Markowitz-Type Heuristics for Computing
Jacobian Matrices Efficiently

Andreas Albrecht, Peter Gottschling!, and Uwe Naumann?

! Department of Computer Science, University of Hertfordshire, College Lane,
Hatfield AL10 9AB, UK
{A.Albrecht, P.1.Gottschling}@herts.ac.uk
2 Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL 60439, USA

naumann@mcs.anl.gov

Abstract. We consider the problem of accumulating the Jacobian ma-
trix of a nonlinear vector function by using a minimal number of arith-
metic operations. Two new Markowitz-type heuristics are proposed for
vertex elimination in linearized computational graphs, and their supe-
riority over existing approaches is shown by several tests. Similar ideas
are applied to derive new heuristics for edge elimination techniques. The
well known superiority of edge over vertex elimination can be observed
only partially for the heuristics discussed in this paper. Nevertheless,
significant improvements can be achieved by the new heuristics both in
terms of the quality of the results and their robustness with respect to
different tiebreaking criteria.

1 Introduction

Consider the nonlinear vector function F : IR?> — IR? that is
given by the following sequence of scalar assignments:

V1 = v_1vp; vy = sin(vy); vz = v1v2; Vg = cos(v3); vs = exp(vs).

For simplicity, all variables carry a unique index. There are
n = 2 independent, p = 3 intermediate, and m = 2 dependent
variables. Mathematical functions that are implemented as
computer programs written in an imperative programming
language such as C or Fortran can always be decomposed to
meet this requirement. The structure of such computations
can be visualized by a directed acyclic graph (dag) G = (V, E)
as shown in Figure 1. If one assumes that jointly continuous
local partial derivatives

0)
¢ii = =—¢j(e)k<j, J=1,...,p+m
’ 81;,»

of the elemental functions (e.g., *,sin, cos,exp) with respect to its arguments
exist in some neighborhood of the current point, the corresponding numerical
values, computed as

C1,—1 = Vo5 C1,0 = V—-1; C21 = COS(U1); C3,1 = V25 €32 = V1; C4,3 = — sin(vg); C53 =05 ,

can be attached to the edges in the dag. The notation k£ < j is used to indicate
that vy, is an argument of ;. Thus one gets the linearized computational graph
(or c-graph) G = (V, E) of F as displayed in Figure 1. Its vertices V = XUZUY,
where X = {1 —-mn,...,0}, Z ={1,...,p},and Y = {p+1,...,p+ m}, are
numbered consistently with respect to dependence, that is, i <t j = i < j.
Here, <1 denotes the transitive closure of the dependence relation < . The
vertices in X (Z; Y) are referred to as minimal or independent (intermediate;
maximal or dependent) vertices.

The objective is to transform the program that implements F' into one that
computes the Jacobian matrix (or Jacobian)

Ay;
F’ :F’(Xo) = (l(Xo))
61']' i=1,...,m, j=1,...,n

of F with respect to the n inputs for a given argument xg such that a minimal
number of scalar fused multiply-add floating-point operations (fmas) are per-
formed. Once numerical values have been computed
for all local partial derivatives, scalar floating-point multi-
plications and additions are the only arithmetic operations

required to accumulate F'. The accumulation of F' can be 4 5
regarded as an elimination procedure in the c-graph G of F,
as introduced in [1]. The original c-graph is transformed into 9us

vo

a subgraph of the directed complete bipartite graph K, .,
such that the labels on the remaining edges are exactly the
nonzero elements of the Jacobian. The result of this transfor-
mation applied to the c-graph from Figure 1 is displayed in

Figure 2.

In this paper we develop heuristics for eliminating vertices aaTvL
and edges such that the overall cost of computing F’ is mini- o
mized. A detailed discussion of the corresponding theory can -1 0

be found in [2]. Here, we introduce only a minimal subset of

the framework, in order to focus on new heuristics for vertex an](?ii%d%e Flim-
ination in c-graphs. The structure of the paper is as follows. In Section 2 we
introduce vertex and edge elimination in c-graphs. Various well known and new
Markowitz-type heuristics for both vertex and edge elimination are presented
in Section 3. Their properties and performance are discussed in Section 4, and
numerical results are presented. Conclusions are drawn in Section 5.

