
Windows Performance Monitoring
and Data Reduction using WatchTower

Michael W. Knop Peter A. Dinda Jennifer M. Schopf
�knop, pdinda�@cs.northwestern.edu jms@mcs.anl.gov

Computer Science Department Math and Computer Science Div.
Northwestern University Argonne National Lab

September 28, 2001

Abstract

We describe and evaluate WatchTower, a system
that simplifies the collection of Windows per-
formance counter data for monitoring and us-
age profiling of Windows machines. Watch-
Tower has overheads similar to those of Mi-
crosoft’s perfmon tool, but it is easily embedded
into other software. Furthermore, we use stan-
dard statistical tools to reduce the sheer volume
of performance data to a manageable subset that
nonetheless usefully captures the behavior of the
machine and its interactive user.

1 Introduction

Clusters are becoming the standard platform for
high performance computing. While most clus-
ters run UNIX variants, PCs running variants of
Microsoft Windows are becoming increasingly
common. For example, Woodward’s group at
Minnesota uses Windows clusters for its Pow-
erWall visualization work because of the lack
of Linux drivers for the wide range of graphics
cards needed [40].

Windows clusters have made several ad-
vances in the last few years. Very large Win-
dows clusters have been built [2], and basic tools

for message passing [33, 11], queuing [24] and
resource management [17, 3] have been ported.
However, performance monitoring, a basic ser-
vice needed in high performance computing, is
still in its infancy compared to UNIX.

We describe and evaluate WatchTower, a sys-
tem that simplifies the collection of Windows
performance data. WatchTower provides easy
access to raw performance counters with com-
parable overhead to Microsoft’s perfmon run-
ning in non-GUI mode. Furthermore, Watch-
Tower is designed to be easy to embed into
other monitoring systems. Using standard sta-
tistical tools, WatchTower can automatically re-
duce the large number (currently about 500, but
potentially over a thousand) of raw performance
counters either to a relevant subset of the origi-
nal counters or to a small set of composite coun-
ters. These data-reduced views of the machine
still capture its overall activity and that of its in-
teractive user. Clusters can benefit from Watch-
Tower since less data needs to be transmitted to
describe each node’s state.

WatchTower allows us to compare and study
user and machine activity over time across any
number of computers running Windows 2000
and NT. We envision a variety of possible user
scenarios:

1

Platform profiling We will be able to compare
logs of Unix system usage to those cre-
ated under Windows to determine if the
same theories of Unix user habits apply
to Windows users. Likewise, these logs
can be used for building machine signa-
tures [28] to characterize machine perfor-
mance against standard benchmarks.

Application signatures As applications run,
spotting certain usage trends may permit
better resource management or scheduling
over a cluster of machines [36, 31].

Scheduling These logs are an accessible
form of variability information for cluster
scheduling techniques [30], real time
scheduling [5], adaptation [4], or resource
management [25].

User profiles User classifications and user pro-
files based on their resource usage can be
constructed from detailed logs. User classi-
fications like programmer, web surfer, and
administrative assistant can serve as guides
for the acquisition of new equipment or in-
puts to process migration schemes. User
profiles might serve as the basis for predic-
tion algorithms or Big Brother-like applica-
tions monitoring employee/student output.

Intrusion detection Unusual behavior could
be detected using our data analysis [12].

Trouble shooting A system administrator in-
terested in monitoring multiple machines
over a network can do so by setting up
a client that uses our logs and triggers a
warning when bottlenecks occur or loads
get too high, for example [10].

WatchTower gives users and other tools easy
online access to both raw and data-reduced
Windows performance information with lower-
overhead and more flexibility than other cur-
rently available tools.

This paper is structured as follows: In the next
section we describe performance monitoring in
Windows and WatchTower. Section 3 explains
the data reduction techniques we used on the
logs gathered by WatchTower and Section 4 dis-
cussed the results of those techniques. Section
5 reviews related work. Finally, in Section 6 we
draw conclusions and list future work.

2 WatchTower

When performance data over a time span is an-
alyzed, a portrait of how the computer was used
forms. We believe these portraits can shed light
on system resource usage and can be used in
a great variety of areas such as those scenarios
mentioned above.

