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Abstract 

 
In this paper, we describe the use of a cluster as a 

generalized facility for development.  A development 

facility is a system used primarily for testing and 

development activities while being operated reliably for 
many users.  We are in the midst of a project to build and 

operate a large-scale development facility.  We discuss 

our motivation for using clusters in this way and compare 

the model with a classic computing facility.  We describe 

our experiences and findings from the first phase of this 

project.  Many of these observations are relevant to the 
design of standard clusters and to future development 

facilities. 

1.1. Background 

The objective of Argonne National Laboratory’s Chiba 

City Project [1] is to provide a computing platform for 

development and testing of large-scale high-performance 

computing software while carrying out research in 

systems software (i.e., the software needed to manage and 

operate the systems and to support applications).  We 

have two primary motivations for this work: 

• Scalability is a fundamental goal of high-

performance computing.  Much research during 

the past decade has demonstrated that the 

primary barrier to achieving systems scalability 

is scalability of systems software. 

• Researchers investigating paths to petaflops-

capable systems in the early and mid-1990s 

identified multiple possible hardware technology 

paths to petascale performance.  Each of these 

hardware paths, regardless of the technology 

base, had one characteristic in common: the need 

for increasing degrees of concurrency in future 

systems.  Future systems are likely to have 

hundreds of thousands to millions of individual 

components. 

In essence, future high-end systems will be 

substantially larger scale than today’s systems, perhaps by 

three or more orders of magnitude.  System software, 

libraries, and applications must be able to operate 

effectively at this scale. 

The explosive growth of commodity-based clusters has 

reinforced these expectations.  Many institutions have 

demonstrated that one can effectively build very large 

systems out of small and inexpensive individual 

components.  As processor technology continues to shrink 

in size and cost, to increase in capability, and to become 

specialized, clusters will continue to grow in size and 

capability.  The scalability of systems software, however, 

has not kept pace with the growth of clusters.  The 

development of systems software that scales reliably 

continues to be one of the biggest challenges in the cluster 

computing community. 

One of the barriers to the development of such systems 

software is that facilities that support developing and 

testing at scale are rare.  The vast majority of large 

computers in existence are dedicated to computational 

simulation, not to development and testing.  Developers 

have only limited access and time on these systems, and 

any kind of development that might destabilize the system 

(such as file system or scheduler changes) must be done 

with extreme care, if at all.  The standard batch-queue 

model of supercomputer scheduling is not conducive to 

development or exploration of ideas, both of which tend 

to require interaction.  This situation substantially limits 

the amount of research and development that can be put 

into scalability issues, which in turn tends to cause people 

to focus their effort in other directions. 

The first Chiba City cluster was installed in 1999 as a 

facility for large-scale development and testing in order to 

help address the lack of testbeds for systems software 

developers and to promote research into scalability issues 

in all areas of high-performance computing.  Demand for 

Chiba City’s development capabilities is increasing 

strongly.  We are now in the process of designing the next 

generation of the facility.  In this paper, we describe our 



Figure 1 – Chiba City Diagram 

experiences and observations from the first phase of this 

project. 

2. A Development and Testbed Facility 

We designed and built Chiba City by incorporating our 

own experience in supporting a decade of research 

activities on a wide range of parallel platforms with the 

designs of other clusters and input from potential early 

users of the system.  The capabilities of the system have 

changed over time as we have come to better understand 

the requirements of the testbed community.  Here we 

describe the initial capabilities and features of the system 

that were focused on testbed activities. 

2.1. System Components 

To first order, Chiba City looks very much like a 

standard cluster used for computational science (e.g. a 

BEOWULF system [2]).  (See Figure 1.)  The 

components of the system can be categorized as follows: 

• User nodes (256).  These nodes run the users’ 

“jobs”. 

• Login nodes (2).  These are the front-end nodes, 

with a full Linux computing environment.  This 

is where “jobs” are submitted to a scheduler. 

• Management nodes (11).  These systems 

manage the user nodes but are not visible to the 

users. 

