
MPICH-G2: A Grid-Enabled Implementation ofthe Message Passing InterfaceNicholas T. KaronisDepartment of Computer ScienceNorthern Illinois UniversityDeKalb, IL 60115Argonne National LaboratoryArgonne, IL 60439Email: karonis@niu.eduandBrian ToonenMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439Email: toonen@mcs.anl.govandIan FosterArgonne National LaboratoryArgonne, IL 60439The University of ChicagoChicago, IL 60637Email: foster@mcs.anl.govVersion: November 2002Proposed running head: MPICH-G2: A Grid-Enabled MPI
1

Application development for distributed-computing \Grids" can bene�t from toolsthat variously hide or enable application-level management of critical aspects of the het-erogeneous environment. As part of an investigation of these issues, we have developedMPICH-G2, a Grid-enabled implementation of the Message Passing Interface (MPI) thatallows a user to run MPI programs across multiple computers, at the same or di�erentsites, using the same commands that would be used on a parallel computer. This libraryextends the Argonne MPICH implementation of MPI to use services provided by theGlobus Toolkit for authentication, authorization, resource allocation, executable staging,and I/O, as well as for process creation, monitoring, and control. Various performance-critical operations, including startup and collective operations, are con�gured to exploitnetwork topology information. The library also exploits MPI constructs for performancemanagement; for example, the MPI communicator construct is used for application-leveldiscovery of, and adaptation to, both network topology and network quality-of-servicemechanisms. We describe the MPICH-G2 design and implementation, present perfor-mance results, and review application experiences, including record-setting distributedsimulations.Key Words: MPI, Grid computing, message passing, Globus Toolkit, MPICH-G2

2

1. INTRODUCTIONSo-called computational Grids [18, 14] enable the coupling and coordinated useof geographically distributed resources for such purposes as large-scale computation,distributed data analysis, and remote visualization. The development or adapta-tion of applications for Grid environments is made challenging, however, by theoften heterogeneous nature of the resources involved and the facts that these re-sources typically reside in di�erent administrative domains, run di�erent software,are subject to di�erent access control policies, and may be connected by networkswith widely varying performance characteristics.Such concerns have motivated explorations of specialized, often high-level, dis-tributed programming models for Grid environments, including various forms ofobject systems [26, 24], Web technologies [22, 50], problem solving environments [7,45], CORBA, workow systems, high-throughput computing systems [1, 39], andcompiler-based systems [33].In contrast, we explore here a di�erent approach that might appear reactionaryin its simplicity but that, in fact, delivers a remarkably sophisticated technologyfor managing the heterogeneity associated with Grid environments. Speci�cally, weadvocate the use of a well-known low-level parallel programmingmodel, the MessagePassing Interface (MPI), as a basis for Grid programming. While not a high-levelprogramming model by any means, MPI incorporates sophisticated support for themanagement of heterogeneity (e.g., data types), for the construction of modularprograms (the communicator construct), for management of latency (asynchronousoperations), and for the representation of global operations (collective operations).These and other features have allowed MPI to achieve tremendous success as astandard programming model for parallel computers. We maintain that these samefeatures can also be used to good e�ect for Grid computing.Our investigation of MPI as a Grid programming model has focused on threerelated questions. First, can we implement MPI constructs e�ciently in Grid en-vironments to hide heterogeneity without introducing overhead? Second, can weuse MPI constructs to enable users to manage heterogeneity, when this is required?Third, do users �nd MPI useful in practice for application development?To allow for the experimental exploration of these questions, we have devel-oped MPICH-G2, a complete implementation of the MPI-1 standard [42] that usesservices provided by the Globus ToolkitTM [17] to extend the popular ArgonneMPICH implementation of MPI [27] for Grid execution. MPICH-G2 representsa complete redesign and reimplementation of the earlier MPICH-G system [15]that increases performance signi�cantly, incorporates a number of innovations, andpasses the MPICH test suite. Our experiences with MPICH-G2, as reported inthis article, allow us to respond in the a�rmative to each question posed in thepreceding paragraph.MPICH-G2 hides heterogeneity by using Globus Toolkit services for such pur-poses as authentication, authorization, executable staging, process creation, processmonitoring, process control, communication, redirection of standard input and out-put, and remote �le access. As a result a user can run MPI programs across multiplecomputers at di�erent sites using the same commands that would be used on a par-allel computer. Furthermore, performance studies show that overheads relative tonative implementations of basic communication functions are negligible.MPICH-G2 enables the use of several di�erent MPI features for user manage-ment of heterogeneity. MPI's asynchronous operations can be used for latency3

management in wide-area networks. MPI's communicator construct can be used torepresent the hierarchical structure of heterogeneous systems and thus allow appli-cations to adapt their behavior to such structures. (In separate work, we presenttopology-aware collective operations as one example of an \application" [32].) Wealso show how MPI's communicator construct can be used for user-level manage-ment of network quality of service, as �rst introduced in an earlier article [47].Many groups (discussed in Section 5) have used MPICH-G2 for the executionof both traditional parallel computing applications (e.g., numerical simulation) andnontraditional distributed computing applications (e.g., distributed visualization),in both local-area and wide-area networks. This variety of applications and execu-tion environments persuades us that MPI can play a valuable role in Grid comput-ing.MPICH-G2 is not the only implementation of MPI for heterogeneous systems.Others include MPICH with the ch p4 device (which provides limited support forheterogeneity), PACX-MPI [23], and STAMPI [36], each of which has interestingfeatures, as we discuss later. MagPIe [35], IMPI [31], and PVM [25] also addressrelevant issues. MPICH-G2 is unique, however, in the degree to which it hides andmanages heterogeneity, as well as in its large user community.In the rest of this article, we describe the problems that we faced in developingMPICH-G2, the techniques used to overcome these problems, and experimentalresults that indicate the performance of the MPICH-G2 implementation and theextent of its improvement over MPICH-G. We conclude with a discussion of appli-cation experiments and future directions.2. BACKGROUNDWe �rst provide some brief background on MPI, MPICH, and the GlobusToolkit. 2.1. Message Passing InterfaceThe Message Passing Interface standard de�nes a library of routines that im-plement the message-passing model. These routines include point-to-point commu-nication functions, in which a send operation is used to initiate a data transferbetween two concurrently executing program components and a matching receiveoperation is used to extract that data from system data structures into applicationmemory space; and collective operations such as broadcast and reductions that im-plement operations involving multiple processes. Numerous other functions addressother aspects of message passing, including, in the MPI-2 extensions to MPI [43],single-sided communication and dynamic process creation.The primary interest of MPI from our perspective, apart from its broad adop-tion, is the care taken in its design to ensure that underlying performance issuesare accessible to, not masked from, the programmer. MPI mechanisms such asasynchronous operations, communicators, and collective operations all turn out tobe useful in Grid environments.2.2. MPICH ArchitectureMPICH [29] is a popular implementation of the Message Passing Interface stan-dard. It is a high-performance, highly portable library originally developed as a4

