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These methods use an optimization algorithmor heuristi to improve the quality of the ele-ments adjaent to verties being repositioned. Themost ommonly used mesh-smoothing tehniqueis Laplaian smoothing, whih reloates a singlepoint to the geometri enter of its adjaent ver-ties. This tehnique is omputationally inexpen-sive and simple to implement, but it an produemeshes with invalid or poor-quality elements [11℄.To address these problems, researhers have devel-oped optimization-based methods that guaranteemesh quality improvement. These methods areformulated in terms of the design variables (oneor more verties to be repositioned), an improve-ment goal (the quality metri, objetive funtion,and onstraints), and the algorithm used to alu-late an optimal solution.Most work in optimization-based smoothing repo-sitions one vertex at a time. A number of sweepsover the adjustable verties are performed toahieve overall improvement in the mesh. Thequality metris optimized range from a priori geo-metri riteria [27, 12℄ and algebrai quality met-ris [16, 17℄ to a posteriori metris that minimizesolution error indiators [2℄. An objetive fun-tion is then de�ned based on a quality metri tomeet various improvement goals. For example, toimprove the average quality of mesh elements, oneuses an `1 or `2 norm [17℄; and to improve theworst quality element, one uses an `1 norm [12℄.The optimization methods employed inlude on-jugate gradient tehniques [19℄, simplex methods[13℄, and ative-set algorithms [12℄.Similar tehniques an be used to reposition manyverties simultaneously. However, a solution tothe resulting nonlinear, onstrained optimizationproblem is more diÆult to alulate as the num-ber of design variables inreases. Several meth-ods have been used to solve this problem for bothstrutured and unstrutured grids.For strutured mesh generation using diret op-timization tehniques [3, 6℄ researhers have em-ployed onjugate gradient [26℄ and trunated New-ton [9℄ methods. Several strategies have been in-vestigated for unstrutured meshes. For example,White and Rodrigue use a potential energy fun-tion de�ned on the grid nodes to push them awayfrom eah other by using a steepest desent opti-mization proedure [30℄. The method inorporatesedge swapping, retriangularization, and Laplaiansmoothing to ahieve a �nal mesh. Amezua et al.developed a length onstraint method in whih auser-de�ned density funtion determines the ideallength of elements within a given region [1℄. Anerror funtion providing the di�erene between theideal and atual edge lengths for a path of nodes

is de�ned and minimized by using a quasi-Newtonapproah. Parthasarthy and Kodiyalam optimizethe `2 norm of the element aspet ratios and on-strain eah element to maintain positive volume[25℄. The minimization is performed by using amodi�ed feasible diretion method to �nd a searhdiretion at eah iteration. Knupp optimizes theondition number of tetrahedral and hexahedralelement meshes using a onjugate gradient method[19℄. Other researhers have used steepest desent[31℄, quadrati programming [7℄, and onjugategradients [15℄ to solve related problems.While several tehniques have been advoated tosolve the problem of simultaneously repositioningmany verties to improve mesh quality, it is im-possible to ompare them beause di�erent meritfuntions are used on varying test ases. To ad-dress this issue, we onduted a formal studyof several existing optimization methods using aonsistent problem formulation similar to that ofParthasarthy and Kodiyalam [25℄. The problem isdesribed in more detail in Setion 2. We then on-sider eight solvers: six publily available, general-purpose software pakages and two methods de-signed spei�ally for the mesh quality improve-ment problem. In Setion 3, we give an overviewof the optimization tehniques used in our study.In Setion 4, we present numerial results and an-alyze the e�etiveness of eah solver. In partiu-lar, we examine the e�et of initial mesh qualityon algorithm performane and evaluate the abil-ity of the algorithms to solve several two- andthree-dimensional test ases. For the most promis-ing algorithms, we study the onvergene historiesto determine if early termination is an option toredue omputational osts and investigate theirsalability as problem size inreases. In Setion5, we summarize our �ndings and rank the algo-rithms from most promising to least e�etive.2. PROBLEM FORMULATIONMeshes an be improved with respet to any num-ber of quality metris inluding shape, size, align-ment, solution error, or ombinations of these. Tokeep the researh reported in this paper of man-ageable size, we investigate the behavior of the op-timization solvers using a shape metri and leaveinvestigation of solver behavior using the othertypes of metris for future work. Shape metrisare important beause they an be used to ontrolone of the most important properties of a �niteelement mesh, namely element skew and aspetratio. Among the various shape metris, we haveseleted the mean ratio metri [22℄. Sine a varietyof shape measures have been shown to be equiva-



