
Large Eddy Simulation of Turbulent Channel Flows bythe Rational LES ModelT. Iliesu and P. FisherMarh 12, 2002AbstratThe rational large eddy simulation (RLES) model is applied to turbulent hannelows. This approximate deonvolution model is based on a rational (subdiagonal Pad�e)approximation of the Fourier transform of the Gaussian �lter and is proposed as analternative to the gradient (also known as the nonlinear or tensor-di�usivity) model.We used a spetral element ode to perform large eddy simulations of inompressiblehannel ows at Reynolds numbers based on the frition veloity and the hannel half-width Re� = 180 and Re� = 395. We ompared the RLES model with the gradientmodel. The RLES results showed a lear improvement over those orresponding tothe gradient model, omparing well with the �ne diret numerial simulation. Foromparison, we also present results orresponding to a lassial subgrid-sale eddy-visosity model suh as the standard Smagorinsky model.
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1 IntrodutionLarge eddy simulation (LES) is one of the most suessful tehniques in the numerial sim-ulation of turbulent ows. Contrary to the diret numerial simulation (DNS), whih triesto apture all the sales in the ow, LES aims at resolving only the large-sale ow fea-tures. The large sales are de�ned by means of a �ltering operation: the Navier-Stokesequations are onvolved with a spatial �lter, and the resulting �ltered variables beome thevariables of interest in LES. Thus, a good LES model should be able to ompute an aurateapproximation of the �ltered variables.An essential hallenge in LES is the modeling of the subgrid-sale (SGS) stresses, rep-resenting the interations between the large (above the �lter width) and small (below the�lter width) sales in the �ltered Navier-Stokes equations. A remarkable researh e�ort hasled to a wide variety of SGS models, surveyed, for example, in [1℄, [2℄, and [3℄.Arguably the most popular lass of LES models is the eddy-visosity type, based on(variants of) the Smagorinsky model [4℄. The main feature of the eddy-visosity models isthat they properly transfer kineti energy (by invisid proesses) from large sales to smallerand smaller sales, until this energy is dissipated through visous e�ets. These models haveseveral limitations, however, inluding poor orrelation oeÆients in a priori tests [5℄, [6℄and inability to provide baksatter. Some of these limitations are irumvented by using adynami proedure in alulating the Smagorinsky onstant, yielding the dynami subgrid-sale eddy-visosity model introdued by Germano et al. [7℄, and used in many studies [8℄,[9℄.Another lass of SGS models is the sale-similarity one. The sale-similarity model,introdued by Bardina et al. [6℄, postulates that the full struture of the veloity �eld atsales below the �lter width is similar to that at sales above the �lter width. A priori tests[6℄ show high orrelations between real and modeled stresses. Another realisti feature ofthe sale-similarity model is that it produes baksatter. In a posteriori tests, however,the sale-similarity model does not dissipate enough energy and typially leads to inaurateresults. As a remedy, Bardina et al. [6℄ added a dissipative Smagorinsky term. The resultingmodel, known as the mixed model, ombines the strengths of both the sale-similarity andthe Smagorinsky model. The dynami proedure has been suessfully applied to both thepure and the mixed sale-similarity model, yielding improved results [10℄.A di�erent lass of SGS models onsists of those models aimed at omputing an improvedSGS stress approximation by replaing the unknown un�ltered variables with approximatelydeonvolved �ltered variables. An inverse �ltered model was �rst proposed by Shah andFerziger [11℄. This idea was formalized by Geurts [12℄ for the top hat �lter. Kuerten etal. [13℄ used the approximate inverse to improve the omputable estimates in the dynamiSmagorinsky model. Another model in this lass is the veloity estimation model of Do-maradzki and Saiki [14℄, [15℄, [16℄. Stolz and Adams [17℄ developed the approximate deon-volution model, based on repeated appliation of the �lter to approximately deonvolve the2



