
Clusters as Large-Scale Development Facilities
1

Rémy Evard, Narayan Desai, John-Paul Navarro, and Daniel Nurmi

Argonne National Laboratory

{evard, desai, navarro, nurmi}@mcs.anl.gov

1 This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific

Computing Research, U.S. Dept. of Energy, under Contract W-31-109-ENG-38.

Abstract

In this paper, we describe the use of a cluster as a

generalized facility for development. A development

facility is a system used primarily for testing and

development activities while being operated reliably for
many users. We are in the midst of a project to build and

operate a large-scale development facility. We discuss

our motivation for using clusters in this way and compare

the model with a classic computing facility. We describe

our experiences and findings from the first phase of this

project. Many of these observations are relevant to the
design of standard clusters and to future development

facilities.

1.1. Background

The objective of Argonne National Laboratory’s Chiba

City Project [1] is to provide a computing platform for

development and testing of large-scale high-performance

computing software while carrying out research in

systems software (i.e., the software needed to manage and

operate the systems and to support applications). We

have two primary motivations for this work:

• Scalability is a fundamental goal of high-

performance computing. Much research during

the past decade has demonstrated that the

primary barrier to achieving systems scalability

is scalability of systems software.

• Researchers investigating paths to petaflops-

capable systems in the early and mid-1990s

identified multiple possible hardware technology

paths to petascale performance. Each of these

hardware paths, regardless of the technology

base, had one characteristic in common: the need

for increasing degrees of concurrency in future

systems. Future systems are likely to have

hundreds of thousands to millions of individual

components.

In essence, future high-end systems will be

substantially larger scale than today’s systems, perhaps by

three or more orders of magnitude. System software,

libraries, and applications must be able to operate

effectively at this scale.

The explosive growth of commodity-based clusters has

reinforced these expectations. Many institutions have

demonstrated that one can effectively build very large

systems out of small and inexpensive individual

components. As processor technology continues to shrink

in size and cost, to increase in capability, and to become

specialized, clusters will continue to grow in size and

capability. The scalability of systems software, however,

has not kept pace with the growth of clusters. The

development of systems software that scales reliably

continues to be one of the biggest challenges in the cluster

computing community.

One of the barriers to the development of such systems

software is that facilities that support developing and

testing at scale are rare. The vast majority of large

computers in existence are dedicated to computational

simulation, not to development and testing. Developers

have only limited access and time on these systems, and

any kind of development that might destabilize the system

(such as file system or scheduler changes) must be done

with extreme care, if at all. The standard batch-queue

model of supercomputer scheduling is not conducive to

development or exploration of ideas, both of which tend

to require interaction. This situation substantially limits

the amount of research and development that can be put

into scalability issues, which in turn tends to cause people

to focus their effort in other directions.

The first Chiba City cluster was installed in 1999 as a

facility for large-scale development and testing in order to

help address the lack of testbeds for systems software

developers and to promote research into scalability issues

in all areas of high-performance computing. Demand for

Chiba City’s development capabilities is increasing

strongly. We are now in the process of designing the next

generation of the facility. In this paper, we describe our

Figure 1 – Chiba City Diagram

experiences and observations from the first phase of this

project.

2. A Development and Testbed Facility

We designed and built Chiba City by incorporating our

own experience in supporting a decade of research

activities on a wide range of parallel platforms with the

designs of other clusters and input from potential early

users of the system. The capabilities of the system have

changed over time as we have come to better understand

the requirements of the testbed community. Here we

describe the initial capabilities and features of the system

that were focused on testbed activities.

2.1. System Components

To first order, Chiba City looks very much like a

standard cluster used for computational science (e.g. a

BEOWULF system [2]). (See Figure 1.) The

components of the system can be categorized as follows:

• User nodes (256). These nodes run the users’

“jobs”.

• Login nodes (2). These are the front-end nodes,

with a full Linux computing environment. This

is where “jobs” are submitted to a scheduler.