• Storage nodes (8).  These systems provide file 

system service to the user nodes and are 

accessible to users carrying out I/O experiments. 

• Visualization nodes (32).  These systems 

support graphics and visualization experiments. 

• Myrinet. 

• Switched fast/gigabit Ethernet. 

A more detailed description of the Chiba City 

environment is in [1].  In practice this system organization 

has worked fairly well. 

2.2. The Management System 

The management system has been essential to the 

testbed activities.  The cluster was designed around the 

concept of having a robust and reliable management 

system that could be used to manage and control the rest 

of the cluster. 

The physical components of the management system 

include the following: 

• The management nodes mentioned above.  These 

are organized hierarchically; one primary 

management node controls all of the other 

management nodes.  Each of these in turn 

controls and monitors up to thirty-two user 

nodes. 

• A serial console infrastructure, allowing access 

to all system consoles via the network.  The 

management system monitors the consoles for 

status and occasionally issues commands over 
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the consoles. 

• A simple power control infrastructure that allows 

administrators to power cycle any hardware in 

the system. 

Management of the system requires a suite of software 

tools.  Some of these are standard systems administration 

and cluster tools from the open source community, while 

others were developed in house.  The most important of 

these in relation to this paper is the “ChibaDB” – a 

database of information about the cluster, including node 

hardware information and node software configuration.  

When a node is rebooted or rebuilt (as described in 

section 4.1), the management system uses the database to 

determine which operating system to install on that node. 

2.3. System Use 

While the cluster was to be dedicated to supporting 

testbed activities, we also intended to support 

computational science when cycles on the system were 

available.  Priorities for cluster use were set in this order: 

1. Computer science researchers and developers. 

2. Computational scientists who were willing to act 

as testers of the potentially unstable system 

software. 

3. Computational scientists testing code at large 

scale. 

4. Other potential users. 

Under normal circumstances, a batch scheduler 

mediates access to the cluster, just as if it were a standard 

computational cluster. 

2.4. Initial Capabilities 

Based on the requirements identified by the initial 

users of the system, we designed a system that gave users 

the following abilities: 

• On-Demand Access:  the ability to run 

programs on the system without waiting in the 

batch queue.  We have supported this in a 

number of ways, some of which have changed 

over time. 

• Interactivity: the ability to interact with a 

program or the OS on a user node.  This is a 

fairly standard feature on most clusters, as it is 

important for debugging. 

• Root Access: having root access on one or more 

user nodes of a system. 

• Dynamic OS: the ability to install a nonstandard 

operating system, or variant of a standard one, on 

one or more user nodes. 

We were able to grant root access and dynamic 

operating systems on the user nodes by building a cluster 

management infrastructure that could reboot and install an 

operating system on any user node in the system.  Thus, 

after a user completed using a set of nodes in this way, we 

could “clean up” and re-install the standard OS before 

allocating those nodes to the next user. 

This set of features was sufficient for the early use of 

the system. As our understanding of the needs of testbed 

users has grown, however, we have modified and 

extended the basic requirements list accordingly. 

2.5. Relation to Computational Clusters 

The standard usage of a testbed cluster is similar to the 

usage of a computational cluster: 

• Users request resource allocations and run jobs 

on the resulting nodes. 

• Job runs consist of the following steps: 

o The user supplies the application and 

input data. 

o The user then specifies the way that the 

application is executed. 

o Finally, the output data produced by the 

application is returned to the user. 

While this high-level description applies to both 

computational and testbed clusters, the specifics in both 

 

Table 1 – Requirements of Computational vs. Testbed Users 
 

 Computational User Testbed User 

Desired resource Some number of nodes with a 

standard (and usually minimal) OS 

Some number of nodes with a 

custom and user-specified OS 

Application A user-mode application An OS with custom features 

Input Typically data sets or input 

parameters 

Test cases to be executed 

Output Typically some form of numerical 

result 

Results of tests, both 

qualitative and quantitative 

 



cases substantially differ.  We illustrate this situation in 

Table 1. 