dependent variables [18℄, [19℄.One popular model in this lass is the gradient model (also known as the nonlinear ortensor-di�usivity model), whih uses expliit �ltering. In addition to the impliit �lteringdue to the e�etive trunations (grid and numerial method), this LES model also assumesa regular expliit �lter of presribed shape and e�etive width larger than the grid spaing.The gradient model is based on a Taylor series approximation of the Fourier transformof the �lter and aims at reonstruting the �ltered-sale stress due to expliit �ltering. Thegradient model was developed in several steps. First, in 1974 Leonard [20℄ proposed a modelfor the \resolved sales" u u in the Reynolds stress tensor. Next, in 1979 Clark, Ferziger,and Reynolds [5℄ used the same approah to model the \ross-terms" uu0 + u0u.The gradient model was tested a priori against experimental data (two-dimensional uts)by Liu et al. [21℄. Borue and Orszag [22℄ presented a detailed a priori analysis of the gradientmodel based on Gaussian-�ltered DNS of homogeneous, isotropi deaying turbulene. Also,Winkelmans et al. [23℄ presented several a priori tests for the gradient model and its dynamiversion, again in the ontext of homogeneous, isotropi deaying turbulene. Similar testshave been performed by Carati et al. [24℄. All the above a priori tests have shown highorrelations.In a posteriori tests, however, it was found that the gradient model does not dissipateenough energy. Simulations with the pure gradient model appear to be unstable [25℄. Also,Liu, Meneveau, and Katz [21℄ reported problems near the wall, where the pure gradientmodel's Reynolds stresses do not follow the x32 behavior. To stabilize the gradient model,Clark, Ferziger, and Reynolds [5℄ ombined it with a Smagorinsky term, but the resultingmixed model inherited the exessive dissipation of the Smagorinsky model. A di�erentapproah was proposed by Liu et al. [21℄, who supplied the gradient model with a \limiter"to prevent energy baksatter; this lipping proedure ensures that the model dissipatesenergy from large to small sales. This approah was also used in [26℄, [27℄.From this point of view, the gradient model is similar to the sale-similarity model: itshows high orrelations in a priori tests, but it does not dissipate enough energy in atualLES simulations: hene the need for extra visosity type terms (mixed models). We notethat, for both types of model, the best results in atual LES simulations were obtained byusing the dynami mixed proedure [28℄, [23℄. In fat, it has been noted before [28℄, [9℄, [24℄,[23℄ that there are strong ties between the gradient model and the sale-similarity model: the�rst term in the Taylor series expansion of the sale-similarity model is indeed the gradientmodel. As noted by Winkelmans et al. [23℄, however, the other terms in the expansion aredi�erent. Thus, the gradient model is not idential to the sale-similarity model.The model presented in this paper was introdued by Galdi and Layton [29℄ as an al-ternative to the gradient model. They observed that the Taylor series approximation of theFourier transform of the Gaussian �lter used in the derivation of the gradient model atuallyinreases the high wave number omponents, instead of damping them. As an alternative tothe Taylor series approximation, Galdi and Layton proposed a rational ((0,1) Pad�e) approx-3



imation. This rational approximation is onsistent with the original approximated funtion(whih is a negative exponential): it attenuates the high wave number omponents.In this paper, the resulting LES model, alled in the sequel the rational LES (RLES)model, is applied to the numerial simulations of inompressible hannel ows at Re� = 180and Re� = 395.2 The Rational LES ModelThe usual LES starts by onvolving the Navier-Stokes equations (NSEs) with a spatial �ltergÆ. Assuming that di�erentiation and onvolution ommute (whih is true for homogeneous�lters), the �ltered NSEs read as follows:ut +r � (uu)�Re�1�u+rp = f ; (1)where Æ is the �lter width and u = gÆ � u is the variable of interest. The �ltered NSEs (1)do not form a losed system, and a onsiderable researh e�ort in LES researh has beendireted at modeling the stress � = uu� u u: (2)As mentioned by Carati et al. [24℄, this stress onsists of a �ltered-sale stress tensor,mainly due to �ltering, and a subgrid-sale (SGS) stress tensor, mainly due to disretization.One way of approximating the �ltered-sale stress tensor is by using a Taylor series expansionin the wave number spae to represent the unknown full veloity in terms of the �lteredveloity. This approah was �rst used by Leonard [20℄, and it was later espoused by Clark,Ferziger, and Reynolds [5℄. The resulting model, alled the gradient, nonlinear, or tensor-di�usivity model, was used in numerous studies [20℄, [5℄, [24℄, [22℄, [23℄, [30℄, [21℄, [31℄, [32℄.The gradient model is derived by using a Taylor series approximation to the Fouriertransform of the Gaussian �lterbgÆ(k) = e� Æ2 jkj24 � 1 � Æ2jkj24 +O(Æ4); (3)and for its inverse 1bgÆ(k) = e Æ2jkj24 � 1 + Æ2jkj24 +O(Æ4): (4)Deomposing u into its average and its turbulent utuationsu = u+ u0; (5)4



