
High Performance Distributed Computing (HPDC-11), Edinburgh, Scotland, July 24-26, 2002

InfoGram: A Grid Service that Supports Both Information Queries and Job
Execution

Gregor von Laszewski
�
, Ian Foster

�
, Jarek Gawor

�
, Andreas Schreiber

��� �
, Carlos J. Peña

��� �

�
Argonne National Laboratory, 9700 S. Cass Ave, Argonne IL 60439, U.S.A.�
German Aerospace Center (DLR), Linder Höhe, 51147 Cologne, Germany�

State University of New York at Stony Brook, Stony Brook, NY 11794, U.S.A.
gregor@mcs.anl.gov

Contents

1. Introduction 1

2. Execution Service 2

3. Information Service 3

4. Using GRAM and MDS in Production Grids 3

5 Addressing Requirements for the InfoGram Service 3
5.1. Performance . 3
5.2. Quality of Information . 4
5.3. Security . 4
5.4. Portability . 4
5.5. Flexible and Extensible Information Model . 4

6. InfoGRAM Architecture 4
6.1. Job execution . 5
6.2. Portability . 5
6.3. Information Service . 5
6.4. Configuration . 6
6.5. Caching and Information Degradation . 6
6.6. Service Reflection . 6
6.7. Client Interaction through xRSL . 6

7. Implementation 7

8. Application 8

9. Related Work 9

10. Status and Future Plans 9

11. Discussion and Conclusion 10

InfoGram: A Grid Service that Supports Both Information Queries and Job
Execution

Gregor von Laszewski
�
, Ian Foster

�
, Jarek Gawor

�
, Andreas Schreiber

��� �
, Carlos J. Peña

��� �

�
Argonne National Laboratory, 9700 S. Cass Ave, Argonne IL 60439, U.S.A.�
German Aerospace Center (DLR), Linder Höhe, 51147 Cologne, Germany�

State University of New York at Stony Brook, Stony Brook, NY 11794, U.S.A.
gregor@mcs.anl.gov

Abstract

The research described in this paper is performed as
part of the Globus Project. It introduces a new Grid ser-
vice called InfoGram that combines the ability of serving as
information service and as a job execution service. Pre-
viously, both services were architected and implemented
within the Globus Toolkit as two different services with dif-
ferent wire protocols. Our service demonstrates a signif-
icant simplification of the architecture while treating job
submissions and information queries alike. The advantage
of our service is that it provides backwards compatibility
to existing Grid services, while at the same time provid-
ing forwards compatibility to the emerging Web services
world. Part of the work conducted within this effort is al-
ready reused by the current Open Grid Services Architec-
ture prototype implementation.

1. Introduction

The Grid approach is an important development in the
discipline of computer science and engineering[36]. It
is making rapid progress on several levels, including the
definition of terminology, the design of an architecture
and framework [15], the application in scientific problems
[6, 5], and the creation of physical instantiations of Grids on
a production level [12, 3, 2]. Grids provide an infrastructure
that allows for flexible, secure, coordinated resource sharing
among dynamic collections of individuals, resources, and
organizations.

Over the past few years, the Globus Project has de-
veloped the Globus Toolkit [4] that provides a basic Grid
middleware toolkit, which includes elementary services to
address Grid management issues related to resource man-
agement, security, information, and data management [36].
Two of the most important Grid services that are provided

by the Globus Toolkit are the information service and the
job execution service.

The information service returns information about the
capabilities and the state of the Grid infrastructure. The
Globus Toolkit provides such an information service called
Monitoring and Directory Service (MDS) [37, 9], formerly
known as Metacomputing Directory Service.

The job execution service controls the submission and
execution of jobs on remote machines. The Globus Toolkit
provides such a service under the name Grid Resource Allo-
cation and Management (GRAM) service [11]. GRAM pro-
cesses requests for execution, performs resource allocation,
monitors, and controls job execution. Furthermore, a lim-
ited amount of information related to the capabilities and
availability regarding the job execution service for a Grid
resource can be exposed through an information provider to
the MDS. This information includes, for example, the name
of the queue, details about the mode of operation, and other
important features that may guide the process of job sub-
mission by the user. Authentication to MDS and GRAM
are handled through the Grid Security Infrastructure (GSI)
[7].

The information and job execution service have so far
existed as separate services within the Globus Toolkit. Con-
siderable software engineering effort is necessary to imple-
ment, maintain, and deploy these services while at the same
time support interoperability. We argue that this complex-
ity can be reduced significantly by alternative approaches to
both protocol design and implementation. To test this hy-
pothesis, we developed a prototype that promises a signifi-
cant simplification in all aspects previously mentioned. We
have termed our prototype InfoGram in order to acknowl-
edge its dual purpose.

Our research has the following objectives and goals:

� Design of a simplified Grid service architecture to pro-
vide a unified service for information, monitoring, and
job submission.

� Develop this service while providing backwards com-
patibility by adhering to standard Grid protocols.

� Support multiple information return request formats
such as LDIF and XML.

� Improve the reliability of the job execution and in a
second phase while replacing the protocol used to per-
form the Job submission with SOAP.

� Provide an open framework that can be easily adapted
to interact with local schedulers and extract informa-
tion through custom designed information providers.

