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Abstract

The upper class of a lattice rule is a convenient entity for classi�cation and

other purposes� The rank of a lattice rule is a basic characteristic� also used

for classi�cation� By introducing a rank proportionality factor and obtaining

certain recurrence relations� we show how many lattice rules of each rank exist

in any prime upper class� The Sylow p�decomposition may be used to obtain

corresponding results for any upper class�

� Introduction

Much of the background theory of lattice rules is covered in �SJ���� Related results
in connection with quasi�Monte Carlo methods are described in �N���� Classi�cation
of lattice rules has been an ongoing problem and several approaches to this problem
exist� Several of the earlier approaches �SL	�� involve the rank of a lattice rule� In
practice
 howevet
 it is di�cult to work with this somewhat elusive quantity� The
research in this paper is directed to obtaining further information about the rank�

As is conventional
 we treat cubature over the region ��� �s� An s�dimensional lattice
rule is one that can be expressed in the form

Qf � Q�t�D�Z� s�f �
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here di is a positive integer
 an element of a t � t diagonal matrix D� zi is a row of
a t� s integer matrix Z� and fxg � ��� �s denotes the vector whose components are
the fractional parts of the components of x�
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This form is far from unique� The lattice rank of Q may be de�ned as the smallest
value of t for which Q can be expressed in this D�Z form� In some cases the rank of
a rule is obvious� The only rank�zero rule is Qf � f���� The number�theoretic rule

Qf � Q�� d� z� s�f �
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is of rank  unless
	
z

d



� �� While the rank is a natural group�theoretic concept


applying the de�nition given above to determine the rank of any rule of the form
��� more sophisticated than ���� may be a signi�cant problem�

We denote by �� the s�dimensional unit lattice
 comprising all points all of whose
components are integer� The lattice � is an integration lattice if and only if � � ���
It is not di�cult to establish that the abscissas in ��� lie on an integration lattice
� that includes points jzi�di for i � � �� � � � � t for all integer j and �in view of the
symbol f g� all points of ��� This lattice rule
 denoted by Q���
 has an abscissa set
comprising all points of � � ��� �s�

A �  correspondence exists between a lattice rule Q��� and a nonsingular integer
s�s matrix in utlf �upper triangular lattice form�� This is an upper triangular matrix
B satisfying

brc � � when r � c�

brc � ��� bcc� when r � c� ����

bcc �  for c � � �� � � � � s�

and is one of many possible generator matrices of the lattice �� dual to �� �Recall
that x � �� � x � p is an integer for all p � � and that
 when B is a generator
matrix of ��
 a necessary and su�cient condition that x � �� is simply x � �B
 for
some � � ���� For a given �
 the generator matrix of �� in utlf is unique�

The abscissa count of Q is N�Q� � b��b�� � � � bss� We may refer to N�Q� as the order
of Q or as the order of �� or as the inverse order of �� Moreover
 we may refer to the
rank of Q as the lattice rank of the matrix B
 and denote this by either r�Q� or r�B��
This must not be confused with the conventional matrix rank of the matrix B that
is
 the number of linearly independent rows
 which we shall denote by ��B��

Many lattice rules having optimum properties have been discovered by computer
search� The earlier searches such as those in �M��� involved populations of rules
of the form ���� and so ignored all lattice rules of rank higher than � To our
knowledge
 the extension of searches of this particular nature to include
 for example

rank�� lattice rules has not been satisfactorily accomplished�

Many subsequent searches
 for example
 �CL��
 used populations speci�ed by dual
lattices in the form ����� In some cases
 this turned out to be a much better strategy�
For example
 the trigonometric degree of a lattice rule Q��� is more readily deter�
mined from �� than from �� In a search based on �
 the �rst task for each lattice
considered might be essentially the determination of elements of ���

�



Since both kinds of searches are in vogue
 a natural task is collating the results� A
key problem is recognizing the rank of Q��� from the parameters of B� Methods for
determining the rank of a lattice rule can be time consuming� We shall deal with
this problem in a companion paper� Here we approach the problem of determining
in some measure the distribution of lattice rules over various ranks�

In this paper we take only a short �and relatively di�cult� step in this direction�
Following �LSK�� we de�ne the upper class of a lattice rule Q��� as the s�tuple
�b��� b��� � � � � bss� of the diagonal elements of B
 the generator matrix in utlf �form
����� of the dual lattice ��� The number of distinct lattice rules in this upper class
is