In essence the basic job model for both uses is similar 

in.  (Indeed, we support both types of jobs on the system, 

often simultaneously.)  The specific goals of a testbed 

user’s job are often quite different, and hence the usage 

patterns within that job are different. 

3. Characterization of Testbed Usage 

In the first days of the system, testbed usage was 

largely characterized by users who needed interactive 

access to a large cluster for short periods of time.  For 

example, scientists used the cluster to test systems 

software that launched jobs.  In this case, which is typical 

of much of this type of development, the scientists needed 

to use the entire system interactively but only for 

moments at a time. 

Over time, the usage of the system has changed, both 

as the system has become more capable and as the user 

community of Chiba City has grown.  Recently, we have 

had quite a number of different OS and system tool 

developers on the system who need to install their own 

operating systems on as much of the cluster as possible.  

After pushing out and configuring the installation, they 

usually run a series of tests that might take hours or days. 

We can classify testbed usage based on two metrics: 

• Degree of scalability.  This describes the degree 

to which the specific project is focused on 

developing and testing at large scale or carrying 

out research into scalability issues. 

• Degree of system impact.  This describes the 

project’s ability to operate in the standard 

environment.  We have categorized these as 

“computational usage”, “basic development”, 

“system development”, and “extreme 

development”, each of which is described below. 

These two issues, scalability and impact, go hand in 

hand.  While the testbed can support high-impact 

development on a single node, most high-impact testbed 

users are also interested in testing scalability issues.  

Therefore, while we have found it interesting to note 

which of our users operate at large scale, we have not 

found it particularly useful to differentiate between them 

based on scalability because most of the testbed users 

eventually want to use the entire system. 

In the following sections, we profile these broad 

categories of cluster users and describe the augmented 

functionality they require in order to use testbed clusters 

effectively.  They are described in order of increasing 

degree of system impact. 

3.1. Computational Usage 

The first type of user is a standard application user on 

a computational cluster. In most of these cases, the user 

wants to run a mature application for a considerable 

period of time.  The operating system running on the 

nodes usually doesn’t matter as long as the application 

can be recompiled for the target system.  No enhanced 

privileges of any sort are required on any portion of the 

system.  A computational user may place significant 

demand on the I/O system of the cluster. 

The intent of a computational application user is 

typically to generate a set of numerical results. 

3.2. Basic Development 

The second type of user, quite common on Chiba City, 

is the basic development user.  A good example of this 

type of user is the developer of a systems library such as a 

numerical library or a communications library. 

In general, this type of user is interested in code 

scalability and performance.  The following are typical 

requirements, some of which were noted above: 

• On-demand Access.  Waiting in a queue when 

actively developing can severely limit the 

effectiveness of a development session.  These 

users like to be in the “code/compile/test” loop 

that is common for development on unscheduled 

systems.  In order to address this issue, we took 

three steps: 

o Thirty-two of the nodes on the system 

were designated “unscheduled”, that is 

the scheduler does not control access to 

them.  They are available to all users at 

all times and are intended to be used as 

an on-demand testing area. 

o The scheduler policy was arranged to 

allow only very short-running jobs 

during certain business hours.  In 

theory, this would allow the quick jobs 

that characterize this kind of 

development to migrate to the front of 

the queue.  In reality, we discovered 

that this feature was rarely used because 

developers didn’t link their 

development schedules to the queue 

policy. 

o We made it possible to easily request 

reserved nodes on the system for 

arbitrary amounts of time. 

• Interactive Access.  Interactive debugging is 

important for the basic development user.  This 

type of access to the nodes was enabled by 

default; when the scheduler allocates a node to a 

user, that user can login to that node. 

• Property Extraction in Job Runs.  The 

development user frequently wants information 

from a variety of sources ranging from kernel 



counters to network performance data, in order 

to gain insight into execution and performance. 