collaborative e�ort between Argonne National Laboratory and Mississippi StateUniversity. Argonne continues research and development e�orts aimed at improv-ing MPICH performance and functionality.In its present form, MPICH is a complete implementation of the MPI-1 standardwith extensions to support the parallel I/O functionality de�ned in the MPI-2 stan-dard. It is a mature, widely distributed library, with more than 2,000 downloadsper month, not including downloads that occur at mirror sites. Its free distribu-tion and wide portability have contributed materially to the adoption of the MPIstandard by the parallel computing community.MPICH derives its portability from its interfaces and layered architecture. Atthe top is the MPI interface as de�ned by the MPI standards. Directly beneaththis interface is the MPICH layer, which implements the MPI interface. Much ofthe code in an MPI implementation is independent of the networking device orprocess management system. This code, which includes error checking and variousmanipulations of the opaque objects, is implemented directly at the MPICH layer.All other functionality is passed o� to lower layers be means of the Abstract DeviceInterface (ADI).The ADI is a simpler interface than MPI proper and focuses on moving data be-tween the MPI layer and the network subsystem. Those interested in implementingMPI for a particular platform need only de�ne the routines in the ADI in order toobtain a full implementation. Existing implementations of this device interface forvarious MPPs, SMPs, and networks provide complete MPI functionality in a widevariety of environments. MPICH-G2 is another implementation of the ADI and isotherwise known as the globus2 device.2.3. The Globus ToolkitThe Globus Toolkit is a collection of software components designed to supportthe development of applications for high-performance distributed computing envi-ronments, or \Grids" [17, 18]. Core components typically de�ne a protocol for inter-acting with a remote resource, plus an application program interface (API) used toinvoke that protocol. (We introduce the protocols and APIs used withinMPICH-G2below.) Higher-level libraries, services, tools, and applications use core services toimplement more complex global functionality. The various Globus Toolkit compo-nents are reviewed in [21] and described in detail in online documentation and intechnical papers. 3. MPICH-G2: A GRID-ENABLED MPIAs noted in the introduction, MPICH-G2 is a complete implementation of theMPI-1 standard that uses Globus Toolkit services to support e�cient and transpar-ent execution in heterogeneous Grid environments, while also allowing for applica-tion management of heterogeneity. (It also implements client/server managementfunctions found in Section 5.4 of the MPI-2 standard [43]. However, we do notdiscuss these functions here.)In this section, we �rst describe the techniques used to hide heterogeneity duringstartup and for process management, then the techniques used to e�ect communica-tion in heterogeneous systems, and �nally the support provided for application-levelmanagement of heterogeneity. 5

mpirun
Generates

resource specification

globusrun
Submits multiple jobs

GRAM GRAM GRAM

DUROC Coordinates startup

Authenticates

fork

P0 P1

LSF

P2 P3

LoadLeveler

P4 P5

Initiates job

Communicates via vendor-MPI and TCP/IP (globus-io)

Monitors/controls

Detects termination

MDS
Locates
hosts

GASS
Stages

executables

% grid-proxy-init
% mpirun -np 256 myprog

FIG. 1 Schematic of the MPICH-G2 startup, showing the various GlobusToolkit components used to hide and manage heterogeneity. \Fork," \LSF," and\LoadLeveler" are di�erent local schedulers.3.1. Hiding Heterogeneity during Startup and ManagementAs illustrated in Figure 1 and discussed here, MPICH-G2 uses a range of GlobusToolkit services to address the various complex issues that arise in heterogeneous,multisite Grid environments, such as cross-site authentication, the need to dealwith multiple schedulers with di�erent characteristics, coordinated process creation,heterogeneous communication structures, executable staging, and collation of stan-dard output. In fact, MPICH-G2 serves as an exemplary case study of how GlobusToolkit mechanisms can be used to create a Grid-enabled programming tool, as wenow explain.Prior to startup of an MPICH-G2 application, the user employs the Grid Secu-rity Infrastructure (GSI) [19] to obtain a (public key) proxy credential that is usedto authenticate the user to each site. This step provides a single sign on capability.The user may also use theMonitoring and Discovery Service (MDS) [13] to selectcomputers on the basis of, for example, con�guration, availability, and networkconnectivity.Once authenticated, the user uses the standard mpirun command to requestthe creation of an MPI computation. The MPICH-G2 implementation of this com-mand uses the Resource Speci�cation Language (RSL) [10] to describe the job. Inbrief, users write RSL scripts (typically less than eight lines per site) that identifyresources (e.g., computers) and specify requirements (e.g., number of CPUs, mem-ory, execution time) and parameters (e.g., location of executables, command linearguments, environment variables) for each. Based on the information found in anRSL script, MPICH-G2 calls a co-allocation library distributed with the GlobusToolkit, the Dynamically-Updated Request Online Coallocator (DUROC) [11], to6