WatchTower is an unobtrusive performance
monitoring service for the Windows 2000 and
NT operating systems. By “unobtrusive” we
mean that the user remains unaware that the
computer they are using is being monitored.
WatchTower uses few resources and it can be
configured to start and stop automatically, re-
quiring no user interaction and displaying no
windows once installed.

2.1 Measuring Performance in a
Windows Environment

Windows contains a measurement infrastruc-
ture that is made visible to applications by
means of roughly one thousand performance
counters that together reflect the current state
of the system. The exact number of coun-
ters varies depending on the system’s configu-
ration. Counters are arranged in a simple two-
level hierarchy. The first level of the hierarchy
is the physical or system performance object be-
ing monitored while the second is the perfor-
mance counter, which is an attribute of the ob-
ject. Examples of objects include Processor
and Memory, while example counters of

2

0 2000 4000 6000 8000
0

100

200

300

400
\IP\Datagrams/sec

0 2000 4000 6000 8000
0

50

100

150

200
\TCP\Segments/sec

0 2000 4000 6000 8000
0

2

4

6

8
x 10

4 \Network\Bytes Total/sec

0 2000 4000 6000 8000
0

0.5

1

1.5

2
x 10

6\PhysicalDisk\Disk Bytes/sec

0 2000 4000 6000 8000
3.6

3.8

4

4.2

4.4

4.6
x 10

8 \Memory\Available Bytes

0 2000 4000 6000 8000
200

220

240

260

280
\Objects\Threads

0 2000 4000 6000 8000
0

2000

4000

6000

8000
\System\Context Switches/sec

0 2000 4000 6000 8000
0

500

1000

1500
\Processor\Interrupts/sec

Figure 1: Representative logs of interesting counters during web browsing

those objects include % User Time and
Available Bytes. Some objects, such as
Processor or PhysicalDisk, may have multiple
instances, like a dual processor machine with
more than one hard drive. As an example, Fig-
ure 1 plots some of the more interesting counters
while web browsing.

Counters are stored and updated in the Win-
dows registry, and can be accessed by a registry
API. However, working directly with the reg-
istry is complex, and thus Microsoft also pro-

vides a more abstract API called the Perfor-
mance Data Helper (PDH). This API handles the
accessing of the counters in the registry and con-
verting their raw values into numbers with ap-
propriate units. PDH is the basis for both perf-
mon (which we will discuss in the next section)
and WatchTower. Figure 2 shows an overview
of how these parts interact.

The first layer in the figure is the operating
system kernel. The second layer is a system
tool layer, meaning the registry is separate from

3

Kernel

Watch
Tower

Registry

PDH

C

App
RPS

Sensor
Perf
mon

App AppC

Figure 2: Windows Performance Monitoring

the kernel yet tightly coupled to it. The plat-
form library layer is next, followed by the appli-
cation library, and finally the application layer.
The main source of performance counters is the
kernel, but counters can also be specially built
into applications. The registry collects the coun-
ters from the kernel and makes them available to
both applications using the registry API or the
Performance Data Helper API.

2.2 PDH and Perfmon

Using PDH in an application is easier than us-
ing the registry API, as mentioned above. But
there is still a good deal of overhead to set up a
trace in PDH. One must get the counters into a
query, collect the data in a timely fashion, cor-
rolate the data, etc.; all while checking for er-
rors. Plus, the only output fucntion given writes
to a file on disk without buffering. WatchTower
has been written to automate the common leg-
work to start a trace. The only input needed
is a list of counters (which it will verify) and a
measurement rate. Simple output functions are
provided, like streaming to console, and hooks
are available to add application specific output
functions. Thus, a programmer does not need
to concern themselves with the dense PDH API,

instead they only need work within the straight-
forward WatchTower interface.

The most common PDH application is Mi-
crosoft’s Performance Monitor, also referred to
as perfmon [20, 21]. Perfmon can operate en-
tirely in the background, hidden from the inter-
active user. It is configured through an HTML-
like script. However, perfmon has several de-
ficiencies that limit its long-term logging capa-
bility and usefulness, namely granularity, over-
writing files, and adaptability. This significantly
affects its ability to provide adequate logging for
high performance cluster computing in this en-
vironment.

The finest measurement granularity perfmon
supports is one second, which is inadequate for
many uses of windows logging data in a high
performance computing system. In contrast,
WatchTower supports a granularity of 10 ms
(limited by the Windows timer granularity) and
a corresponding peak rate of 100 Hz.

