
Large Eddy Simulation of Turbulent Channel Flows bythe Rational LES ModelT. Ilies
u and P. Fis
herMar
h 12, 2002Abstra
tThe rational large eddy simulation (RLES) model is applied to turbulent 
hannel
ows. This approximate de
onvolution model is based on a rational (subdiagonal Pad�e)approximation of the Fourier transform of the Gaussian �lter and is proposed as analternative to the gradient (also known as the nonlinear or tensor-di�usivity) model.We used a spe
tral element 
ode to perform large eddy simulations of in
ompressible
hannel 
ows at Reynolds numbers based on the fri
tion velo
ity and the 
hannel half-width Re� = 180 and Re� = 395. We 
ompared the RLES model with the gradientmodel. The RLES results showed a 
lear improvement over those 
orresponding tothe gradient model, 
omparing well with the �ne dire
t numeri
al simulation. For
omparison, we also present results 
orresponding to a 
lassi
al subgrid-s
ale eddy-vis
osity model su
h as the standard Smagorinsky model.
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1 Introdu
tionLarge eddy simulation (LES) is one of the most su

essful te
hniques in the numeri
al sim-ulation of turbulent 
ows. Contrary to the dire
t numeri
al simulation (DNS), whi
h triesto 
apture all the s
ales in the 
ow, LES aims at resolving only the large-s
ale 
ow fea-tures. The large s
ales are de�ned by means of a �ltering operation: the Navier-Stokesequations are 
onvolved with a spatial �lter, and the resulting �ltered variables be
ome thevariables of interest in LES. Thus, a good LES model should be able to 
ompute an a

urateapproximation of the �ltered variables.An essential 
hallenge in LES is the modeling of the subgrid-s
ale (SGS) stresses, rep-resenting the intera
tions between the large (above the �lter width) and small (below the�lter width) s
ales in the �ltered Navier-Stokes equations. A remarkable resear
h e�ort hasled to a wide variety of SGS models, surveyed, for example, in [1℄, [2℄, and [3℄.Arguably the most popular 
lass of LES models is the eddy-vis
osity type, based on(variants of) the Smagorinsky model [4℄. The main feature of the eddy-vis
osity models isthat they properly transfer kineti
 energy (by invis
id pro
esses) from large s
ales to smallerand smaller s
ales, until this energy is dissipated through vis
ous e�e
ts. These models haveseveral limitations, however, in
luding poor 
orrelation 
oeÆ
ients in a priori tests [5℄, [6℄and inability to provide ba
ks
atter. Some of these limitations are 
ir
umvented by using adynami
 pro
edure in 
al
ulating the Smagorinsky 
onstant, yielding the dynami
 subgrid-s
ale eddy-vis
osity model introdu
ed by Germano et al. [7℄, and used in many studies [8℄,[9℄.Another 
lass of SGS models is the s
ale-similarity one. The s
ale-similarity model,introdu
ed by Bardina et al. [6℄, postulates that the full stru
ture of the velo
ity �eld ats
ales below the �lter width is similar to that at s
ales above the �lter width. A priori tests[6℄ show high 
orrelations between real and modeled stresses. Another realisti
 feature ofthe s
ale-similarity model is that it produ
es ba
ks
atter. In a posteriori tests, however,the s
ale-similarity model does not dissipate enough energy and typi
ally leads to ina

urateresults. As a remedy, Bardina et al. [6℄ added a dissipative Smagorinsky term. The resultingmodel, known as the mixed model, 
ombines the strengths of both the s
ale-similarity andthe Smagorinsky model. The dynami
 pro
edure has been su

essfully applied to both thepure and the mixed s
ale-similarity model, yielding improved results [10℄.A di�erent 
lass of SGS models 
onsists of those models aimed at 
omputing an improvedSGS stress approximation by repla
ing the unknown un�ltered variables with approximatelyde
onvolved �ltered variables. An inverse �ltered model was �rst proposed by Shah andFerziger [11℄. This idea was formalized by Geurts [12℄ for the top hat �lter. Kuerten etal. [13℄ used the approximate inverse to improve the 
omputable estimates in the dynami
Smagorinsky model. Another model in this 
lass is the velo
ity estimation model of Do-maradzki and Saiki [14℄, [15℄, [16℄. Stolz and Adams [17℄ developed the approximate de
on-volution model, based on repeated appli
ation of the �lter to approximately de
onvolve the2