2 Jacobians by Vertex and Edge Elimination

The origins of both vertex and edge elimination in c-graphs are in automatic
differentiation (AD) [3-6]. This technique modifies the semantics of numeri-

Fig. 3. Vertex and edge elimination

cal programs such that derivatives of the underlying vector function can be
computed efficiently with machine accuracy. In contrast with divided difference
approximations, AD exploits the chain rule to compute Jacobian times vector
products y = F'x in forward mode and transposed Jacobian times vector prod-
ucts x = (F")Ty in reverse mode (see [6, Chapter 3] for details). In particular,
the Jacobian itself can be obtained at a cost of n|E| in forward mode and m|E|
in reverse mode by letting the vectors x and y range over the Cartesian basis
vectors in IR™ and IR™, respectively. The number of edges in the c-graph of
G = (V, E) is denoted by |E|.

Alternatively, F' can be computed by eliminating all intermediate vertices
or edges in G as follows. When eliminating an intermediate vertex j, new edges
are introduced connecting the predecessors of j with its successors. A new edge
(i, k) is labeled with the product of the labels of (j, k) and (¢, 7). Parallel edges
are merged, and the corresponding edge labels are added. Finally, j is removed
together with its incident edges. The elimination of vertex 3 from the c-graph
shown in Figure 1 leads to graph (1) in Figure 3. For example, the new label
of (1,4) € E is equal to ca1 = ca3c3,1. The elimination of vertex 2 in graph
(3) leads to graph (4) and, for example, c50 = ¢5,0 + ¢5,2¢2,0. The correctness
of the vertex elimination rule is shown in [1]. The number of fmas involved in
the elimination of j is referred to as the Markowitz degree of j, and it is equal to
p = Hizi < jHI{k:j <k}

The elimination of a vertex j is equivalent to the simul-

taneous front elimination of all edges leading into it. Sim-

ilarly, the elimination of j is equivalent to the simultane- 3 4 5
ous back elimination of all edges emanating from it. An
edge (i,j) is front eliminated by connecting i with all suc-
cessors of j. For all successors k of j, the new edges (i, k)
are labeled with ¢x; = cg jc;. If (4, k) existed before, then
Ck,i = Ck,i+Ck,;Cji- Theedge (i,7) is removed after this. The
number of fmas required to front eliminate (7, j) is equal to
{k : j < k}|. The front elimination of (0,1) transforms

-1

Fig. 4. Lion

graph (2) into graph (3) in Figure 3. Analogously, an edge
(j, k) is back eliminated by connecting all predecessors of
j with k. For all predecessors i of j the new edge (i, k) is
labeled with ¢ ; = ¢ jcj ;. Again, the label becomes ¢k ; = ck,; + ¢ jcj i if (¢, k)
existed before. Finally, (j, k) is removed. The number of fmas required to back
eliminate (j, k) is equal to |{i : i < j}|. In Figure 3, graph (2) can be obtained
from graph (1) by back elimination of (2,4). Newly generated edges are referred
to as fill-in. Absorption takes place whenever two parallel edges are merged.

The set of all valid vertex eliminations is contained within the set of all
valid edge eliminations. Hence, the optimal vertex elimination sequence is con-
tained within the set of all edge elimination sequences, and thus the optimal
edge elimination sequence performs at most the same number of arithmetic op-
erations as the optimal vertex elimination sequence. The lion graph [7] displayed
in Figure 4 represents one example where the optimal edge elimination sequence
involves fewer operations than does the optimal vertex elimination sequence.
Both elimination sequences require 4 + 8 = 12 fmas. The back elimination of
(2,6) followed by the elimination of 1 and 2 reduces this number by one. Re-
fer to [2] for a more detailed investigation of this vertez-edge discrepancy. It is
the motivation for introducing edge elimination in addition to the conceptually
much easier vertex elimination method.