and taking �rst the average and then the Fourier transform of the above relation, we getbu0 = � 1bgÆ � 1� bu; (6)and thus, bu = 1bgÆ bu; (7)where bu denotes the Fourier transform of u.By taking the inverse Fourier transform and using (4), we getu � u+ Æ24�u: (8)By plugging the above into (2), using (3) and the same tehnique as above, simplifying, anddropping out the terms of O(Æ4), we get the gradient model� = uu� u u � Æ22ruru; (9)where (ruru)i;j = dXl=1 �ui�xl �uj�xl : (10)Notiing that the approximation by Taylor series of bgÆ atually inreases the high wavenumber omponents (see Figure 1), Galdi and Layton [29℄ developed a new LES model basedon a rational ((0,1) Pad�e) approximation of bgÆ, whih preserves the deay of the high wavenumber omponents: bgÆ(k) = e� Æ2 jkj24 � 11 + Æ2jkj24 +O(Æ4): (11)The resulting LES model, alled the rational LES (RLES) model, reads as follows:� = "�� Æ24�+ I��1� Æ22ruru�# : (12)The inverse operator in (12) ats as a smoothing operator and represents the approxima-tion of the onvolution by the Gaussian �lter in the stress tensor � in (2).5



We note that di�erential �lters have been proposed by Germano in [33℄: Atually, onean think of (12) as the stress tensor obtained by applying suh a di�erential �lter. Mullenand Fisher used similar �lters in [34℄. Also, Domaradzki and Holm onsidered the Navier-Stokes-alpha model (whih ontains an inverse operator similar to the one in (12)), in anLES framework [35℄.The mathematial analysis assoiated with the RLES model (12) was presented in [36℄;the smoothing property of the inverse operator in (12) eliminated the neessity for usingadditional regularization operators (of eddy-visosity type), as for the gradient model [37℄.The �rst steps in the numerial analysis and validation of the RLES model (12) were madein [38℄ and [39℄, respetively.This paper presents numerial results for the RLES model (12) applied to the 3D hannelow test problem at Reynolds numbers based on the wall shear veloity Re� = 180 andRe� = 395. Some preliminary work started in [40℄; it was signi�antly updated and improvedin the present paper.3 Numerial SettingThe 3D hannel ow (Figure 2) is one of the most popular test problems for the investigationof wall bounded turbulent ows [41℄, [42℄. We used the �ne DNS of Moser, Kim, and Mansour[43℄ as benhmark for our LES simulations.We ompared the RLES model (12) with(I) the gradient model (9) � = Æ22ruru;(II) the Smagorinsky model � = �(CsÆ)2 jSj S;(III) a oarse DNS (no LES model),where S := 12(ru + ruT ) is the deformation tensor of the �ltered �eld, Cs = 0:1 is theSmagorinsky onstant, and  = 6 is the parameter in the de�nition of the Gaussian �lter.The omputational domain is periodi in the streamwise (x) and spanwise (z) diretions,and the pressure gradient that drives the ow is adjusted dynamially to maintain a onstantmass ux through the hannel. The parameters used in the numerial simulations are givenin Table 1 for the two Reynolds numbers onsidered (Re� = 180 and Re� = 395). The �lterwidth Æ is omputed as Æ = 3p�x �z �y(y), where �x and �z are the largest spaes betweenthe Gauss-Lobatto-Legendre (GLL) points in the x and z diretions, respetively, and �y(y)is inhomogeneous and is omputed as an interpolation funtion that is zero at the wall andis twie the normal mesh size for the elements in the enter of the hannel.The numerial simulations were performed by using a spetral element ode based onthe lPN � lPN�2 veloity and pressure spaes introdued by Maday and Patera [44℄. Thedomain is deomposed into spetral elements, as shown in Figure 3. Mesh spaing in thewall-normal diretion (y) was hosen to be roughly equivalent to a Chebyhev distributionhaving the same number of points. The veloity is ontinuous aross element interfaes and6



