
A Multilevel Approach to Topology-Aware CollectiveOperations in Computational GridsNicholas T. KaronisDepartment of Computer ScienceNorthern Illinois UniversityDeKalb, IL 60115Argonne National LaboratoryArgonne, IL 60439Email: karonis@niu.edu Bronis de SupinskiCenter for Applied Scienti�c ComputingLawrence Livermore National LaboratoryLivermore, CA 94551Email: bronis@llnl.govIan FosterArgonne National LaboratoryArgonne, IL 60439The University of ChicagoChicago, IL 60637Email: foster@mcs.anl.gov William Gropp and Ewing LuskMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439Email: gropp@mcs.anl.gov, lusk@mcs.anl.govSebastien LacourIRISA / INRIA RennesUniversity of Beaulieu35042 Rennes, FranceEmail: Sebastien.Lacour@irisa.frApril 2002AbstractThe e�cient implementation of collective communication operations has receivedmuch attention. Initial e�orts produced \optimal" trees based on network communi-cation models that assumed equal point-to-point latencies between any two processes.This assumption is violated in most practical settings, however, particularly in heteroge-neous systems such as clusters of SMPs and wide-area \computational Grids," with theresult that collective operations perform suboptimally. In response, more recent workhas focused on creating topology-aware trees for collective operations that minimize com-munication across slower channels (e.g., a wide-area network). While these e�orts havesigni�cant communication bene�ts, they all limit their view of the network to only twolayers. We present a strategy based upon a multilayer view of the network. By creatingmultilevel topology-aware trees we take advantage of communication cost di�erences atevery level in the network. We used this strategy to implement topology-aware versionsof several MPI collective operations in MPICH-G2, the Globus ToolkitTM-enabled ver-sion of the popular MPICH implementation of the MPI standard. Using informationabout topology provided by MPICH-G2, we construct these multilevel topology-awaretrees automatically during execution. We present results demonstrating the advantagesof our multilevel approach by comparing it to the default (topology-unaware) imple-mentation provided by MPICH and a topology-aware two-layer implementation.1

1 IntroductionThe problem of building \optimal" communication trees for collective operations has re-ceived much attention in recent years. The telephone model, which assumes that sendand receive times are equal and that messages are not packetized, implies that the optimalbroadcast algorithm uses a binomial tree. Under models that expand the telephone modelto account for message latency, such as the postal [1] or LogP [4] models, the communica-tion topology of an optimal broadcast algorithm becomes a generalized Fibonacci tree. Allof these approaches construct optimal trees for collective operations by �rst modeling thecommunication characteristics of a network with a set of parameters and then building theoptimal trees based on parameter values and their model.Underlying this work is the assumption that the communication times between all pro-cess pairs in the computation are equal. While this is a reasonable approximation when theentire computation is performed on a single machine, it is not reasonable when the computa-tion is executed on a cluster of symmetric multiprocessors (SMPs) in a local-area network, orworse, in a computational Grid [10, 11, 7] environment, in which multiple parallel computersare connected by local-area, campus-area, or even wide-area networks. Rapid improvementsin network performance have engendered considerable interest in parallel computing in thelast context, as evidenced by experiments and initiatives such as the I-WAY [9], NationalTechnology Grid [20], Information Power Grid [14], and TeraGrid [21].Under these circumstances the trees produced by the conventional models perform sub-optimally. In such heterogeneous environments, communication costs over di�erent linkscan di�er by an order of magnitude or more. In these situations, topology-aware algorithmscan dramatically improveme the performance. For example, in the case of N processorsdistributed into two clusters, a traditional reduction algorithm may generate O(log N) in-tercluster messages, while a topology-aware algorithm generates only 1, for a cost saving ofa factor of O(log N) if intercluster message costs dominate.Previous work [13, 16] has demonstrated that topology-aware collective operations canindeed reduce communication costs by reducing the amount of communication performedover slow channels. However, this work limited the depth of network strati�cation to onlytwo levels: other processors are either near or far. In [19] we compared a prototype ofour multilevel approach to the topology-unaware binomial tree algorithm distributed withMPICH and to MagPIe, one of the topology-aware two-level techniques. In that prototypewe \guessed" which computers shared a local network by inspecting their fully quali�eddomain names, and thereafter representing our multilevel clustering of processes with asequence of hidden communicators inside MPI communicators.In this paper we present a much improved re�nement of that prototype that allowscollective operations to exploit knowledge concerning the structure of a multilevel network,in which the neighbors are processors that are categorized according to their expectedpoint-to-point communication characteristics. The identi�cation of which processes sharea local network is now a simple matter of users providing values for selected environmentvariables. Additionally the use of hidden communicators to represent the multilevel clus-tering has been replaced by integer vectors. The use of hidden communicators requiredus to implement the collective operations as a sequence of collective operations, for exam-ple, an MPI_Bcast was implemented as a sequence of MPI_Bcasts sequencing over each ofthe hidden communicators in turn, which typically resulted in the use of binomial trees ateach level. By replacing the hidden communicators with integer vectors we are now free toimplement collective operations using point-to-point operations over any tree we create.2