• Management nodes (11). These systems

manage the user nodes but are not visible to the

users.

• Storage nodes (8). These systems provide file

system service to the user nodes and are

accessible to users carrying out I/O experiments.

• Visualization nodes (32). These systems

support graphics and visualization experiments.

• Myrinet.

• Switched fast/gigabit Ethernet.

A more detailed description of the Chiba City

environment is in [1]. In practice this system organization

has worked fairly well.

2.2. The Management System

The management system has been essential to the

testbed activities. The cluster was designed around the

concept of having a robust and reliable management

system that could be used to manage and control the rest

of the cluster.

The physical components of the management system

include the following:

• The management nodes mentioned above. These

are organized hierarchically; one primary

management node controls all of the other

management nodes. Each of these in turn

controls and monitors up to thirty-two user

nodes.

• A serial console infrastructure, allowing access

to all system consoles via the network. The

management system monitors the consoles for

status and occasionally issues commands over

8 User Towns

256 Dual Pentium III systems
1 Visualization Town

32 Pentium III systems

with Matrox G400 cards

1 Storage Town

8 Xeon systems

with 300G disk each

Cluster Management

12 PIII Mayor Systems

4 PIII Front End Systems

2 Xeon File Servers

3.4 TB disk

High Performance Net

64-bit Myrinet

Management Net

Gigabit and Fast Ethernet

Gigabit External Link

the consoles.

• A simple power control infrastructure that allows

administrators to power cycle any hardware in

the system.

Management of the system requires a suite of software

tools. Some of these are standard systems administration

and cluster tools from the open source community, while

others were developed in house. The most important of

these in relation to this paper is the “ChibaDB” – a

database of information about the cluster, including node

hardware information and node software configuration.

When a node is rebooted or rebuilt (as described in

section 4.1), the management system uses the database to

determine which operating system to install on that node.

2.3. System Use

While the cluster was to be dedicated to supporting

testbed activities, we also intended to support

computational science when cycles on the system were

available. Priorities for cluster use were set in this order:

1. Computer science researchers and developers.

2. Computational scientists who were willing to act

as testers of the potentially unstable system

software.

3. Computational scientists testing code at large

scale.

4. Other potential users.

Under normal circumstances, a batch scheduler

mediates access to the cluster, just as if it were a standard

computational cluster.

2.4. Initial Capabilities

Based on the requirements identified by the initial

users of the system, we designed a system that gave users

the following abilities:

• On-Demand Access: the ability to run

programs on the system without waiting in the

batch queue. We have supported this in a

number of ways, some of which have changed

over time.

• Interactivity: the ability to interact with a

program or the OS on a user node. This is a

fairly standard feature on most clusters, as it is

important for debugging.

• Root Access: having root access on one or more

user nodes of a system.

• Dynamic OS: the ability to install a nonstandard

operating system, or variant of a standard one, on

one or more user nodes.

We were able to grant root access and dynamic

operating systems on the user nodes by building a cluster

management infrastructure that could reboot and install an

operating system on any user node in the system. Thus,

after a user completed using a set of nodes in this way, we

could “clean up” and re-install the standard OS before

allocating those nodes to the next user.

This set of features was sufficient for the early use of

the system. As our understanding of the needs of testbed

users has grown, however, we have modified and

extended the basic requirements list accordingly.

2.5. Relation to Computational Clusters

The standard usage of a testbed cluster is similar to the

usage of a computational cluster:

• Users request resource allocations and run jobs

on the resulting nodes.

• Job runs consist of the following steps:

o The user supplies the application and

input data.

o The user then specifies the way that the

application is executed.

o Finally, the output data produced by the

application is returned to the user.

While this high-level description applies to both

computational and testbed clusters, the specifics in both

Table 1 – Requirements of Computational vs. Testbed Users

 Computational User Testbed User

Desired resource Some number of nodes with a

standard (and usually minimal) OS

Some number of nodes with a

custom and user-specified OS

Application A user-mode application An OS with custom features

Input Typically data sets or input

parameters

Test cases to be executed

Output Typically some form of numerical

result

Results of tests, both

qualitative and quantitative

cases substantially differ. We illustrate this situation in

Table 1.