is represented by Nth-order tensor-produt Lagrange polynomials based on the GLL points.The pressure is disontinuous and is represented by tensor-produt polynomials of degreeN�2. Time stepping is based on an operator-splitting of the disrete system, whih leads toseparate onvetive, visous, and pressure subproblems without the need for ad ho pressureboundary onditions. A �lter, whih removes 2%{5% of the highest veloity mode, is used tostabilize the Galerkin formulation [45℄; the �lter does not ompromise the spetral auray.Details of the disretization and solution algorithm are given in [46℄, [47℄.The initial onditions for theRe� = 180 simulations were obtained by superimposing a 2DTollmien-Shlihting (TS) mode of 2% amplitude and a 3D TS mode of 1% amplitude on aparaboli mean ow (Poiseuille ow) and integrating the ow for a long time (approximately200 H/u� , where H is the hannel's halfwidth and u� is the wall shear veloity) on a �nermesh (72 � 73 � 72 mesh points). The �nal �eld �le was further integrated on the atualoarse LES mesh (36� 37� 36 mesh points) for approximately 50 H/u� to obtain the initialondition for all four Re� = 180 simulations.The initial ondition for the Re� = 395 ase was obtained in a similar manner: Westarted with a �eld �le orresponding to a Re� = 180 simulation, and we integrated it on a�ner mesh (96 � 73 � 72 mesh points) for a long time (approximately 50 H/u�). Then, weintegrated the resulting ow on the atual oarser LES mesh (72� 55� 54 mesh points) foranother 40 H/u� , and the �nal �eld �le was used as initial ondition for all four simulations.For eah of the four simulations and for both Re� = 180 and Re� = 395, the ow wasintegrated further in time until the statistially steady state was reahed (for approximately15 H/u�). The statistially steady state was identi�ed by a linear total shear stress pro�le(see Figure 4 and Figure 5).The statistis were then olleted over another 5 H/u� and ontained samples taken aftereah time step (�t = 0:0002 for Re� = 180 and �t = 0:00025 for Re� = 395). We alsoaveraged over the two halves of the hannel.In our numerial experiments, we onsidered, as a �rst step, homogeneous boundaryonditions for all LES models tested.The numerial results inlude plots of the following time- and plane-averaged quanti-ties normalized by the omputed u� : the mean streamwise veloity � u � =u� ; the x; y-omponent of the Reynolds stress � u0v0 � =u2� ; and the rms values of the streamwise� u0u0 � =u2� ; wall-normal � v0v0 � =u2� , and spanwise � w0w0 � =u2� veloity utua-tions, where� � � denotes time and plane (xz) averaging, the utuating quantities f 0 arealulated as f 0 = f� � f �, and a \+" supersript denotes the variable in wall units.Note that in our simulations the bulk veloity Um was �xed to math the orrespondingone in [43℄ (see Table 2), and the frition veloity u� was a result of the simulations. Table 2presents the atual values of Re� orresponding to the frition veloity u� omputed for allfour numerial tests and two nominal Reynolds numbers. We note that the frition veloityu� is within 1%{2% of the nominal value, and, as a result, so is the atual Re� .7



4 A Posteriori Tests for Re� = 180We ran a posteriori tests for the RLES model (12), the gradient model (9), the Smagorinskymodel, and a oarse DNS (no model). We ompared the orresponding results with the �neDNS simulation of Moser, Kim, and Mansour [43℄.Figure 6 shows the normalized mean streamwise veloity; note the almost perfet over-lapping of the results orresponding to the models tested. We interpret this behavior as ameasure of our suess in enforing a onstant mass ux through the hannel.Figure 7 presents the normalized x; y-omponent of the Reynolds stress. The RLESmodel (12) is a lear improvement over the rest (i.e., losest to the �ne DNS).Similarly, the normalized rms values of the streamwise veloity utuations in Figure8 show a better (loser to the �ne DNS benhmark results in [43℄) behavior for the RLESmodel (12).Figures 9 and 10, ontaining the normalized rms values for the wall-normal and spanwiseveloity utuations, merit a more detailed disussion. Figure 9 shows the normalized rmsvalues of the wall-normal veloity utuations. Here, the RLES model (12) performs worsethan the gradient model (9) near the wall. Away from the wall, the gradient and the RLESmodel perform similarly. The best results are obtained with the Smagorinsky model.The normalized rms values of the spanwise veloity utuations in Figure 10 are betterfor the RLES model (12) than for the gradient model, exept for a portion of 1� jyj roughlybetween 0.3 and 0.5. The Smagorinsky model gives the best results near the wall, but itoverpredits the orret value near the enter of the