IBM SP

SDSC

WAN LAN

NCSA

O2KaO2KbFigure 1: An example of a Grid computation involving 10 processes on one IBM SP atSDSC and another 10 processes distributed evenly across two SGI Origin2000s (O2Ka andO2Kb) at NCSA.To permit experimental studies, we have implemented our multilevel approach for �veof the collective operations supported by the Message Passing Interface (MPI) standard [17]:MPI_Bcast, MPI_Reduce, MPI_Barrier, MPI_Gather, and MPI_Scatter. We use MPICH-G2 [18],the successor to MPICH-G [8], which is based on the popular MPICH implementation [12]of the MPI standard. MPICH-G2 uses services provided by the Globus ToolkitTM , or sim-ply Globus, to support execution in heterogeneous and distributed environments. This useof MPICH-G2 enables experimentation within realistic wide-area environments that wouldnot otherwise be easily accessible.In the sections that follow, we describe our multilevel topology approach. Then, wepresent experimental results that illustrate the bene�ts of our multilevel approach by com-paring it with (1) the topology-unaware implementation currently distributed with MPICHand (2) MagPIe [16], one of the topology-aware two-level implementations of collective op-erations. We brie
y discuss other recent topology-aware and optimized collective operationse�orts and conclude with a discussion of future work.2 Multilevel Topology-Aware ApproachFigure 1 depicts an MPI application involving 20 processes distributed over three machineslocated at the San Diego Supercomputer Center (SDSC) and the National Center for Su-percomputing Applications (NCSA). We depict 10 processes on the IBM SP at SDSC and 5processes on each of two Origin2000s, O2Ka and O2Kb, at NCSA. The slowest communica-tion is between sites, which uses TCP over a wide-area network, with faster communicationbetween the O2Ks at NCSA, which uses TCP over their local-area network, and the fastestcommunication, of course, within each machine.In the remainder of this section we describe a broadcast using �rst the topology-unawareimplementation currently distributed with MPICH, then a 2-level topology-aware approach,and �nally our multilevel topology-aware broadcast.2.1 A Topology-Unaware BroadcastTopology-unaware implementations of broadcast, including the one distributed with MPICH,often make the simplifying assumption that the communication times between all process3

B3B2B1B0Figure 2: The binomial trees B0 through B3.
SDSC Bcast
root process

SDSC Bcast
root process

NCSA
process

O2Kb
process

O2Ka
process

remaining
O2Ka procs

remaining
SDSC procs

remaining
NCSA procs

remaining
SDSC procs

(a) clustering processes
 on machine boundaries

(b) clustering processes
 on site boundaries

remaining
O2Kb procsFigure 3: An example of two 2-level topology-aware broadcast trees rooted at SDSC span-ning 2 Origin2000s (O2Ka and O2Kb) at NCSA and an IBM SP at SDSC: (a) clusteringprocesses on machine boundaries and (b) clustering on site boundaries.pairs in the computation are equal. Under this assumption the broadcast is often imple-mented by using a binomial tree.A binomial tree Bk is an ordered tree (i.e., children of each node are ordered) of orderk � 0 de�ned recursively. As shown in Figure 2, the binomial tree B0 consists of a singlenode. The binomial treeBk (k > 0) has a root with k children where the ith child (0 < i � k)is the root of the binomial tree Bk�i . Figure 2 depicts the binomial trees B0 through B3.When communication times between all process pairs in the computation are equal andhave relatively low latency, Bar-Noy and Kipnis show that implementing a broadcast witha binomial tree has the desirable property that all processes will complete the broadcast atapproximately the same time thus, achieving proper load balancing [1].2.2 A 2-Level Topology-Aware BroadcastExisting 2-level topology-aware approaches [13, 16] cluster processes into groups. The twonatural choices for the machines depicted in Figure 1 are to cluster the processes basedeither on machine boundaries, creating three groups { the IBM SP, O2Ka, and O2Kb, orsite boundaries creating two groups { SDSC and NCSA. While both are reasonable choicesand would improve performance when compared with the topology-unaware binomial tree4