Perfmon also overwrites the last log file after
(even graceful) reboots. This drawback makes
perfmon undesirable for collecting long term
traces of machine behavior. WatchTower avoids
this problem (when writing to a file) by starting
a new log file every hour and after system start
up.

Finally, perfmon is difficult to incorporate
into other systems or to extend with new func-
tionality (for example, data reduction as de-
scribed in Section 3). WatchTower can be used
as a simple C++ library and thus can be embed-
ded into other programs trivially.

2.3 WatchTower Architecture

WatchTower consists of two main code compo-
nents: service code and the WatchTower library,
which uses PDH. WatchTower is based on the
standard Windows infrastructure (services, the
registry, error handling, etc.) and supplies pro-
grammatic access to these tools that UNIX de-
velopers will find familiar.

4

WatchTower is a service, similar to a UNIX
daemon, that is run by the kernel without user
interaction. It is set to start automatically upon
system start up. While the code for running as
a service is not complex, understanding the tim-
ing issues involved is. Certain sections of the
service code must start within strict time limits,
otherwise the service manager of the kernel will
drop the process. The code we used is based on
two sources [35, 34], in addition to the examples
in the Platform SDK [19].

The most interesting part of WatchTower is
the library that interacts with PDH. It is con-
cerned with opening queries and logs, adding
counters to the list to be sampled, and retrieving
those counters’ values at a periodic rate. As a
library, this portion of the code can be easily in-
cluded into other projects. We based the Watch-
Tower library on code and application examples
in the Platform SDK [19].

WatchTower can be easily embedded into any
number of systems or applications that need a
performance monitor. For example, it can be
used in stand-alone command-line application
to be run as needed, as part of a service (as it
is now) to insure uninterruptible performance
monitoring, to feed custom GUIs that present
the data in new ways, to drive a closely coupled
analysis tool, or to provide sensors for systems
such as Remos [18], NWS [39], and RPS [6, 7].

2.4 Overhead

WatchTower’s overhead is similar to that of
perfmon. Figure 3 shows the overhead (as a per-
centage of CPU) of perfmon and WatchTower as
a function of the number of counters, while Fig-
ure 4 shows the overhead as a function of the
measurement rate. With 256 counters, Watch-
Tower can monitor at a peak rate of 16 Hz on
a dual 500 MHz Pentium III machine. Cur-
rently, both tools use the disk in exactly the same
way (a function of PDH). However, the memory
footprint of WatchTower is 15% smaller than

2 4 8 16 32 64 128 256 512
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
P

U
 U

sa
ge

 (
%

)

Number of Counters

Perfmon

WatchTower

Figure 3: Overhead vs. counters at 1 Hz for
Perfmon and WatchTower

0.25 0.5 1 2 4 8 16
0

2

4

6

8

10

12

C
P

U
 U

sa
ge

 (
%

)

Measurement Rate (Hz)

WatchTower

Perfmon

Figure 4: Overhead vs. rate with 256 counters
for Perfmon and WatchTower

perfmon.
While direct comparisons are impossible, it is

nonetheless instructive to compare WatchTower
with other measurement and prediction systems.
We are building an RPS [6] sensor based on
WatchTower. RPS’s current host load sensor
operates in excess of 1000 Hz on a DEC Al-
pha 21164 machine. RPS’s bandwidth sensor,
based on Remos [18], operates at about 14 Hz.
The performance of RPS’s predictor depends
strongly on the type of predictive model. An
RPS-based host load prediction systems runs in
excess of 700 Hz. At common measurement

5

rates, RPS-based systems consume less than 1%
of the CPU.

3 Data Reduction

The volume of WatchTower data and the rate at
which it accumulates are daunting. Logging all
counters on a typical machine at 1 Hz generates
about 86.4 million values in a single day. A clus-
ter of 12 machines over one week would gen-
erate 13 TB of performance data per week, as-
suming a 64 bit representation for each counter
value.

Our approach to making sense of this large
amount of data is to treat it as a dimen-
sionality reduction (DR) problem, where each
counter corresponds to a dimension. DR tech-
niques, of which many exist in the statistics and
machine learning literature [26], reduce high-
dimensionality data into a smaller number of di-
mensions, while retaining the majority of the in-
formation.