We assume the chain rule to be associative over the floating point numbers.
In other words, the numerical values of the entries in F’ do not depend on
the order in which the intermediate vertices or edges are eliminated. However,
the computational cost varies. In Figure 1, for example, the vertex elimination
sequence [1,2,3] performs 4 + 2 + 4 = 10 fmas. The reader may wish to verify
that [2,1, 3] takes only 1+ 2+ 4 = 7 fmas. The cost of computing F’ by using
either the forward or the reverse mode of AD is 2 -7 = 14. Even on this small
example, the operations count can be reduced by a factor of two. This is the
primary motivation for investigating heuristics for vertex and edge elimination
in Section 3.

3 Heuristics

Both the vertex and edge elimination problems in c-graphs are conjectured to be
NP-complete [8, 1, 7]. No polynomial algorithm is known for solving them exactly.
The problem of minimizing the fill-in under vertex elimination was shown to be
NP-complete by Herley [9] in an unpublished adaption of a note by Gilbert [10]
on a result by Rose and Tarjan [11] about vertex elimination techniques for
solving sparse linear systems. So far, it remains unclear whether the same is true
for edge and face [2] elimination.

In the following we write H(G) = i whenever the application of a heuristic H
to a c-graph G gives the vertex ¢ as a result. An analogous notation is used for
edge elimination heuristics. All heuristics H are defined such that |H(G)| =1,
that is, the result of applying H to G should contain a single vertex or edge.

3.1 Forward Vertex and Edge Elimination

The forward vertex elimination mode FM, eliminates the intermediate vertices
in ascending order with respect to their indices, that is, FM,(G) = j & Vi €
V:j < 4. The same idea can be applied to edge elimination. For reasons of
consistency, we require the forward edge elimination mode FM, to have the same
computational cost as FM,,. This can be achieved by pure back edge elimination
sequences in lexicographical order or by pure front edge elimination sequences
in switched lexicographical order. For example, the latter can be written as

FM.(G) = (i,§); < (i,j) € EN(VxZ) A V(k,1) € EN(VxZ):j<IVj=

The fact that an edge (4, j) is front (back) eliminated is denoted by (7, j) 7 ((¢,4)s).
Note that the set of edges that can be front eliminated is restricted to those
having an intermediate vertex as target.

3.2 Reverse Vertex and Edge Elimination

In reverse vertex elimination mode the intermediate vertices are eliminated in
descending order starting with p, that is, RM,(G) = j & Vi € V: j > i. The
extension to edge elimination sequences is similar to FM, for example,

RM.(G) = (i,/)f < (i,§) € EN(ZxV) A V(k,1) € EN(ZxV): j>1Vj=

To ensure uniqueness of the result, one must combine all heuristics with a
tiebreaking criterion or even a hierarchy of tiebreakers. We use either FM or
RM (for vertices or edges, depending on the context) as the “bottom line,” since
we always have |[FM(G)| = 1 as well as [RM(G)| = 1.

3.3 Lowest Markowitz

The lowest Markowitz (LM) degree-first heuristic was introduced in [1]. It was
motivated by a similar idea from the theory of direct methods for solving sparse
linear systems.

Heuristic 1 LM,(G) =7 if
WEV:MJ-SW A ViEV’,V’Z{kEV:Nj:uk}:j:RMU(G,) R
where G' is the subgraph of G that is induced by V'.

G' = (V', E') is said to be induced by a vertexset V' C Vif E' = {(i,j) : i € V'A
j € V'}. In general, we always have the choice to use either FM, or RM, as the
ultimate tiebreaker to make the result of a heuristic unique. This choice, however,
significantly affects the performance of the heuristic, as illustrated by the c-
graphs in Figure 5. As shown in [12], forward vertex elimination is optimal for
the graph on the left, whereas reverse vertex elimination minimizes the number
of fmas required to accumulate the gradient for the graph on the right. The

INe < k.

ING > k.

Fig. 5. Example: LM, tiebreakers

LM, heuristic finds the optimal vertex elimination sequence not depending on
the tiebreaker for the graph on the left. To solve the problem for the graph on
the right, however, one must combine it with RM,,.

