creating the com-
ponents for the applications introduced in Section 2. We also discuss the compo-
nents implementing these interfaces and briefly describe the underlying noncom-
ponent software used in the implementations.

(a) Steady-state PDE (b) Unconstrained minimization

Fig. 5. The component wiring diagrams for (a) the steady-state PDE example, and (b) the
unconstrained minimization example.

Figure 5 illustrates the composition of two of the applications using the graphical
interface of the CCAFFEINE framework. The black boxes in the wiring diagram
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for the steady-state PDE example show the mesh, discretization, linear solver, visu-
alization, and driver components (see Figure 5(a)); the lines represent connections
between uses and provides ports, which are gold and blue, respectively. For ex-
ample, the discretization component’s Mesh uses port is connected to the mesh
component’s Mesh provides port; hence, the discretization component can invoke
the TSTTMeshQuery interface methods that the mesh component has implemented.
The special GoPort (named “go” in this application) is used to start the execution
of the application. Figure 5(b) shows the components involved in the solution of an
unconstrained minimization problem. The optimization solver component in this
snapshot has been configured to use an inexact Newton method, which requires the
solution of a linear system. The diagram also includes components for parallel data
description and redistribution.

5.1 Component Interfaces and Implementations

Some of the community-defined interfaces described in Section 3, for instance,
TSTTMeshQuery, directly correspond to the CCA ports of the component imple-
mentations of the applications in Section 2. The ESI common interface specifica-
tion is used in two different ways: as a mechanism for passing vectors and ma-
trices between components, and as an abstract interface for linear solver compo-
nents. However, not all functionality required for the component implementations
of these applications was available in the form of commonly accepted abstract in-
terfaces. We describe the new interfaces used in the applications in Section 2, the
components implementing these interfaces, and the approximate level of develop-
ment effort. The interfaces (italicized) and their corresponding implementations
(with class names in a fixed-width font) are discussed below.

� ESIFactory. The ESI specification contains no provisions for object instantiation.
Thus, we have defined an ESIFactory port, which is an abstract factory interface
for instantiating objects from an ESI interface implementation.
Implementation: The ESIFactory Petra component supports the creation
of ESI-compliant index spaces, vectors, matrices, and solvers. The underlying
software is Trilinos (more specifically, the Epetra library) [25]. The ESIFac-

tory Petsc component supports the creation of ESI-compliant index spaces,
vectors, and matrices using PETSc [16] as the underlying software. The main
development effort was adding ESI support to PETSc and portions of Trilinos.
The factory components’ implementations are thin wrappers over methods avail-
able in each underlying toolkit and thus took little programming effort.

� LinearSolver. The LinearSolver port is derived from the ESI Solver interface.
The objective is to enable linear solver components to provide extended func-
tionality that is not part of the ESI specification. Currently, the only additional
methods provided are initialize and finalize.
Implementation: The LinearSolver Trilinos component provides a Lin-
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earSolver port and is based on the AztecOO library, which is part of the Trilinos
project [25]. The LinearSolver Petsc component implementation is based
on the PETSc library [16] and specifically uses the Scalable Linear Equations
Solver (SLES) interface to various Krylov methods and preconditioners. Again,
the principal development effort in implementing these components focused on
ESI support within the original toolkits. The implementation of component-
specific functionality was straightforward.

� TSTTMeshQuery. Using the TSTT interfaces mentioned in Section 3.2, we de-
veloped a mesh component for a static, unstructured triangular grid.
Implementation: The TSTTMesh component provides access to node and ele-
ment information (edge and face data will be supported shortly) and was suf-
ficient to implement linear, finite-element discretization for the diffusion PDE
operators introduced in Section 2. The primary development effort was the sep-
aration of the mesh from the remainder of the application. Once this had been
accomplished, the mesh query interface and component-specific functionality
were straightforward to implement.