• Permission to Stress the System.  Occasionally, 

large-scale development and testing will tax the 

system greatly, sometimes beyond the limits of 

system stability.  When such system instabilities 

occur, the developer is usually interested in 

determining the root cause of the problem and 

may not consider the instability to be 

detrimental.  In order to support this type of 

activity, expectations across the user community 

must be set; users must be aware that the system 

will occasionally have instabilities as a result of 

user code and that this is acceptable (although 

not actually desirable). 

Typically, the intent of the basic development user is 

to obtain information about performance properties of 

applications.  We note that, in many cases, computational 

users also carry out basic development when they are 

developing their computational code and generally have 

these same requirements. 

3.3. System Development 

A more demanding type of user is one who carries out 

“system” development.  Projects that require system 

development capabilities make some kind of modification 

to the user nodes or to the system itself that requires some 

type of cleanup before the system can be used by other 

users. 

System developers typically have the same 

requirements as basic developers.  In addition, they have 

one or more of these: 

• Root Access.  Some developers, such as those 

developing device drivers or testing daemons, 

require privileged access on the user nodes.  On 

a system where root privileges can be assigned to 

users, the software state on a node can become 

untrustworthy. Even when a user is trusted, 

honest mistakes can happen, causing a 

configuration management nightmare.  In effect, 

when root access is granted to a user, the node 

must be considered untrustworthy and must be 

rebuilt when the user is finished.  One 

implication of this is that the rebuild process 

must be robust and efficient.  Giving root access 

to a user also has security implications, which 

are discussed below. 

• Specialized Kernels.  In some cases, a developer 

needs a specific kernel that may be different 

from the one installed by default on the node.  

As with root access, the node will need to be 

rebuilt when the user is done. 

• Hardware Management.  A user who is 

working in this mode is often doing work that 

can crash the node.  If such a crash takes place, 

the user will want access to system hardware in 

order to debug or restart the node.  At present on 

our facility, the user must have access to the 

management infrastructure of the cluster, a level 

of access that we are not comfortable making 

generally available.  In practice, this situation 

comes up rarely, and in such cases it has been 

possible to have a system administrator 

participate in the debugging activities.  If this 

becomes a bigger issue in the future, we will 

need to develop this in a more general solution. 

Again, the intent of this kind of user is to carry out 

development and to test an application’s properties, such 

as stability and performance, rather than to generate 

numerical result. 

3.4. Extreme Development 

The “extreme” developer is one that is developing or 

packaging up a complete operating system or is working 

on clusterwide systems services.  Most extreme 

developers have the same requirements as the previous 

types of developers but have one or both of the following 

objectives as well: 

• User-Defined Node Software.  The user 

provides an operating system in some form that 

can be installed on the nodes allocated to them.  

In order for this to be successful, these images 

usually need to meet certain requirements: they 

must be able to use the facility’s network, which 

opens up a number of issues related to node 

identification.  Nodes typically need to set up 

trust relationships with other nodes in the same 

project.  These issues create a number of 

technical challenges that are discussed in section 

4.  Once the user is done with the nodes, they 

will need to be rebuilt into a standard 

configuration. 

• Dynamic System Services.  Some projects 

eventually mature to the point that they can be 

installed as a part of the cluster fabric for serious 

testing. Examples of such projects include 

naming services, mapping services, grid 

software, and file systems.  In all such cases so 

far, we have had the system managers of the 

facility get directly involved in the project in 

order to determine specific goals, testing 

procedures, and fallback plans.  Perhaps the 

trickiest issue here is that these types of activity 

tend to destabilize the system infrastructure, once 

again requiring that the user community have the 

correct expectations for system reliability. 



3.5. Hardware Development 

A final type of user may be the hardware developer.  

We have not yet had any hardware developers carry out 

development or research on our facility, but such a 

possibility appears increasingly likely. 

Hardware-related projects might include simple testing 

of new network hardware at scale, augmenting nodes in 

particular ways (e.g. PIMs or other specialized 

processors), or trying alternative system management 

interfaces for nodes. 