In essence the basic job model for both uses is similar

in. (Indeed, we support both types of jobs on the system,

often simultaneously.) The specific goals of a testbed

user’s job are often quite different, and hence the usage

patterns within that job are different.

3. Characterization of Testbed Usage

In the first days of the system, testbed usage was

largely characterized by users who needed interactive

access to a large cluster for short periods of time. For

example, scientists used the cluster to test systems

software that launched jobs. In this case, which is typical

of much of this type of development, the scientists needed

to use the entire system interactively but only for

moments at a time.

Over time, the usage of the system has changed, both

as the system has become more capable and as the user

community of Chiba City has grown. Recently, we have

had quite a number of different OS and system tool

developers on the system who need to install their own

operating systems on as much of the cluster as possible.

After pushing out and configuring the installation, they

usually run a series of tests that might take hours or days.

We can classify testbed usage based on two metrics:

• Degree of scalability. This describes the degree

to which the specific project is focused on

developing and testing at large scale or carrying

out research into scalability issues.

• Degree of system impact. This describes the

project’s ability to operate in the standard

environment. We have categorized these as

“computational usage”, “basic development”,

“system development”, and “extreme

development”, each of which is described below.

These two issues, scalability and impact, go hand in

hand. While the testbed can support high-impact

development on a single node, most high-impact testbed

users are also interested in testing scalability issues.

Therefore, while we have found it interesting to note

which of our users operate at large scale, we have not

found it particularly useful to differentiate between them

based on scalability because most of the testbed users

eventually want to use the entire system.

In the following sections, we profile these broad

categories of cluster users and describe the augmented

functionality they require in order to use testbed clusters

effectively. They are described in order of increasing

degree of system impact.

3.1. Computational Usage

The first type of user is a standard application user on

a computational cluster. In most of these cases, the user

wants to run a mature application for a considerable

period of time. The operating system running on the

nodes usually doesn’t matter as long as the application

can be recompiled for the target system. No enhanced

privileges of any sort are required on any portion of the

system. A computational user may place significant

demand on the I/O system of the cluster.

The intent of a computational application user is

typically to generate a set of numerical results.

3.2. Basic Development

The second type of user, quite common on Chiba City,

is the basic development user. A good example of this

type of user is the developer of a systems library such as a

numerical library or a communications library.

In general, this type of user is interested in code

scalability and performance. The following are typical

requirements, some of which were noted above:

• On-demand Access. Waiting in a queue when

actively developing can severely limit the

effectiveness of a development session. These

users like to be in the “code/compile/test” loop

that is common for development on unscheduled

systems. In order to address this issue, we took

three steps:

o Thirty-two of the nodes on the system

were designated “unscheduled”, that is

the scheduler does not control access to

them. They are available to all users at

all times and are intended to be used as

an on-demand testing area.

o The scheduler policy was arranged to

allow only very short-running jobs

during certain business hours. In

theory, this would allow the quick jobs

that characterize this kind of

development to migrate to the front of

the queue. In reality, we discovered

that this feature was rarely used because

developers didn’t link their

development schedules to the queue

policy.

o We made it possible to easily request

reserved nodes on the system for

arbitrary amounts of time.

• Interactive Access. Interactive debugging is

important for the basic development user. This

type of access to the nodes was enabled by

default; when the scheduler allocates a node to a

user, that user can login to that node.

• Property Extraction in Job Runs. The

development user frequently wants information

from a variety of sources ranging from kernel

counters to network performance data, in order

to gain insight into execution and performance.

• Permission to Stress the System. Occasionally,

large-scale development and testing will tax the

system greatly, sometimes beyond the limits of

system stability. When such system instabilities

occur, the developer is usually interested in

determining the root cause of the problem and

may not consider the instability to be

detrimental. In order to support this type of

activity, expectations across the user community

must be set; users must be aware that the system

will occasionally have instabilities as a result of

user code and that this is acceptable (although

not actually desirable).