What we focus on is the question of what sub-
set or function of the counters captures the in-
teresting dynamics of the state. Such a subset
consists of subset counters, and such a function
produces a composite counter. The goal is to be
able to derive the high-level activity of the ma-
chine at a given time.

To find compact state representations, we
currently employ two DR techniques: princi-
ple components analysis (PCA) and correlation
elimination (CE). We use PCA to create new
composite counters that are the weighted sum
of the raw counters. On the other hand, we
use CE to select a relevant, statistically interest-
ing, subset of the raw counters. Note that com-
posite counters and subset counters are not di-
rectly comparable because they measure differ-
ent things—composite counters capture all the
raw counters, while subset counters capture only
a fraction of the raw counters.

3.1 Principle Components Analysis
(PCA)

Implicit in the original state representation (vec-
tor of counter values) is some �-dimensional
orthonormal basis. Given this representation
and samples of the state, Principle Components
Analysis (PCA) finds a new �-dimensional or-
thonormal basis such that the variance of the
samples is concentrated on the new dimensions
such that the first dimension captures as much
variance as possible, the second captures as
much of the rest as possible, and so on. The
new basis consists of the eigenvectors of the co-
variance matrix of the data.

Several methods for finding the basis exist,
ranging in complexity from ����� � ����� to
������� [14]. Basis-finding has also been par-
allelized [22]. Jain offers a concrete example
of PCA from a performance analysis perspec-
tive [13]. The data reduction work that is clos-
est to this work is Vetter and Reed’s application
of dynamic statistical projection pursuit to the
analysis of performance data from networked
Unix systems [37].

Data reduction happens when we choose to
use only the first �� of the new dimensions (our
composite counters) as our representation. The
value �� might be chosen so that the �� dimen-
sions describe more than ��� of the variance,
for example. Each of the �� new composite
counters (the principle components) is a simple
weighted sum of the original counters—a pro-
jection onto the new dimensions. The weights
associated with computing a principle compo-
nent are referred to as its loadings.

For example, our application of PCA
might find that % Priveledged Time and
Interrupts/sec of the Processor object
are correlated, while % User Time is nega-
tively correlated with the first two. PCA would
combine them into a single composite counter,
weighting the first two counters positively and
the third negatively.

6

3.2 Correlation Elimination (CE)

The correlation elimination (CE) algorithm is
our method for selecting subset counters. Sub-
set counters are preferable to composite coun-
ters when we must preserve the meanings of the
original counters.

CE first computes the correlation matrix (cor-
relations between all pairs of variables); and
then finds the pair with the highest correlation,
and throws out one of them. The assumption be-
ing that both are capturing similar information.
This elimination of variables is repeated until a
threshold correlation is reached. Applied to the
previous example, CE might select % Priv-
eledged Time and % User Time as the
appropriate subset counters of the Processor
object, throwing out Interrupts/sec.

4 Evaluation

Our evaluation of the data gathered using
WatchTower is based on applying the techniques
described above, offline, to several large log
files. We applied PCA both within performance
objects and across all performance counters to
determine how many composite counters were
needed to capture over 90% of the variance.
We applied CE with each performance object to
eliminate all correlations stronger than 0.85. At
the end of this section, we discuss the prospects
for integrating this offline analysis into the on-
line WatchTower system.

4.1 Logs

Our evaluation is based on log files captured on
a dual 500 MHz Pentium III machine running
Windows 2000. The logs are available from the
web. 1

The logs capture 512 different counters. We
did not log transient performance objects such

1http://www.cs.northwestern.edu/�pdinda/WTTraces

Activity Number of Counters

Idle 149
Websurf 221
Compute 206
Overall 228

Figure 5: Number of counters with ����� � ����.
The last row is computed for the entire trace, ir-
respective of activity.

as specific processes, threads, and handles. We
also ignored performance objects like Tele-
phony and HTTP Indexing Service which we
believe to be non-critical, inapplicable, or nearly
constant. Each log is between 40 minutes and
two hours long and is captured at a 1 Hz sam-
pling rate.