3.6. Hybrid Models 

Unlike the four categories previously cited, hybrid 

models constitute a nonstandard and not precisely discrete 

environment.  Potentially new approaches to computation 

and development can be carried out in this type of 

environment. 

For example, it is possible for someone to fine-tune an 

OS image for a specific application and then to carry out 

computations using that customized OS image. 

4. Technical Issues 

To support the technical requirements of the various 

categories of user, one must address a variety of issues 

that are not commonly faced on standard clusters.  Some 

of these can be solved through simple policy changes, for 

example by adjusting scheduler algorithms and by 

appropriately setting user expectations.   Many, however, 

are technical in nature. 

In the following sections, we describe the technical 

issues that we have encountered.  In some cases, we feel 

that we have adequately addressed these challenges in the 

first phase of this project.  In other cases, the problems are 

beyond the scope of our initial activities. 

4.1. Support for Arbitrary OS Images 

One of the main requirements of a development 

cluster, as noted above, is the capability for users to run 

customized operating systems on the nodes of the cluster.  

We refer generically to a node’s operating system and its 

configuration as an “image”.  The degree of image 

customization varies from user to user and may range 

from a changed device driver to a completely different 

OS. 

In our environment, we have decided to reinstall the 

standard node operating system on any node customized 

by a user, even in the simplest cases.  This approach has 

worked quite well.  We use this same model to rebuild 

nodes where users have been granted root access (because 

we have no idea what might have changed). 

This node image installation and recovery scheme has 

three important aspects: an image description mechanism, 

an OS installation mechanism, and a node recovery 

system.  Each of these will be described in some detail. 

 

4.1.1. Image Description Mechanism.  Automated 

operating system installation has been a common 

technique in the systems administration community for 

decades.  The most significant challenge has turned out to 

be the description of the software to be installed on a 

system and the changes to be made on each individual 

system.  This is also a challenge for clusters. 

Fortunately, the systems administration community has 

developed a variety of configuration management tools 

and techniques, many of which can be adopted directly 

for use on a cluster [3].  Despite this activity, image 

description and change management remain fertile areas 

of potential research [4,5]. 

In essence, images to be installed on nodes must be 

described somehow.  More importantly, users who install 

their own images must also be able to describe their 

images, which is an activity that most users would prefer 

to avoid.  The open question in this area is how best to 

enable users and administrators to easily describe node 

images, which may include such complications as 

• The node disk geometry  

• Other hardware configuration information such 

as network card parameters 

• The base operating system and software 

packages 

• Configuration changes to the base operating 

system 

• Pointers to external services such as naming 

mechanisms or file systems 

• The need to be installed on potentially different 

nodes over time 

We would like a general solution to this problem but 

have found that two basic mechanisms have worked for 

us so far: 

• Raw Bit Installation: In this method, an 

administrator or a user installs an image on a 

single node.  We then take a snapshot of the bits 

on the node and the disk partition information.  

From this snapshot, we can reconstruct an exact 

copy of that node on nearly any system.  We 

have successfully installed both Linux and 

Windows operating systems using this method.  

Changes in hardware (i.e., devices) or the 

environment (i.e., servers), however, limit the 

effectiveness of this solution. 

• Boot Disk Installation: In this method, the user 

provides a boot disk that will install the proper 

bits onto disk.  The boot disk includes image 

configuration information that can be customized 

to each node.  That boot disk is distributed on the 

cluster management infrastructure, and the 

individual nodes then boot from that boot disk.  



(This process is similar to using Kickstart [6], 

and in fact we have booted nodes using Kickstart 

in this way.) 

We have found that these approaches meet the basic 

requirements; that is, they can be used to allow users to 

install arbitrary images on nodes.  Because of the complex 

nature of image creation, however, the cluster 

administrators usually need to assist with the process.  As 

demand on the system continues to grow, we are 

concerned that approaches of this type will not scale. 

 

4.1.2. OS Installation Mechanism.  The job of the 

operating system installation mechanism is, as one might 

expect, to install an image on a node.  The installation 

mechanism should be able to install an arbitrary image 

(i.e. any image built in the ways described above). 