SDSC Bcast
root process

O2Kb
process

O2Ka
process

remaining
SDSC procs

remaining
O2Ka procs

remaining
O2Kb procsFigure 4: An example of a multilevel topology-aware broadcast tree rooted at SDSC span-ning 2 Origin 2000s (O2Ka and O2Kb) at NCSA and an IBM SP at SDSC.distributed with MPICH, both choices ignore the disparity in network performance betweenthe local- and wide-area networks. Consider, for example, a broadcast rooted at one of theprocesses at SDSC. Figure 3a depicts the broadcast tree of the 2-level approach when theprocesses are clustered on machine boundaries. The broadcast starts with the SDSC rootprocess sending messages to designated processes on each of the O2Ks at NCSA, resulting intwo messages travelling across the wide-area network, and concludes with broadcasts withineach machine. By contrast, Figure 3b depicts the broadcast tree when the processes areclustered on site boundaries. In this case the root at SDSC sends a single message acrossthe wide-area network to a process on one of the two O2Ks at NCSA and concludes with abroadcast within the IBM SP with another simultaneous broadcast across all the processesat NCSA, which would typically require multiple messages to travel across NCSA's localnetwork.2.3 A Multilevel Topology-Aware BroadcastThe multilevel topology-aware approach we present minimizes messaging across the slowestlinks at each level by clustering the processes at the wide-area level into site groups, andthen within each site group, clustering processes at the local-area level into machine groups.Using the same broadcast example from Section 2.2, we depict in Figure 4 the broadcasttree used by a multilevel approach. Here the broadcast starts with the SDSC root processsending a single message across the wide-area network to one of the processes at NCSA, inFigure 4 we depict a process on O2Ka. The broadcast continues with the receiving processon O2Ka sending a single message across NCSA's local network to a process on O2Kband the entire broadcast concludes with broadcasts within each machine. This multilevelclustering minimizes messaging over the slower wide- and local-area networks.5

+(&(resourceManagerContact="sp.npaci.edu")(count=10)(jobtype=mpi)(label="subjob 0")(environment=(GLOBUS_DUROC_SUBJOB_INDEX 0))(directory=/homes/users/smith)(executable=/homes/users/smith/myapp))(&(resourceManagerContact="o2ka.ncsa.uiuc.edu")(count=5)(jobtype=mpi)(label="subjob 1")(environment=(GLOBUS_DUROC_SUBJOB_INDEX 1))(directory=/users/smith)(executable=/users/smith/myapp))(&(resourceManagerContact="o2kb.ncsa.uiuc.edu")(count=5)(jobtype=mpi)(label="subjob 2")(environment=(GLOBUS_DUROC_SUBJOB_INDEX 2))(directory=/users/smith)(executable=/users/smith/myapp))Figure 5: An RSL script for an MPICH-G2 application running on three machines thatfacilitates 2-level process clustering.3 Multilevel Topology-aware Approach in MPICH-G2In this section we describe our implementation of multilevel topology-aware collective op-erations in the Globus Toolkit-based MPICH-G2. For illustrative purposes, we discuss ourimplementation of MPI_Bcast in detail.3.1 RSL Speci�cation of TopologyMPICH-G2 uses the Globus Toolkit's Resource Speci�cation Language (RSL) [5] to de-scribe the resources required to run an application. Users write RSL scripts, which identifyresources (e.g., computers) and specify requirements (e.g., number of CPUs, memory, exe-cution time) and parameters (e.g., location of executables, command line arguments, envi-ronment variables) for each. An RSL script can be used as the user interface to globusrun,an upper-level Globus service that �rst authenticates the user by using the Grid Security In-frastructure (GSI) [3] and then schedules and monitors the job across the various machinesby using two other Globus Toolkit services: the Dynamically-Updated Request Online Coal-locator (DUROC) [6] and Grid Resource Allocation and Management (GRAM) [5]. RSL isdesigned to be an easy-to-use language to describe multiresource multisite jobs while hidingall the site-speci�c details associated with requesting such resources.Figure 5 depicts an RSL script for an MPICH-G2 application intended to run on thecomputational Grid depicted in Figure 1. It depicts a job as a set of three subjobs, whereeach subjob is associated with a particular resource, in our example, a computer. Subjobsde�ne a natural machine-boundary partitioning of the processes in MPI_COMM_WORLD and6

