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Abstract

This paper presents a comparison for the backscatter (the inverse transfer of energy
from small to large scales) in the rational and the gradient large eddy simulation
(LES) models. We applied both LES models in the numerical simulation of turbu-
lent channel flows at Re; = 180 and Re, = 395. The rational LES model yielded

improved results and was more stable numerically.
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1 Introduction

Large eddy simulation (LES) aims at capturing the large, energy-containing scales in tur-
bulent flow, while modeling the interaction between the large and small scales. Most of the
commonly used models assume that the essential function of the unresolved (modeled) scales
is to remove energy from the large scales and dissipate it through the action of viscous forces.
While, on average, energy is transferred from the large to the small scales (“forward scat-
ter”), it has been recognized that the inverse transfer of energy from small to large scales
(“backscatter”) may be quite significant and should be included in the LES model.
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The Smagorinsky model (14) is one of the most popular LES models. This classical eddy-
viscosity model is, however, purely dissipative and cannot predict backscatter. To include
backscatter, the Smagorinsky model is usually used in the dynamical framework. This ap-
proach may, however, lead to numerical instabilities.

A few LES models introduce backscatter in a natural way. This paper presents a numerical
investigation of backscatter in two such LES models (the rational and the gradient LES
models) applied to the numerical simulation of turbulent channel flows at Re, = 180 and

Re; = 395.

2 Mathematical and Numerical Setting

The usual LES starts by convolving the Navier-Stokes equations (NSEs) with a spatial filter
gs. Assuming that differentiation and convolution commute, the filtered NSEs read as follows:

u,+ V- (uu) — Re'Au+ Vp =T, (1)

where ¢ is the filter width and W = gs * u is the variable of interest. The filtered NSEs (1)
do not form a closed system, and a considerable research effort in LES has been directed at
modeling the stress

T=Uu-—1u. (2)

As mentioned by Carati et al. (2), this stress consists of a filtered-scale stress tensor, mainly
due to filtering, and a subgrid-scale (SGS) stress tensor, mainly due to discretization. One
way of approximating the filtered-scale stress tensor is by using a Taylor series expansion
in the wave number space to represent the unknown full velocity in terms of the filtered
velocity. This approach was first used in (11), and later in (3). The resulting model, called
the gradient, nonlinear, or tensor-diffusivity model, was used in numerous studies (11), (3),

(2), (15):

T=Tuu —

=]

) d
T~ %VHVH, where (Vuvu),; = Z axza—Xl' )

Noticing that the approximation by Taylor series of g5 actually increases the high wave num-
ber components, Galdi and Layton (6) developed a new LES model based on a rational ((0,1)
Padé) approximation of gs, which preserves the decay of the high wave number components.



The resulting LES model, called the rational LES (RLES) model, reads as follows:

- [(—%AJF [) B (%VHVH)] . (4)

The inverse operator in (4) acts as a smoothing operator and represents the approximation
of the convolution by the Gaussian filter in the stress tensor 7 in (2).

The mathematical analysis associated with the RLES model (4) was presented in (1). The
first steps in the numerical analysis and validation of the RLES model (4) were made in (9)
and (10), respectively.

In (8), we compared the RLES model (4) with the gradient model (3) in 3D channel flow
simulations at Reynolds numbers based on the wall shear velocity Re, = 180 and Re, = 395.
In our numerical simulations we used a spectral element code.

For this paper, we collected statistics for the SGS dissipation, the forward and backscatter
for the RLES model (4), and the gradient model (3) in channel flow simulations at Re, = 180
and Re, = 395. We started with field files corresponding to LES simulations in (8), which
had already reached a statistically steady state. We then integrated the flow further in time
and collected statistics for the above three quantities, which were averaged over time and
homogeneous directions (streamwise and spanwise.) All three statistics were normalized by
u?, where u, is the computed wall-shear velocity, which was found to be within 1% — 2% of
the nominal value.

The model subgrid-scale dissipation was computed as

€sGs 1= Tij Sij, (5)

_., — 1 aﬁ aﬁ] M
where S;; = 3 (ax; + 8_>q) represents the large-scale strain-rate tensor.

The model subgrid-scale dissipation eggs represents the energy transfer between the resolved
and the unresolved (subfilter-scale) scales. If esgs is negative, energy is transferred from large
scales to small scales (forward scatter); if esgs is positive, energy is transferred from small
scales to large scales (backscatter). We denote the forward scatter by e, = %(GSGS + |esas])
and the backscatter by e_ = %(GSGS — lesas]|).