� FEMDiscretization. This interface provides linear, finite-element discretizations
for commonly used PDE operators and boundary conditions. It currently works
for unstructured triangular meshes accessed through the TSTT interfaces men-
tioned in Section 3.2. It provides the matrix and vector assembly routines to
create the linear systems of equations necessary to solve the steady-state and
time-dependent PDE applications introduced in Section 2.
Implementation: The discretization component provides approximations for ad-
vection and diffusion operators as well as Dirichlet and Neumann boundary con-
ditions with either exact or Gaussian quadrature. The interface developed here is
specific to this component and was therefore straightforward to implement. This
interface is expected to evolve as the TSTT discretization library is developed.
This component uses the TSTTMeshQuery and LinearSolver ports.

� OptimizationSolver. The OptimizationSolver port defines a prototype high-level
interface to optimization solvers, which closely mirrors the TAO optimization
solver interface; this interface is expected to evolve as common interface defini-
tion efforts for optimization software progress.
Implementation: The TaoSolver component implementation is based on the
Toolkit for Advanced Optimization (TAO) [49], which provides a growing num-
ber of algorithms for constrained and unconstrained optimization. The single ab-
stract interface for the TaoSolver component enables the user to employ a variety
of solution techniques for the unconstrained minimization problem introduced
in Section 2, including Newton-based line search and trust region strategies,
a limited-memory variable metric method, and a nonlinear conjugate gradient
method. The implementation is a thin wrapper over existing TAO interfaces, and
thus took minimal effort to develop.

� OptimizationModel. The OptimizationModel port includes methods that define
the optimization problem and inherits from the abstract TAO ESIApplication in-
terface. The OptimizationModel interface includes methods for function, gradi-
ent, Hessian, and constraint evaluation.
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Implementation: The MinsurfModel component implements the minimum
surface area model described in Section 2. The development of this component
required moderate effort and involved a conversion of an existing TAO example
to use the ESI for vectors and matrices and to implement the component-specific
functionality. Many different optimization problems can be implemented by pro-
viding the OptimizationModel port, which is then used by solver components
such as TaoSolver.

While developing a high-level CCA component interface on top of an existing nu-
merical library is relatively straightforward, the design issues are typically much
more complex when one aims to provide interoperability between components de-
veloped by different groups. We have found that the amount of effort needed to
develop interoperable numerical components on top of an existing library depends
on the design of the underlying software, including the degree to which abstractions
and encapsulation have already been employed in the library’s user interface and
internal design. For example, a significant part of the overall development of the
optimization component TaoSolver involved incorporating community-defined
abstract interfaces for linear algebra within the existing TAO library so that the
components implementing the LinearSolver interface could be used to solve linear
subproblems arising in the optimization algorithms. TAO itself, however, required
no other changes because its design already incorporated abstractions for vectors,
matrices, and linear solvers. In contrast, if starting with underlying software that
does not already employ abstractions and encapsulation, more effort would be re-
quired both to build and to use interoperable components.

Other Interfaces

We mention additional interfaces and implementations that are used in these appli-
cations and have been developed by collaborators within the CCA Forum. Further
information about these interfaces, as well as those presented above, is available at
http://www.cca-forum.org/cca-sc01.

� ODEPACK++. The time integration routines are provided by the ODEPACK++
component, which was developed by Ben Allan of Sandia National Laboratories
and is based on the ODEPACK library [50].

� Parallel Data Redistribution. To redistribute data between various application
and visualization components, we employ the “MxN” parallel data redistribution
specification that is under development by a CCA working group. This interface
supports the connection and data transfer between two parallel components that
may be distributed across different numbers of processes. Our examples employ
a CUMULVS-based [42] component developed by Jim Kohl of Oak Ridge Na-
tional Laboratory (ORNL) for the “Mx1” transfer of data between application
and visualization components.

� Distributed Array Descriptors. To describe the layout of data over multiple pro-
cesses and in local memory so that we can perform “MxN”-style parallel data
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redistribution, we use distributed array descriptor interfaces, which have been
developed by David Bernholdt (ORNL) as part of activities within a CCA work-
ing group on scientific data components.