We annotated the logs with the user activity
being performed in each interval of time. The (a
priori selected) activities are idle (the user was
logged but no activity), websurf (casual web-
surfing), and compute (playing a graphics in-
tensive game over a network). The annotations
provide us with verification data. We do not
use them to do data reduction. These activities
represent three stages of machine usage, from
no load, to lightly loaded with some burst of
networking, to heavily loaded while performing
constant network communication.

We eliminated counters with coefficient of
variation (���) less than a minimum threshold
(0.01). These counters did not change signifi-
cantly during the trace or were constant parame-
ters (such as total network bandwidth). Figure 5
shows the number of counters left after apply-
ing the ��� threshold for data in the above three
annotated activities as well as for all counters ir-
respective of activity.

7

 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Principal component

V
ar

ia
nc

e
E

xp
la

in
ed

Physical Disk: Relative Importantance of Principal Components

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 6: First PCs of Disk performance object.
The bars show the loadings, and the thin line the
cumulative variance explained.

4.2 PCA and CE within perfor-
mance objects

To find out whether all of the counters within
a performance object were actually needed,
we performed Principal Component Analysis
(PCA) and Correlation Elimination (CE) for
each performance object. As would be expected,
there were large correlations within counters
from the same performance objects, and this was
observed by both methods. Figure 9 shows, for
each performance object, how many composite
counters (principle components) are needed to
represent 90% of the variance in our log. The
figure also shows the number of subset counters
chosen by CE given that all correlations greater
than ���	 are eliminated.

Figures 6, 7, and 8 show representative re-
sults for PCA on the disk, network, and proces-
sor performance objects. Each bar represents the
contribution of a principle component (compos-
ite counter). In each case, only a few composite
counters are needed to describe these objects.

 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

Principal component

V
ar

ia
nc

e
E

xp
la

in
ed

Network Interface: Relative Importantance of Principal Components

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Figure 7: First PCs of Network performance ob-
ject

 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

Principal component

V
ar

ia
nc

e
E

xp
la

in
ed

Processor: Relative Importantance of Principal Components

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 8: First PCs of Processor performance
object

4.3 PCA across all counters

The more interesting, but less a priori clear, cor-
relations are those that exist across performance
objects. We might expect that these correlations
will depend upon the activity.

In the first analysis, PCA was carried out over
the duration of the entire dataset, regardless of
the activity. Figure 10 shows the contributions
of the first 23 principle components of the entire

8

Figure 11: Plot of the first and the second principle component as the system goes through the
three different states of idle, websurf and compute. This is a visual argument, but the statistical
properties (like mean and variance) are clearly quite different allowing us to distinguish between
different states

dataset and how they capture more than 90% of
the variability in the data.

Figure 11 plots the first two components as
they evolve over time (this data came from a
previous log gathered by a different user). The
graph is annotated with activities. We can
see clearly that the visual appearance of the
plots is quite distinct in different activities. On
datasets from two additional machines, qualita-
tively similar plots were observed.

We also did all-counter PCAs for each of the

activities individually to see if there was a lot
of difference in the number of principle com-
ponents required to capture similar amounts of
variability during the different activities. The
general conclusion, over all the traces, is that
during any activity we considered, the first 25
principle components (i.e., 25 composite coun-
ters) explain more than 90% of variability in the
data.

The all-counter PCA (Figure 10) describes
the state of the machine in 40% fewer composite

9

Performance Total PCA CE
Object Ctrs. # Comps. # Ctrs.

Cache 27 5 6
Memory 29 7 16
Network 34 4 8
Objects 6 3 5
Disk 63 6 13
Processor 30 7 13
System 17 6 8
Total 512 23 72

Figure 9: Column 2 is the total number of per-
formance counters in each object, column 3
is the number of composite counters (principle
components) that are able to explain more than
90% of the variability in data, column 4 is the
number of subset counters remaining after ap-
plying CE.

2 4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

70

80

90

All Counters: Relative Importance of Principal Components

Principal Component

V
ar

ia
nc

e
E

xp
la

in
ed

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Figure 10: The first 23 principle components
over the entire dataset.

counters (23 versus 38) than per-performance-
object PCAs (total row of Figure 9). The trade-
off is that computing the single all-counter PCA
is considerably more expensive than comput-
ing PCAs for each of the performance objects
because the complexity of PCA grows at least
quadratically with the number of original coun-

ters. This result also raises an interesting possi-
bility: perhaps data reduction techniques could
be used to guide the construction of perfor-
mance objects that have both a clear meaning
to the user and high information content.