IBM SP Cluster 1 Cluster 2

WAN LAN

11

9

10

8

76

54

32

10

Site A Site B

FIG. 2 An example of an MPICH-G2 application running on a computational Gridinvolving 4 processes on an IBM SP at Site A and 8 processes distributed evenlyacross two Linux clusters at Site B.schedule and start the application across the various computers speci�ed by theuser.The DUROC library itself uses the Grid Resource Allocation and Management(GRAM) [10] API and protocol to start and subsequently manage a set of subcom-putations, one for each computer. For each subcomputation, DUROC generatesa GRAM request to a remote GRAM server, which authenticates the user, per-forms local authorization, and then interacts with the local scheduler to initiatethe computation. DUROC and associated MPICH-G2 libraries tie the various sub-computations together into a single MPI computation.GRAM will, if directed, use Global Access to Secondary Storage (GASS) [5]to stage executable(s) from remote locations (indicated by URLs). GASS is alsoused, once an application has started, to direct standard output and error (stdoutand stderr) streams to the user's terminal and provide access to �les regardless oflocation, thus masking essentially all aspects of geographical distribution exceptthose associated with performance.Once the application has started, MPICH-G2 selects the most e�cient commu-nication method possible between any two processes, using vendor-supplied MPI(vMPI) if available, or Globus communication (Globus IO) with Globus Data Con-version (Globus DC) for TCP, otherwise.DUROC and GRAM also interact to monitor and manage the execution ofthe application. Each GRAM server monitors the life cycle of its subcomputationas it passes from pending to running and then to terminating, communicatingeach state transition back to DUROC. Each subcomputation is held at a DUROC-controlled barrier and is released from that barrier only after all subcomputationshave started executing. Also, a request to terminate the computation (\control C")may be initiated by the user, at which time DUROC and the GRAM servers,communicating via GRAM process control messages, terminate all processes.After the processes have started, MPICH-G2 uses information speci�ed in theRSL script to create multilevel clustering of the processes based on the under-lying network topology. Figure 2 depicts an MPI application involving 12 pro-cesses distributed across three machines located at two sites. We depict 4 processes(MPI_COMM_WORLD ranks 0{3) on the IBM SP at Site A and 4 processes on each oftwo Linux clusters (MPI_COMM_WORLD ranks 4{7 and 8{11, respectively) at Site B.Each process in MPI_COMM_WORLD is assigned a topology depth, (i.e., number of net-work levels). Processes that communicate using only TCP are assigned topology7

Rank 0 1 2 3 4 5 6 7 8 9 10 11Depth 4 4 4 4 3 3 3 3 3 3 3 3wide area 0 0 0 0 0 0 0 0 0 0 0 0Colors local area 0 0 0 0 1 1 1 1 1 1 1 1system area 0 0 0 0 1 1 1 1 2 2 2 2vMPI 0 0 0 0FIG. 3 An example of depths and colors used by MPICH-G2 to represent networktopology in a computational grid.depths of 3 (to distinguish between wide-area, local-area, and intramachine TCPmessaging), and processes that can also communicate using a vMPI have a topologydepth of 4. Using these topology depths MPICH-G2 groups processes at a partic-ular level through the assignment of colors. Two processes are assigned the samecolor at a particular level if they can communicate with each other at the networklevel.Figure 3 depicts the topology depths and colors for the processes depicted in Fig-ure 2. Those processes capable of communicating over vMPI, (i.e., those executingon the IBM SP), have a depth of 4, while the other processes, (i.e., those executingon a Linux cluster), have a depth of 3. Since all processes are on the same wide-areanetwork, they all have the same color (0) at the wide-area level. Similarly, at thelocal-area level, all the processes at Site A are assigned one color (0), while all theprocesses at Site B are assigned another (1). This structure continues through thesystem-area level, where processes are assigned the same color if and only if theyare on the same machine. Finally, processes that can communicate over a vMPIare assigned the same color at the vMPI level if and only if they can communicatedirectly with each other over the vMPI.Topology depths and colors are used in the multilevel topology-aware collectiveoperations and topology-discovery mechanism described in Sections 3.2 and 3.3,respectively. 3.2. Heterogeneous CommunicationsMPICH-G2 achieves major performance improvements relative to the earlierMPICH-G [15] by replacing Nexus [20], the multimethod, single-sided communi-cation library used for all communication in MPICH-G, with specialized MPICH-speci�c communication code. While Nexus has attractive features (e.g., multiproto-col support with highly tuned TCP support and automatic data conversion), otherattributes have proved less attractive from a performance perspective. MPICH-G2now handles all communication directly by reimplementing the good features ofNexus and improving the others. As a result, as we show in Section 4, we achieveperformance virtually identical to vendor MPI and MPICH con�gured with thedefault TCP (ch p4) device. We provide here a detailed description of the improve-ments and additions to MPICH-G used to achieve this impressive performance.Increased bandwidth. In MPICH-G, each communication involved the copyingof data to and from Nexus bu�ers in sending and receiving processes. MPICH-G2eliminates these two extra copies in the case of intramachine messages where a8

vendor MPI exists. In this situation, sends and receives now ow directly fromand to application bu�ers, respectively. In addition, for TCP messaging involvingbasic MPI datatypes (e.g., MPI_INT, MPI_FLOAT) the sending process also transmitsdirectly from the application bu�er.Reduced latency for intramachine vendor MPI messaging. Multiprotocol sup-port is achieved in Nexus by polling each protocol (TCP, vendor MPI, etc.) forincoming messages in a roundrobin fashion [16]. This strategy is ine�cient in manysituations, however; polling a TCP socket is relatively expensive, and often manyprocesses in an MPICH-G2 computation use only vendor MPI (for communicatingwith other processes on the same machine).While this ine�ciency can be reduced by adaptive polling [16] or by introducingdistinct proxy processes [23, 36], MPICH-G2 takes a more direct approach, exploit-ing the knowledge about message source that is provided by TCP receive commandsto eliminate TCP polling altogether in many situations. MPICH-G2 polls TCP onlywhen the application is expecting data from a source that dictates, or might dictate(e.g., MPI_Recv speci�es source=MPI_ANY_SOURCE), TCP messaging.This avoidance of unnecessary polling when coupled with the need to guaranteeprogress on both the vendor MPI and TCP protocols leads to implementation de-cisions that can a�ect an application's point-to-point communication performance.Speci�cally, for processes executing on machines where a vendor MPI is available,the context in which the application calls MPI_Recv a�ects the manner in whichMPICH-G2 implements that function, as follows:� Speci�ed. The source rank speci�ed in the call to MPI_Recv explicitly iden-ti�es a process on the same machine (in the same vendor MPI job). Further-more, no asynchronous requests are outstanding (e.g., incomplete MPI_Irecvand/or MPI_Isend). If these two conditions are met, MPICH-G2 implementsMPI_Recv by directly calling the MPI_Recv of the underlying vendor MPI.This is the most favorable circumstance under which an MPI_Recv can beperformed.� Speci�ed-pending. This category is similar to the speci�ed category in thatthe MPI_Recv speci�es an explicit source rank on the same machine. Thistime, however, one or more unsatis�ed receive requests are present, and eachsuch request speci�es a source on the same machine. This situation forcesMPICH-G2 to continuously poll (MPI_Iprobe) the vendor MPI for incomingmessages. This scenario results in less e�cient MPICH-G2 performance, sincethe induced polling loop increases latency.� Multimethod. Here the source rank for the MPI_Recv is MPI_ANY_SOURCE orMPI_Recv is called in the presence of unsatis�ed asynchronous requests thatrequire, or might require, TCP messaging. In this situation, MPICH-G2 mustpoll both TCP and the vendor MPI continuously. This is the least e�cientMPICH-G2 scenario, since the relatively large cost of TCP polling results ineven greater latency.In Section 4, we present a quantitative analysis of the performance di�erences thatresult from these di�erent structures. 9