dependent variables [18℄, [19℄.One popular model in this 
lass is the gradient model (also known as the nonlinear ortensor-di�usivity model), whi
h uses expli
it �ltering. In addition to the impli
it �lteringdue to the e�e
tive trun
ations (grid and numeri
al method), this LES model also assumesa regular expli
it �lter of pres
ribed shape and e�e
tive width larger than the grid spa
ing.The gradient model is based on a Taylor series approximation of the Fourier transformof the �lter and aims at re
onstru
ting the �ltered-s
ale stress due to expli
it �ltering. Thegradient model was developed in several steps. First, in 1974 Leonard [20℄ proposed a modelfor the \resolved s
ales" u u in the Reynolds stress tensor. Next, in 1979 Clark, Ferziger,and Reynolds [5℄ used the same approa
h to model the \
ross-terms" uu0 + u0u.The gradient model was tested a priori against experimental data (two-dimensional 
uts)by Liu et al. [21℄. Borue and Orszag [22℄ presented a detailed a priori analysis of the gradientmodel based on Gaussian-�ltered DNS of homogeneous, isotropi
 de
aying turbulen
e. Also,Win
kelmans et al. [23℄ presented several a priori tests for the gradient model and its dynami
version, again in the 
ontext of homogeneous, isotropi
 de
aying turbulen
e. Similar testshave been performed by Carati et al. [24℄. All the above a priori tests have shown high
orrelations.In a posteriori tests, however, it was found that the gradient model does not dissipateenough energy. Simulations with the pure gradient model appear to be unstable [25℄. Also,Liu, Meneveau, and Katz [21℄ reported problems near the wall, where the pure gradientmodel's Reynolds stresses do not follow the x32 behavior. To stabilize the gradient model,Clark, Ferziger, and Reynolds [5℄ 
ombined it with a Smagorinsky term, but the resultingmixed model inherited the ex
essive dissipation of the Smagorinsky model. A di�erentapproa
h was proposed by Liu et al. [21℄, who supplied the gradient model with a \limiter"to prevent energy ba
ks
atter; this 
lipping pro
edure ensures that the model dissipatesenergy from large to small s
ales. This approa
h was also used in [26℄, [27℄.From this point of view, the gradient model is similar to the s
ale-similarity model: itshows high 
orrelations in a priori tests, but it does not dissipate enough energy in a
tualLES simulations: hen
e the need for extra vis
osity type terms (mixed models). We notethat, for both types of model, the best results in a
tual LES simulations were obtained byusing the dynami
 mixed pro
edure [28℄, [23℄. In fa
t, it has been noted before [28℄, [9℄, [24℄,[23℄ that there are strong ties between the gradient model and the s
ale-similarity model: the�rst term in the Taylor series expansion of the s
ale-similarity model is indeed the gradientmodel. As noted by Win
kelmans et al. [23℄, however, the other terms in the expansion aredi�erent. Thus, the gradient model is not identi
al to the s
ale-similarity model.The model presented in this paper was introdu
ed by Galdi and Layton [29℄ as an al-ternative to the gradient model. They observed that the Taylor series approximation of theFourier transform of the Gaussian �lter used in the derivation of the gradient model a
tuallyin
reases the high wave number 
omponents, instead of damping them. As an alternative tothe Taylor series approximation, Galdi and Layton proposed a rational ((0,1) Pad�e) approx-3