� Provide a framework that is based on GSI and its ap-
plication within the Globus toolkit to map Global Grid
User Identifiers to local account names.

� Develop this service while providing forwards compat-
ibility to Web services.

� Build a groundwork for a Web services based imple-
mentation of Globus services.

The rest of this paper is structured as follows: First, we
discuss the Globus Toolkit services GRAM and MDS in
more detail. We outline how the operational integration of
these services is achieved in production Grids. Next, we
present the enhancements to the GRAM service that allow
constructing our InfoGram service. We demonstrate that
our service provides a significant architectural simplifica-
tion but at the same time provides enhancements currently
not available in the Globus Toolkit. Additionally, we show
that this new service can still be integrated into the existing
MDS concept. Finally, we outline how such a service can
be used as part of Grid applications.

2. Execution Service

To contrast our differences to the Globus GRAM it is
necessary to revisit the architecture of the Globus GRAM
service. The basic structure of a GRAM service (version
1.1.x) and its interaction with clients relevant for our discus-
sion is depicted in Figure 1. A GRAM service provides the
basic functionality for secure and uniform access to remote
computational resources. The functionality of GRAM can
be explained as part of a typical three tier architecture. Be-
fore we include our enhancements to this architecture (Sec-
tion 6), we explain the functionality of each tier in more
detail.

Client Tier: A client can submit a job to a remote resource
and can check on its status either through polling the
status of the job or through event notification to the
client through the GRAM Service. To allow iden-
tification of the job, a job handle (often referred to

GRAM Server

Job ManagerGatekeeperClient
Local Job
Execution

Client Tier Middle Tier Backend Tier

Security
Policy

GRAMP

GRAMP

RSL Log

Figure 1. The Gram Architecture

GlobusID) is returned on job startup so that it can be
used for later connection, including from other remote
clients with appropriate authorization. For example,
this job handle can be used to contact the job and issue
a cancellation.

Middle Tier: Internally, GRAM consists of a gatekeeper
and a job manger. The gatekeeper is responsible for
authentication with the client, performing a simple au-
thorization based on mapping the authentication infor-
mation into a local security context (e.g., a Unix lo-
gin). After this initial security check, it starts up a job
manager that interacts thereafter with the client based
on the GRAM protocol (from now on referred to as
GRAMP). Each job submitted by a client to the same
GRAM will start its own job manager.

Backend Tier: Once the job manager is activated, it han-
dles the communication between the client and the
backend system on which the job is executed. The
backend tier is easily portable to various scheduling
systems. The Globus Toolkit services provide schedul-
ing interfaces [25, 20] such as PBS [21], LSF [30],
Condor [22], and Unix process fork [32].

The GRAM service can be accessed with the help of a
C or a Java application interface. This interface includes
the ability to specify a job runable on a particular resource
with the help of a uniform Resource Specification Language
(RSL). The RSL makes it possible to quickly and uniformly
specify jobs to be run as part of a Globus enabled Grid.
Simple tools are available to access the basic functionality
also from the command line.

Although, we have in the past demonstrated mechanisms
and protocols for application states and notification, such
advanced functionality [38] has not yet been included in the
Globus Toolkit.

3. Information Service

The basic structure of a Grid information service is de-
fined in [37] and was further refined in [10]. A Grid infor-
mation service requires

� access to static and dynamic information regarding
system components and services,

� a framework that fits well with the heterogeneous
and dynamic nature of Grids, including decentralized
maintenance and operation,

� scalability and performance,

� integration of a variety of information providers.

The Globus Project has developed a basic information
service that addresses these requirements. The Globus Grid
information service, MDS, contains two fundamental enti-
ties: distributed information providers and information ag-
gregates. An information provider is a service that provides
a subset of useful information about resources exploited by
Grid users or Grid services. Examples of information that
may be accessed through such an information provider is
CPU, operating system, network, and file system informa-
tion.

Additionally, the aggregate service is used to integrate
a set of information providers that may be part of a vir-
tual organization [16]. To increase the scalability of a dis-
tributed information service, the MDS provides an informa-
tion caching function that allows viewing and querying the
information about a resource from a cache. Furthermore,
the newest implementation of a Grid information service
that implements the framework proposed by the MDS con-
cept integrates GSI to perform authentication.

The information contained within MDS can be queried
and used to enable more sophisticated Grid services. More
details about the protocols, the services, and the newest
nomenclature can be found in [19, 9].

The research within this paper concentrates on the in-
formation provider itself, as we can create information ag-
gregates through reuse of information providers to improve
scalability. Furthermore, we argue that it is worthwhile to
provide google like services as have been used in many pre-
vious Grid like projects [34, 35, 13].

4. Using GRAM and MDS in Production Grids

Figure 2 shows how the GRAM and the MDS services
may be used in a simple production Grid. Our Grid con-
sists of one virtual organization that maintains a number
of compute resources. Each compute resource has the

Virtual Organization

Resource Layer

Connectivity Layer

Client

GRIS backend

GRAM

Figure 2. A sample interaction between a
client, GRAM, and MDS

Globus GRAM and the Globus Resource Information Ser-
vice (GRIS) that returns information related to the local re-
source installed.

