
GridMapper: A Tool for
Visualizing the Behavior of Large-Scale Distributed Systems

William Allcock Joseph Bester John Bresnahan Ian Foster Jarek Gawor

Joseph A. Insley Joseph M. Link Michael E. Papka
Mathematics and Computer Science Division, Argonne National Laboratory,

Argonne, IL 60439, USA
{insley, papka}@mcs.anl.gov

Abstract

Grid applications can combine the use of compute,

storage, network, and other resources. These resources
are often geographically distributed, adding to
application complexity and thus the difficulty of
understanding application performance. We present
GridMapper, a tool for monitoring and visualizing the
behavior of such distributed systems. GridMapper builds
on basic mechanisms for registering, discovering, and
accessing performance information sources, as well as for
mapping from domain names to physical locations. The
visualization system itself then supports the automatic
layout of distributed sets of such sources and animation of
their activities. We use a set of examples to illustrate how
the system can provide valuable insights into the behavior
and performance of a range of different applications.

1. Introduction

A growing number of applications use collections of

geographically distributed resources, with scope and
membership changing over time. This increased
complexity makes it important to understand interactions
among the various components of a distributed system.

One way of gaining insight into the behavior of such
systems is to visualize their activities. Seeing when and
where jobs are executed and how data is transferred
among jobs can help users discover performance
bottlenecks and diagnose erroneous behavior. It also
enables one to monitor the progress of a computation and
to observe the overall state of the system. Visualizing
network connectivity among the distributed resources on
which distributed applications execute can reap similar
benefits. Such visualizations can also serve as a valuable
demonstration tool, making it easier to explain complex
systems to someone unfamiliar with them.

We present here GridMapper, a tool that integrates
application-specific performance data with network

routing and connectivity data to create interactive, quasi-
real-time visualizations of Grid applications that
communicate, among other things, the geographical
location of application components and the resources that
they use, and the nature of the interactions among these
components and resources.

We present the GridMapper architecture, explain how
it integrates with application monitoring systems and
other system components, and use three examples to
illustrate the capabilities of our GridMapper prototype.
Our experience with these applications persuades us that
interactive, dynamic display and geographical location
information can be a powerful combination for
understanding (and communicating) Grid application
behavior and performance.

2. Background and Related Work

We introduce the technologies that GridMapper uses

to obtain geographic location information, and also
review some previous work on the monitoring and
visualization of distributed systems.

One obstacle to the accurate depiction of the location
of distributed resources is obtaining accurate location
information [1]. IPtoLL was an early tool for converting
hostnames to latitude/longitude, but its highest degree of
accuracy is based on the city [2]. More recently, the
Cooperative Association for Internet Data Analysis
(CAIDA) [3] has developed a tool called NetGeo that can
be used to map IP addresses, domain names, and
Autonomous System (AS) numbers to geographic
locations [4]. While this tool has proved useful, the data it
produces often has inaccuracies, mainly because of the
granularity of the information that is available.

GTrace [5], also from CAIDA, is a graphical
traceroute tool that uses NetGeo as one of its methods of
determining geographic location. It plots the locations of
each node along the path of the traceroute on a map and
gives pertinent information about each, including the
method used to determine the location and its level of
trust in the results. It also displays routes that were traced

NetGeo
location service

Registration
& delivery

Viz
driver

IP locator

Manual
verification

Interim
database

Location
database

Application
status

database

GridMapper Engine GridMapper Display

Driver
Notifications

of new
resources &
processes

and changes
in resource &

process
status

Logging Service
Application

Instrumentation

traceroute

multicast
beacon

Application
GUI

Figure 3. Overview of GridMapper architecture. The GridMapper engine contains a service for
determining geographical locations (IP locator), and can obtain performance data from either

instrumented applications, through the use of a Logging Service, or directly from systems that
provide network characteristics.
via specialized third-party traceroute servers. GTrace does
an excellent job of showing the path that data takes as it
moves through the network, but alone it does not offer the
range of information that we want to provide.

The NLANR Multicast Beacon [6] is a set of
software components for monitoring the performance of
multicast transmissions on a network. The Beacon Client
runs on a set of machines that continuously send packets
to each other through a multicast session. It measures the
performance of the transmission and periodically reports
those measurements to a central Beacon Server.
Measurements include the percentage of packet loss from
one client to another, one-way delay from one client to
another, variation of the one-way delay, percentage of
packets that arrived out of order, and percentage of
duplicate packets. This data is generally displayed one
variable at a time in a simple N x N matrix. These
displays do not provide any information about the
geographical locations of the various hosts.