imation. This rational approximation is 
onsistent with the original approximated fun
tion(whi
h is a negative exponential): it attenuates the high wave number 
omponents.In this paper, the resulting LES model, 
alled in the sequel the rational LES (RLES)model, is applied to the numeri
al simulations of in
ompressible 
hannel 
ows at Re� = 180and Re� = 395.2 The Rational LES ModelThe usual LES starts by 
onvolving the Navier-Stokes equations (NSEs) with a spatial �ltergÆ. Assuming that di�erentiation and 
onvolution 
ommute (whi
h is true for homogeneous�lters), the �ltered NSEs read as follows:ut +r � (uu)�Re�1�u+rp = f ; (1)where Æ is the �lter width and u = gÆ � u is the variable of interest. The �ltered NSEs (1)do not form a 
losed system, and a 
onsiderable resear
h e�ort in LES resear
h has beendire
ted at modeling the stress � = uu� u u: (2)As mentioned by Carati et al. [24℄, this stress 
onsists of a �ltered-s
ale stress tensor,mainly due to �ltering, and a subgrid-s
ale (SGS) stress tensor, mainly due to dis
retization.One way of approximating the �ltered-s
ale stress tensor is by using a Taylor series expansionin the wave number spa
e to represent the unknown full velo
ity in terms of the �lteredvelo
ity. This approa
h was �rst used by Leonard [20℄, and it was later espoused by Clark,Ferziger, and Reynolds [5℄. The resulting model, 
alled the gradient, nonlinear, or tensor-di�usivity model, was used in numerous studies [20℄, [5℄, [24℄, [22℄, [23℄, [30℄, [21℄, [31℄, [32℄.The gradient model is derived by using a Taylor series approximation to the Fouriertransform of the Gaussian �lterbgÆ(k) = e� Æ2 jkj24
 � 1 � Æ2jkj24
 +O(Æ4); (3)and for its inverse 1bgÆ(k) = e Æ2jkj24
 � 1 + Æ2jkj24
 +O(Æ4): (4)De
omposing u into its average and its turbulent 
u
tuationsu = u+ u0; (5)4



and taking �rst the average and then the Fourier transform of the above relation, we getbu0 = � 1bgÆ � 1� bu; (6)and thus, bu = 1bgÆ bu; (7)where bu denotes the Fourier transform of u.By taking the inverse Fourier transform and using (4), we getu � u+ Æ24
�u: (8)By plugging the above into (2), using (3) and the same te
hnique as above, simplifying, anddropping out the terms of O(Æ4), we get the gradient model� = uu� u u � Æ22
ruru; (9)where (ruru)i;j = dXl=1 �ui�xl �uj�xl : (10)Noti
ing that the approximation by Taylor series of bgÆ a
tually in
reases the high wavenumber 
omponents (see Figure 1), Galdi and Layton [29℄ developed a new LES model basedon a rational ((0,1) Pad�e) approximation of bgÆ, whi
h preserves the de
ay of the high wavenumber 
omponents: bgÆ(k) = e� Æ2 jkj24
 � 11 + Æ2jkj24
 +O(Æ4): (11)The resulting LES model, 
alled the rational LES (RLES) model, reads as follows:� = "�� Æ24
�+ I��1� Æ22
ruru�# : (12)The inverse operator in (12) a
ts as a smoothing operator and represents the approxima-tion of the 
onvolution by the Gaussian �lter in the stress tensor � in (2).5