+(&(resourceManagerContact="sp.npaci.edu")(count=10)(jobtype=mpi)(label="subjob 0")(environment=(GLOBUS_DUROC_SUBJOB_INDEX 0))(directory=/homes/users/smith)(executable=/homes/users/smith/myapp))(&(resourceManagerContact="o2ka.ncsa.uiuc.edu")(count=5)(jobtype=mpi)(label="subjob 1")(environment=(GLOBUS_DUROC_SUBJOB_INDEX 1)(GLOBUS_LAN_ID NCSAlan))(directory=/users/smith)(executable=/users/smith/myapp))(&(resourceManagerContact="o2kb.ncsa.uiuc.edu")(count=5)(jobtype=mpi)(label="subjob 2")(environment=(GLOBUS_DUROC_SUBJOB_INDEX 2)(GLOBUS_LAN_ID NCSAlan))(directory=/users/smith)(executable=/users/smith/myapp))Figure 6: An RSL script for an MPICH-G2 application running on three machines thatfacilitates multilevel process clustering.
7

are su�cient for a 2-level machine boundary clustering of the processes. To achieve a mul-tilevel clustering, the user must identify those machines that are on the same local networkby specifying a value for an MPICH-G2-de�ned environment variable GLOBUS_LAN_ID, asdepicted in the RSL script in Figure 6. Specifying the same value (NCSAlan) in the sec-ond and third subjobs instructs MPICH-G2 to cluster these two machines into the samelocal-area network group. This same technique can be used to cluster many subjobs in thesame local-area network group while simultaneously creating multiple local-area networkgroups through the assignment of multiple yet unique GLOBUS_LAN_ID values. This simplespeci�cation (the only di�erence between Figures 5 and 6) is all that is required to createmultilevel topology-aware clustering of the processes.The multilevel clustering information speci�ed in RSL (i.e., processes gathered �rst intomachine groups and then local network groups composed of machine groups) creates a mul-tilevel grouping of the processes in MPI_COMM_WORLD and is distributed to all the processesduring MPICH-G2 bootstrapping to be stored within MPI_COMM_WORLD on each process.When new communicators are created (e.g., via MPI_Comm_split), MPICH-G2 propagatesthe relevant multilevel clustering information to the newly created communicator so that allcommunicators in MPICH-G2 have the multilevel clustering information pertaining to theirprocess groups. As an interesting side e�ect we have made this multilevel topology infor-mation available to MPI applications through existing MPI communicator caching idioms.See [18] for a full description of MPICH-G2's topology discovery mechanism.3.2 MPICH-G2's Multilevel Topology-Aware BroadcastA multilevel topology-aware clustering of processes is not su�cient in itself to allow theconstruction of a broadcast tree such as that depicted in Figure 4: MPICH-G2 also needsto know which process is the root of the broadcast. Construction of the multilevel topology-aware tree is therefore deferred until the application calls a collective operation. At that timeeach process simultaneously and independently (i.e., without communication) construct anidentical tree based on the multilevel process grouping found in the communicator andthe parameters passed (e.g., identifying the root process of a broadcast) to the collectiveoperation.One bene�t of using a multilevel topology-aware tree to implement a collective operationis that we are free to select di�erent subtree topologies at each level. For example, amultilevel broadcast tree can start with a broadcast from the root to selected processesat each site across a wide-area network, followed by broadcasts at each site to selectedprocesses on each machine across the local networks, and concluding with broadcasts withineach machine. We have the freedom to use di�erent broadcast topologies at each stage inthe sequence. Bar-Noy and Kipnis show that in high-latency networks (e.g., a wide-areanetwork) the optimal broadcast topology is a
at tree in which the root sends the data toall other processes directly, while in a low-latency network (e.g., intramachine messaging),the optimal broadcast topology is a binomial tree [1]. We take advantage of these �ndingsand the
exibility of our multilevel approach in our implementation of MPI_Bcast by usinga
at broadcast tree at the initial wide-area level and binomial trees at the local-area andintramachine levels.In the next section we present results demonstrating the advantages of our multilevelapproach by comparing it with the default (topology-unaware) implementation provided byMPICH and a topology-aware two-layer implementation.8