4.4 Overhead

As we do not yet have an online implementa-
tion of our data reduction techniques, we don’t
know whether online data reduction will feasi-
ble. However, there is good evidence that it will
be. The PCA described in the previous section
was run on 5 hours of 1 Hz data in about 4 min-
utes. Thus we believe that doing the PCA online
in a streaming fashion will require less than 1%
CPU utilization. The CE was even cheaper.

We are still working on how appropriately to
do streaming PCA and CE. Computing correla-
tion matrices incrementally is clearly easy, and
CE’s counter selection step is cheap, but com-
puting eigenvectors incrementally may be ex-
pensive. It may be necessary to do PCA only
occasionally. However, this raises an interest-
ing question that we are currently examining;
namely, is it necessary to recompute these val-
ues to do the analysis? If the correlations be-
tween counters and composite counters are rel-
atively stable, the dimensionality reduction may
need to only occur sporadically. This is a topic
for future work.

5 Related Work

Performance monitoring and prediction systems
such as Remos [18], NWS [39], and RPS [6, 7]
have limited or nonexistent Windows support.
This is not because the code is difficult to port,
but rather because of the complex nature of sen-
sors on Windows and the lack of the ability to
embed perfmon-like tools. WatchTower pro-
vides a simple interface to Windows sensors and
has been embedded as an RPS sensor. A similar

10

interface could be used with the other systems.

Several Windows-specific monitoring sys-
tems do exist. Closest to our work is HPVM’s
monitor [29], which is explicitly targeted at
Windows clusters. Unlike WatchTower, the
HPVM monitor provides a complete monitor-
ing infrastructure including communication and
high precision clocks. In contrast, WatchTower
provides a simple sensor service that can be
embedded into other tools. WinInternals Soft-
ware [38] and its SysInternals freeware web-
site [32] provide interactive tools, such as File-
mon and Regmon, that are specific for particular
performance counters. NSClient [27] exposes
Windows NT performance counters to the Net-
Saint monitoring system. None of these tools
include data reduction to capture the important
dynamics in the data.

The behavior of Windows systems and ap-
plications has begun to be studied. Chen, et
al., compared the performance of different fla-
vors of Windows and NetBSD on micro- and
throughput-oriented application benchmarks us-
ing hardware cycle counters [1]. They fol-
lowed up this work with a latency-oriented eval-
uation more suitable for interactive applica-
tions [9], and TIPME, a tool and framework for
addressing latency problems in interactive appli-
cations [8].

Bershad, et al., have characterized the re-
source usage patterns of desktop and commer-
cial applications running on Windows by instru-
menting applications [15, 16].

Perl and Sites studied the performance
of databases, compilers, and scientific codes
on DEC Alpha machines running Windows
NT using instruction and memory reference
traces [23]. WatchTower may be helpful for
studies such as these, providing a simple way
to produce traces.

6 Conclusions

We have described WatchTower, a system that
simplifies the collection of Windows perfor-
mance counter data. WatchTower provides easy
access to raw performance counters with com-
parable overhead to perfmon running in non-
GUI mode. Furthermore, WatchTower is easy
to embed within other monitoring systems—we
are currently building an RPS sensor based on it,
for example. We were able to reduce the behav-
ior of a large number of raw performance coun-
ters to few composite counters while still mak-
ing it possible to determine the overall state of
the machine and its interactive user.

WatchTower is currently running in our teach-
ing lab, collecting traces of machine behavior.
We also plan to use these traces to study the dy-
namic resource demands of interactive applica-
tions. We will consider more complex data re-
duction algorithms as needed.

In addition, we plan to address the extensions
needed to apply this data to a cluster environ-
ment in terms of gathering of data and special
analysis techniques.

Acknowledgments

Many thanks to Praveen Paritosh for his work
with the data reduction techniques descibred in
this paper. We would also like to thank Ja-
son Skicewicz for his help with the data anal-
ysis. This work was supported in part by the
Mathematical Information and Computational
Sciences Division Subprogram of the Office of
Advanced Scientific Computing Research, U.S.
Department of Energy, under contract W-31-
109-Eng-38, and by the National Science Foun-
dation through grants ANI-0093221 and ACI-
0112891.