� Visualization. These applications can employ a simple VizFile port to print data
associated with the vertices of a TSTT mesh in MATLAB or vtk file formats.
We can also employ visualization components developed by Jim Kohl of ORNL,
which use the “MxN” and distributed array descriptor interfaces and are based
on CUMULVS [42].

5.2 Underlying Software

The parallel numerical software underlying these components includes linear al-
gebra capabilities within PETSc [16,17] and Trilinos [25], optimization software
within TAO [51,49], and meshing technology within the TSTT [5].

One benefit of the ESIFactory and LinearSolver interfaces introduced in Section 5.1
is that we can readily incorporate various underlying libraries that support ESI in-
terfaces. In particular, ESIFactory Petsc and LinearSolver Petsc use newly
developed ESI interfaces to vectors, matrices, and linear solvers within PETSc
[16,17], a suite of software for the scalable solution PDE-based applications that
integrates a hierarchy of code ranging from low-level distributed data structures
for parallel vectors and matrices through high-level linear, nonlinear, and timestep-
ping solvers. Likewise, ESIFactory Petra and LinearSolver Trilinos em-
ploy new ESI-compliant interfaces to vectors, matrices, and linear solvers within
Trilinos [25], a set of parallel solver libraries for the solution of large-scale, multi-
physics scientific applications. Thus, component-based applications, including all
three examples introduced in Section 2, can use a single set of abstract interfaces
to experiment easily with a broad range of Krylov methods and preconditioners
that are currently provided in PETSc and Trilinos; moreover, future algorithms and
toolkits that support these interfaces will also be accessible without having to mod-
ify application-specific components.

The TaoSolver component employs the ESIFactory and LinearSolver interfaces
and builds on the Toolkit for Advanced Optimization (TAO) [51,49], which focuses
on scalable optimization software, including nonlinear least squares, unconstrained
minimization, bound-constrained optimization, and general nonlinear optimization.
TAO optimization algorithms use high-level abstractions for matrices, vectors, and
linear solvers and can employ various external software tools for these capabilities.
The primary parts of TAO used in this work are parallel unconstrained minimization
solvers, including new support for ESI interfaces.
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6 Results

We first discuss component reuse among the three motivating applications and then
evaluate component performance.

6.1 Component Reuse

All three component implementations of the applications discussed in Section 2
reuse some subset of the components described in Section 5.1. Reuse was achieved
both through community-defined interfaces and through ports developed specifi-
cally for use with these applications.

Both PDE-based applications reuse components that implement the TSTTMeshQu-
ery and FEMDiscretization interfaces for mesh management and discretization as
well as the ESIFactory and LinearSolver interfaces for linear algebra (see Fig-
ure 5(a) for the steady-state case). The time-dependent application also employs
the ODEPACK++ components for time integration and visualization components
for real-time access to the solution field. The data are transfered from running sim-
ulations to visualization environments using the CumulvsMxN data transfer com-
ponent that employs the DistArrayDescriptorFactory for data description.

Among the components involved in the unconstrained minimization problem, those
used in other applications include the PETSc and Trilinos implementations of the
ESIFactory and LinearSolver interfaces. Further, as for the PDE-based examples,
the DistArrayDescriptorFactory, CumulvsMxN, and VizProxy implemen-
tations can be used to describe, redistribute, and visualize the current solution. The
components specific to this application include MinsurfModel, which implements
the OptimizationModel interface, and the TAO-based implementation of the Opti-
mizationSolver interface (see Figure 5(b)).