We note that di�erential �lters have been proposed by Germano in [33℄: A
tually, one
an think of (12) as the stress tensor obtained by applying su
h a di�erential �lter. Mullenand Fis
her used similar �lters in [34℄. Also, Domaradzki and Holm 
onsidered the Navier-Stokes-alpha model (whi
h 
ontains an inverse operator similar to the one in (12)), in anLES framework [35℄.The mathemati
al analysis asso
iated with the RLES model (12) was presented in [36℄;the smoothing property of the inverse operator in (12) eliminated the ne
essity for usingadditional regularization operators (of eddy-vis
osity type), as for the gradient model [37℄.The �rst steps in the numeri
al analysis and validation of the RLES model (12) were madein [38℄ and [39℄, respe
tively.This paper presents numeri
al results for the RLES model (12) applied to the 3D 
hannel
ow test problem at Reynolds numbers based on the wall shear velo
ity Re� = 180 andRe� = 395. Some preliminary work started in [40℄; it was signi�
antly updated and improvedin the present paper.3 Numeri
al SettingThe 3D 
hannel 
ow (Figure 2) is one of the most popular test problems for the investigationof wall bounded turbulent 
ows [41℄, [42℄. We used the �ne DNS of Moser, Kim, and Mansour[43℄ as ben
hmark for our LES simulations.We 
ompared the RLES model (12) with(I) the gradient model (9) � = Æ22
ruru;(II) the Smagorinsky model � = �(CsÆ)2 jSj S;(III) a 
oarse DNS (no LES model),where S := 12(ru + ruT ) is the deformation tensor of the �ltered �eld, Cs = 0:1 is theSmagorinsky 
onstant, and 
 = 6 is the parameter in the de�nition of the Gaussian �lter.The 
omputational domain is periodi
 in the streamwise (x) and spanwise (z) dire
tions,and the pressure gradient that drives the 
ow is adjusted dynami
ally to maintain a 
onstantmass 
ux through the 
hannel. The parameters used in the numeri
al simulations are givenin Table 1 for the two Reynolds numbers 
onsidered (Re� = 180 and Re� = 395). The �lterwidth Æ is 
omputed as Æ = 3p�x �z �y(y), where �x and �z are the largest spa
es betweenthe Gauss-Lobatto-Legendre (GLL) points in the x and z dire
tions, respe
tively, and �y(y)is inhomogeneous and is 
omputed as an interpolation fun
tion that is zero at the wall andis twi
e the normal mesh size for the elements in the 
enter of the 
hannel.The numeri
al simulations were performed by using a spe
tral element 
ode based onthe lPN � lPN�2 velo
ity and pressure spa
es introdu
ed by Maday and Patera [44℄. Thedomain is de
omposed into spe
tral elements, as shown in Figure 3. Mesh spa
ing in thewall-normal dire
tion (y) was 
hosen to be roughly equivalent to a Cheby
hev distributionhaving the same number of points. The velo
ity is 
ontinuous a
ross element interfa
es and6



is represented by Nth-order tensor-produ
t Lagrange polynomials based on the GLL points.The pressure is dis
ontinuous and is represented by tensor-produ
t polynomials of degreeN�2. Time stepping is based on an operator-splitting of the dis
rete system, whi
h leads toseparate 
onve
tive, vis
ous, and pressure subproblems without the need for ad ho
 pressureboundary 
onditions. A �lter, whi
h removes 2%{5% of the highest velo
ity mode, is used tostabilize the Galerkin formulation [45℄; the �lter does not 
ompromise the spe
tral a

ura
y.Details of the dis
retization and solution algorithm are given in [46℄, [47℄.The initial 
onditions for theRe� = 180 simulations were obtained by superimposing a 2DTollmien-S
hli
hting (TS) mode of 2% amplitude and a 3D TS mode of 1% amplitude on aparaboli
 mean 
ow (Poiseuille 
ow) and integrating the 
ow for a long time (approximately200 H/u� , where H is the 
hannel's halfwidth and u� is the wall shear velo
ity) on a �nermesh (72 � 73 � 72 mesh points). The �nal �eld �le was further integrated on the a
tual
oarse LES mesh (36� 37� 36 mesh points) for approximately 50 H/u� to obtain the initial
ondition for all four Re� = 180 simulations.The initial 
ondition for the Re� = 395 
ase was obtained in a similar manner: Westarted with a �eld �le 
orresponding to a Re� = 180 simulation, and we integrated it on a�ner mesh (96 � 73 � 72 mesh points) for a long time (approximately 50 H/u�). Then, weintegrated the resulting 
ow on the a
tual 
oarser LES mesh (72� 55� 54 mesh points) foranother 40 H/u� , and the �nal �eld �le was used as initial 
ondition for all four simulations.For ea
h of the four simulations and for both Re� = 180 and Re� = 395, the 
ow wasintegrated further in time until the statisti
ally steady state was rea
hed (for approximately15 H/u�). The statisti
ally steady state was identi�ed by a linear total shear stress pro�le(see Figure 4 and Figure 5).The statisti
s were then 
olle
ted over another 5 H/u� and 
ontained samples taken afterea
h time step (�t = 0:0002 for Re� = 180 and �t = 0:00025 for Re� = 395). We alsoaveraged over the two halves of the 
hannel.In our numeri
al experiments, we 
onsidered, as a �rst step, homogeneous boundary
onditions for all LES models tested.The numeri
al results in
lude plots of the following time- and plane-averaged quanti-ties normalized by the 
omputed u� : the mean streamwise velo
ity � u � =u� ; the x; y-
omponent of the Reynolds stress � u0v0 � =u2� ; and the rms values of the streamwise� u0u0 � =u2� ; wall-normal � v0v0 � =u2� , and spanwise � w0w0 � =u2� velo
ity 
u
tua-tions, where� � � denotes time and plane (xz) averaging, the 
u
tuating quantities f 0 are
al
ulated as f 0 = f� � f �, and a \+" supers
ript denotes the variable in wall units.Note that in our simulations the bulk velo
ity Um was �xed to mat
h the 
orrespondingone in [43℄ (see Table 2), and the fri
tion velo
ity u� was a result of the simulations. Table 2presents the a
tual values of Re� 
orresponding to the fri
tion velo
ity u� 
omputed for allfour numeri
al tests and two nominal Reynolds numbers. We note that the fri
tion velo
ityu� is within 1%{2% of the nominal value, and, as a result, so is the a
tual Re� .7