As for FM, and RM,, the computational effort of LM, is constant per ver-
tex and per iteration. The number of iterations is equal to the number of in-
termediate vertices p, and the vertices taken into account are the intermediate
vertices that have not been eliminated yet. Hence, the maximal overall effort is
p(p+1)/2 € O(|VP).

The Markowitz degree of (i,7) € E is defined as min(|{k: j < k}|,|{k: k <
i}]). The edge (i, 7) is front eliminated if [{k: j < k}| < |{k: k < i}|. Otherwise,
it is back eliminated. The lowest-Markowitz heuristic for edge elimination LM,
is defined analogous to Heuristic 1. Its complexity, however, also depends on
the fill-in that is generated. Although, the termination of edge elimination was
shown in [7], it remains unclear whether the cost of edge elimination sequences
is still polynomial in the worst case. This question is the subject of ongoing
research.

3.4 Lowest Relative Markowitz

The lowest relative Markowitz (LRM) degree-first heuristic is an extension of
LM. It was introduced in [13]. Let ¢; = [{k: k € X Ak <t j}|, 6; = [{k: k €
Y Aj <t k}|, and fi; = pj — 1 - §;. The relative Markowitz degree is defined as
the difference between the Markowitz degree and the dependence degree ;-0 of
the vertex j. The idea is to maximize the dependence degree while, at the same
time, minimizing p;. This heuristic is usually combined with LM, as tiebreaker.

Heuristic 2 LRM,(G) = j if
VlEVﬂ]SﬂZ A ViEVI,VI:{kEV:ﬂj:ﬂk}:j:LMv(Gl) R
where G' is the subgraph of G that is induced by V'.

See [13] for further details.
To formulate LRM for edge elimination, we set

(i, 7)) = min(|{k - j <k} = 65, [{k - k <} =).

As for LM, an edge (i,j) is front eliminated if [{k: j < k}| —6; < [{k: k <
i}| — ¢; and else back eliminated. Thus, LRM, can be derived immediately from
Heuristic 2.

3.5 Maximal Overall Markowitz Degree Reduction

The maximal overall markowitz degree reduction (MOMR) heuristic represents
the global pendant to LM. It considers the effect of the elimination of a vertex
on the Markowitz degrees of its neighbors instead of its own Markowitz degree.
Therefore we define the overall Markowitz degree of a c-graph G = (V, E) as
M = M(G) =) ;cy pi- The overall Markowitz degree reduction of a vertex
i € V is defined as p; = M(G) — M(G — j), where G — j is the c-graph after
the elimination of j.

Heuristic 3 MOMR,(G) =j if
VieV:pu <p;y AVieV Vi={keV:pu; =p}:j=LM(G") ,
where G' is the subgraph of G that is induced by V'.

Initially, MOMR,, attempts to reduce the Markowitz degrees of its neighbors as
much as possible, thus making use of absorption while trying to avoid excessive
fill-in. Only as a second step does it take the vertex’s own Markowitz degree
into account. MOMR,, reduces the cost of eliminating the remaining vertices as
much as possible.

To calculate the Markowitz degree reduction of k caused by the elimination of
some j < k, one must compute the difference of their respective predecessor sets.
Similarly, the successor sets must be considered if ¥ < 5. Hence, MOMR,, involves
at most O(a?|V|?) operations, where a is the average number of predecessors
(or successors) per vertex over all elimination steps.

The formulation of MOMR for edge elimination is straightforward by com-
paring the overall Markowitz degree of G before and after the front and back
elimination of an edge.

3.6 Lowest Markowitz Minimal Damage

This lowest Markowitz minimal damage (LMMD) heuristic combines LM and
MOMR. The effect of MOMR is twofold. On one hand, it enforces the elimination
of vertices that reduce the Markowitz degrees of their neighbors maximally (or
at least do not increase them too much). On the other hand, it implicitly prefers
vertices with high Markowitz degrees, and hence incurs a high elimination cost.

The idea behind LMMD is to look for vertices with low Markowitz degrees
that cause a minimal increase of the Markowitz degree on other vertices (minimal
damage). If the overall Markowitz degree without considering j € V' of a c-graph
G = (V,E) is defined as Mj(G) = >_izj Mi, then the damage caused by the

elimination of j is set to d; = M(G — j) — M;(G). In order to increase the
flexibility of LMMD, the damage is scaled with a weight w.