lent in the sense that all are zero when the tetra-hedral element is at and approah unity for anequilateral tetrahedron [21℄, it is likely that the be-havior of the optimization solvers in this ompari-son is representative of the solver behavior if othershape metris were used, but we have not veri�edthis. We further limit our investigation to the op-timization of meshes for the purpose of reatingisotropi elements. This determines a �xed weightmatrix W in the formulation of the mean ratiobelow. The behavior of the solvers in this studymay di�er when applied to optimize anisotropimeshes using a di�erent W . However, preliminaryexperiments with the identity weight matrix andFeasNewt algorithm desribed in Setion 3 indi-ate a minimal impat on performane when om-pared to the same method with the weight matrixbelow.To de�ne the mean ratio metri, let � be a tetra-hedral element with vertex oordinates x0, x1,x2, and x3, and de�ne a matrix A suh that thethree edge vetors emanating from vertex zeroform the olumns of the matrix. That is, A =[x1 � x0; x2 � x0; x3 � x0℄. The mean ratiomeasure is formulated in terms of A as� = 3(�) 23k A k2F ;where � = det(A) and k � kF signi�es the Frobe-nius matrix norm. The mean ratio approaheszero for nearly at elements and is unity for aright-angled tetrahedron.Following the ideas in [11℄, we reformulate themean ratio metri proposed in [22℄ so that it at-tains the maximum value for an equilateral tetra-hedron. To do so, we introdue a weight matrixW , W = 0� 1 1=2 1=20 p3=2 p3=60 0 p2=p3 1A ;whih is formed from the vertex oordinates of aunit equilateral tetrahedron. We note that the useof a weight matrix, W , reates a exible metriwhih an be referened to any ideal element; forexample, anisotropi elements ommonly found inboundary layer ows.Let T be the matrix de�ned by T = AW�1 sothat T is the identity matrix when the elementis equilateral and � = det(T ). The reformulated

mean ratio measure is then� = 3(� ) 23k T k2F :This measure ranges from zero to unity, with zeroindiating a \at" element and unity an equilat-eral tetrahedron. We note that this measure isequivalent to the weighted ondition number mea-sure [18℄.One an also derive a weighted mean ratio measurefor triangular elements referened to an equilateraltriangle, � = 2�k T k2F ;where the weight matrix isW = � 1 1=20 p3=2 � :For triangles, the mean ratio measure is identialto the ondition number of T beause for 2 � 2matries the Frobenius norm of T�1 equals theFrobenius norm of T divided by the absolute valueof the determinant of T .The simplest `2 objetive funtion one an on-strut from this measure is formed by taking theinverse mean ratio so that eah term in the ob-jetive funtion ranges from unity to in�nity. Bydoing so, we reate a \barrier" against mesh in-version. The optimization algorithms presentedin this paper thus seek to �nd the set of free nodepositions (xj; yj ; zj), j = 1; : : : ; J , that minimizeF (: : : ; xj; yj; zj; : : :) =X�k ��1(�k);where the sum extends over all of the elements �kin the mesh. Boundary nodes are assumed to be�xed. The objetive funtion is nonlinear beauseit onsists of sums of terms of quadrati funtionsover polynomial funtions.We de�ne the feasible region to be the set of nodeloations for whih all the tetrahedra in the meshhave positive volume, and we assume this region