For (each message size M)MPI_Barrier(MPI_COMM_WORLD)if (MPI_COMM_WORLD rank == 0)t0 = get_time()For (r = 0; r < Nprocs; r ++)MPI_Bcast(root=r to MPI_COMM_WORLD message size M)ack_barrier()if (MPI_COMM_WORLD rank == 0)t1 = get_time()report message size M, time t1-t0Figure 7: The broadcast timing application.4 Experimental ResultsTo demonstrate the advantages of our multilevel approach, we examine its e�ects on MPI_Bcast.The MPICH implementation of MPI_Bcast is based on binomial trees; hence, in a dis-tributed heterogeneous environment like a computational Grid its performance is acutelysensitive to the distribution of the processes and the root of the broadcast. For example,in an application using P = 2k processes distributed evenly across C = 2i; 0 � i � kclusters, a broadcast implemented using a binomial tree propagates the message downits longest path using at least log2C intercluster messages and log2PC intracluster mes-sages. In contrast, under certain intercluster network performance conditions describedby Bar-Noy and Kipnis in their postal model, our multilevel method could be used tosend 1 intercluster message and log2PC intracluster messages. Assuming an intercluster la-tency ls sec and bandwidth bs Kb/sec; and an intracluster latency lf sec and bandwidthbf Kb/sec, broadcasting a message of N Kb using the binomial tree conservatively takesO((logC)(ls+ Nbs) + (log PC)(lf + Nbf)), whereas broadcasting the same message using ourmultilevel method takes only O((ls + Nbs) + (log PC)(lf + Nbf)).We wrote a small MPI application (depicted in Figure 7) that times the broadcasts ofmessages of increasing size. To represent a broadcast with an arbitrary root, we timed howlong it would take to broadcast each message of size M as each process in MPI_COMM_WORLDtook its turn as the root. Also, in order to eliminate any potential pipelining that mightoccur between consecutive broadcasts, we inserted a barrier (ack_barrier()) after eachbroadcast in which all processes other than rank 0 MPI_Send an ACK message to process 0and then wait to MPI_Recv a GO message. Process 0, after MPI_Recv'ing the ACK messagefrom all the other processes, MPI_Send's a GO message to each of the other processes, oneat a time. We chose to write our own barrier rather than calling MPI_Barrier because wehave reimplemented MPI_Barrier to re
ect multilevel topology and we wished these teststo re
ect the di�erences only in the broadcast implementations.We conducted experiments running the MPI application depicted in Figure 7 on threecomputers: the IBM SP at the San Diego Supercomputer Center (SDSC-SP) and theIBM SP (ANL-SP) and SGI Origin200 (ANL-O2K) at Argonne National Laboratory. Wecompare our multilevel topology approach to the binomial tree provided by MPICH andinclude comparisons to the 2-level approach provided by MagPIe. We ran the applicationfour times, each time using 16 processes on each of the three computers. These results aredepicted in Figure 8. The curves labeled \MagPIe-machine" and \MagPIe-site" represent9