11

References

[1] CHEN, J. B., ENDO, Y., CHAN, K.,
MAZIERIES, D., DIAS, A., SELZER, M., AND

SMITH, M. D. The measured performance
of pc operating systems. In Proceedings of
the 15th ACM Symposium on Operating System
Principles (SOSP ’95) (1995).

[2] CHIEN, A., LAURIA, M., PENNINGTON,
R., SHOWERMAN, M., IANNELLO, G.,
BUCHANAN, M., CONNELLY, K., GIANNINI,
L., KOENIG, G., KRISHNAMURTHY, S., LIU,
Q., PAKIN, S., AND SAMPEMANE, G. De-
sign and evaluation of an hpvm-based win-
dows nt supercomputer. International Journal
of High-performance Computing Applications
13, 3 (Fall 1999), 201–219.

[3] CONDOR TEAM. Condor Version 6.2.0 Man-
ual. University of Wisconsin-Madison. Chap-
ter 5, http://www.cs.wisc.edu/condor/manual.

[4] DINDA, P., LOWEKAMP, B., KALLIVOKAS,
L., AND O’HALLARON, D. The case for
prediction-based best-effort real-time systems.
In Proc. of the 7th International Workshop
on Parallel and Distributed Real-Time Systems
(WPDRTS 1999), vol. 1586 of Lecture Notes in
Computer Science. Springer-Verlag, San Juan,
PR, 1999, pp. 309–318. Extended version as
CMU Technical Report CMU-CS-TR-98-174.

[5] DINDA, P. A. Resource Signal Prediction and
Its Application to Real-time Scheduling Advi-
sors. PhD thesis, School of Computer Science,
Carnegie Mellon University, May 2000. Avail-
able as Carnegie Mellon University Computer
Science Department Technical Report CMU-
CS-00-131.

[6] DINDA, P. A., AND O’HALLARON, D. R. An
extensible toolkit for resource prediction in dis-
tributed systems. Tech. Rep. CMU-CS-99-138,
School of Computer Science, Carnegie Mellon
University, July 1999.

[7] DINDA, P. A., AND O’HALLARON, D. R.
Host load prediction using linear models. Clus-
ter Computing 3, 4 (2000).

[8] ENDO, Y., AND SELTZER, M. Improving in-
teractive performance using tipme. In Proceed-
ings of the International Conference on Mea-
surement and Modeling of Computer Systems
(SIGMETRICS ’00) (2000), pp. 240–251.

[9] ENDO, Y., WANG, Z., CHEN, J. B., AND

SELTZER, M. Using latency to evaluate inter-
active system performance. In Proceedings of
the 1996 Symposium on Operating Systems De-
sign and Implementation (1996).

[10] GALSTAD, E. http://netsaint.sourceforge.net/,
2001.

[11] GEIST, A., BEGUELIN, A., DONGARRA, J.,
JIANG, W., MANCHECK, R., AND SUN-
DERAM, V. PVM: Parallel Virtual Machine.
MIT Press, Cambridge, Massachusetts, 1994.

[12] HOFMEYR, S. A., FORREST, S., AND SO-
MAYAJI, A. Intrusion detection using se-
quences of system calls. Journal of Computer
Security, 6 (1998), 151–180.

[13] JAIN, R. The Art of Computer Systems Per-
formance Analysis. John Wiley and Sons, Inc.,
1991.

[14] JOLLIFFE, I. T. Principal Component Analy-
sis. Springer-Verlag, New York, 1986.

[15] LEE, D., CROWLEY, P., BAER, J.-L., AN-
DERSON, T., AND BERSHAD., B. Execution
characteristics of desktop applications on win-
dows nt. In Proceedings of the 25th Annual
International Symposium on Computer Archi-
tecture (ISCA ’98) (June 1998).

[16] LEE, D., DAVIS, A., ULBRIGHT, C., AND

BERSHAD, B. Characterizing commercial
workloads under windows nt. In Proceedings
of the ASPLOS ’98 Workshop on PC Perfor-
mance Characterization (1998).

[17] LITZKOW, M., LIVNY, M., AND MUTKA, M.
Condor—a hunter of idle workstations. In Pro-
ceedings of the 8th International Conference
of Distributed Computer Systems (ICDCS ’88)
(June 1988), pp. 104–111.