Heuristic 4 LMMD,(w,G) = j if
VieV: pjt+wd; < p+wd; AN Vie V',V ={keV: pj+wd; = pp+wdy}: j = RM,(V').

W.lo.g., we choose RM, as a tiebreaker. Other criteria can be used as well;
however, especially LM, as tiebreaker would be somewhat redundant because
of the already present implicit orientation toward the lowest Markowitz degree.
Choosing a small factor w focuses on the Markowitz degree of the vertex and
reduces the value of the damage to a tiebreaker. Large values, on the other
hand, emphasize the Markowitz degree reduction of the neighboring vertices and
degrade the current degree to a secondary criterion. The computational effort is
identical to that of MOMR,,.

Again, the formulation of LMMD, is analogous to Heuristic 4, when consid-
ering the damage caused by front and back edge elimination, respectively.

4 Numerical Results

The generation of c-graphs from real-world application programs requires a fully
functional compiler front-end to transform the program into an abstract syntax
tree. We are using the tool EIiAD [14] to perform this task.

Table 1. Elimination Costs for Graphs of Real-World Programs

n p m| FM RM|LM1 LM2|LRM1 LRM2|MOMR1 MOMR2|LMMD
ROE| 10 208 5|1977 1341|1035 962| 1073 1036 1215 1130] 1023
1977 13411134 1021| 1800 1260 1396 1384| 1324
CTS |134 1386 252|3402 2268|2898 2268| 3390 3385 2268 2268 2268
3402 2268|3402 2268| 2307 2306 2268 2268 2268

CPF| 12 56 11| 168 98| 120 98] 120 119 96 96 96
168 98| 168 98 97 99 96 96 96
HHD| 8 82 8| 308 220| 258 212 286 281 222 222 212
308 220 326 224| 223 223 216 216 216

FIC |128 1230 34|4003 1860|2571 1860, 3220 2982 1860 1860| 1860
4003 1860(4003 1860 1866 1862 1860 1860| 1860

Table 1 lists the results obtained by applying various heuristics to graphs
of the following applications: Roe’s numerical flux (ROE) [15], coating thick-
ness standardization (CTS), combustion of propane, full formulation, (CPF),
human heart dipole (HHD), and Flow in a Channel (FIC). CTS, HHD, and FIC
have been generated from the corresponding MINPACK-2 test problems [16] by
unrolling all loops for a given input. We list the number of minimal (n), inter-
mediate (p), and maximal (m) vertices. The two lines per c-graph list the results
for vertex (top) and edge elimination (bottom). The two columns for LM, LRM,

and MOMR refer to FM and RM as tie-breakers, respectively. For MOMR, FM
or RM are secondary criteria for the primary tie-breaker LM. LMMD is used
with w = 1 and tie-breaker RM.

Ideally, one expects good heuristics for edge elimination to solve the refer-
ence problems for which edge elimination is known to be superior compared
with vertex elimination. Examples are the lion and the bat graphs whose Ja-
cobians can be accumulated by using 11 and 23 multiplications, respectively
[2]. The straight-forward application of ideas from vertex elimination heuris-
tics (Markowitz-degree-related in our case) does not exhibit the desired effect,
as shown in Table 2. For the larger problems in Table 1 the values obtained
by this method turn out to be even worse than the ones resulting from vertex
elimination.

Table 2. Elimination Costs for Lion and Bat Graphs

n p m|FM RM|LM1 LM2|LRM1 LRM2|MOMR1 MOMR2|LMMD
LION|22 4| 12 12| 12 12 12 12 12 12 12
12 12 12 12 12 12 14 14 12

BAT (43 4| 24 24| 24 24 24 24 24 24 24
24 24| 24 24 24 24 26 27 26

At the statement and basic block level, c-graphs can be generated at compile
time. These graphs are usually small, an advantage for studying the effect that
heuristics for vertex or edge elimination have on the runtime of the compilation.
However, small graphs are not very useful for studying the effect of heuristics on
the number of fmas that are required to accumulate the corresponding Jacobian.
Therefore, we have developed a random c-graph generator. It allows us to check
the behavior of various heuristics on a large number of c-graphs of varying sizes.