Other tools for visualizing general network
performance [7, 8, 9] show the number of bytes moving
across particular links in a network.

Each of these tools offers useful but independent
capabilities. Our GridMapper visualization system
integrates several of these capabilities to enable the
visualization and monitoring, not only of network traffic
for specific applications, but also the activity of compute
and other resources associated with those applications.
Moreover, it provides routing and latency information, via
traceroute data, and visualizes multicast connectivity and
performance, using data from the multicast beacon.

3. Visualization System

The GridMapper visualization system consists of a

flat map of the world on which are placed 3D primitives
representing resources and network connections between
those resources. Data transfers are represented by spheres

that move along network connections. The visualization
system’s interactive interface allows the user to zoom in
and out, pan across the map, and select resources to obtain
more detailed information. A graphical user interface
(GUI) provides additional controls and more textual
information. An overview of GridMapper’s components
is shown in Figure 1.

The application runs on either a desktop workstation
or a tiled display (Figure 2). Display clutter has been
identified as a serious problem when displaying large
networks [10]. The advantage of using the tiled display is
that the large format and increased resolution enable a
higher level of detail of the map, thus reducing clutter.

3.1. Resource Placement

We wish to obtain latitude/longitude information for

arbitrary IP addresses (resources) in order to provide a
geographically realistic depiction of resource location.
Because existing information sources cannot be counted
upon to be accurate, we adopt a tiered approach based on
a central, manually verified database of definitive
locations backed up by CAIDA’s NetGeo service.

Each resource entry in the central database contains
information such as site name, domain, hostname, IP
address, city, state, country, latitude, and longitude. When
trying to determine a resource’s location, we first look in
this database. (The database is small enough to maintain
in memory, so lookups are fast.) If the resource is not
found there, we consult NetGeo.

Information retrieved from NetGeo is both used for
visualization and stored in a temporary database for
manual verification before being moved into the
permanent database. In the future, we may transform our
database into a separate service. We can also imagine
obtaining location information from the resources
themselves, if they choose to publish it via a system such

Figure 2. GridMapper’s visualization system running on Argonne’s µMural2 six-projector tiled display.

as the Globus Toolkit’s Monitoring and Discovery
Service (MDS) [11].

3.2. Traceroute

We next address the problems of how to determine

and represent properties of the network links that connect
resources. A variety of systems exist for determining the
physical topology of network connections (e.g., traceroute
[12]) and both end-to-end and link-by-link characteristics
(e.g., Network Weather Service [13], pipechar [14]). In
our initial work, we use traceroute to obtain both topology
and latency information; as we explain below, end-to-end
information can be obtained from applications if desired.

We run traceroute from one host to another, and then
visualize the route that is returned by placing a cone on
the map where each router in the trace is located and
connecting these cones with tubes to represent the links
between hops. Links are color-coded based on the latency
for their trace segment. Spheres move along the links for

each segment at varying speeds, the time to traverse a link
is proportional to the latency of that link (Figure 3).

3.3. Grid Monitoring

One obstacle to visualizing the progress and

performance of actual applications is obtaining
appropriate data from these applications. This task will
hopefully be made easier in the future by the adoption of
uniform monitoring and discovery mechanisms, such as
those defined by the Open Grid Services Architecture
(OGSA) [15] and discussed within the Grid Monitoring
Architecture group at the Global Grid Forum [16].

In the meantime, we have developed our own custom
event infrastructure for use in our work. This
infrastructure comprises a logging server to which
applications can send events, plus APIs for sending events
to, and receiving events from, this server. The service
both archives events and forwards them to any clients that
have asked to receive them. Hence, events received from

a
o

i
i
l
t

3
a
m
e

“
i
T
(
i
a
d
s
t
a
i
c

e
s
u

Figure 3. GridMapper display showing the path obtained by running traceroute from a host at
Argonne National Laboratory in Argonne, Illinois, to Monash University in Clayton, Australia.
pplications can be visualized in real time, at a later time,
r both.