0

50

100

150

200

250

0 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

Msg Length (KByte)

default MPICH-G
MagPIe-site

MagPIe-machine
top-aware MPICH-G

Figure 8: Original MPICH broadcast vs. topology-aware MPICH broadcast vs. MagPIebroadcast running 16 processes on the IBM SP at SDSC and 16 processes on each theIBM SP and SGI Origin2000 at ANL.two runs using MagPIe version 2.0.1, each time with a di�erent cluster de�nition. In our�rst MagPIe run (\MagPIe-machine") we de�ned three clusters, one for each computer, of16 processes each. In our second MagPIe run (\MagPIe-site") we de�ned two clusters: anANL cluster comprising the two ANL machines having 32 processes and an SDSC clustercomprising the SDSC-SP having only 16 processes.Figure 8 shows there are signi�cant bene�ts to the multilevel approach when comparedwith a simple binomial tree and even when compared with a 2-level approach as implementedby MagPIe. A multilevel view of the network allows an application to avoid slower channelsat each level. In our experiments, the broadcast is optimized by sending one message acrossthe wide-area network, then one message across the local-area network, and then manymessages within each computer.5 Related WorkPrevious e�orts have focused on creating \optimal" trees for collective operations wherepoint-to-point communications are not necessarily equal between any two processes. Hus-bands and Hoe present MPI-StarT [13], an MPI implementation for a cluster of SMPsinterconnected by a high-performance interconnect. They report signi�cant improvementsafter modifying the MPICH broadcast algorithm, which uses binomial trees. Their mod-i�cations use information that describes their cluster topology by minimizing interclustercommunication during collective operations. MagPIe [16] is another MPI system designed toconstruct collective operation trees in heterogeneous communication environments. Mag-PIe recognizes a two-layer communication network that distinguishes between local- and10

wide-area communication. By minimizing wide-area communication, much in the same wayMPI-StarT minimizes intercluster communication, MagPIe has seen signi�cant improve-ments in all the MPI collective operations.Both e�orts have produced impressive results and clearly demonstrate that there aresigni�cant advantages to implementing collective operations in a topology-aware manner.However, both limit their view of the network to only two layers; MPI-StarT distinguishesbetween intra- and intercluster communication within the same local-area, and MagPIedistinguishes between local- and wide-area communication. There are opportunities forfurther optimization by using trees that stratify the network deeper than two layers.In [2] van de Geijn et al. show the advantages of implementing collective operations bysegmenting and pipelining messages when communicating over relatively slower channels(e.g., TCP over local- and wide-area networks).In [15] Kielman et al. extend MagPIe by incorporating van de Geijn's pipelining ideathrough a technique they call Parameterized LogP (PLogP), which is an extension of theLogP model presented by Culler et al [4]. In this extension, MagPIe still recognizes only atwo-layer communication network, but through parameterized studies of the network, theresearchers determine \optimal" packet sizes. This technique works well for applicationsthat always run on the same computational grid having relatively stable performance, butrequires retuning when moving the application from one computing environment or networkto another.6 Future WorkWe have implemented �ve of the MPI collective operations in a topology-aware multilevelmanner in MPICH-G2. Encouraged by our initial results, we plan to upgrade MPICH-G2'sremaining MPI collective operations in a similar manner.Our general strategy implements a collective operation by �rst stratifying the networkinto multiple levels and then minimizing the communication across the slowest channels. Indoing so, however, we may encounter a tree that has multiple siblings at a particular level,for example, many sites connected across the wide-area network or many machines at aparticular site. When this situation happens, we implement the collective operation at thatlevel using a binomial tree at all but the wide-area network level. Unfortunately, a binomialtree is not always the best choice. Bar-Noy and Kipnis show that the shape of a collectiveoperation tree depends heavily on the point-to-point communication characteristics of thesend/receive primitives on which it is implemented. Their model incorporates a latencyparameter � � 1. They show that for low latencies, (for example, communication within asingle machine), the optimal broadcast tree is a binomial tree, but for higher latencies, (forexample, communication across a wide-area network), the optimal broadcast tree becomes
atter. We will investigate ways to select better, if not optimal, collective operation treesby choosing those that respect the di�erent communication characteristics at each level ofour multilevel view.The pipelining techniques presented by van de Geijn et al. can be used at each of thelevels in MPICH-G2's multilevel topology-aware collective operations. Using techniquessimilar to Kielman's PLogP method, we will develop methods to determine the appropriatepacket sizes with respect to network performance at each level of our multilevel view.11