4.1 Random Structured C-Graph Generator

Since c-graphs are not arbitrary but are structured in some sense, our c-graph
generator works hierarchically in two or three phases. First, a set of random state-
ments is built. These statements are single expression use programs as discussed
in [12]. They consist of a given number of inputs, a given number of interme-
diate vertices that represents subexpressions, and a single output. Inputs may
have several successors, and all intermediate vertices have exactly one successor.
In most high-level programming languages, the elementary functions are either
unary or binary. In our c-graph generator, their distribution can be specified.
For all intermediate vertices and for the output, the number of predecessors
is chosen with respect to this distribution followed by the actual predecessors
themselves. If unused inputs remain, then the number of binary operations is
increased automatically.

An ordered sequence of statements can be composed into a basic block with a
given number of inputs and outputs. The composition guarantees that for every
input there exists at least one path to some output and vice versa. Furthermore,
the resulting c-graph is acyclic.

Blocks (or statements) can be wrapped into loops by concatenation of mul-
tiple copies. The outputs of one iteration become the inputs of the next. If the
number of inputs n is greater than the number of outputs m, then the latter
get mapped onto the first m inputs for the next iteration. The remaining inputs
become global inputs. A similar strategy is employed for n < m, and the number
of global outputs is increased.

4.2 Discussion of Further Results

In Table 3 we have listed the results obtained by applying the heuristics discussed
in this paper to a number of randomly generated c-graphs. Here, iters is the
number of executions of an assumed loop around the code leading to the original
(iters = 1) c-graph.

We observe that MOMR, and LMMD show the most consistent behavior,
while LMMD delivers the best results in most cases. RM outperforms FM if
there are fewer outputs than inputs. FM delivers better results if the number
of outputs exceeds the number of inputs. If there are as many outputs as there
are inputs, then RM seems to perform better. A likely reason is that for the
intermediate vertices the number of successors is arbitrary, whereas the number
of predecessors is limited by two. LM appears to be a reasonable compromise
for a large number of c-graphs. Typically, it performs almost as well as the best
heuristic.

An important goal of the research that led to this paper was the investi-
gation of Markowitz degree-based heuristics for edge elimination. We expected
our results to be improved by simply reformulating the ideas behind the vertex
elimination heuristics in the context of edge elimination. The opposite appears
to be the case. Apart from the last two examples, none of the edge elimination
heuristics delivers better results than the best vertex elimination heuristic. Ap-
parently, the heuristics are influenced negatively by the considerably widened
search space. We conclude that the implicit locality of eliminating all edges in-
cident to a vertex is usually more beneficial than the higher degree of freedom
when considering the heuristics that are discussed here. A good example is the
seventh c-graph, where LRM, combined with forward mode as a tiebreaker is
six times as expensive as the best heuristic (LMMDy,).

In Table 4 we have applied different damage weights and tiebreaking criteria
to LMMD for both vertex and edge elimination. For vertex elimination, only
the results obtained with RM,, as tiebreaker are listed; however, the results ob-
tained with FM, are similar. The five examined weights w were 1.0, 0.8, 0.6, 2.0,
and 4.0. LMMD behaves more like LM with w < 1 and more like MOMR with
w > 1. The application of LMMD to edge elimination was influenced strongly
by the tiebreaking criterion. Therefore, the forward mode (LMMD1, LMMD3,
and LMMD5) was compared with the reverse mode (LMMD2, LMMD4, and

Table 3. Elimination Costs for Graphs from Structured Random C-Graph Generator

n p mitersy FM RM|LM1 LM2|LRM1 LRM2|MOMR1 MOMR2|LMMD

3 64 2 1| 108 87 89 77 93 86 83 81 7
108 87| 104 87| 106 86 83 81 78
3 206 3 1| 638 418 374 316] 392 389 337 342 312
638 418 553 351| 448 417 333 336 334
10 236 10 1| 1216 609 480 425| 520 499 434 441 417
1216 609| 666 462| 507 467 448 454 447