is nonempty. The resulting optimization problemmin P�k ��1(�k)subjet to � (�k) � � for all �kwhere � > 0 is suÆiently small, is given to theoptimization software along with a feasible pointwhere the onstraints are not ative. Beause allnodes on the boundary of the mesh are �xed, thereare 2VI and 3VI degrees of freedom in the opti-mization problem for two and three-dimensionalmeshes respetively, where VI is the number of in-ternal verties.The objetive funtion is ontinuous and boundedbelow on the nonempty, losed feasible region.Therefore, if the feasible region is also bounded,we an assert the existene of an optimal solu-tion to the problem. The feasible region will bebounded, for example, if all of the mesh nodes arein a bounded set.3. OPTIMIZATION METHODSThe optimization problem we want to solve is bothnononvex and nonlinearly onstrained, propertiesthat an pose diÆulty for optimization methods.Therefore, we evaluate a variety of algorithms todetermine their robustness and speed. The di�er-enes among the optimization methods are in howthey handle onstraints, alulate improving di-retions, and aept new iterates. The algorithmsonsidered in this paper an be roughly lassi�edinto sequential quadrati programming, interior-point, and augmented Lagrangian methods. Werefer the reader to [24℄ for more detailed informa-tion on numerial optimization methods.Sequential quadrati programming methods iter-atively solve optimization problems ontaining aquadrati approximation to the objetive funtionand a linear approximation of the onstraints todetermine a diretion. Many variations on thistheme exist and have been implemented. We on-sider two pakages in this ategory: FilterSQP andSNOPT. FilterSQP [20℄ uses an exat Hessian andinorporates a trust region to restrit the lengthof the alulated diretion. If the full diretion isnot aeptable, a new diretion is alulated bytightening the length restrition. The aeptaneriterion uses the notion of a �lter and allows non-monotoni behavior in the objetive funtion andnorm of the onstraint violation. SNOPT [14℄ usesan approximation to the Hessian and a linesearh

along the alulated diretion to �nd an improv-ing iterate. Both odes use an ative set methodto solve the quadrati subproblems generated.Interior-point methods reformulate the originalinequality-onstrained optimization problem intoone ontaining only equality onstraints by addingslak variables and then removing the bounds onthe slak variables by inorporating them into theobjetive with a log-barrier penalty funtion. Forthe problem onsidered, the resulting reformula-tion ismin P�k ��1(�k)� �P�k ln s�ksubjet to � (�k) = s�k + � for all �kwhere s�k are the slak variables and � is thepenalty parameter. The reformulation is thensolved for � onverging to zero. LOQO andKNITRO are the two odes that we onsider inthis ategory. LOQO [29℄ solves the equality-onstrained problem using Newton's method toalulate a diretion and then �nds a new iter-ate using a linesearh along the diretion. KNI-TRO [5℄ uses a sequential quadrati programmingmethod with a trust region to alulate the so-lution to the equality-onstrained problem for a�xed �.Augmented Lagrangian methods reformulate theinequality-onstrained problem into a problemwith only simple bounds by adding slak vari-ables and inorporating the resulting equality on-straints into the objetive funtion. LANCELOT[8℄ is in this ategory. It solves the resultingbound onstrained problem using a trust-region al-gorithm. MINOS [23℄ is similar in that it uses anaugmented Lagrangian approah. MINOS, how-ever, also inludes a linearization of the nonlin-ear onstraints in the subproblems and solves thelinearly onstrained problem with an ative setmethod. See [24℄ for a omplete desription ofaugmented Lagrangian methods.We also onsider two methods spei�ally writtento solve the inequality-onstrained optimizationproblem using known information. In partiular,we are guaranteed that we will start from a feasiblepoint and that none of the nonlinear onstraintswill be satis�ed as equalities at a solution2. Thelatter ondition means that the onstraints are re-dundant and an be removed, provided we safe-guard the algorithm to prevent element inversions.2Untangling methods an be used to reate an initiallyvalid mesh [13℄ and � an always be hosen suÆientlysmall to guarantee the seond ondition.



The �rst method, NLCG [19℄, uses a Polak-Ribi�erenonlinear onjugate gradient method [24℄ with aninexat linesearh. The seond, FeasNewt, is afeasible Newton method that solves a quadratiapproximation of the objetive funtion to �nd adiretion and performs a linesearh along this di-retion to �nd an improved point. The step sizeis redued whenever an inverted element is found.The diretion is alulated using onjugate gradi-ents. The use of onjugate gradients is importantbeause we want to alulate either a minimizerof the quadrati approximation or a diretion ofnegative urvature. In most ases, the onjugategradient method applied to the quadrati approx-imation of the objetive funtion provides suh di-retions. For the test ases reported, an appropri-ate diretion was always found with the onjugategradient method. This approah is similar to theDembo and Steihaug method [9℄ for unonstrainedoptimization.4. NUMERICAL RESULTSBeause we want to solve mesh quality optimiza-tion problems in multiple dimensions and for anumber of di�erent geometries, element types, andmesh sizes, our two primary onerns when selet-ing an algorithm are robustness and speed. Wealso desire a method that onverges monotoniallyand maintains mesh validity throughout the opti-mization proess. Suh a method an be termi-nated early with a guaranteed improvement in theshape-quality metri. The method hosen shouldalso e�etively use the initial point provided as in-put to the optimization routine as it is typiallynear a solution. This property would also ensuree�etive restarts are possible from a partially on-verged solution. Finally, beause today's meshesontain a very large number of elements, the ho-sen method should be salable with respet to thenumber of elements and parallelizable.For this study, the optimization problem was im-plemented in the AMPL modeling language [10℄.In general, modeling languages provide an easyway to algebraially represent optimization prob-lems, an deal with large quantities of data, andautomatially alulate the derivative and Hes-sian information needed by the solvers. We hoseAMPL beause it is ommonly used and seven ofthe eight optimization pakages onsidered in thispaper aept problems written with it. We notethat some eÆieny is lost in funtion, gradient,and Hessian evaluations when using a modelinglanguage. For our AMPL implementation of theoptimization problem, hand-oded versions of thefuntion, gradient, and Hessian evaluation rou-