In order for a client to perform a job execution and an
information query two different mechanisms for contact-
ing these services must be used. Not only do the services
operate through different ports, but they also use different
protocols making the amount of code sharing for interpret-
ing return values more complex. The installation of both
services requires additional sophistication. We feel that the
use of different technologies is in contrast with the desire to
provide a minimal set of protocols and services for Grids as
promoted by the Global Grid Forum and the Globus Project
[16]. If we think abstractly about job execution and an in-
formation service we must recognize that they are based on
the same principle: A query formulated and submitted to a
server followed by a stream of information that returns the
result based on the query.

5 Addressing Requirements for the Info-
Gram Service

We have designed our InfoGram service according to a
set of requirements determined by general software engi-
neering practices which include factors such as quality, per-
formance, reliability, security, and portability. All of these
factors must be addressed within the realm of Grids. Never-
theless, we concentrate our efforts on the following issues.

5.1. Performance

An information and Job execution service must perform
their tasks quickly. The elapsed time between job request
and job submission must be as short as possible. At the

same time information within the system must be accessi-
ble quickly. For example, it may be inefficient to execute
each time a user requests data the program creating the data
or a query relayed to an external information service. A
simple example will illustrate our point. Assume we have
a large number of clients that need to know the CPU load
of a remote compute resource. It would be wasteful to ex-
ecute the command requesting the load every single time.
Instead, it can be more efficient to cache this value within
the information service, and only refresh this cache value
periodically. In order to prevent staleness of information
we attach a time to live (TTL) value with the information.
This value will tell us when a refresh of the information in
the cache is necessary.

5.2. Quality of Information

Information within Grids may become quickly inaccu-
rate. We observe often two cases. Case One: In the sim-
plest form the information can be describe as binary system
where the information is either accurate or inaccurate. Case
Two: In many other situations the information may degrade
over time in a discrete fashion. Thus, it is not unreason-
able to attach a degradation function with the actual value
of information that reflects the degree of degradation. This
function may be influenced by time, system state, or predic-
tion functions to derive a quality of information assessment.
Often it is possible to attempt to derive such degradation
information through observation or through mathematical
models while performing self correction based on observa-
tion data. This is not unlike sophisticated data assimilation
as used in climate research that corrects its values based
on a comparison between observations and prediction mod-
els. The quality of information becomes important in case
more sophisticated resource management strategies are de-
veloped. If I obtain an attribute such as “mean CPU load”
from a Grid information service, it is beneficial to have the
quality of the information attached. Knowing the standard
deviation or knowing that the accuracy of the value is valid
over the last hour or the last day is an important factor to
create more sophisticated Grid services.

5.3. Security

Access to services such as the information and job ex-
ecution needs to be performed securely. The Grid Secu-
rity Infrastructure (GSI) provides us with an elementary
framework for authentication. Nevertheless, authentication
is only one problem to be addressed within Grids. In our
framework we strive to include authorization that allows
us for example to specify contracts such as “allow access
to this resource from 3 to 4 pm to user X.” Additions to

GSI and the use of more sophisticated authentication frame-
works [33] may provide them in future.

5.4. Portability

Protocol compatibility of these services is preserved with
the Globus Toolkit while using the GRAM, and Grid Se-
curity Infrastructure (GSI) protocols . Future activities
will include the integration of commodity protocols (such
as SOAP) to provide interoperability to Web services and
greater acceptance outside of the Grid community [17].

5.5. Flexible and Extensible Information Model

One of the issues we face with information providers is
the lack of a standard that is uniformly adhered by the com-
munity. We observe the use of CIM, MIB, MDS, or non
standard or unorthodox display of information in tables. Al-
though we believe that the creation of a consistent informa-
tion model is an important one, we focus within this paper
on the mechanism of delivering that information to the user.
The reasoning for this strategy is that our InfoGram service
provides the necessary mechanisms for delivering the infor-
mation according to the information model used within the
information provider. We have made good experience with
the use of XML schemas as basis for the next generation of
Information services and believe that it provides a viable al-
ternative to the currently used LDAP schemas. Compatibil-
ity can be maintained while developing strict guidelines for
the object definition through for example the Global Grid
Forum.

Nevertheless, we believe that an additional requirement
must be fulfilled to enhance the use and acceptance of Grids.
We believe that the execution of untrusted applications in
trusted environments is important to enable the use of Grids.
We hope that through this feature the user community will
increase dramatically based on software that for example is
developed as part of our activities.

Providing such software will enable the creation of in-
frastructures that will promote Grids in new communities,
which previously did not have the luxury to, for example,
access high end resources. Besides making access to su-
percomputer centers for outside users much more feasible,
we foresee that resource providers may be more willing to
contribute resources otherwise not part of the national-scale
Grids.

6. InfoGRAM Architecture

As pointed out earlier, we modified the architecture of
the GRAM server and enhanced it substantially in order to
fulfill the requirements described earlier. We added to the
original architecture additional components, as shown by

the shaded components in Figure 3 and describe these en-
hancements based on the functionality they are providing.
These functionalities are centered on client interaction, log-
ging and check pointing, job execution, information man-
agement, and configuration.

Job ManagerClient

Local Job
Execution

Client Tier Middle Tier Backend Tier

xRSL

Log
File

Security
Authentication

Policy

Logger

System
Monitor
Service

Gatekeeper

Security
Authorization

Policy

MDS

System

jar

System
Information

Service

Conf. Conf.