More e�cient use of sockets. The Nexus single-sided communication paradigmresults in MPICH-G opening two pairs of sockets between communicating processesand using each pair as a simplex channel (i.e., data always owing in one directionover each socket pair). MPICH-G2 opens a single pair of sockets between twoprocesses and sends data in both directions. This approach reduces the use ofsystem resources; moreover, by using sockets in the bidirectional manner in whichthey were intended, it also improves TCP e�ciency.Multilevel topology-aware collective operations. Early implementations of MPI'scollective operations sought to construct communication structures that were opti-mal under the assumption that all processes were equidistant from one another [4,9]. Since this assumption is unlikely to be valid in Grid environments, however,it is desirable that a Grid-enabled MPI incorporate collective operation implemen-tations that take into account the actual topology. MPICH-G2 does this, andwe have demonstrated substantial performance improvements for our multileveltopology-aware approach [32] relative both to topology-unaware binomial trees andearlier topology-aware approaches that distinguish only between \intracluster" and\intercluster" communications [30, 35].As we explain in the next subsection, MPICH-G2's topology-aware collectiveoperations are constructed in terms of topology discovery mechanisms that canalso be used by topology-aware applications.3.3. Application-Level Management of HeterogeneityWe have experimented within MPICH-G2 with a variety of mechanisms forapplication-level management of heterogeneity in the underlying platform. Wemention two here.Topology discovery. Once an MPI program starts, all processes can be viewedas equivalent, distinguished only by their rank. This level of abstraction is desirablefrom a programming viewpoint but makes it di�cult to write programs that exploitaspects of the underlying physical topology, for example, to minimize expensiveintercluster communications.MPICH-G2 addresses this issue within the standard MPI framework by usingthe MPI communicator construct to deliver topology information to an application.It associates attributes with each MPI communicator to communicate this topologyinformation, which is expressed within each process in terms of topology depths andcolors, as described in Section 3.1.MPICH-G2 applications can then query communicators to retrieve attributevalues and structure themselves appropriately. For example, it is straightforwardto create new communicators that reect the underlying network topology. Figure 4depicts an MPICH-G2 application that �rst queries the MPICH-G2-de�ned com-municator attributes MPICHX_TOPOLOGY_DEPTHS and MPICHX_TOPOLOGY_COLORS todiscover topology depths and colors, respectively, and then uses those values tocreate three communicators: LANcomm, which groups processes based on site bound-aries; VcommA, which groups processes based on their ability to communicate witheach other over vMPI, while placing all processes that cannot communicate overvMPI into a separate communicator; and VcommB, which groups the processes inmuch the same way as VcommA, but this time does not place processes that cannot10

#include <mpi.h>int main(int argc, char *argv[]){ int me, flag;int *depths;int **colors;MPI_Comm LANcomm, VcommA, VcommB;MPI_Init(&argc, &argv);MPI_Comm_rank(MPI_COMM_WORLD, &me);MPI_Attr_get(MPI_COMM_WORLD, MPICHX_TOPOLOGY_DEPTHS, &depths, &flag);MPI_Attr_get(MPI_COMM_WORLD, MPICHX_TOPOLOGY_COLORS, &colors, &flag);MPI_Comm_split(MPI_COMM_WORLD, colors[me][1], 0, &LANcomm);MPI_Comm_split(MPI_COMM_WORLD, (depths[me] == 4 ? colors[me][3] : -1),0, &VcommA);MPI_Comm_split(MPI_COMM_WORLD,(depths[me] == 4 ? colors[me][3] : MPI_UNDEFINED),0, &VcommB);MPI_Finalize();}FIG. 4 An example MPICH-G2 application that uses topology depths and colorsto create communicators that group processes into various topology-aware clusters.communicate over vMPI in a communicator (i.e., VcommB is set to MPI_COMM_NULLfor those processes).Quality-of-service management. We have experimented with similar techniquesfor purposes of quality-of-service management [47]. When running over a sharednetwork, an MPI application may wish to negotiate with an external resource man-agement system to obtain dedicated access to (part of) the network. We show thatcommunicator attributes can be used to set and initiate quality-of-service parame-ters between selected processes.4. PERFORMANCE EXPERIMENTSWe present the results of detailed performance experiments that characterizethe performance of MPICH-G2 and demonstrate the major improvements achievedrelative to its predecessor, MPICH-G. We begin by looking at the performance ofintramachine communication over a vendor MPI. Then, we examine performancewhen TCP is the only choice for communicating between a pair of processes. In allcases, mpptest [28], the performance tool included in the MPICH distribution, isused to obtain all results. 4.1. Vendor MPIEvaluating the performance of MPICH-G2 when using a vendor MPI as anunderlying communication mechanism is not as simple as running a single set of11

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

T
im

e
(µ

s)

Message Length (bytes)