Typically, the intent of the basic development user is

to obtain information about performance properties of

applications. We note that, in many cases, computational

users also carry out basic development when they are

developing their computational code and generally have

these same requirements.

3.3. System Development

A more demanding type of user is one who carries out

“system” development. Projects that require system

development capabilities make some kind of modification

to the user nodes or to the system itself that requires some

type of cleanup before the system can be used by other

users.

System developers typically have the same

requirements as basic developers. In addition, they have

one or more of these:

• Root Access. Some developers, such as those

developing device drivers or testing daemons,

require privileged access on the user nodes. On

a system where root privileges can be assigned to

users, the software state on a node can become

untrustworthy. Even when a user is trusted,

honest mistakes can happen, causing a

configuration management nightmare. In effect,

when root access is granted to a user, the node

must be considered untrustworthy and must be

rebuilt when the user is finished. One

implication of this is that the rebuild process

must be robust and efficient. Giving root access

to a user also has security implications, which

are discussed below.

• Specialized Kernels. In some cases, a developer

needs a specific kernel that may be different

from the one installed by default on the node.

As with root access, the node will need to be

rebuilt when the user is done.

• Hardware Management. A user who is

working in this mode is often doing work that

can crash the node. If such a crash takes place,

the user will want access to system hardware in

order to debug or restart the node. At present on

our facility, the user must have access to the

management infrastructure of the cluster, a level

of access that we are not comfortable making

generally available. In practice, this situation

comes up rarely, and in such cases it has been

possible to have a system administrator

participate in the debugging activities. If this

becomes a bigger issue in the future, we will

need to develop this in a more general solution.

Again, the intent of this kind of user is to carry out

development and to test an application’s properties, such

as stability and performance, rather than to generate

numerical result.

3.4. Extreme Development

The “extreme” developer is one that is developing or

packaging up a complete operating system or is working

on clusterwide systems services. Most extreme

developers have the same requirements as the previous

types of developers but have one or both of the following

objectives as well:

• User-Defined Node Software. The user

provides an operating system in some form that

can be installed on the nodes allocated to them.

In order for this to be successful, these images

usually need to meet certain requirements: they

must be able to use the facility’s network, which

opens up a number of issues related to node

identification. Nodes typically need to set up

trust relationships with other nodes in the same

project. These issues create a number of

technical challenges that are discussed in section

4. Once the user is done with the nodes, they

will need to be rebuilt into a standard

configuration.

• Dynamic System Services. Some projects

eventually mature to the point that they can be

installed as a part of the cluster fabric for serious

testing. Examples of such projects include

naming services, mapping services, grid

software, and file systems. In all such cases so

far, we have had the system managers of the

facility get directly involved in the project in

order to determine specific goals, testing

procedures, and fallback plans. Perhaps the

trickiest issue here is that these types of activity

tend to destabilize the system infrastructure, once

again requiring that the user community have the

correct expectations for system reliability.

3.5. Hardware Development

A final type of user may be the hardware developer.

We have not yet had any hardware developers carry out

development or research on our facility, but such a

possibility appears increasingly likely.

Hardware-related projects might include simple testing

of new network hardware at scale, augmenting nodes in

particular ways (e.g. PIMs or other specialized

processors), or trying alternative system management

interfaces for nodes.

3.6. Hybrid Models

Unlike the four categories previously cited, hybrid

models constitute a nonstandard and not precisely discrete

environment. Potentially new approaches to computation

and development can be carried out in this type of

environment.

For example, it is possible for someone to fine-tune an

OS image for a specific application and then to carry out

computations using that customized OS image.

4. Technical Issues

To support the technical requirements of the various

categories of user, one must address a variety of issues

that are not commonly faced on standard clusters. Some

of these can be solved through simple policy changes, for

example by adjusting scheduler algorithms and by

appropriately setting user expectations. Many, however,

are technical in nature.