Conf.

Conf.

Conf.

Figure 3. The InfoGram architecture that com-
bines a GRAM service with an Information
Service using only one protocol between
client and server.

Logging and check pointing is enabled through a logging
service. This service can receive logging events from sev-
eral components. The log can either be stored in the middle
tier, or on the backend tier. In either case the log can be
used to restart our InfoGRAM service in case it needs to be
restarted (e.g. the machine was shut down). In the same way
it would be possible to use the logging service for check
pointing of applications. Presently, we only record mini-
mal information such as the command used and arguments
executed. We intend to use this logging service to provide
simple Grid accounting.

6.1. Job execution

The execution of jobs is made more robust while inte-
grating a logging and fault tolerance mechanism that allows
to restart a job upon failure.

6.2. Portability

Protocol compatibility of these services is preserved with
the Globus Toolkit while using the GRAM, and Grid Se-
curity Infrastructure (GSI) protocols . Future activities
will include the integration of commodity protocols (such
as SOAP) to provide interoperability to Web services and
greater acceptance outside of the Grid community. We will
integrate our results in the emerging OGSA framework [14].

6.3. Information Service

As mentioned previously, the InfoGram Service contains
several novel features in regards to the information service
part it provides. These features are: An Information service
that is integrated with GRAM providing backwards com-
patibility to MDS, and support of information caching and
the retrieval of elementary information associated with the
remote resource. Additionally, we are integrating in our ser-
vice the feature of information degradation and self adapta-
tion of information updates as discussed earlier

Our information service is architected with two compo-
nents (see Figure 3): the system monitor and the system in-
formation service. The monitor service controls initializing
and caching the results requested by the clients. The sys-
tem information service returns relevant information about
the system resources, through either (a) calls to a system
command via the Java runtime exec (b) a query to a func-
tion exposing Java runtime information such as load, mem-
ory, or disk space (c) or a read function from a file that is
used by an information provider. A good example for the
later is the Linux proc file system. As we have chosen an
object oriented framework for our implementation integra-
tion of new information providers can be performed through
the implementation of interfaces. This will allow us to be
able to provide a flexible and extensible information ser-
vices framework.

class SystemInformation interface {
String getKeyword();
void setKeyword();
Object queryState();
Object updateState();
Time ttl ();
int validity();
Public void setDelay(Time time);
String setFormat(Format format);
Time getAverageUpdateTime();

}

This interface allows to generate new information
providers in a fashion very similar to the current MDS
model and its implementation. The method queryState is
a non blocking and returns a valid information only when
the information has been queried previously and the time
to live (ttl) value has not expired. Otherwise it throws an
exception. Upon invocation of the updateState method, a
blocking method is called that returns the appropriate infor-
mation while also updating the time to live value. If multi-
ple updateState methods are invoked, monitors are used to
only perform one such update at a time. Additionally we
provide a delay that controls how many milliseconds must
pass between consecutive calls of updateState before the ac-
tual information is obtained through for example a runtime

Table 1. The InfoGram configuration file pro-
vides a mapping between keywords and in-
formation providers

TTL Key command
60 Date date -u
80 Memory /sbin/sysinfo.exe -mem
100 CPU /sbin/sysinfo.exe -cpu
0 CPULoad /usr/local/bin/cpuload.exe
20 JMemory /globus/bin/sysinfo.jar -mem
1000 list /bin/ls /home/gregor

exec call. This is useful in such cases where users ask for
information more frequently than it can be produced by the
system.

6.4. Configuration

We provided a configuration component that allows the
setup the InfoGram service. This includes the possibility to
configure the system monitor service with customized in-
formation providers similar to the MDS. This configuration
file contains the following parameters:

TTL: the lifetime in millisecond of each data generated by
the specific key word; 0 specifies execution of the key-
word every time it is requested.

Keyword: the keyword that will be used in an RSL string
to identify the mapping to a real program or a Java
application to be executed in the background.

Executable Path: the full executable path and name with
arguments, machine dependant that is associated with
the keyword.

We provide an example for the information represented
contained within such a configuration file in Table 1. As
the keyword identifies the information obtained with the
program we will refer to it from now on as a key infor-
mation provider. Each attribute within a key information
provider is augmented with a namespace conform to the
keyword. Thus the attribute “total” in the “Memory infor-
mation provider” would be referred to as Memory:total.

6.5. Caching and Information Degradation

The caching functionality is similar to that of the MDS
2.0. Nevertheless, queries to the information service are
simple all-or-nothing queries based on the keywords used
within the configuration files. That means, all attributes
that are obtained through the command associated with a
keyword will be returned. Based, on this simple model the

caching of information is easily possible. Additionally, we
have the option to augment each attribute that is returned
within a key information provider with a degradation func-
tion or a quality of information value. Selecting of similar
information attributes can than be performed on the quality
of the information provided.

6.6. Service Reflection

Each information service can be queried and a client may
inspect the schema that is returned by the information ser-
vice. This it will allow developers to design programs that
can be flexible to the actually used information schema. We
believe that reflection and introspection of the capabilities
of an execution and information service will become in-
creasingly important with the increased number of available
Grid services.