hannel.In onlusion, the RLES model (12) performs better than the gradient model, with theexeption of the normalized rms values of the wall-normal veloity utuations. The RLESmodel (12) is also more stable numerially than the gradient model.5 A Posteriori Tests for Re� = 395We ran simulations with all four models for Re� = 395, and we ompared our results withthe �ne DNS in [43℄. Again, as in the Re� = 180 ase, the normalized mean streamwiseveloity utuations in Figure 11 are pratially idential; this time, however, they do notoverlap onto that orresponding to the �ne DNS. Nevertheless, the mean ows are the same,and this is supported by the fat that the models underpredit the orret value near thewall but overpredit it away from the wall.The normalized x; y-omponent of the Reynolds stress in Figure 12 is almost identialfor all four models. This behavior was also notied by Winkelmans et al. [23℄.The same behavior an be notied for the normalized rms values of the streamwise veloityutuations in Figure 13: the pro�les for the four models are almost idential. The RLESmodel (12) performs slightly better near the wall, and the gradient model performs slightly8



better away from the wall. They both perform better than the Smagorinsky model near theenter of the hannel.Figure 14 presents the normalized rms values of the wall-normal veloity utuations.As for the Re� = 180 ase, the gradient model performs better near the wall, and the RLESmodel (12) performs better away from the wall. The Smagorinsky model performs best, butit overpredits the orret value near the enter of the hannel.The same behavior is observed for the normalized rms values of the spanwise veloityutuations in Figure 15, and again the Smagorinsky model performs best.In onlusion, for the Re� = 395 ase, the gradient and the RLES model (12) yieldomparable results. The best results, however, are obtained by using the Smagorinskymodel.Again, as in the Re� = 180 ase, the RLES model (12) is muh more stable numeriallythan the gradient model.6 ConlusionsWe have used a spetral element ode to test the RLES model (12) in the numerial sim-ulation of inompressible hannel ows at Re� = 180 and Re� = 395. This approximatedeonvolution model is based on a rational (Pad�e) approximation to the Fourier transformof the Gaussian �lter and is proposed as an alternative to the gradient model (9). We om-pared the RLES model (12) with the gradient model, the Smagorinsky model, and a oarseDNS (no LES model). The orresponding results were benhmarked against the �ne DNSalulation of Moser, Kim, and Mansour [43℄.The RLES model (12) yielded the best results for the Re� = 180 ase. These improvedresults were aompanied by a muh inreased numerial stability ompared with the gradientmodel.The situation was di�erent for the Re� = 395 ase. Here the RLES model (12) and thegradient model yielded omparable results, and the Smagorinsky model performed the best.Again, the RLES model (12) was muh more stable numerially than the gradient model.We believe that these results for the RLES model are enouraging. They also support ourinitial thoughts: The RLES model is an improvement over the gradient model as a sub�lter-sale model, and this is illustrated by the improved results for the Re� = 180 ase. TheRLES model is also more stable numerially beause of the additional smoothing operator,and this feature is manifest for both low (Re� = 180) and moderate (Re� = 395) Reynoldsnumber ows.However, the RLES model aounts just for the sub�lter-sale part of the stress reon-strution. The information lost at the subgrid-sale level must be aounted for in a di�erentway, as advoated by Carati et al. [24℄. This was illustrated by the fat that, even for a mod-erate Reynolds number (Re� = 395) ow, the Smagorinsky model, a lassial eddy-visosity9



model, performed best.Along these lines, our next step will be to develop a mixed model, onsisting of the RLESmodel supplemented by a Smagorinsky model. We also plan to study improved boundaryonditions, the ommutation error [48℄, [49℄, and the relationship between the �lter radiusand the mesh-size in a spetral element disretization.Aknowledgments. This work was supported in part by the Mathematial, Infor-mation, and Computational Sienes Division subprogram of the OÆe of Advaned Sienti�Computing Researh, U.S. Dept. of Energy, under Contrat W-31-109-Eng-38.We thank Professor R. Moser and Mr. A. Das for helpful ommuniations that improvedthis paper.