7 SummaryAs Grid computations become increasingly prevalent, the need for topology-aware collectiveoperations also increases. We have a version of MPICH-G2 that implements �ve collectiveoperations in a multilevel topology-aware manner. We have shown, at least for MPI_Bcast,that when compared with the binomial tree provided by MPICH and the 2-level approachprovided by MagPIe there are signi�cant advantages to executing collective operations usinga multilevel view of the network. Through a simple process of identifying machines that arecommon to a local-area network, we have provided a means by which an MPI applicationmay take advantage of the multilevel topology-aware algorithms without requiring codemodi�cations or special functions.AcknowledgmentsWe thank the San Diego Supercomputer Center and the National Center for Supercom-puting Applications for providing access to their machines. We also thank the members ofthe Globus development team for their support, patience, and many ideas. This work wassupported in part by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Advanced Scienti�c Computing Research, U.S. Department ofEnergy, under Contract W-31-109-Eng-38; by the U.S. Department of Energy under Co-operative Agreement No. DE-FC02-99ER25398; by the National Science Foundation; byDARPA; and by the NASA Information Power Grid program.References[1] A. Bar-Noy and S. Kipnis. Designing broadcasting algorithms in the postal modelfor message-passing systems. In Proceedings of the 4th Annual ACM Symposium onParallel Algorithms and Architectures, pages 559{566, June 1992.[2] M. Barnett, R. Little�eld, D. Payne, and R. van de Geijn. On the e�ciency of globalcombine algorithms for 2-d meshes with wormhole routing. Journal of Parallel andDistributed Computing, 22:324{328, 1994.[3] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, and V. Welch. Anational-Scale authentication infrastructure. IEEE Computer, 33(12):60{66, 2000.[4] D.E. Culler, R. Karp, D.A. Patterson, A. Sahay. K.E. Schauser, E. Santos, R. Subra-monian, and T. von Eicken. Logp: Towards a realistic model of parallel compuation.In Proceedings of the 4th SIGPLAN Symposium on Principles and Practices of ParallelProgramming, pages 1{12, May 1993.[5] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, andS. Tuecke. A resource management architecture for metacomputing systems. In The4th Workshop on Job Scheduling Strategies for Parallel Processing, 1998.[6] Karl Czajkowski, Ian Foster, and Carl Kesselman. Co-allocation services for computa-tional grids. In Proc. 8th IEEE Symp. on High Performance Distributed Computing.IEEE Computer Society Press, 1999. 12

[7] I. Foster. The grid: A new infrastructure for 21st century science. Physics Today,54(2), 2002.[8] I. Foster, J. Geisler, W. Gropp, N. Karonis, E. Lusk, G. Thiruvathukal, and S. Tuecke.A wide-area implementation of the Message Passing Interface. Parallel Computing,24(12):1735{1749, 1998.[9] I. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke. Software infrastruc-ture for the I-WAY metacomputing experiment. Concurrency: Practice & Experience,10(7):567{581, 1998.[10] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Inter-national Journal of Supercomputer Applications, 11(2):115{128, 1997.[11] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing In-frastructure. Morgan Kaufmann Publishers, 1999.[12] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implemen-tation of the MPI message passing interface standard. Parallel Computing, 22:789{828,1996.[13] P. Husbands and J.C. Hoe. MPI-StarT: Delivering network performance to numericalapplications. In Proceedings of Supercomputing '98, November 1998.[14] William E. Johnston, Dennis Gannon, and Bill Nitzberg. Grids as production com-puting environments: The engineering aspects of NASA's Information Power Grid. InProc. 8th IEEE Symp. on High Performance Distributed Computing. IEEE ComputerSociety Press, 1999.[15] T. Kielmann, H.E. Bal, S. Gorlatch, K. Verstoep, and R.F.H. Hofman. Networkperformance-aware collective communication for clustered wide area systems. ParallelComputing, 2001. accepted for publication.[16] T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat, and R.A.F. Bhoedjang. MAG-PIE: MPI's collective communcation operations for clustered wide area systems. InProceedings of Supercomputing '98, November 1998.[17] Message Passing Interface Forum. MPI: A message-passing interface standard. Inter-national Journal of Supercomputer Applications, 8(3/4):165{414, 1994.[18] MPICH-G2 web page. http://www.globus.org/mpi.[19] I.Foster W. Gropp E. Lusk N. Karonis, B. de Supinski and J. Bresnahan. Exploiting hi-erarchy in parallel computer networks to optimize collective operation performance. InProceedings of the 14th International Parallel and Distributed Processing Symposium,2000.[20] R. Stevens, P. Woodward, T. DeFanti, and C. Catlett. From the I-WAY to the NationalTechnology Grid. Communications of the ACM, 40(11):50{61, 1997.[21] Teragrid web page. http://www.teragrid.org.13