12

[18] LOWEKAMP, B., MILLER, N., SUTHER-
LAND, D., GROSS, T., STEENKISTE, P., AND

SUBHLOK, J. A resource monitoring system
for network-aware applications. In Proceed-
ings of the 7th IEEE International Symposium
on High Performance Distributed Computing
(HPDC) (July 1998), IEEE, pp. 189–196.

[19] MICROSOFT CORPORATION. Microsoft
platform software development kit.
http://microsoft.com/windows2000/library/resources/reskit/.

[20] MICROSOFT CORPORATION. Win-
dows 2000 professional resource kit.
http://microsoft.com/windows2000/library/resources/reskit/,
2000.

[21] MICROSOFT CORPORA-
TION. Monitoring performance.
http://www.cwlp.com/samples/tour/perfmon.htm,
2001.

[22] MILOSAVLJEVIC, I. J., PARTRIDGE, M.,
CALVO, R. A., AND JABRI, M. A. High per-
formance principal component analysis with
paral. In Proceedings of the Ninth Aus-
tralian Conference on Neural Networks, Bris-
bane (1998).

[23] PERL, S. E., AND SITES, R. L. Studies of
windows nt performance using dynamic exe-
cution traces. In Proceedings of the Second
Symposium on Operating Systems Design and
Implementation (OSDI ’96) (October 1996),
pp. 169–184.

[24] PLATFORM COMPUTING CORPO-
RATION. Load sharing facility.
http://www.platform.com.

[25] RAJKUMAR, R., LEE, C., LEHOCZKY, J.,
AND SIEWIOREK, D. A resource allocation
model for QoS management. In Proceedings of
the IEEE Real-Time Systems Symposium (De-
cember 1997).

[26] RENCHER, A. C. Methods of Multivariate
Analysis. Wiley, New York, 1995.

[27] RUBIN, Y. Nsclient.
http://netsaint.sourceforge.net.

[28] SAAVEDRA-BARRERA, R. H., SMITH, A. J.,
AND MIYA, E. Machine characterization based
on an abstract high-level language machine.
IEEE transactions on computers 38, 12 (De-
cember 1989).

[29] SAMPEMANE, G., PALKIN, S., AND CHIEN,
A. Performance monitoring on an hpvm clus-
ter. In Proceedings of the International Con-
ference on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA ’00)
(June 2000).

[30] SCHOPF, J. M., AND BERMAN, F. Stochastic
scheduling. In Proceedings of Supercomput-
ing ’99 (1999). Also available as Northwest-
ern University Computer Science Department
Technical Report CS-99-03.

[31] SNAVELY, A. Performance modeling
and prediction for the hpc community.
http://www.sdsc.edu/ allans/position.html,
2001.

[32] SYSINTERNALS LLC.
http://www.sysinternals.com/.

[33] TAKEDA, K., ALLSOPP, N. K., HARDWICK,
J. C., MACEY, P. C., NICOLE, D. A., COX,
S. J., AND LANCASTER, D. J. An assessment
of mpi environments for windows nt. In Pro-
ceedings of the 1999 International Conference
on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA ’99) (1999).

[34] THOMPSON, N. Creating a simple win32 ser-
vice in c++. Microsoft Windows Platform
Technical Article, November 1995.

[35] TOMLINSON, P. Windows NT Programming
in Practice: Practical Techniques from Master
Programmers. R&D Books, 1997.

[36] VETTER, J., AND MUELLER, F. Profiles in
courage: Explicit communication characteris-
tics of scientific applications. In Submitted to
SC’01 (2001).

[37] VETTER, J. S., AND REED, D. A. Managing
performance analysis with dynamic statistical

13

projection pursuit. In Proceedings of Super-
computing ’99 (SC ’99) (November 1999).

[38] WINTERNALS SOFTWARE LP.
http://www.winternals.com/.

[39] WOLSKI, R. Forecasting network perfor-
mance to support dynamic scheduling using
the network weather service. In Proceedings
of the 6th High-Performance Distributed Com-
puting Conference (HPDC97) (August 1997),
pp. 316–325. extended version available as
UCSD Technical Report TR-CS96-494.

[40] WOODWARD, P. Personal communication,
April 2001.

14