Our prototype service does not address security
ssues, which would of course be required in a production
mplementation. We expect the development of OGSA to
ead to the development of more sophisticated services
hat address these issues.

.3.1. Logging Capabilities. We base our logging server
nd APIs on the NetLogger toolkit, a set of tools that
ake it easy for distributed applications to log interesting

vents [17, 18].
Log messages are text strings structured as a list of

field=value” tuples with, in our case, required fields
ncluding DATE, HOST, PROG (program), LVL (level),
YPE, ID (unique identifier), and FRIENDLY.NAME

human-readable string). The last two fields are used to
dentify particular streams of events when presented with
 list of streams. The TYPE field distinguishes among
ifferent event types and thus dictates what other tuples
hould be present in the string. In particular, we define a
ransfer type, which gives performance measurements
ssociated with data transfers, and a job type, which
ndicates the number (and state) of jobs running on a
ompute resource.

In order to obtain useful information based on these
vents it is critical that the clocks of all systems are
ynchronized. We accomplish this synchronization by
sing NTP [19].

3.3.2. Logging Server. Our server extends the
capabilities of netlogd, a simple program provided with
the NetLogger toolkit that reads data from the network
and writes it to a file. The various components of an
distributed system that we wish to monitor with
GridMapper are then instrumented to send performance
data and other events to this server.

Our server can log events from many streams
simultaneously, putting all events with the same stream
ID field into its own text file. Hence, events from
different providers, potentially logging different types of
events, can be treated as a single stream of events.

Clients—in the case of GridMapper, our visualization
application—can use the client API to make queries to the
server and subscribe to particular event streams.

3.3.3. Logging Client API. The logging client API
enables three important interactions with the server:

• Queries: Users can request a list of all event streams

that meet criteria expressed as a set of required
“field=value” pairs. Users can also filter requests
based on whether any providers of a stream are
currently connected to the server (i.e., if there is live
data). The user provides a callback function for
processing list entries, which gets called for each
entry in the list.

• Subscriptions: Users can subscribe to, and
unsubscribe from, streams based on the stream ID.
When subscribing, they can specify the time range of
the events that they are interested in receiving. A

time range can encompass both archived (past) and
live (current and future) events. Once subscribed to a
stream, the client again gets callbacks, to a function
that the user provides, for each event in the stream.
Unsubscribing simply means closing the connection
with the server and no longer receiving events.

• Notify: Users can subscribe to a special “notify”
stream that is produced by the server. This stream
sends a begin event after the first message it receives
for a new stream ID and an end event after the last
connection sending events for that stream ID has
been closed. Users can specify filters to be used when
subscribing to the notify stream, so that they are
notified only of the particular streams in which they
are interested.

The API also provides convenience methods that

users can use in their callback functions for parsing values
out of the stream lists as well as out of the events.

3.3.4. Visualization Control: Listing and Subscribing.
The GUI of our visualization tool provides a number of
controls for Grid monitoring. There is a place to enter the
hostname and port where the logging server is listening.
There is a region for managing list requests, which allows
the user to specify filters to use in those requests. This
region is also where request results are displayed, along
with buttons for subscribing to and unsubscribing from
the streams.

Another region supports the handling of the notify

stream. Here the user can specify filters to use on the
notify stream, see the list of streams of which they have
been notified, and subscribe to and unsubscribe from
those streams.

There are also buttons that allow the user to
automatically subscribe to streams when they begin
sending events and/or unsubscribe from them when they
stop sending events.

Another group of controls on the GUI deals with data
that is currently being visualized. There is a list here of all
the streams that are currently subscribed to, with a button
for unsubscribing. It is necessary to have this list in
addition to having these items in the List or Notify
regions because the lists in the other two regions are
subject to change and it is possible for a subscribed
stream to be removed from those lists, leaving the user
without a way to unsubscribe. This region also contains
widgets for controlling different aspects of the actual
visualization of the data (described below).