MPICH-G
MPICH-G2 multi-method

MPICH-G2 pending
MPICH-G2 specified

vendor MPI

FIG. 5 vMPI experiments { small message latency.ping-pong tests. As discussed earlier, the performance achieved by MPICH-G2 canbe a�ected by outstanding requests and by the use of MPI_ANY_SOURCE. Therefore,we have divided the experiments into the three categories described in Section 3.2.Our vendor MPI experiments were run on an SGI Origin2000 at Argonne Na-tional Laboratory. Both MPICH-G2 and MPICH-G were built by using a non-threaded, no-debug avor of the Globus Toolkit 1.1.41 and perform intramachinecommunication via SGI's implementation of MPI.One MPICH-G2 design goal was to minimize latency overhead for intramachinecommunication relative to an underlying vendor MPI. As can been seen in Figure 5,MPICH-G2 does an outstanding job in this regard: only a few extra microsecondsof latency are introduced by MPICH-G2 when the source of the message is speci�edand no other requests are outstanding. In contrast, MPICH-G added approximately80 microseconds of latency to each message, because the multiple steps required toimplement the Nexus single-sided communication model.The introduction of pending receive requests has a modest impact on MPICH-G2message latencies. Messages falling into the speci�ed-pending category incur slightlymore overhead, as the MPICH-G2 progress engine must continuously poll (probe)the vendor MPI rather than blocking in a receive. Overall, MPICH-G2 latenciesincrease by several microseconds relative to the �rst case but are still far less thanthose of MPICH-G.The use of MPI_ANY_SOURCE has the largest impact on MPICH-G2 performance.The additional cost is associated with having to poll TCP as well as the vendor1MPICH-G2 is compatible with releases of the Globus Toolkit starting with version 1.1.4through the most recent version 2.2. 12

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1.6e+08

0 200000 400000 600000 800000 1e+06

B
yt

es
/s

ec

Message Length (bytes)

vendor MPI
MPICH-G2 multi-method

MPICH-G2 specified
MPICH-G2 pending

MPICH-G

FIG. 6 vMPI experiments { realized bandwidth.MPI. Polling TCP increases the latency of messages by nearly 20 microseconds overthose in the speci�ed-pending category. While the increase is signi�cant, however,these latencies are still considerably less than for MPICH-G.While MPICH-G2 message latencies are a�ected by the use of MPI_ANY_SOURCEand pending receive requests, the realized bandwidths are largely una�ected. Fig-ure 6 shows the bandwidths obtained for messages up to one megabyte. We seethat the bandwidths for MPICH-G2 are nearly identical for all but small messages.While the large message bandwidths for MPICH-G2 are approximately 7% lessthan those for the the vendor MPI (for reasons we do not yet understand), theyrepresent an improvement of more than 60% over MPICH-G.4.2. TCP/IPPerformance optimization work on MPICH-G2 performed to date has focusedon intramachine messaging when a vendor MPI is used as the underlying com-munication mechanism. The MPICH-G2 TCP/IP communication code has notbeen optimized. However, its performance is quite reasonable when compared withMPICH-G and to MPICH con�gured with the default TCP (ch p4) device.All TCP/IP performance measurements were taken using a pair of SUN worksta-tions in Argonne's Mathematics and Computer Science Division. Both MPICH-Gand MPICH-G2 were built using a nonthreaded, no-debug avor of Globus 1.1.4.Figure 7 shows the small message latencies exhibited by all three systems. Wesee that for mostmessage sizes, MPICH-G2 is 20% to 30% slower than MPICH/ch p4,although the di�erence is much smaller for very small messages. We also see that13

0

100

200

300

400

500

600

0 200 400 600 800 1000

T
im

e
(µ

s)

Message Length (bytes)

MPICH-G
MPICH-G2

MPICH (chp4)

FIG. 7 TCP/IP experiments { small message latency.MPICH-G2 latencies, in most cases, are somewhat less than those of MPICH-G.The most notable data point is barely visible on the graph but emphasizes aclear optimization that is missing in MPICH-G2. The latency for zero-byte mes-sages is 140 microseconds, while the latency for an eight-byte message is 224 mi-croseconds. The reason for this large di�erence is that MPICH-G2 currently usesseparate system calls to send the message header and the message data. This datapoint suggests that by combining these two writes into a single vector write, wecould reduce the latency of small messages signi�cantly. While this di�erence mightseem unimportant for machines separated by a wide-area network, it can be signi�-cant when MPICH-G2 is used to combine multiple machines with the same machineroom or even at the same site.Figure 8 shows the bandwidths obtained by all three systems for message sizesup to one megabyte. For large messages, we see that MPICH-G2 performs approx-imately 5% better than the other two systems. This improvement is a result of themessage data being sent directly from the user bu�er rather than being copied intoa separate bu�er before write is called. For preposted receives with contiguousdata, further improvement is possible. Data for these receives can be read directlyinto the user bu�er, avoiding a bu�er copy that, at present, always takes place atthe receiver. 5. APPLICATION EXPERIENCESMPICH-G2 has been used by many groups worldwide for a wide variety ofpurposes. Here we mention a few relevant experiences that highlight interesting14

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

0 200000 400000 600000 800000 1e+06

B
yt

es
/s

ec

Message Length (bytes)

MPICH-G2
MPICH (ch_p4)

MPICH-G

FIG. 8 TCP/IP experiments { realized bandwidth.features of the system.One interesting use of MPICH-G2 is to run conventional MPI programs acrossmultiple parallel computers within the same machine room. In this case, MPICH-G2is used primarily to manage startup and to achieve e�cient communication via useof di�erent low-level communication methods. Other groups are using MPICH-G2to distribute applications across computers located at di�erent sites, for exam-ple, Taylor performing MM5 climate modeling on the NSF TeraGrid [49, 46],Mahinthakumar forming multivariate geographic clusters to produce maps of re-gions of ecological similarity [41], Larsson for studies of distributed execution of alarge computational electromagnetics code [38], and Chen and Taylor in studies ofautomatic partitioning techniques, as applied to �nite element codes [8].MPICH-G2 has also been successfully used in demonstrations that promote MPIas an application-level interface to Grids for nontraditional distributed computingapplications, for example, Roy et al. for studies in using MPI idioms for settingQoS parameters [47] and Papka and Binns for creating distributed visualizationpipelines using MPICH-G2's client/server MPI-2 extensions [49, 46].MPICH-G2 was awarded a 2001 Gordon Bell Award for its role in an astro-physics application used for solving problems in numerical relativity to study grav-itational waves from colliding black holes [2]. The winning team used MPICH-G2to run across four supercomputers in California and Illinois, achieving scaling of88% (1,140 CPUs) and 63% (1,500 CPUs) computing a problem size �ve timeslarger than any other previous run. 15