Nicholas T. Karonis received a B.S. in �nance and a B.S. in computer science fromNorthern Illinois University in 1985, an M.S. in computer science from Northern IllinoisUniversity in 1987, and a Ph.D. in computer science from Syracuse University in 1992.He spent summers from 1981 to 1991 as a student at Argonne National Laboratory wherehe worked on the p4 message-passing library, automated reasoning, and genetic sequenceallignment. From 1991 to 1995 he worked on the control system at Argonne's AdvancedPhoton Source and from 1995 to 1996 for the Computing Division at Fermi National Ac-celerator Laboratory. Since 1996 he has been an assistant professor of computer science atNorthern Illinois University and a resident associate guest of Argonne's Mathematics andComputer Science Division where he has been a member of the Globus Project. His currentresearch interest is message-passing systems in computational Grids.Bronis R. de Supinski is a computer scientist in the Center for Applied Scienti�c Com-puting at Lawrence Livermore National Laboratory. His research interests include messagepassing implementations and tools, memory performance improvement, cache coherenceand distributed shared memory, consistency semantics and performance evaluation model-ing and tools. Bronis earned his Ph.D. in computer science from the University of Virginiain 1998. He is a member of the ACM and the IEEE Computer Society.Ian Foster received his B.Sc. (Hons I) at the University of Canterbury in 1979 andhis Ph.D. from Imperial College, London, in 1998. He is senior scientist and associatedirector of the Mathematics and Computer Science Division at Argonne National Labo-ratory, and professor of computer science at the University of Chicago. He has publishedfour books and over 150 papers and technical reports. He co-leads the Globus Project,which provides protocols and services used by industrial and academic distributed comput-ing projects worldwide. He co-founded the in
uential Global Grid Forum and co-edited thebook \The Grid: Blueprint for a New Computing Infrastructure."William Gropp received his B.S. in mathematics from Case Western Reserve Universityin 1977, a an M.S. in physics from the University of Washington in 1978, and a Ph.D. incomputer science from Stanford in 1982. He held the positions of assistant (1982-1988) andassociate (1988-1990) professor in the Computer Science Department at Yale University. In1990, he joined the numerical analysis group at Argonne, where he is a senior computerscientist and associate director of the Mathematics and Computer Science Division, a seniorscientist in the Department of Computer Science at the University of Chicago, and a SeniorFellow in the Argonne-University of Chicago Computation Institute. His research interestsare in parallel computing, software for scienti�c computing, and numerical methods forpartial di�erential equations. He has played a major role in the development of the MPImessage-passing standard. He is co-author of MPICH, the most widely used implementationof MPI, and was involved in the MPI Forum as a chapter author for both MPI-1 and MPI-2.He has written many books and papers on MPI including "Using MPI" and "Using MPI-2".He is also one of the designers of the PETSc parallel numerical library, and has developede�cient and scalable parallel algorithms for the solution of linear and nonlinear equations.Ewing Lusk received his B.A. in mathematics from the University of Notre Dame in 1965and his Ph.D. in mathematics from the University of Maryland in 1970. He is currently asenior computer scientist in the Mathematics and Computer Science Division at ArgonneNational Laboratory. His current projects include implementation of the MPI message-passing standard, research into programming models for parallel architectures, and parallelperformance analysis tools. He is a leading member of the team responsible for MPICHimplementation of the MPI message-passing interface standard. He is the author of �vebooks and more than seventy-�ve research articles in mathematics, automated deduction,14

and parallel computing.Sebastien Lacour graduated in physics in 1999 at the Ecole Normale Superieure of Lyon,France. He received his master's degree in computer science in 2002 at IFSIC, Universityof Rennes, France. He is currently a Ph.D. student at IRISA/INRIA in Rennes. Hisresearch interests include networks, compilation, and parallel and distributed systems. Hiscurrent work focuses on distributed shared-memory systems over large-scale, hierarchicalarchitectures (multicluster platforms).

15