tines were more than 10 times faster than thosegenerated by AMPL. However, writing the re-quired derivative and Hessian routines is time on-suming and prone to error. Using a onsistentapproah in their omputation allows us to quali-tatively ompare the di�erent methods.To test the performane of the optimizationmeth-ods with respet to our desired harateristis,we developed a series of test ases in both twoand three dimensions. We examined algorithm ef-fetiveness as the initial mesh quality degrades,robustness on both two- and three-dimensionalmeshes, onvergene properties, and salability.The optimization pakages use di�erent termina-tion riteria related to feasibility and optimality.In an attempt to have more uniform results, weused a tolerane of 10�6 for the measures usedby the individual optimization methods. All testswere run on Solaris UltraSPARC workstations.The solvers available in AMPL were run on a 296MHz workstation while NLCG was run on a 400MHz workstation.4.1 E�et of Initial Mesh QualityWe �rst evaluate the e�etiveness and perfor-mane of the various optimization methods as thequality of the initial mesh degrades. For this testwe use a simple honeyomb mesh ontaining 2040equilateral triangles (see the leftmost mesh in Fig-ure 1) and reate a series of inreasingly poor qual-ity meshes by perturbing the verties by a per-entage of the initial mesh edge length in a ran-dom diretion. The perturbed mesh is heked toensure that there are no inverted elements. Forthis series, the perturbation perentages are 0, 50,70, 90, and 99. The meshes orresponding to 50and 99 perent perturbation are shown in the tworightmost meshes in Figure 1, respetively. Table1 reports the maximum and average value of themean ratio metri for the �ve initial meshes.Table 1. Maximum and average mean ratio metrifor the honeyomb series at the initial meshP MRmax MRavg0 1.00 1.0050 1.44 1.0470 2.10 1.0890 4.58 1.1699 52.2 2.60



Figure 1. The honeyomb mesh seriesSeven optimization solvers were run on this series:the six general-purpose odes and the FeasNewtmethod. We are not able to report results forNLCG on the two-dimensional test ases as it isurrently available only for three-dimensional CU-BIT [4℄ meshes. Figure 2 shows the time to solu-tion as a funtion of the perturbation perentage.Beause the ost of the methods varies dramati-ally, we plot the results using a logarithmi salein time. No point is plotted in the graph if thealgorithm was unable to alulate an optimal so-lution.
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Figure 2. The time to solution for the 7 methods asa funtion of the perturbation perentageThe FeasNewt and KNITRO solvers reah the op-timal mesh in the shortest amount of time for thisseries of problems. In both ases, the solvers ef-fetively use a near-optimal initial point; the zeroperturbation ase is not optimal beause the ini-tial mesh points were trunated to four deimal