3.3.5. Visualizing the Data. When the visualization
application receives the first transfer event for a stream, it
plots the endpoints of the transfer on the map, adds a link
between the two sites, and stores the statistics for the
transfer (total number of bytes transferred so far, current
bandwidth, and average bandwidth). For subsequent
events for that transfer, the visualization tool locates the
appropriate sites and link and updates their values.
Spheres are moved along the link in the direction of the
data flow. Each sphere represents a particular amount of
Figure 4. Numerous transfers from multiple hosts around the United States, and one in Europe, all
moving data through the GridFTP proxy server in Denver, Colorado during a demonstration at SC2001.

data, between five and one hundred megabits, which is
controlled from a slider on the GUI, and moves at a
constant speed along the link, also controlled from the
GUI. Additional spheres are placed onto the link based on
the current bandwidth. When multiple transfers are
moving in the same direction along a link, the user can
chose to display a different set of spheres for each transfer
(each set a different color) or a single set that represents
the total bandwidth of all transfers.

For job events, the tool plots the site where the jobs
are running and keeps track of the number of jobs
submitted, completed successfully, and failed. The site is
highlighted while jobs are actively running there.

Selecting a site on the map brings up a text region
with information about the site, hosts who have jobs that
are being monitored, and transfers into and out of this site.

4. Application Examples

We use three examples to illustrate GridMapper’s

capabilities: a data transfer system, a remote computing
application, and a collaborative environment.

4.1. GridFTP

We exploited logging capabilities incorporated in the

GridFTP data transfer tools [20, 21] to enable
visualization of wide area data transfers. In a
demonstration at the SC2001 conference we visualized

the activities of a prototype GridFTP proxy server [22].
With a GridFTP server running on each node of two
eight-node clusters, the front-end proxy server receives all
initial connections and forwards transfer requests to the
backend server with the lightest load. We used our
visualization tool to monitor 58 hosts spread across 21
sites as they transferred data to the proxy server, at a
sustained rate of ~1.8 gigabits/sec and peak rate of ~2.8
gigabits/sec (Figure 4).

4.2. Remote Computing Application

We have used GridMapper to monitor a prototype

remote computing application developed within the
National Fusion Collaboratory project [23] (Figure 5). In
this application, data is transferred from a storage location
(on the left side of the image) to several compute
resources that perform some computation (on the right
side of the image). The results are then transferred back to
the storage resource. The data is then transferred to
another resource (which happens to be co-located with the
storage system) where a visualization client displays it.

4.3. Access Grid Beacon

We extended our tool to support visualization of

NLANR Multicast Beacon data. The raw data from the
beacon is made available from a URL, which we access
using capabilities provided by the Globus Toolkit™ [24].

Figure 5. This image shows a view of a run of the National Fusion Collaboratory application. The
inverted cones above the two sites indicate that there active jobs currently running at those sites.

We again place cones on the map to represent sites where
Beacon Clients are being run. Since multiple beacons can
be running from a single location, all beacons originating
from the same domain are listed under a single site.
Selecting a site on the map brings up a text display with
information about that site: site name, domain, city, state,
country, and details about each beacon at that site: index
(as assigned to it by the Beacon Server), hostname, and IP
address.

Links are drawn from each site to all other sites and
are color-coded based on the value of the parameter being
displayed: loss, delay, jitter, order, or duplicate. The
particular values that the colors represent differ slightly
between parameters, but in general they are green (good),
yellow (fair), red (poor), and gray (data either stale or
unavailable). The user can select which parameter to
display on the links. A legend shows the values
represented by each color for the current parameter.

The GUI displays a list of all of the beacons, ordered
by index, giving the site name and hostname of each
beacon. The map can quickly become cluttered and
unreadable if all links are shown at once. Therefore, there
are controls on the GUI for selecting which links to
display. The user can easily show only those links that
have valid data or, conversely, only those with stale data.
This feature can be useful when trying to identify sites in
the multicast session that are having connectivity
problems. The user can also toggle on/off all links
into/out of individual sites.

The Access Grid (AG) is a system for distributed
group-to-group collaboration [25, 26], including
communication through audio and video streams
broadcast via multicast. The AG community uses the
NLANR multicast beacon to monitor connectivity
between AG nodes. In addition to network measurements,
the AG beacon contains information about the hosts
running the beacon, such as the architecture of the
machine and versions of the software. (Again, this
information could in the future be provided in a more
uniform fashion via a grid information service such as
MDS [11].) We have used our visualization tool to
successfully monitor all of this AG beacon data. The
additional information is made available on the GUI of
our tool. Using our tool to visualize this data not only
gives insight into the connectivity issues of the AG but
also helps illustrate the extent to which the AG has grown
by showing the distribution of sites around the world
(Figure 6).