6. FUTURE WORKThe successful development of MPICH-G2 and its widespread adoption bothmake it a useful platform for future research and create signi�cant interest in itscontinued development.One immediate area of concern is full support for MPI-2 features. In particular,support for dynamic process management will allow MPICH-G2 to be used fora wider class of Grid computations in which either application requirements orresource availability changes dynamically over time. The necessary support existsin the Globus Toolkit, and so this work depends primarily on the availability ofthe next-generation ADI-3. Less obvious, but very interesting, is how to integratesupport for fault tolerance into MPICH-G2 in a meaningful way.A second area of concern relates to exploring and re�ning MPICH-G2 sup-port for application-level management of heterogeneity. Initial experiments withtopology discovery and quality-of-service management have been encouraging, butit seems inevitable that application experiences will reveal de�ciencies in currenttechniques or suggest additional MPICH-G2 support that could further improveapplication exibility.Our work on collective operations can be improved in various ways. In particu-lar, van de Geijn et al. [3] have shown that are advantages in implementing collec-tive operations by segmenting and pipelining messages when communicating overrelatively slower channels (e.g., TCP over local- and wide-area networks). Thesepipelining techniques can be used throughout many of the levels in MPICH-G2'smultilevel topology-aware collective operations.7. RELATED WORKA variety of approaches have been proposed to programming Grid applications,including object systems [26, 24], Web technologies [22, 50], problem solving en-vironments [7, 45], CORBA, workow systems, high-throughput computing sys-tems [1, 39], and compiler-based systems [33]. We assume that while di�erenttechnologies will prove attractive for di�erent purposes, a programmingmodel suchas MPI that allows direct control over low-level communications will always beattractive for certain applications.Other systems that support message passing in heterogeneous environmentsinclude the pioneering Parallel Virtual Machine (PVM) [25, 48] and the PACX-MPI [23], MetaMPI [12], and STAMPI [36] implementations of MPI, each of whichaddresses issues relating to e�cient communication in heterogeneous wide-areasystems. STAMPI supports MPI-2 dynamic process management features andtopology-aware collective operations. PACX-MPI, like MPICH-G2, supports theautomatic startup of distributed computations, but uses ssh rather than the GRAMprotocol with its integrated GSI authentication, for that purpose; nor does it ad-dress issues of executable staging. PACX-MPI (and STAMPI) also di�er in how itaddresses wide-area communication. While in MPICH-G2, any processor may speakboth local and wide-area communication protocols, PACX-MPI and STAMPI2 for-ward all o�-cluster communication operations to an intermediate gateway node.Other implementations of MPI include MPICH with the ch p4 device andLAM/MPI [6, 37]. By contrast these implementations were designed for local area2TCP message fowarding is a user-con�gurable option in STAMPI.16

networks and not computational grids.The Interoperable MPI (IMPI) standards e�ort [31] de�nes standard messageformats and protocols with a view to enabling interoperability among di�erent MPIimplementations. IMPI does not address issues of computation management andcontrol; in principle, the techniques developed within MPICH-G2 could be used forthat purpose.Other related projects include MagPIe [35] and MPI-StarT [30], which showhow careful consideration of communication topologies can result in signi�cant im-provements after modifying the MPICH broadcast algorithm, which uses topology-unaware binomial trees. However, both limit their view of the network to only twolayers; processors are either near or far. Further performance improvements canbe realized by adopting the multilevel network view. We referred in the precedingsection to the work of van de Geijn et al. [3]. In [34] Kielman et al. have extendedMagPIe by incorporating van de Geijn's pipelining idea through a technique theycall Parameterized LogP (PLogP), which is an extension of the LogP model pre-sented by Culler et al [9]. In this extension, MagPIe still recognizes only a two-layercommunication network, but through parameterized studies of the network they de-termine \optimal" packet sizes.Various projects have investigated programming model extensions to enable ap-plication management of QoS, for example, Quo [40]. The only other relevant e�ortin the context of MPI is work on real-time extensions to MPI. MPI/RT [44] providesa QoS interface but is not an established standard and introduces a new program-ming interface. Furthermore, the focus is on real-time needs such as predictabilityof performance and system resource usage more appropriate for embedded systemsthan for wide-area networks. 8. SUMMARYWe have described MPICH-G2, an implementation of the Message Passing In-terface that uses Globus Toolkit mechanisms to support the execution of MPIprograms in heterogeneous wide-area environments. MPICH-G2 masks details ofunderlying networks, software systems, policies, and computer architectures so thatdiverse distributed resources can appear as a single MPI COMM WORLD. Arbitrary MPIapplications can be started on heterogeneous collections of machines simply by typ-ing mpirun: authentication, authorization, executable staging, resource allocation,job creation, startup, and routing of stdout and stderr are all handled automat-ically via Globus Toolkit mechanisms. MPICH-G2 also enables the use of MPIfeatures for user-level management of heterogeneity, for example, via the use ofMPI's communicator construct to access system topology information. A widerange of successful application experiences have demonstrated MPICH-G2's util-ity in practical settings, both for traditional simulation applications and for lesstraditional applications such as distributed visualization pipelines.While MPICH-G2 is already a sophisticated tool that is seeing widespread use,there are also several areas in which it can be extended and improved. Supportfor MPI-2 features, in particular dynamic process management, will be invaluablefor Grid applications that adapt their resource usage to changing conditions andapplication requirements. This support will be provided as soon as it is incorpo-rated into MPICH. More challenging is the design of techniques for e�ective faultmanagement, a major topic for future research. Here we may be able to draw upontechniques developed within systems such as PVM [25].17