4 A Posteriori Tests for Re� = 180We ran a posteriori tests for the RLES model (12), the gradient model (9), the Smagorinskymodel, and a 
oarse DNS (no model). We 
ompared the 
orresponding results with the �neDNS simulation of Moser, Kim, and Mansour [43℄.Figure 6 shows the normalized mean streamwise velo
ity; note the almost perfe
t over-lapping of the results 
orresponding to the models tested. We interpret this behavior as ameasure of our su

ess in enfor
ing a 
onstant mass 
ux through the 
hannel.Figure 7 presents the normalized x; y-
omponent of the Reynolds stress. The RLESmodel (12) is a 
lear improvement over the rest (i.e., 
losest to the �ne DNS).Similarly, the normalized rms values of the streamwise velo
ity 
u
tuations in Figure8 show a better (
loser to the �ne DNS ben
hmark results in [43℄) behavior for the RLESmodel (12).Figures 9 and 10, 
ontaining the normalized rms values for the wall-normal and spanwisevelo
ity 
u
tuations, merit a more detailed dis
ussion. Figure 9 shows the normalized rmsvalues of the wall-normal velo
ity 
u
tuations. Here, the RLES model (12) performs worsethan the gradient model (9) near the wall. Away from the wall, the gradient and the RLESmodel perform similarly. The best results are obtained with the Smagorinsky model.The normalized rms values of the spanwise velo
ity 
u
tuations in Figure 10 are betterfor the RLES model (12) than for the gradient model, ex
ept for a portion of 1� jyj roughlybetween 0.3 and 0.5. The Smagorinsky model gives the best results near the wall, but itoverpredi
ts the 
orre
t value near the 
enter of the 
hannel.In 
on
lusion, the RLES model (12) performs better than the gradient model, with theex
eption of the normalized rms values of the wall-normal velo
ity 
u
tuations. The RLESmodel (12) is also more stable numeri
ally than the gradient model.5 A Posteriori Tests for Re� = 395We ran simulations with all four models for Re� = 395, and we 
ompared our results withthe �ne DNS in [43℄. Again, as in the Re� = 180 
ase, the normalized mean streamwisevelo
ity 
u
tuations in Figure 11 are pra
ti
ally identi
al; this time, however, they do notoverlap onto that 
orresponding to the �ne DNS. Nevertheless, the mean 
ows are the same,and this is supported by the fa
t that the models underpredi
t the 
orre
t value near thewall but overpredi
t it away from the wall.The normalized x; y-
omponent of the Reynolds stress in Figure 12 is almost identi
alfor all four models. This behavior was also noti
ed by Win
kelmans et al. [23℄.The same behavior 
an be noti
ed for the normalized rms values of the streamwise velo
ity
u
tuations in Figure 13: the pro�les for the four models are almost identi
al. The RLESmodel (12) performs slightly better near the wall, and the gradient model performs slightly8