In the following sections, we describe the technical

issues that we have encountered. In some cases, we feel

that we have adequately addressed these challenges in the

first phase of this project. In other cases, the problems are

beyond the scope of our initial activities.

4.1. Support for Arbitrary OS Images

One of the main requirements of a development

cluster, as noted above, is the capability for users to run

customized operating systems on the nodes of the cluster.

We refer generically to a node’s operating system and its

configuration as an “image”. The degree of image

customization varies from user to user and may range

from a changed device driver to a completely different

OS.

In our environment, we have decided to reinstall the

standard node operating system on any node customized

by a user, even in the simplest cases. This approach has

worked quite well. We use this same model to rebuild

nodes where users have been granted root access (because

we have no idea what might have changed).

This node image installation and recovery scheme has

three important aspects: an image description mechanism,

an OS installation mechanism, and a node recovery

system. Each of these will be described in some detail.

4.1.1. Image Description Mechanism. Automated

operating system installation has been a common

technique in the systems administration community for

decades. The most significant challenge has turned out to

be the description of the software to be installed on a

system and the changes to be made on each individual

system. This is also a challenge for clusters.

Fortunately, the systems administration community has

developed a variety of configuration management tools

and techniques, many of which can be adopted directly

for use on a cluster [3]. Despite this activity, image

description and change management remain fertile areas

of potential research [4,5].

In essence, images to be installed on nodes must be

described somehow. More importantly, users who install

their own images must also be able to describe their

images, which is an activity that most users would prefer

to avoid. The open question in this area is how best to

enable users and administrators to easily describe node

images, which may include such complications as

• The node disk geometry

• Other hardware configuration information such

as network card parameters

• The base operating system and software

packages

• Configuration changes to the base operating

system

• Pointers to external services such as naming

mechanisms or file systems

• The need to be installed on potentially different

nodes over time

We would like a general solution to this problem but

have found that two basic mechanisms have worked for

us so far:

• Raw Bit Installation: In this method, an

administrator or a user installs an image on a

single node. We then take a snapshot of the bits

on the node and the disk partition information.

From this snapshot, we can reconstruct an exact

copy of that node on nearly any system. We

have successfully installed both Linux and

Windows operating systems using this method.

Changes in hardware (i.e., devices) or the

environment (i.e., servers), however, limit the

effectiveness of this solution.

• Boot Disk Installation: In this method, the user

provides a boot disk that will install the proper

bits onto disk. The boot disk includes image

configuration information that can be customized

to each node. That boot disk is distributed on the

cluster management infrastructure, and the

individual nodes then boot from that boot disk.

(This process is similar to using Kickstart [6],

and in fact we have booted nodes using Kickstart

in this way.)

We have found that these approaches meet the basic

requirements; that is, they can be used to allow users to

install arbitrary images on nodes. Because of the complex

nature of image creation, however, the cluster

administrators usually need to assist with the process. As

demand on the system continues to grow, we are

concerned that approaches of this type will not scale.

4.1.2. OS Installation Mechanism. The job of the

operating system installation mechanism is, as one might

expect, to install an image on a node. The installation

mechanism should be able to install an arbitrary image

(i.e. any image built in the ways described above).

The OS installation mechanism should not rely on any

hooks or infrastructure on the node itself; it should work

if the node has no software, has a supported operating

system, or is running mysterious user code.

Fortunately, the industry has largely solved this

problem with standard network booting protocols. DHCP

[7] and PXE [8] are commonly used to remotely install

operating systems on computers over a network. PXE,

unfortunately, works only on a subset of Ethernet cards;

however, these are increasingly common.

In addition to these standard protocols, our solution

incorporates a database that maps nodes to desired

images, making boot decisions based on the state of the

system. In some cases, we will install the appropriate

image directly. In others, where this is not possible, we

will install a known reliable image that will format the

local hard drive appropriately and then install the target

image.