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Figure 1: Approximations to the Fourier transform of the Gaussian �lter: Rational (Pad�e)vs. Taylor.
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Table 1: Parameters for the numerial simulations.Nominal Re� Lx � Ly � Lz Nx �Ny �Nz180 4� � 2� 43� 36� 37� 36395 2� � 2� � 72� 55� 54
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Figure 4: Re� = 180, linear total shear stress pro�le, an indiation that the statistiallysteady state was reahed.
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Figure 5: Re� = 395, linear total shear stress pro�le, an indiation that the statistiallysteady state was reahed.
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Table 2: Computed u� and Re� .Fixed Um Nominal Re� Case Computed u� Computed Re�15.63 180 RLES 0.9879448 177.8352gradient 0.9890118 178.0222Smagorinsky 0.9917144 178.5120oarse DNS 0.9873800 177.718417.54 395 RLES 1.001025319 395.4071960gradient 1.005021334 396.9859924Smagorinsky 0.9974176884 393.9718933oarse DNS 0.9901855588 391.1294861
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Figure 6: Mean streamwise veloity, Re� = 180. We ompared the RLES model (12), thegradient model (9), the Smagorinsky model, and a oarse DNS, with the �ne DNS of Moser,Kim, and Mansour [43℄.
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Figure 7: The x; y-omponent of the Reynolds stress, Re� = 180. We ompared the RLESmodel (12), the gradient model (9), the Smagorinsky model, and a oarse DNS, with the�ne DNS of Moser, Kim, and Mansour [43℄.
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Figure 8: Rms values of streamwise veloity utuations, Re� = 180. We ompared theRLES model (12), the gradient model (9), the Smagorinsky model, and a oarse DNS, withthe �ne DNS of Moser, Kim, and Mansour [43℄.
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Figure 9: Rms values of wall-normal veloity utuations, Re� = 180. We ompared theRLES model (12), the gradient model (9), the Smagorinsky model, and a oarse DNS, withthe �ne DNS of Moser, Kim, and Mansour [43℄.
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Figure 10: Rms values of spanwise veloity utuations, Re� = 180. We ompared the RLESmodel (12), the gradient model (9), the Smagorinsky model, and a oarse DNS, with the�ne DNS of Moser, Kim, and Mansour [43℄.
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Figure 11: Mean streamwise veloity, Re� = 395. We ompared the RLES model (12), thegradient model (9), the Smagorinsky model, and a oarse DNS, with the �ne DNS of Moser,Kim, and Mansour [43℄.
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Figure 12: The x; y-omponent of the Reynolds stress, Re� = 395. We ompared the RLESmodel (12), the gradient model (9), the Smagorinsky model, and a oarse DNS, with the�ne DNS of Moser, Kim, and Mansour [43℄.
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Figure 13: Rms values of streamwise veloity utuations, Re� = 395. We ompared theRLES model (12), the gradient model (9), the Smagorinsky model, and a oarse DNS, withthe �ne DNS of Moser, Kim, and Mansour [43℄.
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Figure 14: Rms values of wall-normal veloity utuations, Re� = 395. We ompared theRLES model (12), the gradient model (9), the Smagorinsky model, and a oarse DNS, withthe �ne DNS of Moser, Kim, and Mansour [43℄.
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Figure 15: Rms values of spanwise veloity utuations, Re� = 395. We ompared the RLESmodel (12), the gradient model (9), the Smagorinsky model, and a oarse DNS, with the�ne DNS of Moser, Kim, and Mansour [43℄.
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