6.7. Client Interaction through xRSL

Although we developed our first prototype architecture
as a Web service, we felt at the time that it would provide to
big of a departure to the existing Globus Toolkit. We argued
that most important for the acceptance of our information
service is the recognition that the Globus Toolkit reached
ubiquity within the community.

Thus, as we wanted to maintain a degree of backwards
compatibility we decided not to chose a pure Web services-
based implementation, that uses only WSDL [8], XML-
schema [42], and XML query. We felt that such an effort
could be performed in a second step (as it is now performed
as part of the Open Grid Service Architecture [1]). Instead
of using URIs to formulate job submission and information
queries, we argued that users of the Globus Toolkit are suf-
ficiently familiar with RSL. Therefore, it was most natural
to extend RSL with the more advanced features we have in-
troduced so far. We added the following tags to the Globus
RSL: schema, info, filter, response, performance, quality,
and format. We call the result xRSL.

Info. The info tag is followed by the key as speci-
fied in the configuration file, defining a mapping be-
tween the keyword and the command to be executed.
If it is set to (info=all), all commands are ex-
ecuted. Commands can be selectively queried while
concatenating multiple info tag queries, for example,
(info=Memory)(info=CPU). A special value for the
info tag is (info=schema). This returns a hierarchical
schema that contains all objects associated with the key-
words and lists properties of their attributes.

Response. The response tag defines the behavior with
respect to the information caching. Thus, with

(response=immediate) the commands associated
with the info tag are executed immediately regardless of the
time to live. This will also update the cached values. Us-
ing (response=cached) which is default, will return
the information from the cache value if it is valid; otherwise
it will update the cache first. Using (response=last)
will return the value stored last in the cache without updat-
ing it.

Quality. The quality threshold tag provides the possibility
to specify a percentage number that gives additional guid-
ance if a cached value should be returned or if the infor-
mation needs to be refreshed before return. Currently, we
define the following semantic. If the degradation function
of any of its returned attributes is below that threshold, this
attribute is regenerated by the associated command.

Performance. The performance tag returns the number of
seconds and the standard deviation about how long it takes
to obtain a particular information value. The performance
of a command and its attributed values is measured and cat-
alogued during runtime.

Format. The format tag defines the format in which the
information is returned. The supported formats are LDIF
and XML. Nevertheless, it is straightforward to support
other formats such as DSML.

Extensions. We are planning to extend our exist-
ing timeout tag with an additional action tag upon
reaching this timeout. As an example, the RSL
(executable=command)(timeout=1000)
(action=cancel) would cancel the command spec-
ified through the RSL, while (action=exception)
would throw an exception if the command has not com-
pleted is execution, but the execution of the command itself
would be continuing.

Advantages. The advantages of this information stem
from the simplification of the architecture bound to the de-
livery of an integrated job submission and information ser-
vice. Querying the information is handled by clients much
as the execution of jobs. Moreover, this information service
can easily be integrated into the Globus MDS information
service architecture.

In summary, we have explored changes to MDS at the
protocol and the implementation level. At the protocol level
we have replaced an LDAP search query with a “query”
cast as a simple job submission through RSL. This new
query mechanism is based on At the implementation level,
we have replaced the modular, configurable MDS informa-
tion provider architecture with a less complex, even more

modular, configurable architecture that we believe fulfills in
a straight forward fashion the Grid designers quest for an
easy to use and maintain information service. As part of
this implementation effort we have also explored more ad-
vanced features for dealing with caching of the information
based on quality augmentations to the data itself. The result
of our simplified architecture is presented in Figure 4 and
contrasts our earlier Figure 2. We believe that although the
number of the components within our Info Gram service in-
creased that the overall complexity of the combined service
is lower that the current provided solution.

Virtual Organization

Resource Layer

Conectivity Layer

Client

InfoGram

Figure 4. The new InfoGram service reduces
the number of protocols and components in
a Grid.

7. Implementation

Although our services can be implemented in any other
language we have chosen to prototype them in Java. It is a
straightforward engineering exercise to implement them in
C.

The Java platform enhances the functionality of our ser-
vice based on the use of additional features that are other-
wise not available in C. Thus, we were able to achieve in
the

� Delivery of a pure Java Information and GRAM ser-
vice providing cross-platform portability, which in-
cludes, for example, the Windows Operating System

� Delivery of a Web-enabled installation service that can
deploy the InfoGram service with low overhead on in-
stallation time and administrative burden.

� Execution of untrusted applications in trusted environ-
ments on remote machines as part of the Java Virtual
Machine model.

To support the development of the previously outlined
service, we have performed significant enhancements to

the Java CoG Kit that is maintained as part of the Globus
Project. These enhancements are focusing on the job sub-
mission, deployment, logging, security, and information
service. Whenever possible, we use standard Java packages
to reduce the amount of codebase that must be maintained
by us. This includes logging [24, 29] and security [23, 31].

In a first step we have implemented a pure Java imple-
mentation a Globus GRAM [18, 11] service that provides
much the same functionality than its C based counterpart.
In order to support interoperability and compatibility, we
based the design of directly on the architecture of the C
GRAM service. It contains a gatekeeper, job manager, and a
local job execution process. We name this service J-GRAM.