4.1.3. Node Recovery System. Once user jobs have run,

nodes may have been left in an indeterminate state. The

job of the node recovery system is to prepare those nodes

for image installation. Because the node state is unknown

at this point, the infrastructure for node recovery must

work independently of host operating system support.

Since our boot management system can take over

during a reboot, the simple solution is to force a reboot of

the node. We have implemented this with the use of

network accessible power controllers.

This solution works fairly well for us, with the

following caveats:

• If a user were to reset the BIOS so that a network

boot was not forced, the node would not recover

correctly. If this were done across the cluster,

we would be forced to manually reset the BIOS

on every node, a task that would be a disaster.

• We’re beginning to worry about repeatedly

interrupting the power to the nodes. This doesn’t

seem to be the best way to treat hardware. We

would prefer to have hardware-level reboot and

power cycle control, such as exists as a

management interface on some systems.

4.2. Complex Infrastructure Requirements

In many cases, developers are able to work on any

available set of nodes without substantial adaptation of

their code. In general this is the case for developers in the

basic and systems development categories. Some

developers discover that they have to think carefully

about adapting their project to a dynamic cluster

environment. This is frequently the case for developers

who make substantial changes to the node environment or

are working with clusterwide system services (i.e.

Extreme Developers); occasionally it is also an issue for

others.

4.2.1. Entire Cluster Simulation. One of the popular

uses of our facility is to test cluster operating systems and

cluster management software. Configuring the test

environment for this kind of use takes special care.

Typically, these developers need to simulate an entire

cluster, including management, login, storage, and

compute functionality, all within the user nodes allocated

to them.

This testing is more difficult than normal for two

reasons:

• The users need to map their services onto a set of

basically identical systems. The concept of

generically mapping services onto nodes (rather

than onto some hardwired test cluster) is usually

foreign.

• The users often need some specific hardware

configuration. This may require more disk space

than is available (i.e., to simulate storage nodes),

different network cards from those the nodes are

configured with, or different hardware

arrangements (i.e., to access serial consoles or

hardware performance data) than is possible.

We do not have a general solution to these problems at

this time. We are leaning toward having a pool of

“advanced capability” nodes, namely, with extra memory,

disk, and room for peripherals, in order to address the

second issue.

4.2.2 External Infrastructure. Some of the software

under development on the cluster relies on persistent,

external infrastructure. Those persistent services could

conceivably be installed dynamically as parts of that

user’s “job” but in practice are much easier to install once

on some dedicated system. These often help bootstrap the

user’s code.

We have two distinct examples:

• When installing Windows2000 as a cluster OS

environment, it is useful to have at least one

Windows Domain Controller accessible on the

cluster network, providing Windows-specific

information such as user accounts and naming.

• To facilitate some of the Red Hat-based

distributions that have been installed on the

cluster, we allocated a dedicated computer to act

as the Kickstart boot manager.

The ability to provide external services on a persistent

system has simplified these two experiences substantially.

4.2.3. Production Integration. In some cases, the

software under development is approaching production-

ready quality. The next step for these projects is to try the

software with real users in production mode. The goal at

this point is to flush out remaining bugs and understand

performance issues under a real workload. The logical

next step is to deploy this software as part of the real

cluster infrastructure.

On our system, production integration has taken place

with file systems, process managers, and messaging

libraries. The system administrators of the facility

installed these on the cluster itself, and these software

versions became the default versions available for users.

At this point, the cluster users (both computational and

development) became the set of users testing these

software packages.

This process raises three issues. First, it’s not

necessarily clear that this is a good idea to do with all

software, and the selection criteria are a bit unclear.

Second, doing this requires a great deal of interaction

between the project developers and the cluster

administrators; both parties need to buy into the plan.

Finally and perhaps most important, the resulting

instabilities can cause problems for all users on the

cluster. As we noted previously, it helps to warn users in

advance that these kinds of failure are expected.