3 Numerical Results

In the Re, = 180 case, the model subgrid-scale dissipation e€ggs in Figure 1 shows the correct
behavior for the RLES model (4): the forward scatter is dominant throughout the channel,
with a peak near the wall. This behavior can be noticed in the DNS results in (4) (Figure
8a, p. 2159.)

The correct €sas is quite challenging to capture in LES: The velocity estimation model in (4)
(Figure 8a, p. 2159) underpredicts the correct peak value of eg¢s. The variational multiscale
approach in (7) underpredicts significantly the correct peak value for esqs (Figure 14, p.
1791.) The esgs corresponding to the RLES model in Figure 1 performs better than both
previous methods; the RLES model actually performs similarly to the classical eddy-viscosity
models (the Smagorinsky model in (4) and the Smagorinsky model with Van Driest damping
in (7).) This is quite remarkable for a non eddy-viscosity model such as the RLES model,
which introduces significant amount of backscatter.

The gradient model (3) has an incorrect behavior: It starts with a huge amount of backscatter
near the wall and then reaches the peak value of forward scatter away from the correct
location (4).

The forward and backscatter in Figure 1 illustrate the smoothing character of the inverse
filtering in the RLES model (4): the “spikes” corresponding to the gradient model are damped
in the RLES model. This process has a positive effect on the numerical stability of the RLES
model. The huge amount of forward and backscatter introduced by the gradient model in the
near-wall region is responsible for the unstable behavior in wall-bounded flow simulations

(15).

For both LES models, the backscatter and the forward scatter contributions to the SGS
dissipation were comparable, and each was much larger than the total SGS dissipation. This
behavior was also noticed in (12).

In the Re, = 395 case, the SGS dissipation corresponding to the RLES model (4) in Figure
2 is much less than that for the gradient model (3); the latter seems exaggerated for this
Reynolds number. The forward and backscatter for the RLES model are, however, larger
than those for the gradient model. This fact does not contradict the observation about the
SGS dissipation, since €sgs is the sum of the forward and backscatter. We also need to keep
in mind that, although both LES models are started from the same initial conditions, the
corresponding flows are evolved in time differently. Thus, in the numerical simulations, the
SFS stress tensor 7 in the RLES model is not simply the inverse operator in (4) applied to
the SF'S stress tensor 7 in the gradient model.



As in the Re, = 180 case, for both LES models the backscatter and the forward scatter
contributions were comparable, and each was much larger than the total SGS dissipation

(12).

We note that the RLES model is more stable numerically than the gradient model. Actually,
the gradient model (3) blew up a few hundred time steps after we stopped collecting statistics.
This unstable behavior has been observed in similar calculations in (15). There, as a remedy
ad hoc wall-damping functions were used.

We also note the unphysical spikes corresponding to the gradient model (3) in all three
quantities monitored: €ggs, €, and €. These spikes are located exactly at the interfaces
between adjacent spectral elements. This behavior is natural, since the SGS tensor 7 for the
gradient model (3) contains products of gradients of the computed velocity (see (3)). The
RLES model, on the other hand, smoothes out these spikes through its inverse operator; this
smoothing makes the RLES model more stable numerically. Further investigation of these
issues 1s necessary.

4 Conclusions

We applied the RLES model (4) and the gradient model (3) in the numerical simulation of
turbulent channel flows at Re, = 180 and Re, = 395. We gathered statistics for the model
SGS dissipation, the forward scatter, and the backscatter. In the Re, = 180 case, the RLES
model (4) yielded much improved results, closer to the DNS results in (4). The gradient model
introduced an unphysical amount of backscatter near the wall, which made the computations
more unstable. In the Re, = 395 case, the RLES model’s SGS dissipation was closer to a
realistic value. The SGS dissipation for the gradient model seemed unrealistically high. The
amount of forward and backscatter was, however, higher for the RLES model. Despite this,
the gradient model (3) was more unstable numerically, as reported in (15). This issue deserves
further investigation.

Both the RLES and the gradient models introduce backscatter in a natural way. The gradient
model is unstable in numerical simulations. On the contrary, the RLES model, through the
action of its smoothing filter, makes the computations much more stable; it can run for
thousands of time steps without additional numerical stabilization procedures.
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Fig. 1. Re; = 180, the RLES model (4) and the gradient model (3): SGS dissipation (top); forward

scatter (bottom, left); backscatter (bottom, right).
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Fig. 2. Re; = 395, the RLES model (4) and the gradient model (3): SGS dissipation (top); forward

scatter (bottom, left); backscatter (bottom, right).