better away from the wall. They both perform better than the Smagorinsky model near the
enter of the 
hannel.Figure 14 presents the normalized rms values of the wall-normal velo
ity 
u
tuations.As for the Re� = 180 
ase, the gradient model performs better near the wall, and the RLESmodel (12) performs better away from the wall. The Smagorinsky model performs best, butit overpredi
ts the 
orre
t value near the 
enter of the 
hannel.The same behavior is observed for the normalized rms values of the spanwise velo
ity
u
tuations in Figure 15, and again the Smagorinsky model performs best.In 
on
lusion, for the Re� = 395 
ase, the gradient and the RLES model (12) yield
omparable results. The best results, however, are obtained by using the Smagorinskymodel.Again, as in the Re� = 180 
ase, the RLES model (12) is mu
h more stable numeri
allythan the gradient model.6 Con
lusionsWe have used a spe
tral element 
ode to test the RLES model (12) in the numeri
al sim-ulation of in
ompressible 
hannel 
ows at Re� = 180 and Re� = 395. This approximatede
onvolution model is based on a rational (Pad�e) approximation to the Fourier transformof the Gaussian �lter and is proposed as an alternative to the gradient model (9). We 
om-pared the RLES model (12) with the gradient model, the Smagorinsky model, and a 
oarseDNS (no LES model). The 
orresponding results were ben
hmarked against the �ne DNS
al
ulation of Moser, Kim, and Mansour [43℄.The RLES model (12) yielded the best results for the Re� = 180 
ase. These improvedresults were a

ompanied by a mu
h in
reased numeri
al stability 
ompared with the gradientmodel.The situation was di�erent for the Re� = 395 
ase. Here the RLES model (12) and thegradient model yielded 
omparable results, and the Smagorinsky model performed the best.Again, the RLES model (12) was mu
h more stable numeri
ally than the gradient model.We believe that these results for the RLES model are en
ouraging. They also support ourinitial thoughts: The RLES model is an improvement over the gradient model as a sub�lter-s
ale model, and this is illustrated by the improved results for the Re� = 180 
ase. TheRLES model is also more stable numeri
ally be
ause of the additional smoothing operator,and this feature is manifest for both low (Re� = 180) and moderate (Re� = 395) Reynoldsnumber 
ows.However, the RLES model a

ounts just for the sub�lter-s
ale part of the stress re
on-stru
tion. The information lost at the subgrid-s
ale level must be a

ounted for in a di�erentway, as advo
ated by Carati et al. [24℄. This was illustrated by the fa
t that, even for a mod-erate Reynolds number (Re� = 395) 
ow, the Smagorinsky model, a 
lassi
al eddy-vis
osity9



model, performed best.Along these lines, our next step will be to develop a mixed model, 
onsisting of the RLESmodel supplemented by a Smagorinsky model. We also plan to study improved boundary
onditions, the 
ommutation error [48℄, [49℄, and the relationship between the �lter radiusand the mesh-size in a spe
tral element dis
retization.A
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Figure 1: Approximations to the Fourier transform of the Gaussian �lter: Rational (Pad�e)vs. Taylor.
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Table 1: Parameters for the numeri
al simulations.Nominal Re� Lx � Ly � Lz Nx �Ny �Nz180 4� � 2� 43� 36� 37� 36395 2� � 2� � 72� 55� 54
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x,uz,wFigure 2: Problem setup for the 
hannel 
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Table 2: Computed u� and Re� .Fixed Um Nominal Re� Case Computed u� Computed Re�15.63 180 RLES 0.9879448 177.8352gradient 0.9890118 178.0222Smagorinsky 0.9917144 178.5120
oarse DNS 0.9873800 177.718417.54 395 RLES 1.001025319 395.4071960gradient 1.005021334 396.9859924Smagorinsky 0.9974176884 393.9718933
oarse DNS 0.9901855588 391.1294861
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Figure 13: Rms values of streamwise velo
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Figure 14: Rms values of wall-normal velo
ity 
u
tuations, Re� = 395. We 
ompared theRLES model (12), the gradient model (9), the Smagorinsky model, and a 
oarse DNS, withthe �ne DNS of Moser, Kim, and Mansour [43℄.
30



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

1−|y|

<w
’ w

’>
/u

τ2

Moser  et al.
RLES
gradient
Smagorinsky
coarse DNS
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