The OS installation mechanism should not rely on any 

hooks or infrastructure on the node itself; it should work 

if the node has no software, has a supported operating 

system, or is running mysterious user code. 

Fortunately, the industry has largely solved this 

problem with standard network booting protocols.  DHCP 

[7] and PXE [8] are commonly used to remotely install 

operating systems on computers over a network.  PXE, 

unfortunately, works only on a subset of Ethernet cards; 

however, these are increasingly common. 

In addition to these standard protocols, our solution 

incorporates a database that maps nodes to desired 

images, making boot decisions based on the state of the 

system.   In some cases, we will install the appropriate 

image directly.  In others, where this is not possible, we 

will install a known reliable image that will format the 

local hard drive appropriately and then install the target 

image. 

 

4.1.3.  Node Recovery System.  Once user jobs have run, 

nodes may have been left in an indeterminate state.  The 

job of the node recovery system is to prepare those nodes 

for image installation.  Because the node state is unknown 

at this point, the infrastructure for node recovery must 

work independently of host operating system support.  

Since our boot management system can take over 

during a reboot, the simple solution is to force a reboot of 

the node.  We have implemented this with the use of 

network accessible power controllers.   

This solution works fairly well for us, with the 

following caveats: 

• If a user were to reset the BIOS so that a network 

boot was not forced, the node would not recover 

correctly.  If this were done across the cluster, 

we would be forced to manually reset the BIOS 

on every node, a task that would be a disaster. 

• We’re beginning to worry about repeatedly 

interrupting the power to the nodes.  This doesn’t 

seem to be the best way to treat hardware.  We 

would prefer to have hardware-level reboot and 

power cycle control, such as exists as a 

management interface on some systems. 

4.2. Complex Infrastructure Requirements 

In many cases, developers are able to work on any 

available set of nodes without substantial adaptation of 

their code.  In general this is the case for developers in the 

basic and systems development categories.  Some 

developers discover that they have to think carefully 

about adapting their project to a dynamic cluster 

environment.  This is frequently the case for developers 

who make substantial changes to the node environment or 

are working with clusterwide system services (i.e. 

Extreme Developers); occasionally it is also an issue for 

others. 

 

4.2.1. Entire Cluster Simulation.  One of the popular 

uses of our facility is to test cluster operating systems and 

cluster management software.  Configuring the test 

environment for this kind of use takes special care.  

Typically, these developers need to simulate an entire 

cluster, including management, login, storage, and 

compute functionality, all within the user nodes allocated 

to them. 

This testing is more difficult than normal for two 

reasons: 

• The users need to map their services onto a set of 

basically identical systems.  The concept of 

generically mapping services onto nodes (rather 

than onto some hardwired test cluster) is usually 

foreign. 

• The users often need some specific hardware 

configuration.  This may require more disk space 

than is available (i.e., to simulate storage nodes), 

different network cards from those the nodes are 

configured with, or different hardware 

arrangements (i.e., to access serial consoles or 

hardware performance data) than is possible. 

We do not have a general solution to these problems at 

this time.  We are leaning toward having a pool of 

“advanced capability” nodes, namely, with extra memory, 

disk, and room for peripherals, in order to address the 

second issue. 

 

4.2.2 External Infrastructure.  Some of the software 

under development on the cluster relies on persistent, 

external infrastructure.  Those persistent services could 

conceivably be installed dynamically as parts of that 

user’s “job” but in practice are much easier to install once 

on some dedicated system.  These often help bootstrap the 

user’s code. 

We have two distinct examples: 



• When installing Windows2000 as a cluster OS 

environment, it is useful to have at least one 

Windows Domain Controller accessible on the 

cluster network, providing Windows-specific 

information such as user accounts and naming. 

• To facilitate some of the Red Hat-based 

distributions that have been installed on the 

cluster, we allocated a dedicated computer to act 

as the Kickstart boot manager. 