plaes in the AMPL data �le. The true optimumis obtained in one and two iterations, and 0.61and 1.80 seonds, respetively. As the initial qual-ity of the mesh worsens, these two solvers requirea slowly, monotonially inreasing amount of timeto �nd the optimal solution. The FeasNewt solveris slightly faster than KNITRO, requiring a max-imum of 5.93 seonds to solve the hardest of the�ve test ases ompared with 6.62 seonds neededby KNITRO.In the seond performane tier, we plae theLANCELOT, LOQO, and FilterSQP solvers.Eah of these methods suessfully solved all ofthe test ases but required signi�antly more timethan the FeasNewt and KNITRO solvers. In par-tiular, these methods required 4, 50, and 12 it-erations, and 30.91, 54.44, and 17.28 seonds tosolve the unperturbed problem, respetively. Asthe perturbation inreased, the solvers requiredtens to hundreds of seonds to alulate a solu-tion. One of the methods, LOQO, does not in-rease monotonially in ost. The initial dereasein time is likely due to the nature of interior-pointmethods, whih tend to perform better when theinitial point is not too lose to the solution. Asthe initial quality worsens, we see a general in-rease the number of iterations. In the 90 per-ent perturbation ase, LOQO appears to invertsome elements of the mesh and must then returnto the feasible region, aounting for the spike inthe time.SNOPT and MINOS perform the worst on thistest series. Both are prohibitively expensive; MI-NOS required as muh as 20 minutes to solve theproblem with a 90 perent perturbation and wasunable to solve the problem with a 99 perent per-turbation. SNOPT required 3 hours to solve the99 perent perturbation ase. The longer runningtimes were expeted beause these methods useonly �rst-order information and approximate theneeded Hessian matries.



4.2 Two-Dimensional Test CasesTo further evaluate the performane of these sevensolvers, we analyze their ability to solve two two-dimensional test ases. Both test ases are gener-ated using the Triangle mesh generation pakage[28℄. The �rst test ase, ANL, has a onave geom-etry. The mesh generated by Triangle was modi-�ed by moving the interior verties to deliberatelyreate poor-quality elements along the boundary.The seond test ase, Rand, is generated by ran-domly hoosing points in the unit square and tri-angulating them using a Delaunay riterion. InTable 2, we give the total number of verties andelements, VT and E, the number of interior ver-ties, VI , and the maximum mean ratio and aver-age mean ratio, MRmax and MRavg for eah testase. The meshes are shown in Figure 3.Table 2. The size and initial quality of the two-dimensional test asesMesh VT E VI MRmax MRavgANL 312 456 184 9.82 1.73Rand 1152 2170 937 32.6 1.84
Figure 3. The two-dimensional test ases: ANL(left), Rand (right)The results of running eah of the seven opti-mization solvers on the two-dimensional meshesare given in Table 3. For eah solver, we reportthe termination status, S, of the solver as an \S"or an \F" for sueed or fail, respetively. If themethod fails, we give the termination message re-ported by the solver. If the method sueeds, wereport the resulting mesh quality in terms of themaximumand average mean ratio values, MRmax

Table 3. The mesh quality, time, and iterationount for the optimization solvers applied to the two-dimensional test asesMethod S MRmax MRavg T IANLFeasNewt S 1.62 1.11 1.95 15KNITRO F Trust region radius too smallLANCELOT F No derease in onstraint violationLOQO S 1.62 1.11 1.59 18FilterSQP S 1.62 1.11 9.10 19SNOPT S 1.62 1.11 257 231MINOS F Problem unbnded or badly saledRandFeasNewt S 2.20 1.12 20.0 25KNITRO F Trust region radius too smallLANCELOT F No derease in onstraint violationLOQO S 2.20 1.12 28.2 33FilterSQP S 2.20 1.12 4918 264SNOPT F Killed after 26 hoursMINOS F Cannot alulate improving pointand MRavg, respetively; the ost in seonds, T ;and the number iterations, I.The quality of the mesh at the optimal solutionfor both test problems is onsiderably improved;for ANL, MRmax has been redued from 9.82 to1.62, and MRavg has been redued from 1.73 to1.11. For Rand, MRmax has been redued from32.6 to 2.20, and MRavg has been redued from1.84 to 1.12. On these two problems, the FeasNewtand LOQO solvers are the best performers; theysolve both test problems suessfully and are om-parable in terms of time. FilterSQP, although itsolves both test ases, is orders of magnitude moreexpensive than either the FeasNewt or LOQOsolvers. KNITRO, LANCELOT, and MINOS areunable to solve either of the two test problemsand produe tangled meshes. One an element be-ame inverted, these algorithms proeeded to de-rease the objetive funtion to negative in�nity,but never returned to the feasible region. SNOPTsolved only the relatively easy ANL test ase butrequired 257 seonds to do so whereas the othersuessful methods required at most 10 seonds.Given the lak of robustness and expense of KNI-TRO, LANCELOT, SNOPT, and MINOS, we donot onsider them further.