ACKNOWLEDGMENTSWe thank Olle Mulmo and Warren Smith for early discussions and for prototyping thetechniques that enable us to use vendor-supplied MPI. MPICH-G2 is, to a large extent,the result of our MPICH-G experiences. We therefore thank Jonathan Geisler, who origi-nally designed and implemented MPICH-G while at Argonne, and George Thiruvathukal,who further developed MPICH-G also while at Argonne. We thank William Gropp, Ew-ing Lusk, David Ashton, Anthony Chan, Rob Ross, Debbie Swider, and Rajeev Thakurof the MPICH group at Argonne for their guidance, assistance, insight, and many discus-sions. We thank Sebastien Lacour for his e�orts in conducting the performance evaluationand his many other contributions. His insight and ingenuity were invaluable to the im-plementation of the topology-aware components of MPICH-G2. Finally, we thank all themembers of the Globus development team for their support, patience, and many ideas.This work was supported in part by the Mathematical, Information, and Compu-tational Sciences Division subprogram of the O�ce of Advanced Scienti�c ComputingResearch, U.S. Department of Energy, under Contract W-31-109-Eng-38; by the U.S.Department of Energy under Cooperative Agreement No. DE-FC02-99ER25398; by theDefense Advanced Research Projects Agency under contract N66001-96-C-8523; by theNational Science Foundation; and by the NASA Information Power Grid program.REFERENCES[1] D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nimrod: A tool for performingparameterised simulations using distributed workstations. In Proc. 4th IEEESymp. on High Performance Distributed Computing. IEEE Computer SocietyPress, 1995.[2] G. Allen, T. Dramlitsch, I. Foster, M. Ripeanu N. T. Karonis, E. Seidel, andB. Toonen. Supporting e�cient execution in heterogeneous distributed com-puting environments with catus and globus. In Proceedings of Supercomputing2001. IEEE Computer Society Press, 2001, winner Gordon Bell Award, SpecialCategory.[3] M. Barnett, R. Little�eld, D. Payne, and R. van de Geijn. On the e�ciencyof global combine algorithms for 2-d meshes with wormhole routing. Journalof Parallel and Distributed Computing, 22:324{328, 1994.[4] A. Bary-Noy and S. Kipnis. Designing broadcasting algorithms in the postalmodel for message-passing systems. In Proceedings of the 4th Annual ACMSymposium on Parallel Algorithms and Architectures, pages 559{566, June1992.[5] Joseph Bester, Ian Foster, Carl Kesselman, Jean Tedesco, and Steven Tuecke.GASS: A data movement and access service for wide area computing systems.In Proc. IOPADS'99. ACM Press, 1999.[6] Greg Burns, Raja Daoud, and James Vaigl. LAM: An open cluster environmentfor MPI. In John W. Ross, editor, Proceedings of Supercomputing Symposium'94, pages 379{386. University of Toronto, 1994.[7] Henri Casanova and Jack Dongarra. Netsolve: A network server for solvingcomputational science problems. Technical Report CS-95-313, University ofTennessee, November 1995. 18

[8] Jian Chen and Valerie Taylor. Mesh partitioning for distributed systems. InProc. 7th IEEE Symp. on High Performance Distributed Computing. IEEEComputer Society Press, 1998.[9] D.E. Culler, R. Karp, D.A. Patterson, A. Sahay. K.E. Schauser, E. Santos,R. Subramonian, and T. von Eicken. Logp: Towards a realistic model of par-allel compuation. In Proceedings of the 4th SIGPLAN Symposium on Principlesand Practices of Parallel Programming, pages 1{12, May 1993.[10] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, andS. Tuecke. A resource management architecture for metacomputing systems. InThe 4th Workshop on Job Scheduling Strategies for Parallel Processing, 1998.[11] Karl Czajkowski, Ian Foster, and Carl Kesselman. Co-allocation services forcomputational grids. In Proc. 8th IEEE Symp. on High Performance Dis-tributed Computing. IEEE Computer Society Press, 1999.[12] Thomas Eickermann, Helmut Grund, and Jorg Henrichs. Performance issuesof distributed mpi applications in a german gigabit testbed. In Proceedings ofthe 6th European PVM/MPI Users' Group Meeting, September 1999.[13] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, andS. Tuecke. A directory service for con�guring high-performance distributedcomputations. In Proc. 6th IEEE Symp. on High Performance DistributedComputing, pages 365{375. IEEE Computer Society Press, 1997.[14] I. Foster. The grid: A new infrastructure for 21st century science. PhysicsToday, 54(2), 2002.[15] I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk, G. Thiruvathukal, andS. Tuecke. A wide-area implementation of the Message Passing Interface.Parallel Computing, 24(12):1735{1749, 1998.[16] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke. Managing multiple commu-nication methods in high-performance networked computing systems. Journalof Parallel and Distributed Computing, 40:35{48, 1997.[17] I. Foster and C. Kesselman. The Globus project: A status report. In Proceed-ings of the Heterogeneous Computing Workshop, pages 4{18. IEEE ComputerSociety Press, 1998.[18] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New ComputingInfrastructure. Morgan Kaufmann Publishers, 1999.[19] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture forcomputational grids. Technical report, Mathematics and Computer ScienceDivision, Argonne National Laboratory, Argonne, Ill., 1998.[20] I. Foster, C. Kesselman, and S. Tuecke. The Nexus approach to integratingmultithreading and communication. Journal of Parallel and Distributed Com-puting, 37:70{82, 1996.[21] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scal-able virtual organizations. International Journal of High Performance Com-puting Applications, 15(3):200{222, 2001.19