10 48210 2| 3945 2486|1156 1069| 1385 1345 1186 1109| 1051
3945 2486|1613 1293| 2255 1701 1258 1230 1199

10 1220 10 5{13050 10653|3513 3591 3685 3573 3904 3705| 3340
13050 10653|4983 5220, 8141 6515 5001 4509| 4582
10 243 3 1| 1567 435 468 369| 448 430 411 406 367

1567 435| 837 392| 813 418 428 398 380
381227 3 5(31182 4620|2736 2285| 2708 2540 2614 2430| 2129
31182 4620|4806 2422| 12610 3902 2942 2483| 2780
10 245 1 1) 1605 349| 454 326] 461 430 356 357 325
1605 349 801 349| 614 352 339 339 332
46 1229 1 526761 1749|2346 1634| 2330 1866 1784 1789] 1629
26761 1749|4549 1749| 8188 1764 1699 1699| 1664
3 236 10 1) 718 649] 463 420| 526 519 435 462 415
718 649| 646 460 669 488 440 459 453
31192 38 5| 3906 14233|2662 2525 2786 2778 2581 2648 2294
3906 14233(3436 3272| 4988 3910 2571 3316| 2865
1 23610 1| 337 651 423 373| 444 432 342 394 356
337 651| 337 404 742 426 334 368 352
1118446 5| 1725 4249|2155 1941 2227 2172 1742 2006| 1840
1725 4249|1725 2564 1818 2099 1702 1864| 1788

LMMD6). On the other hand, only three weights were used: 1.0 (LMMDI,
LMMD?2), 0.8 (LMMD3, LMMD4), and 2.0 (LMMD5, LMMDG6).

Table 4. Parameter Study of LMMD

n__ p m itersLMMD1 LMMD2 LMMD3 LMMD4 LMMD5 LMMD6]
3206 3 1 312 312 312 313 314
340 334 552 344 341 323
10 23610 1 417 417 418 421 421
447 447 665 460 446 447|
10122010 5| 3340 3323 3315 3347 3384
5386 4582 6140 5541 4710 4341
381227 3 5| 2129 2131 2193 2147 2196
3139 2780 4872 2012 3125 2926
3119238 5| 2294 2309 2400 2354 2388
2934 2865 3748 3358 2719 2901
1118446 5| 1840 1847 1866 1818 1803
1636 1788 1636 2534 1636 1783

One observes that LMMD,, is not very sensitive with respect to w. The per-
formance of LMMD,, however, can vary strongly for different weights. There
does not seem to be a preferable value for w. Furthermore, the tiebreaking crite-
rion influences the elimination cost even more. RM, is usually the better choice.
Again, the most interesting observation is that in most cases LMMD, yields
better results than LMMD,. The discrepancy is often quite large.

5 Conclusion

Both MOMR and LMMD represent good choices for Markowitz-based vertex
elimination heuristics. On a representative test set (a subset of which was pre-
sented here) they exhibit a consistent behavior in terms of the quality of the
elimination sequences that were generated. In particular, they exhibit an in-
creased robustness with respect to the choice of different tiebreaking criteria.
Similar ideas were applied to edge elimination with no noticeable improvement
in the cost of the elimination sequences generated. We conclude that different
criteria must be developed in order to exploit the power of edge elimination for
accumulating Jacobians. How edge elimination sequences can reduce the cost of
vertex elimination sequences is the subject of ongoing research.

Similar to the approach taken in [17], we are implementing logarithmic simu-
lated annealing algorithms [18] for edge elimination. We hope to observe discrep-
ancies between the optimal vertex and edge elimination sequences for real-world
applications. From the structure of such problems we expect to learn more about

suitable criteria for edge elimination heuristics. Furthermore, a detailed investi-
gation of the energy landscape of the various combinatorial optimization prob-
lems arising in Jacobian computation will allow us to gain insight into potential
improvements. Finally, we conclude that, in view of our promising results, robust
heuristics for accumulating Jacobians efficiently should become a key feature of
software tools for automatic differentiation.