4.3. Supporting Data Gathering in Jobs

We have found that development users want

information from a variety of sources, to gain insight into

application execution and performance. This data

includes

• Kernel counters

• Hardware counters, such as cache hits, and

number of instructions executed

• Environmental data such as temperature and

clock speed

• Network performance data

• Application profiling data

This data is accessible in locations both on and off of a

user node. For this reason, the application cannot

necessarily collect all of this data directly. At this point,

we provide the data on an ad hoc basis. A more general

solution would be very helpful.

4.4. Persistent Node Identification

A possible characteristic of a development facility is

that hardware configurations change fairly regularly,

either as a part of testing hardware or when replacing

nodes. In our case, we’ve learned that we shuffle

hardware far more than we had originally anticipated.

On a system in which individual nodes are commonly

moved or replaced, the issue of node identification

becomes both important and difficult. In this sense,

“node identification” is the ability to permanently map a

node’s physical location in the cluster to a hostname.

Knowing the exact physical and network location of a

node (and its associated hostname) is important for many

reasons, including the following:

• The ability to locate a node when hardware

problems occur

• The desire to track performance and reliability

trends based on a persistent name associated with

the hardware

• The fact that both developers and administrators

occasionally need to understand the topology of

the system, for example, when analyzing

network performance characteristics or when

renumbering subsets of a cluster for security

reasons

• The desire to know a node’s identity before it

boots, in order to deliver the correct OS to that

node.

Knowing specifically which hardware has which

network address sounds like a very simple problem, but it

is difficult when hardware is regularly moved or changed.

Most name assignment schemes are based on the theory

that one assigns names only once or assigns names

dynamically. Neither is true in this situation.

The usual method for assigning names is to gather the

MAC addresses of each node, associate those addresses

with known hostnames, and then assign them to nodes

dynamically via DHCP or statically via some host

configuration system. On any cluster that is installed only

once, MAC address gathering can be done by hand or via

a controlled sequenced boot of each node, one by one.

In a cluster with dynamic hardware configurations, a

more reliable solution is to have the cluster infrastructure

detect that the hardware has changed.

Our initial implementation on Chiba City used the

serial console infrastructure to detect MAC addresses,

register them in the cluster’s DHCP services, and modify

the node installations as necessary. This was an option

because the serial console port could be used to precisely

identify the physical location of the node. Because the

serial console hooks work only on our own node image

and not on arbitrary node images, we are now working on

a more general solution that uses network switch sensing

to detect MAC addresses.

4.5. Node-Proof System Software

On a system on which the user nodes may be running

any kind of code, the system infrastructure must be able

to function optimally without any dependency on those

nodes. We have found in particular that some scheduling

and job launching software tends to rely on status

information from daemons on the user nodes and will

hang or time-out when those nodes are unresponsive.

4.6. Smarter Node BIOS

Standard commodity PC BIOS systems have fairly

limited capabilities. This fact has caused problems for us

in a number of ways. We would find the following

features extremely helpful:

• Accessibility to the BIOS over the console port

• Operating system access to the BIOS, that is,

being able to set BIOS features in the same way

that is possible on Solaris systems and others

• Enhanced monitoring capabilities

• A consistent approach to locking BIOS settings

with a password

Some of these BIOS issues are being addressed by the

LinuxBIOS [9] project (which also has other desirable

features). Unfortunately, in our case, the hardware that

we are using cannot take full advantage of LinuxBIOS;

thus, we are also hoping for a wider acceptance of

LinuxBIOS by the vendor community in order to be able

to use it in the future.

4.7. Security

Allowing users to have root access introduces a

number of complications.

The most common problem that we have faced is that

someone with root may have done something

(intentionally or not) to modify the state of the image. As

noted in Section 4.1, we solve this by rebuilding a node

from scratch after a user with root privileges has finished

with it.

Users with root access also introduce a number of

security issues, particularly if there is a possibility that the

user may be malicious:

• Nodes under administrative control of users

should not be trusted by system management

infrastructure. For example, a cluster’s NFS file

systems should not be exported to such nodes.