Job Submission. This Job Execution service within J-
GRAM is protocol-compatible with the “C-GRAM” dis-
tributed with the Globus Toolkit. At present, we investigate
the implementation of major GRAM functionality, such as
the support for gridmaps, which map user certificates to lo-
cal user IDs, as well as the possibility to interfaces easily to
schedulers. We learned from this prototype that it is possi-
ble to provide a service in Java that mimics the behavior of
C-GRAM.

Besides the execution of executables from precompiled
native code, our J-GRAM service enhances the normal
Globus GRAM service by being able to execute pure Java
code submitted as Java jar files. To enable the execution of
jar files as part of the J-GRAM service, a variety of changes
were necessary. We extended the functionality of the job
manager to start up the code embedded in a jar file that was
submitted through an RSL call such as

(executable=myJavaApplication.jar)

In order to run Java applications, one method is to exe-
cute the code in the same JVM as the rest of the components
are running. An alternative is to separate the execution of
the job into a JVM to increase security [23, 28]. We pro-
vide the ability to configure the job manager run in either
of these modes. The Grid administrator must decide which
mode should be run. The execution of system commands
is performed through the runtime.exec() call. It is possible
to redirect I/O to and from the client. The functionality is
equivalent to the one from the C GRAM service with excep-
tion that DUROC is not supported. As the Globus Project
will replace it in near future, we have decided to refer to
full delegation to a C Globus GRAM in order to provide
this functionality . This is way it is still possible to start up,
for example, MPICH-G2 jobs [26].

Deployment. We have demonstrated this service at
SC2001 and featured the ease of installation of such a ser-
vice while using the Java framework deployment methods

known as Web Start. Using this advanced deployment pro-
tocol, we are also able to maintain the upgradeability with
more ease and to provide future solutions for automatically
upgrading such services in production Grids. This feature is
naturally supported while choosing Java as implementation
and deployment platform. Such sophisticated approaches
require much more effort in traditional operating systems.

Logging We are in the process of refining a logging mech-
anism for the execution of jobs assists in the fault recovery
abilities of GRAM, as well as the possibility of logging au-
thenticated information queries to guide the use as part of
intelligent scheduling services.

Secure Sandboxing. In traditional programming lan-
guages, such as C, C++, and FORTRAN, it is difficult to
execute untrusted applications in a trusted environment sim-
ilar to the one the Grid provides. With a JVM, however, we
are able to enable a trust relation between an untrusted client
application to be executed in a trusted environment. Addi-
tionally, we were able to package a gatekeeper with non root
access rights in a jar file that can be easily installed in once
environment. J-GRAM can be configured in various ways.
We can either execute each job in the already running JVM
or start up a number of external JVM to execute such an jar
file in an even more restrictive environment.

Portability. Other advantages (that are based on the use of
Java) are the immediate availability of an information ser-
vice on the Windows operating system Other benefits will
be introduced while providing authorization mechanisms as
part of this service, which can (ideally) be supported by the
Java platform.

InfoGram In a second step we have prototyped much of
the functionality described within this paper to enable the
InfoGram service. We have obtained good experience to
return information queries in LDIF and XML.

8. Application

Currently, the J-GRAM service has already been used in
several projects, one of which is the emerging OGSA frame-
work [14] that has been developed after our investigations.

We have tested our InfoGram prototype on an application
that we have termed a sporadic Grid. Such a Grid is created
just for a short period of time at for example during so-
phisticated experiments at synchrotrons or photon sources
[41, 40]. To implement such a service we need a simple
architecture that contains a set of advanced Grid services
that are useful for supporting the creation and maintenance
of sporadic Grids. Our InfoGram service provides such a

service. As we are able to distribute it as a pure Java appli-
cation it will be easy to install it on a number of machines.
We have used a JSP-based portal to allow the maintenance
eof resources contributed by trusted resource owners and
resource consumers that execute untrusted applications in
this trusted Grid. Our experience shows that the way of in-
tegrating the information and the job submission service as
well as the uses of Java allows us to include resources which
otherwise would not be allowed to be integrated in existing
production Grids due to the fact that the hardware maintains
the same but the administrative control for these machines
changes frequently. Figure 5 and Figure 6 show a prototype
screen dump of such a registration process.

Figure 5. Status of jobs maintained as part of
the virtual machine manager for a sporadic
Grid.

We will extend our efforts to support computationally
mediated sciences Nestor02. In this technique a focused
electron probe is sequentially scanned across a two dimen-
sional field of view of a thin specimen and at each point on
the specimen a two dimensional electron diffraction pattern
is acquired and stored. The analysis of the spatial varia-
tion in the electron diffraction pattern allows a researcher
to study the subtle changes resulting from microstructural
differences such as ferro and electro magnetic domain for-
mation and motion at unprecedented spatial scales. We
will provide the computational Grid infrastructure for these
classes of experiments.

Figure 6. Registering a machine as part of our
sporadic Grid.

9. Related Work

Parallel to the research described in this paper modifi-
cations to GRAM1.0 were performed by colleagues within
the Globus Project together with the Condor team at Uni-
versity of Wisconsin. This modified version of GRAM is
available as part of the Globus 2.0 release. We are proto-
col compatible to that version. Most recently, the Globus
Project, has started together with IBM the Open Grid Ser-
vices Architecture. Our work was performed before OGSA.
Lessons learned from our activities should have influence
on the OGSA work. The current OGSA prototype imple-
mentation uses the J-GRAM service as well as the GSI se-
curity provided through the Java CoG Kit [39].