Acknowledgments

This research is supported by the UK’s Engineering and Physical Sciences Re-
search Council under grant GR/R/38101/01.

Naumann is supported by the Mathematical, Information, and Computa-
tional Sciences Division subprogram of the Office of Advanced Scientific Com-
puting Research, U.S. Department of Energy, under Contract W-31-109-ENG-38.

References

1. Griewank, A.) Reese, S.: On the calculation of Jacobian matrices by the Markovitz
rule. In: [5]. (1991) 126-135

2. Naumann, U.: Optimal accumulation of Jacobians by elimination methods on the
dual computational graph. Mathematical Programming (2002) to appear.

3. Berz, M., Bischof, C., Corliss, G., Griewank, A., eds.: Computational Differentia-
tion: Techniques, Applications, and Tools, Philadelphia, STAM (1996)

4. Corliss, G., Faure, C., Griewank, A., Hascoet, L., Naumann, U., eds.: Auto-
matic Differentiation of Algorithms — from Simulation to Optimization, New York,
Springer (2002)

5. Corliss, G., Griewank, A., eds.: Automatic Differentiation: Theory, Implementa-
tion, and Application, Philadelphia, STAM (1991)

6. Griewank, A.: Evaluating Derivatives. Principles and Techniques of Algorithmic
Differentiation. Number 19 in Frontiers in Applied Mathematics. STAM, Philadel-
phia (2000)

7. Naumann, U.: Efficient Calculation of Jacobian Matrices by Optimized Application
of the Chain Rule to Computational Graphs. PhD thesis, Technical University
Dresden (1999)

8. Bischof, C., Haghighat, M.: Hierarchical approaches to automatic differentiation.
In: [3]. (1996) 82-94

9. Herley, K.: A note on the NP-completeness of optimum Jacobian accumulation by
vertex elimination. Presentation at: Theory Institute on Combinatorial Challenges
in Computational Differentiation (1993)

10. Gilbert, J.: A note on the NP-completeness of vertex elimination on directed
graphs. J. Alg. Disc. Meth. 1 (1980) 292-294

11. Rose, D., Tarjan, R.: Algorithmic aspects of vertex elimination on directed graphs.
J. Appl. Math. 34 (1978) 176-197

12. Naumann, U.: On optimal Jacobian accumulation for single expression use pro-
grams. Preprint ANL-MCS/P944-0402, Argonne National Laboratory (2002)

13. Naumann, U.: An enhanced Markowitz rule for accumulating Jacobians efficiently.
In Mikula, K., ed.: ALGORITHMY 2000 Conference on Scientific Computing, Slo-
vak University of Technology, Bratislava, Slovakia (2000) 320-329

14.

15.

16.

17.

18.

Tadjouddine, M., Forth, S., Pryce, J., Reid, J.: Performance issues for vertex
elimination methods in computing Jacobians using Automatic Differentiation. In:
Proceedings of the ICCS 2000 Conference. Volume 2330 of Springer LNCS. (2002)
1077-1086

Roe, P.: Approximating Riemann solvers, parameter vectors, and difference
schemes. J. Comp. Physics (1981) 357-372

Averik, B., Carter, R., Moré, J.: The MINPACK-2 test problem collection (pre-
liminary version). Technical Report 150, Mathematical and Computer Science
Division, Argonne National Laboratory (1991)

Naumann, U., Gottschling, P.: Prospects for simulated annealing in automatic
differentiation. In Steinhéfel, K., ed.: SAGA 2002 - Stochastic Algorithms, Foun-
dations and Applications. Volume 2264 of LNCS., Springer, Berlin (2001) 131-144
Albrecht, A., Wong, C.: On logarithmic simulated annealing. In van Leeuwen, J.,
Watanabe, O., Hagiya, M., Mosses, P., eds.: Proc. IFIP International Conference
on Theoretical Computer Science. LNCS, Springer (2000)

The submitted manuscript has been created by
the University of Chicago as Operator of Argonne
National Laboratory (” Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S. Department
of Energy. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up, nonex-
clusive, irrevocable worldwide license in said ar-
ticle to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