The ability to provide external services on a persistent 

system has simplified these two experiences substantially. 

 

4.2.3. Production Integration.  In some cases, the 

software under development is approaching production-

ready quality.  The next step for these projects is to try the 

software with real users in production mode.  The goal at 

this point is to flush out remaining bugs and understand 

performance issues under a real workload.  The logical 

next step is to deploy this software as part of the real 

cluster infrastructure. 

On our system, production integration has taken place 

with file systems, process managers, and messaging 

libraries.  The system administrators of the facility 

installed these on the cluster itself, and these software 

versions became the default versions available for users.  

At this point, the cluster users (both computational and 

development) became the set of users testing these 

software packages. 

This process raises three issues.  First, it’s not 

necessarily clear that this is a good idea to do with all 

software, and the selection criteria are a bit unclear.  

Second, doing this requires a great deal of interaction 

between the project developers and the cluster 

administrators; both parties need to buy into the plan.  

Finally and perhaps most important, the resulting 

instabilities can cause problems for all users on the 

cluster.  As we noted previously, it helps to warn users in 

advance that these kinds of failure are expected. 

4.3. Supporting Data Gathering in Jobs 

We have found that development users want 

information from a variety of sources, to gain insight into 

application execution and performance.  This data 

includes 

• Kernel counters 

• Hardware counters, such as cache hits, and 

number of instructions executed 

• Environmental data such as temperature and 

clock speed 

• Network performance data 

• Application profiling data 

This data is accessible in locations both on and off of a 

user node. For this reason, the application cannot 

necessarily collect all of this data directly.  At this point, 

we provide the data on an ad hoc basis.  A more general 

solution would be very helpful. 

4.4. Persistent Node Identification 

A possible characteristic of a development facility is 

that hardware configurations change fairly regularly, 

either as a part of testing hardware or when replacing 

nodes.  In our case, we’ve learned that we shuffle 

hardware far more than we had originally anticipated. 

On a system in which individual nodes are commonly 

moved or replaced, the issue of node identification 

becomes both important and difficult.  In this sense, 

“node identification” is the ability to permanently map a 

node’s physical location in the cluster to a hostname.  

Knowing the exact physical and network location of a 

node (and its associated hostname) is important for many 

reasons, including the following: 

• The ability to locate a node when hardware 

problems occur 

• The desire to track performance and reliability 

trends based on a persistent name associated with 

the hardware 

• The fact that both developers and administrators 

occasionally need to understand the topology of 

the system, for example, when analyzing 

network performance characteristics or when 

renumbering subsets of a cluster for security 

reasons 

• The desire to know a node’s identity before it 

boots, in order to deliver the correct OS to that 

node. 

Knowing specifically which hardware has which 

network address sounds like a very simple problem, but it 

is difficult when hardware is regularly moved or changed.  

Most name assignment schemes are based on the theory 

that one assigns names only once or assigns names 

dynamically.  Neither is true in this situation. 

The usual method for assigning names is to gather the 

MAC addresses of each node, associate those addresses 

with known hostnames, and then assign them to nodes 

dynamically via DHCP or statically via some host 

configuration system.  On any cluster that is installed only 

once, MAC address gathering can be done by hand or via 

a controlled sequenced boot of each node, one by one. 

In a cluster with dynamic hardware configurations, a 

more reliable solution is to have the cluster infrastructure 

detect that the hardware has changed. 

Our initial implementation on Chiba City used the 

serial console infrastructure to detect MAC addresses, 

register them in the cluster’s DHCP services, and modify 

the node installations as necessary.  This was an option 

because the serial console port could be used to precisely 

identify the physical location of the node.  Because the 

serial console hooks work only on our own node image 



and not on arbitrary node images, we are now working on 

a more general solution that uses network switch sensing 

to detect MAC addresses. 