10. Status and Future Plans

The work performed within this research activity ex-
plored new concepts that we expect to be considered in fu-
ture Globus Toolkit developments. Future research activi-
ties will include exploration on conceptual issues identified
within this paper, as well as their implementation as part
of prototype and Globus toolkit developments. On the con-
ceptual level we will investigate the explicit guidelines for
system designers to choose the right configuration for set-
ting up the InfoGram Service with the appropriate param-
eters and configuration files. We will perform further sim-
plifications on the J-GRAM architecture while using only
one port to communicate between job mangers and clients.

For compatibility reasons we have not yet been able to per-
form this change. Improved fault tolerance will allow for
automatic restart capabilities enabled through checkpoint-
ing. We are improving our code and hope to integrate it in
either the Globus Toolkit or the OGSA framework. Sev-
eral features such as the use of the performance tag and the
information degradation are integrated at the moment. We
are also experimenting with integration of our framework in
Web services and JXTA [27].

11. Discussion and Conclusion

We feel that we have contributed on several areas within
Grid computing. First, we have identified that it is pos-
sible to design an Information system and a Job submis-
sion service that simplifies the architecture of the services
provided by the Globus Toolkit. Through the extension of
the RSL it will be easy for current Globus Toolkit users to
adapt their code to use this information query. Second, we
provide the possibility of being protocol compatible to the
Globus Toolkit, while being able to integrate our informa-
tion provider in the existent MDS. Therefore, we provide
the option to move to a different Information provider while
enabling a gradual transition. New information providers
could be integrated easily in this information service frame-
work. Third, we have already integrated in the current Java
CoG Kit our J-GRAM service that allows executing un-
trusted applications in trusted environments. This service is
naturally able to run on Windows platforms and can be used
to support sporadic Grids as defined in the paper. Forth, we
have set the stage for a multi protocol support for Grid in-
formation services that may export their data in LDIF or
XML-schema.

We have presented suggestions for enhancing the Globus
Toolkit and believe that future development on Globus
GRAM can benefit from our research on sporadic Grids.
We believe that the Open Grid Services Architecture will
benefit from this work performed over the last year. In par-
ticular the simplified InfoGram service can be used as an
elementary replacement for a lightweight job execution and
information service. It is straight forward to cast the Info
Gram in WSDL. Considerable software engineering effort
is necessary to implement, maintain, and deploy these ser-
vices while at the same time support interoperability.

Acknowledgments

This work was supported by the Mathematical, Infor-
mation, and Computational Science Division subprogram
of the Office of Advanced Scientific Computing Research,
U.S. Department of Energy, under Contract W-31-109-Eng-
38. DARPA, DOE, and NSF support Globus Project re-

search and development. The work of Carlos J. Pea was par-
tially funded by the DOE ERULF program. We thank Trilok
Velingetti for his help during the implementation. We thank
Ian Foster, Dennis Gannon, Peter Lane, Nell Rehn, Mike
Russell for the valuable discussions during the course of the
ongoing development. This work would not have been pos-
sible without the help of the Globus team. Globus Toolkit
and Globus Project are trademarks held by the University of
Chicago.

References

[1] The physiology of the grid: An open grid services archi-
tecture for distributed systems integration. Available from
http://www.globus.org/research/papers/ogsa.pdf.

[2] EUROGRID: Application Testbed for European Grid Com-
puting, 2001. http://www.eurogrid.org/.

[3] Information Power Grid Engeneering and Research Site,
2001. http://www.ipg.nasa.gov/.

[4] The Globus project WWW page, 2001.
http://www.globus.org/.

[5] Neesgrid homepage. http://www.neesgrid.org/, March 2002.
[6] G. Allen, W. Benger, T. Goodale, H.-C. Hege, G. Lanfer-

mann, A. Merzky, T. Radke, E. Seidel, and J. Shalf. The
cactus code: A problem solving environment for the grid. In
High-Performance Distributed Computing, 2000. Proceed-
ings. The Ninth International Symposium on, pages 253 –
260, ???, August 2000.

[7] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke,
J. Volmer, and V. Welch. Design and deployment of a
national-scale authentication infrastructure. IEEE Com-
puter, 33(12):60–66, 2000.

[8] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Services Description Language (WSDL) 1.1,
15 March 2001. http://www.w3.org/TR/wsdl.

[9] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman.
Grid information services for distributed resource sharing.
In 10th IEEE International Symposium on High Perfor-
mance Distributed Computing, pages 181–184, San Fran-
sisco, CA, August 7-9 2001. IEEE Press. www.globus.org.

[10] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman.
Grid Information Services for Distributed Resource Sharing.
pages 181–184, 2001.

[11] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Mar-
tin, W. Smith, and S. Tuecke. A Resource Management Ar-
chitecture for Metacomputing Systems. In Proceedings of
IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for
Parallel Processing,, Lecture Notes on Computers Science,
1998.

[12] Doe science grid. http://www.doesciencegrid.org/.
[13] G. Fagg, K. Moore, and J. Dongarra. Scalable networked

information processing environment (snipe). International
Journal on Future Generation Computer Systems, 15:595–
605, 1999.

[14] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Phys-
iology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration. Technical report, The
Globus Project, Jan. 2002. http://www.globus.org/ogsa.