4.3 Three-Dimensional Test CasesWe now use the remaining solvers, FeasNewt,LOQO, and FilterSQP, to improve the quality offour tetrahedral meshes generated using the CU-BIT mesh generation pakage [4℄. We also reportthe results for the NLCG solver desribed in Se-tion 3. For eah test ase, we give in Table 4 thetotal number of verties and elements, VT and E;the number of interior verties, VI ; and the maxi-mum mean ratio and average mean ratio, MRmaxand MRavg. The meshes are shown in Figure 4.Table 4. The size and initial quality of the three-dimensional test asesMesh VT E VI MRmax MRavgDut 1106 4267 382 3.00 1.26Gear 866 3116 260 2.84 1.37Foam 1337 4847 289 4.06 1.34Hook 1190 4675 400 3.36 1.32As with the two-dimensional ases, we report inTable 5 the termination status, �nal mesh quality,time to solution, and iteration ount for the three-dimensional ases.In all ases, the average mean ratio is improvedat the optimal solution, reeting the goal of theobjetive funtion formulation. We note that theimprovement is not as dramati as it was in thetwo-dimensional ases, beause the initial meshquality is good. In three of the four test ases,the maximum mean ratio is also improved, eventhough it is not expliitly the goal of the opti-mization proedure; in the Gear test problem itis slightly worsened. All four methods are able tosolve all of the test ases; these are, listed in orderfrom fastest to slowest: FeasNewt, LOQO, NLCG,and FilterSQP. The FeasNewt solver is a fator of2.2 to 4.5 times faster than its nearest ompeti-tor in all test ases. While FilterSQP suessfullysolved all test ases, it is a fator 5.6 to 19 timesslower than FeasNewt.4.4 Convergene HistoriesIn many ases, the exat optimal solution is notrequired from a mesh improvement tehnique.Rather, a very good solution is desired quikly.

Table 5. The results of the optimization solvers onthe three-dimensional test asesMethod S MRmax MRavg T IDutFeasNewt S 2.92 1.24 14.9 6FilterSQP S 2.92 1.24 282 82LOQO S 2.92 1.24 75.2 24NLCG S 2.92 1.24 67.5 50GearFeasNewt S 3.28 1.33 9.8 5FilterSQP S 3.28 1.33 54.7 21LOQO S 3.28 1.33 21.8 11NLCG S 3.28 1.33 40.1 41FoamFeasNewt S 3.52 1.33 10.9 5FilterSQP S 3.52 1.33 86.2 30LOQO S 3.52 1.33 35.3 17NLCG S 3.52 1.33 76.3 58HookFeasNewt S 2.91 1.30 15.9 5FilterSQP S 2.91 1.30 276 67LOQO S 2.91 1.30 52.6 16NLCG S 2.91 1.30 83.0 62Thus, we now evaluate the onvergene history ofeah method to determine the feasibility of earlytermination to redue omputational osts. Thetwo harateristis that would make this possibleare monotoni onvergene to the solution and sig-ni�ant early progress toward the optimal point.We plot the value of the objetive funtion asa funtion of time for eah solver on the three-dimensional test ases and show the results in Fig-ure 5. Note that the horizontal axis is saled tohighlight the early onvergene behavior of themethods, and the omplete time history of someof the methods is not shown.The FeasNewt, FilterSQP, and NLCG solvers allonverge to the optimal solution monotonially,making them andidates for early termination.LOQO does not always onverge monotonially asis illustrated by the Dut, Hook, and Foam testases. This nonmonotoni behavior is aused bythe penalty funtion, whih allows LOQO to visitpoints far from the solution before onverging tothe optimal point. Thus, even though its total
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Figure 5. The onvergene histories for FeasNewt, FilterSQP, and LOQO on the four tetrahedral mesh test asestime to solution as reported in Table 5 is less thanFilterSQP in all ases and is less than NLCG inthree ases, it typially takes muh longer to ap-proah the optimal solution. Thus, it is not a goodandidate for early termination.Of the three methods that onverge monotoni-ally, FeasNewt approahes the optimal solutionthe quikest in all four ases. In two of the fourases, the NLCG method is very ompetitive withFeasNewt in terms of how it approahes the opti-mal solution, even though it takes muh longer toonverge to the exat optimal point. In the other
two ases, it takes about twie as long to approahthe optimal point. FilterSQP takes two to threetimes longer than FeasNewt to approah the op-timal point in all ases. Furthermore, FilterSQPis not guaranteed to monotonially derease theobjetive funtion, even though this behavior wasobserved on the test problems.4.5 SalabilityTo obtain a sense of how these methods will saleas the problem size inreases, we examine their