6.2 Component Performance

One of the main goals of the CCA specification is to achieve high performance
in parallel code; however, a common concern about the use of CCA components
is the effect that component overhead may have on performance. We conducted
experiments to evaluate the performance differences between the component and
library-based implementations of the minimum surface optimization problem in-
troduced in Section 2. Our parallel results were obtained on a Linux cluster of dual
550 MHz Pentium-III nodes with 1 GB of RAM each, connected via Myrinet. The
uniprocessor results were obtained on a 400 MHz Pentium-III Linux workstation
with 256 MB of RAM.
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These particular experiments used an inexact Newton method with a line search,
which has the following general form for an 
-dimensional unconstrained mini-
mization problem:

���� � �� � ����������
��
������� � � �� �� � � � �

where �� � �� is an initial approximation to the solution, and ������� is positive
definite. Newton-based methods (see, e.g., [52]) have proven effective for many
large-scale problems, as they offer the advantage of rapid convergence when an
iterate is near to a problem’s solution, and line search techniques can extend the
radius of convergence.

Each iteration of the Newton method requires a function, gradient, and Hessian
evaluation, as well as an approximate solution of a linear system of equations to
determine a step direction. The component wiring diagram in Figure 5(b) illus-
trates these interactions via port connections; the library-based version of code is
organized similarly, although all software interactions occur via traditional routine
calls within application and library code instead of employing component ports.
We solved the linearized Newton systems approximately with a variety of precon-
ditioned Krylov methods; the parallel results presented in Figure 6 used the conju-
gate gradient method and block Jacobi preconditioner with no-fill incomplete fac-
torization as the solver for each subdomain, while the uniprocessor results used the
conjugate gradient method with a no-fill incomplete factorization preconditioner.
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Fig. 6. Component overhead for (a) finding the solution of the unconstrained minimization
on a 250 � 250 grid and (b) the LinearSolver Petsc component.

By using abstract interfaces at several levels of the implementation, the component
version introduces a number of virtual function calls, including matrix and vector
access operations, linear solver methods, and function, gradient, and Hessian evalu-
ation routines used by the Newton solver. Figure 6(a) depicts the difference in total
execution time between the component implementation and the original application
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on 1, 2, 4, 8, and 16 processors for a fixed-size problem of dimension 250 � 250.
Overall, the virtual function call overhead is negligible, with the most significant
performance penalty occurring for small problem sizes. This figure also illustrates
that good scaling behavior is not lost by the use of CCA components: the time for
the total component-based computation on one processor is 109 seconds, while the
corresponding time using a sixteen-processor linux cluster is 9 seconds.

Figure 6(b) illustrates the performance of the CCA-related code in the Linear-

Solver Petsc component for various problem sizes on a single processor. As the
problem size increases, this fixed overhead becomes less significant, accounting for
2 to 5 percent of the total linear solution time. This overhead consists of the cost of
the virtual function calls resulting from the use of CCA ports and abstract common
interfaces (e.g., ESI) for data exchange between components.

7 Conclusions

By exploring several motivating scientific applications, we have presented newly
developed high-performance components for discretization, mesh management, lin-
ear algebra, and optimization that are compliant with the emerging CCA specifica-
tion. The complete source code and documentation for these components and appli-
cations are available via the Web site http://www.cca-forum.org/cca-sc01
as part of a distribution of tutorial-style CCA codes.

We have demonstrated that the CCA approach to component-based design enables
the integration of high-performance numerical software tools developed by differ-
ent groups. In particular, the direct-connect variant of the CCA provides/uses ports
interface exchange mechanism enables connections that do not impede intercompo-
nent performance in tightly coupled parallel computations within the same address
space, such as the interaction between components for unconstrained minimization
and linear system solution. Well-defined component ports provide a clear separation
between abstract interfaces and underlying implementations, and dynamic compos-
ability facilitates experimentation among different algorithms and data structures.

Future research will include ongoing collaborations to explore the further use of
numerical components in large-scale scientific simulations and to develop domain-
specific abstract interface specifications in conjunction with other researchers. We
will also explore quality-of-service issues for numerical components, including
how to determine suitable matches between the requirements of user components
(e.g., a minimizer) for accuracy, robustness, performance, and scalability and the
capabilities of various component provider implementations (e.g., a linear solver).
In addition, other researchers are developing tools to help automate the process of
creating CCA-compliant components from legacy codes [53].
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