[22] Geo�rey Fox and Wojtek Furmanski. High-performance commodity comput-ing. In [18], pages 237{255.[23] Edgar Gabriel, Michael Resch, Thomas Beisel, and Rainer Keller. Dis-tributed computing in a heterogenous computing environment. In Proc. Eu-roPVMMPI'98. 1998.[24] Dennis Gannon and Andrew Grimshaw. Object-based approaches. In [18],pages 205{236.[25] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, and V. Sunderam.PVM: Parallel Virtual Machine|A User's Guide and Tutorial for NetworkParallel Computing. MIT Press, 1994.[26] A. S. Grimshaw, W. A. Wulf, and the Legion team. The Legion vision ofa worldwide virtual computer. Communications of the ACM, 40(1), January1997.[27] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portableimplementation of the MPI message passing interface standard. Parallel Com-puting, 22:789{828, 1996.[28] William Gropp and Ewing Lusk. Reproducible measurements of MPI perfor-mance characteristics. Technical Report ANL/MCS-P755-0699, Mathematicsand Computer Science Division, Argonne National Laboratory, June 1999.[29] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance, portable implementation of the MPI Message-Passing Interfacestandard. Parallel Computing, 22(6):789{828, 1996.[30] P. Husbands and J.C. Hoe. MPI-StarT: Delivering network performance tonumerical applications. In Proceedings of Supercomputing '98, November 1998.[31] Interoperable MPI web page. http://impi.nist.gov.[32] N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresna-han. Exploiting hierarchy in parallel computer networks to optimize collectiveoperation performance. In Proceedings of the 14th International Parallel andDistributed Processing Symposium, 2000.[33] Ken Kennedy. Compilers, languages, and libraries. In [18], pages 181{204.[34] T. Kielmann, H. E. Bal, S. Gorlatch, K. Verstoep, and R. F. H. Hofman.Network performance-aware collective communication for clustered wide areasystems. Parallel Computing, 2001. accepted for publication.[35] T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat, and R.A.F. Bhoedjang.MAGPIE: MPI's collective communcation operations for clustered wide areasystems. In Proceedings of Supercomputing '98, November 1998.[36] T. Kimura and H. Takemiya. Local area metacomputing for multidisciplinaryproblems: A case study for uid/structure coupled simulation. In Proc. Intl.Conf. on Supercomputing, pages 145{156. 1998.[37] Collected LAM documents. WorldWide Web. ftp://tbag.osc.edu/pub/lam.20

[38] Olle Larsson. Implementation and performance analysis of a high-order CEMalgorithm in parallel and distributed environments. Master's thesis, Universityof Houston, 1998.[39] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations.In Proc. 8th Intl Conf. on Distributed Computing Systems, pages 104{111,1988.[40] J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E. Bakken. Specifying andmeasuring quality of service in distributed object systems. In Proceedings ofthe First International Symposium on Object-Oriented Real-Time DistributedComputing (ISORC '98), 1998. Kyoto, Japan.[41] G. Mahinthakumar, F. M. Ho�man, W. W. Hargrove, and N. Karonis. Mul-tivariate geographic clustering in a metacomputing environment using globus.In Proceedings of Supercomputing '99. IEEE Computer Society Press, 1999.[42] Message Passing Interface Forum. MPI: A message-passing interface standard.International Journal of Supercomputer Applications, 8(3/4):165{414, 1994.[43] Message Passing Interface Forum. MPI2: A message passing interface stan-dard. International Journal of High Performance Computing Applications,12(1{2):1{299, 1998.[44] Mpi/rt forum. http://www.mpirt.org.[45] Hidemoto Nakada, Mitsuhisa Sato, and Satoshi Sekiguchi. Design and imple-mentations of ninf: towards a global computing infrastructure. Future Gener-ation Computing Systems, 15:649{658, 1999.[46] Ncsa press release web page. http://www.ncsa.edu/News/Access/Releases/011211.TeraGrid.html.[47] A. Roy, I. Foster, W. Gropp, N. Karonis, V. Sander, and B. Toonen. MPICH-GQ: Quality-of-Service for message passing programs. In Proceedings of Su-percomputing 2000. IEEE Computer Society Press, 2000.[48] T. Sheehan, W. Shelton, T. Pratt, P. Papadopoulos, P. LoCascio, and T. Duni-gan. Locally self consistent multiple scattering method in a geographicallydistributed linked MPP environment. Parallel Computing, 24, 1998.[49] Teragrid web page. http://www.teragrid.org.[50] Amin Vahdat, Eshwar Belani, Paul Eastham, Chad Yoshikawa, Thomas An-derson, David Culler, and Michael Dahlin. WebOS: Operating system servicesfor wide area applications. In 7th Symposium on High Performance DistributedComputing, July 1998.Nicholas T. Karonis received a B.S. in �nance and a B.S. in computer sciencefrom Northern Illinois University in 1985, an M.S. in computer science from North-ern Illinois University in 1987, and a Ph.D. in computer science from SyracuseUniversity in 1992. He spent summers from 1981 to 1991 as a student at ArgonneNational Laboratory, where he worked on the p4 message-passing library, auto-mated reasoning, and genetic sequence alignment. From 1991 to 1995 he worked21

on the control system at Argonne's Advanced Photon Source and from 1995 to1996 for the Computing Division at Fermi National Accelerator Laboratory. Since1996 he has been an assistant professor of computer science at Northern IllinoisUniversity and a resident associate guest of Argonne's Mathematics and ComputerScience Division where he has been a member of the Globus Project. His currentresearch interest is message-passing systems in computational grids.Brian Toonen received his B.S. in computer science from the University of Wis-consin Oshkosh in 1993, and his M.S. in computer science from the University ofWisconsin-Madison in 1997. He is a senior scienti�c programmer with the Mathe-matics and Computer Science Division at Argonne National Laboratory. Brian's re-search interests include parallel and distributed computing, operating systems, andnetworking. He is currently working with the MPICH team to create a portable,high-performance implementation of the MPI-2 standard. Prior to joining theMPICH team, he was a senior developer for the Globus Project.Ian Foster received his B.Sc. (Hons I) at the University of Canterbury in 1979and his Ph.D. from Imperial College, London, in 1988. He is a senior scientistand associate director of the Mathematics and Computer Science Division at Ar-gonne National Laboratory, and professor of computer science at the University ofChicago. He has published four books and over 150 papers and technical reports.He co-leads the Globus Project, which provides protocols and services used by in-dustrial and academic distributed computing projects worldwide. He co-foundedthe inuential Global Grid Forum and co-edited the book \The Grid: Blueprint fora New Computing Infrastructure."

22