performane on the Dut geometry as the numberof elements inreases. The mesh sizes and qualityinformation are given in Table 6.Table 6. The size and initial quality of a series ofmeshes reated on the dut geometry to test sala-bilityMesh VT E VI MRmax MRavgDut1 1067 4104 382 2.34 1.21Dut2 2139 9000 965 3.55 1.21Dut3 4199 19222 2302 3.29 1.21Dut4 7297 35045 4480 2.71 1.20Dut5 13193 65574 8738 4.30 1.19The total time to solution and iteration ountsfor the FeasNewt, FilterSQP, LOQO, and NLCGmethods are given in Table 7. A dash entry in-diates that the method was unable to solve theproblem in a reasonable amount of time. As theproblem size inreases, the FeasNewt method isonsistently the fastest method and maintains anearly onstant number of iterations. Eah itera-tion beomes more expensive as the problem sizeinreases, but of all the methods onsidered, thismethod's total time to solution grows the mostslowly. Although LOQO and NLCG require aboutthe same amount of time to solve the Dut1 prob-lem, the NLCG method is more salable in thatits time to solution grows more slowly as the theproblem size inreases. In partiular, the Dut5to Dut1 ratio for NLCG is 43.8 and for LOQOis 91.8. The FilterSQP method does not performwell as the problem size inreases, requiring over5 hours to solve the Dut3 problem. We did notinvestigate its behavior on the Dut4 and Dut5problems. 5. CONCLUSIONSWe have onduted a series of numerial experi-ments to determine whih of several seleted opti-mizationmethods are most suitable for solving themesh shape quality optimization problem whereall of the verties are simultaneously repositionedto improve average quality. We ompared eightdi�erent solvers: six state-of-the-art solvers andtwo ustom solvers we developed. In Table 8 wesummarize our �ndings in terms of the methods'

robustness, time to solution, exibility to be usedwith an early stopping riterion, and salability.In eah ategory, we sore the methods as exel-lent (X), good (G), average (A), or poor (P). Adashed line indiates that the method was not an-alyzed for a given harateristi.The two methods that performed the best were,not surprisingly, those written spei�ally for themesh quality improvement problem. In partiu-lar, the ustom-developed FeasNewt method is thebest performer in all ategories. It solves everytest problem and was onsistently the fastest teh-nique, partiularly in three dimensions. It mono-tonially onverges to a solution and an thereforebe used with a exible stopping riterion. Fur-thermore, it e�etively uses a good initial start-ing point and the omputational ost grows as thequality of the initial mesh degrades. A ompletedesription of this solver is planned for anotherpaper. Following FeasNewt, the NLCG method isalso onsidered to be a top performer. Althoughwe ould not test it on the two-dimensional testases, it solved every three-dimensional problem,and the method is well suited for quikly �nd-ing good solutions. Further, only FeasNewt andNLCG are guaranteed to remain feasible with re-spet to the nonlinear onstraints in the optimiza-tion problem.The LOQO and FilterSQP methods, although ro-bust, are not as good as either of the other twomethods. LOQO's onvergene properties, bothas the initial mesh beomes more diÆult to solveand within a given run, make it an unpreditablesolver that annot be terminated early. Filter-SQP was observed to onverge monotonially butis prohibitively expensive unless early termina-tion is onsidered. Both LOQO and FilterSQPwould be more ompetitive with NLCG if we wereto remove our reliane upon AMPL and writeustom interfaes. The other four solvers, KNI-TRO, LANCELOT, SNOPT, and MINOS, wereunable to solve one or more of the two-dimensionalproblems; they were not onsidered in the three-dimensional test ases.Now that promising methods have been identi�edfor solving the mesh shape quality optimizationproblem, a number of interesting extensions to thisomparison an be onsidered. First, we note thatour tests of the solvers used the mean ratio metri.Although this represents a typial shape metri, inthe future it will be neessary to perform similartests on other shape metris, anisotropi meshes,other types of mesh quality optimization metris,and di�erent objetive funtions. This ompari-son of optimization software pakages is not ex-haustive. However, sine it appears better to use
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