[15] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
grid: Enabling scalable virtual organizations. International
Journal of Supercomputer Applications, 15(3), 2001.

[16] I. Foster, C. Kesselman, and S. Tuecke. The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of High Perfor-
mance Computing Applications, 15(3):200–222, 2001.
www.globus.org/research/papers/anatomy.pdf.

[17] D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi,
R. Ananthakrishnan, F. Bertrand, K. Chiu, M. Far-
rellee, M. Govindaraju, S. Krishnan, L. Ramakrishnan,
Y. Simmhan, A. Slominski, Y. Ma, C. Olariu, and N. Rey-
Cenvaz. Programming the grid: Distributed software com-
ponents, p2p and grid web services for scientific applica-
tions.

[18] The Globus GRAM Web Page, 2000.
http://www.globus.org/gram.

[19] The Globus MDS Users GUide, 2000.
http://www.globus.org/mds/mdsusersguide.pdf.

[20] The Globus Project Web Page, 2001. http://www.globus.org.
[21] R. Henderson. Portable batch system: External reference

specication, 1996.
[22] C.-J. Hou, K. Shin, and T. Tsukada. Transparent load shar-

ing in distributed systems: decentralized design alternatives
based on the condor package. In Reliable Distributed Sys-
tems, 1994. Proceedings., 13th Symposium, pages 202–211,
Dana Point, CA, USA, Oct 1994. IEEE Computer Society
Press.

[23] IAIK Java Cryptology, 2001. http://jcewww.iaik.at/.
[24] Logging Toolkit for Java, July 2001.

http://www.alphaworks.ibm.com/tech/loggingtoolkit4j.
[25] J. Kaplan and M. Nelson. A comparison of queueing, cluster

and distributed compuing systems, 1994.
[26] N. Karonis. MPICH-G2 Web Page, 2001.

http://www.hpclab.niu.edu/mpi/.
[27] N. Krishnan. The jxta solution to p2p. October 10 2001.
[28] P. Lipp. Sicherheit und Kryptographie in Java . Einfhrung,

Anwendung und Lsungen. Addison-Wesley, 2000.
[29] LogKit Developer Documentation, 2001.

http://jakarta.apache.org/avalon/logkit/whitepaper.html.
[30] Load sharing facility.

http://www.platform.com/products/wm/LSF/index.asp.
[31] S. Oaks and N. Inc. Java Security. Java series. O’Reilly,

Cambridge, 1998. http://www.netlibrary.com/.
[32] W. R. Stevens. UNIX Network Programming: Interprocess

Communications, volume 2. Prentice Hall, 2 edition, 1999.
[33] M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jack-

son, and A. Essiari. Certificate-based Access Control for
Widely Distributed Resources. In Proc. 8th Usenix Se-
curity Symposium, Washington, DC, August 23-26 1999.
http://www-itg.lbl.gov/Akenti/papers.html.

[34] G. von Laszewski. A Parallel Data Assimilation System and
its Implications on a Metacomputing Environment. PhD the-
sis, Syracuse University, Nov. 1996.

[35] G. von Laszewski. A loosely coupled metacomputer: Co-
operating job submissions across multiple supercomputing
sites. Concurrency: Experience, and Practice, 11(15):933–
948, 1999. www.cogkits.org.

[36] G. von Laszewski. Grid Computing: Enabling a Vision for
Collaborative Research. In Conference on Applied Paral-
lel Computing, 3rd CSC Scientific Meeting, Lecture Notes,
Espoo, Finland, 15 - 18 June 2002. Springer.

[37] G. von Laszewski, S. Fitzgerald, I. Foster, C. Kessel-
man, W. Smith, and S. Tuecke. A Directory Ser-
vice for Configuring High-Performance Distributed
Computations. In Proc. 6th International Sympo-
sium on High-Performance Distributed Computing,
pages 365–375, Portland, OR, August 5-8 1997. IEEE.
ftp://ftp.globus.org/pub/globus/papers/hpdc97-mds.pdf.

[38] G. von Laszewski and I. Foster. Grid infrastructure to
support science portals for large scale instruments. In
Proc. of the Workshop Distributed Computing on the
Web. University of Rostock, Germany, June 21-23 1999.
http://www.mcs.anl.gov/ laszewsk/papers/rostock.pdf.

[39] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A
Java Commodity Grid Kit. Concurrency and Computa-
tion: Practice and Experience, 13(8-9):643–662, 2001.
http://www.globus.org/cog/documentation/papers/cog-cpe-
final.pdf.

[40] G. von Laszewski, I. Foster, J. A. Insley, J. Bresnahan,
C. Kesselman, M. Su, M. Thiebaux, M. L. Rivers, I. Mc-
Nulty, B. Tieman, and S. Wang. Real-time analysis, visu-
alization, and steering of microtomography experiments at
photon sources. In SIAM99. SIAM, 1999.

[41] G. von Laszewski, M. L. Westbrook, C. Barnes, I. T. Foster,
and E. M. Westbrook. Using computational Grid capabilities
to enhance the capability of an X-ray source for structural
biology. Cluster Computing, 3(3):187–199, 2000.

[42] XML Schema, Primer 0, 1, and 3, 2001.
http://www.w3.org/XML/Schema.