5. Future Work

Our GridMapper prototype uses a combination of our

own custom notification mechanisms and NetLogger-
based services to obtain performance information from
applications. In the future, we will explore the use of
notification and discovery mechanisms provided within
the Open Grid Services Architecture both for registering
arbitrary “services” (e.g., application process or resource)
Figure 6. The visualization of the AG multicast beacon shows in this view all of the links into and out
of one particular beacon. In the upper left, we show the textbox that appears when a site is

highlighted. The GUI used to control the application, shown at the bottom, is actually a separate
window, which has been placed on top of the graphics window in this view.

with GridMapper and for obtaining information from
those services.

We have also identified several directions to pursue
with our visualization tool. Of foremost concern is
improving upon the methods used to visualize the data.
We are exploring different techniques for representing
different types of data. This will become increasingly
important as we continue to include more information
from additional data sources. We will also explore the
scalability of the system in terms of the number of data
sources that can be processed and displayed.

Also, continued enhancement of current capabilities
is important. In particular, we need to find new and better
ways of obtaining accurate positioning information. We
would like to expand on the traceroute capabilities, for
instance adding the ability to do third-party traceroutes.
We are considering using Globus Toolkit services for
resource allocation and remote job submission to
accomplish this. We could then show the actual paths that
data transfers take, rather than showing that information
out of band. Similarly, we would like to show results from
mtrace, a tool for doing multicast traceroutes, and other
multicast information. We also plan to add filtering to the
multicast beacon visualization. This will allow users to
make requests such as “Show me all of the links that have
a loss rate of greater than twenty percent.”

As the applications that we monitor are dynamically
changing, it would be helpful to be able to see not only
the current state but also how performance has changed
over time. We plan to add graphing capabilities to help
illustrate these changes. Another capability that we would
like to provide is access to our visualization via the Web.
The current implementation requires significant graphics
power, however, so a Web interface will require different
methods of visualization.

6. Conclusion

Visualizing the performance and interactions of

dynamically changing resources in a distributed
computing environment is a complex task. Getting
accurate information about the location of resources is
particularly difficult. Getting performance data from
applications can also be a challenge, especially without
making changes to the code itself. Building applications
on top of tools that have instrumentation built into them
can greatly simplify this process.

Using visualization systems such as the one presented
here offers the immediate benefit of enabling one to see
things happening, confirming that the system is working
(or not working). When failure or bottlenecks occur
visualization can help identify the causes, or at least the
location of the problem.

Much work remains to be done, but we believe that
the tools that we have developed have brought us a step

closer to understanding the benefits of distributed systems
visualization. Further investigation is required to reveal its
ultimate usefulness.

Acknowledgments

This work was supported by the Mathematical,

Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific
Computing Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38 and included partial support
under the auspices of the Scientific Discovery through
Advanced Computing Initiative.

References

[1] V. N. Padmanabhan and L. Subramanian, An Investigation
of Geographic Mapping Techniques for Internet Hosts.
Proceedings of the 2001 conference on applications,
technologies, architectures, and protocols for computer
communications. ACM Press New York, NY, USA, 2001, pp.
173-185.

[2] R. Olson, IPtoLL.
http://wwwunix.mcs.anl.gov/~olson/IPtoLL.html

[3] CAIDA, the Cooperative Association for Internet Data
Analysis. http://www.caida.org

[4] D. Moore, R. Periakaruppan, J. Donohoe, and K. Claffy,
Where in the World Is netgeo.caida.org?
http://www.caida.org/outreach/papers/2000/inet_netgeo/

[5] R. Periakaruppan and E. Nemeth, GTrace – A Graphical
Traceroute Tool. Proceedings of 13th Systems Administration
Conference - LISA 1999.

[6] NLANR Multicast Beacon.
http://dast.nlanr.net/Projects/Beacon/

[7] Multi Router Traffic Grapher.
http://people.ee.ethz.ch/~oetiker/webtools/mrtg/

[8] VisualRoute.
http://www.visualware.com/visualroute/index.html

[9] Viznet. http://dast.nlanr.net/projects/viznet/doc/

[10] S. G. Eick, Aspects of Network Visualization. IEEE
Computer Graphics and Applications. March 1996, pp. 69-72.