• Static standard trust-related configurations, such

as cluster-internal “.rhosts” or .ssh key files, are

no longer viable. Nodes under the control of one

user should not trust nodes under control of

another user.

• Users might use their nodes to launch attacks

against other networked systems outside the

cluster. (A cluster would make an interesting

testbed for denial-of-service attacks.)

• Users might introduce network-based attacks

such as IP spoofing or network sniffing in order

to attack some other job currently running.

• Users might configure system services

(intentionally or otherwise) such that their nodes

are susceptible to attacks from outside.

We have not yet addressed any of these issues yet

because we are quite familiar with that portion of our user

community to whom we have granted root access, largely

because of their need for aid with image configuration

issues. Thus, we have been able to keep an eye out for

such activities. As our user community grows, security is

becoming increasingly important.

These problems can be addressed in the following

ways:

• Nodes on which a user has root access should be

designated as “untrusted.”

• Untrusted nodes should be easily discernable

from trusted nodes in order to allow the

management infrastructure to differentiate

between the two. In particular, they should have

different IP addresses and hostnames from when

they are trusted.

• In order to prevent network-based attacks within

the cluster, untrusted nodes should be on

different networks from trusted nodes and also

from other groups of untrusted nodes. This

segmentation requires the use of routers between

all distinct security zones.

• Network filters and detectors should be installed

to detect attacks originating in the cluster and

targeting the cluster. Segregating trusted and

untrusted hosts by network can help with these

filters.

• Clearly, any detected security problems should

immediately result in the disabling of the

associated user’s access to the cluster.

These solutions require networking gear that can

operate at both layer 2 and layer 3, can perform IP

filtering on the fly, and can be dynamically reconfigured

in association with node allocation on the cluster.

5. Conclusion

In this paper, we have described the technical

challenges that we have encountered in the first phase of a

project to build and operate a cluster in support of

development and scalability research. Facilities to

support large-scale development and research are critical

to the future rapid growth of high-performance computing

systems and the associated scientific community.

A number of the challenges in supporting this facility

were solved with a robust node management

infrastructure and with flexible system policies, but the

most difficult problems, ranging from image description

through data gathering, remain. As we add more users to

the system and support increased functionality, it will

become imperative that we solve these in a general way.

6. References

[1] R. Evard, “Chiba City: A Case Study of a Large Linux

Cluster,” in Beowulf Cluster Computing with Linux, by Thomas

Sterling. Cambridge, Mass., MIT Press, 2001.

[2] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U.

A. Ranawake, and C. V. Packer. “BEOWULF: A Parallel

Workstation for Scientific Computation,” in Proceedings of the

24th International Conference on Parallel Processing, 1995.

[3] M. Burgess, “Cfengine, a Site Configuration Engine,” in

USENIX Computing Systems 8, (1995.)

[4] P. Uthayopas, S. Phatanapherom, T. Angskun, S.

Sriprayoonsakul, "SCE: A Fully Integrated Software Tool for

Beowulf Cluster System," in Proceedings of Linux Clusters: the

HPC Revolution, National Center for Supercomputing

Applications (NCSA), University of Illinois, Urbana, Illinois,

June 25-27, 2001.

[5] P. Papadopoulos, M. Katz, and G. Bruno, “NPACI

Rocks: Tools and Techniques for Easily Deploying Manageable

Linux Clusters,” in Proceedings of Cluster 2001, October 2001.

[6] Kickstart: http://www.redhat.com/docs/manuals/linux/

RHL-7.3-Manual/custom-guide/.

[7] DHCP: ftp://ftp.isi.edu/in-notes/rfc2131.txt.

[8] PXE: ftp://download.intel.com//labs/manage/wfm/down

load/pxespec.pdf.

[9] R. Minnich, J. Hendricks, and D. Webster, “The Linux

BIOS,” in The Fourth Annual Linux Showcase and Conference,

October 2000.