4.5. Node-Proof System Software 

On a system on which the user nodes may be running 

any kind of code, the system infrastructure must be able 

to function optimally without any dependency on those 

nodes.  We have found in particular that some scheduling 

and job launching software tends to rely on status 

information from daemons on the user nodes and will 

hang or time-out when those nodes are unresponsive. 

4.6. Smarter Node BIOS 

Standard commodity PC BIOS systems have fairly 

limited capabilities.  This fact has caused problems for us 

in a number of ways.  We would find the following 

features extremely helpful: 

• Accessibility to the BIOS over the console port 

• Operating system access to the BIOS, that is, 

being able to set BIOS features in the same way 

that is possible on Solaris systems and others 

• Enhanced monitoring capabilities 

• A consistent approach to locking BIOS settings 

with a password 

Some of these BIOS issues are being addressed by the 

LinuxBIOS [9] project (which also has other desirable 

features).  Unfortunately, in our case, the hardware that 

we are using cannot take full advantage of LinuxBIOS; 

thus, we are also hoping for a wider acceptance of 

LinuxBIOS by the vendor community in order to be able 

to use it in the future. 

4.7. Security 

Allowing users to have root access introduces a 

number of complications. 

The most common problem that we have faced is that 

someone with root may have done something 

(intentionally or not) to modify the state of the image.  As 

noted in Section 4.1, we solve this by rebuilding a node 

from scratch after a user with root privileges has finished 

with it. 

Users with root access also introduce a number of 

security issues, particularly if there is a possibility that the 

user may be malicious: 

• Nodes under administrative control of users 

should not be trusted by system management 

infrastructure.  For example, a cluster’s NFS file 

systems should not be exported to such nodes. 

• Static standard trust-related configurations, such 

as cluster-internal “.rhosts” or .ssh key files, are 

no longer viable.  Nodes under the control of one 

user should not trust nodes under control of 

another user. 

• Users might use their nodes to launch attacks 

against other networked systems outside the 

cluster.  (A cluster would make an interesting 

testbed for denial-of-service attacks.) 

• Users might introduce network-based attacks 

such as IP spoofing or network sniffing in order 

to attack some other job currently running. 

• Users might configure system services 

(intentionally or otherwise) such that their nodes 

are susceptible to attacks from outside. 

We have not yet addressed any of these issues yet 

because we are quite familiar with that portion of our user 

community to whom we have granted root access, largely 

because of their need for aid with image configuration 

issues.  Thus, we have been able to keep an eye out for 

such activities.  As our user community grows, security is 

becoming increasingly important.   

These problems can be addressed in the following 

ways: 

• Nodes on which a user has root access should be 

designated as “untrusted.” 

• Untrusted nodes should be easily discernable 

from trusted nodes in order to allow the 

management infrastructure to differentiate 

between the two.  In particular, they should have 

different IP addresses and hostnames from when 

they are trusted. 

• In order to prevent network-based attacks within 

the cluster, untrusted nodes should be on 

different networks from trusted nodes and also 

from other groups of untrusted nodes.  This 

segmentation requires the use of routers between 

all distinct security zones.   

• Network filters and detectors should be installed 

to detect attacks originating in the cluster and 

targeting the cluster.  Segregating trusted and 

untrusted hosts by network can help with these 

filters. 

• Clearly, any detected security problems should 

immediately result in the disabling of the 

associated user’s access to the cluster. 

These solutions require networking gear that can 

operate at both layer 2 and layer 3, can perform IP 

filtering on the fly, and can be dynamically reconfigured 

in association with node allocation on the cluster. 

5. Conclusion 

In this paper, we have described the technical 

challenges that we have encountered in the first phase of a 

project to build and operate a cluster in support of 

development and scalability research.  Facilities to 

support large-scale development and research are critical 



to the future rapid growth of high-performance computing 

systems and the associated scientific community. 

A number of the challenges in supporting this facility 

were solved with a robust node management 

infrastructure and with flexible system policies, but the 

most difficult problems, ranging from image description 

through data gathering, remain.  As we add more users to 

the system and support increased functionality, it will 

become imperative that we solve these in a general way. 
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