[11] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman,
Grid Information Services for Distributed Resource Sharing.
Proceedings of the Tenth IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10), IEEE
Press, August 2001.

[12] V. Jacobson, Traceroute source code and documentation,
1988. Available from: ftp://ftp.ee.lbl.gov/traceroute.tar.gz.

[13] R. Wolski, N. Spring, and J. Hayes, The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing, Journal of Future Generation
Computing Systems, Volume 15, Numbers 5-6, pp. 757-768,
October, 1999.

[14] G. Jin, G. Yang, B. Crowley, D. Agarwal, Network
Characterization Service (NCS), Proceedings of the 10th IEEE
Symposium on High Performance Distributed Computing
(HPDC-10), IEEE Press, August 2001.

[15] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, The
Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration.
http://www.globus.org/research/papers/ogsa.pdf January, 2002.

[16] B. Tierney, R. Aydt, D. Gunter, W. Smith, V. Taylor, R.
Wolski, and M. Swany, A Grid Monitoring Architecture.
http://www-didc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-
GP-16-2.pdf

[17] D. Gunter, B. Tierney, B. Crowley, M. Holding, and J. Lee,
NetLogger: A Toolkit for Distributed System Performance
Analysis. Proceedings of the IEEE Mascots 2000 Conference,
August 2000, LBNL-46269.

[18] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks,
and D. Gunter, The NetLogger Methodology for High
Performance Distributed Systems Performance Analysis.
Proceedings of IEEE High Performance Distributed Computing
Conference, July 1998, LBNL-42611.

[19] D.L. Mills, Adaptive Hybrid Clock Discipline Algorithm
for the Network Time Protocol. IEEE/ACM Trans. Networking
6, 5, October 1998, pp. 505-514.

[20] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I.
Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and
S. Tuecke, Secure, Efficient Data Transport and Replica

Management for High-Performance Data-Intensive Computing.
IEEE Mass Storage Conference, 2001.

[21] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, C.
Salisbury, and S. Tuecke, The Data Grid: Towards an
Architecture for the Distributed Management and Analysis of
Large Scientific Datasets. Journal of Network and Computer
Applications, 23:187-200, 2001.

[22] SC2001 Bandwidth Challenge Entry, Simulation of a High
Energy Physics (HEP) Tier One Site, http://www-
fp.mcs.anl.gov/dsl/scidac/datagrid/sc2001_bw_challenge_entry.
htm

[23] K. Keahey, T. Fredian, Q. Peng, D. P. Schissel, M.
Thompson, I. Foster, M. Greenwald, and D. McCune,
Computational Grids in Action: The National Fusion
Collaboratory, accepted for publication in the Journal of Future
Generation Computer Systems.

[24] I. Foster, C. Kesselman, Globus: A Toolkit-Based Grid
Architecture. In Foster, I. and Kesselman, C. eds. The Grid:
Blueprint for a New Computing Infrastructure, Morgan
Kaufmann, 1999, 259-278; and http://www.globus.org.

[25] L. Childers, T. Disz, R. Olson, M. E. Papka, R. Stevens,
and T. Udeshi, Access Grid: Immersive Group-to-Group
Collaborative Visualization, Proceedings of the Fourth
International Immersive Projection Technology Workshop, June
19-20, 2000

[26] L. Childers, T. L. Disz, M. Hereld, R. Hudson, I. Judson, R.
Olson, M. E. Papka, J. Paris, and R. Stevens, ActiveSpaces on
the Grid: The Construction of Advanced Visualization and
Interaction Environments, Parallelldatorcentrum Kungl
Tekniska Högskolan Seventh Annual Conference (Simulation
and Visualization on the Grid), vol. 13, Lecture Notes in
Computational Science and Engineering, B. Engquist, L.
Johnsson, M. Hammill, and F. Short, Eds. Stockholm, Sweden:
Springer-Verlag, 1999, pp. 64-80

	GridMapper: A Tool for
	Visualizing the Behavior of Large-Scale Distributed Systems
	
	Abstract

	Introduction
	Background and Related Work
	Visualization System
	Resource Placement
	Traceroute
	Grid Monitoring

	Application Examples
	GridFTP
	Remote Computing Application
	Access Grid Beacon

	Future Work
	Conclusion
	Acknowledgments
	References