�s��b�� � �s��b��� b��� � � � � bss�� � b��b
�
�� � � � b

s��
ss �

We derive straightforward formulas for �s�r��b��
 the number of these lattice rules of
rank r
 and for ��s�r��b��
 the number of these lattice rules having rank not exceeding
r�

In Section � we reintroduce class factorization and apply it to show that

��s�r��b�� �

qY
j��

��s�r���
�pj���� ����

where
Qq

j����
�pj�� is the unique prime factorization of �b�� Further sections are re�

stricted to prime power rules� In Section � we derive a key theorem
 the rank propor�
tionality theorem
 that allows us to express �s�r����p��� as a power of p multiplied by
a factor ���r��p� p� � � � � p�� for a speci�ed � 	 s� Section � is devoted to the evaluation
of this factor
 which is a polynomial of modest degree in p� We provide a general
recurrence relation for this factor and tabulate it for r 	 � 	 �� These results are
applied in a numerical example in Section ��

� Background Theory

In this section
 we reintroduce the upper classes �b�
 de�ne a class prime factorization

and re�express ��s�r��b�� in terms of ��s�r����pj���
 where ���pj�� is a prime upper class�
The principal result is ���� above�

While the lattice rank occurs in the theoretical development in a natural way
 the
problem of determining the rank of a given lattice rule remains nontrivial� One
standard method introduced in �LK��� is by means of the classical Smith normal
form �snf��

Theorem ��� A nonsingular integer matrix B may be uniquely diagonalized as

S � UBV�

where U and V are unimodular integer matrices �jdetU j � jdetV j � � and S �
diagfn�� n�� � � � � nr� � � � � � � g with ni�� j ni and nr � �

�



The integers ni are the �nontrivial� invariants of the corresponding lattice rule Q �see
�LK���
 �SL	��
 and �SJ����
 and the number of �nontrivial� invariants is the rank
of Q�

In the case of a prime power rule
 that is
 one for which N � jdetBj � p� �
n�n� � � �nr for some prime p
 all the �nontrivial� invariants are positive powers of
p� The �modulo p� matrix rank of a matrix B
 denoted by �p�B�
 is the rank ob�
tained when all matrix elements bij are replaced by bij modulo p
 and all elementary
arithmetic operations involving matrix elements are carried out using modulo p arith�
metic� It is trivial to show that elementary row and column operations do not alter the
�modulo p� matrix rank of a matrix� Since the unimodular matrices U and V in the
statement of Theorem �� have the e�ect of elementary row and column operations
on B
 it follows from the theorem that

�p�B� � �p�S�� �����

Since S �modulo p� � diag��� �� � � � � �� � � � � � � �
 there being r zero elements and
s� r unit elements
 it is clear that �p�S� � s� r� In view of ����� we then have the
following theorem�

Theorem ��� Let Q��� be an s�dimensional prime power rule� and let B be any

generator matrix of the dual lattice ��� Then the rank of Q is given by

r�B� � s� �p�B� �� ��p�B��

where �p�B� is the modulo p matrix rank of the matrix B and ��p�B� the corresponding
rank de�ciency�

As mentioned in the introduction
 the diagonal elements of any integer matrix B in
utlf may be used to classify lattice rules into upper classes� In �LSK�� the theory
of upper classes was developed with a view to the recognition and classi�cation of
sublattices and superlattices of a given integration lattice�

De�nition ��� The upper class of an s�dimensional integer matrix �B is an integer

s�vector denoted by �b� � �b��� b��� � � � � bss�� where B � V �B is the utlf of �B�

De�nition ��� The upper class of Q��� is the upper class of any generator matrix

of ���

By extension
 we occasionally refer to this as the upper class of ��� and we write
�� � �b�� We de�ne the order of an upper class as b��b�� � � � bss�

A simple counting exercise indicates that the number of distinct rules Q��� belonging
to the speci�ed upper class �b� � �b��� b��� � � � � bss� is

�s��b�� � �s��b��� b��� � � � � bss�� � b��b
�
�� � � � b

s��
ss � �����

�



This is the number of distinct matricesB in utlf having diagonal elements b��� b��� � � � � bss�

In the theory of upper classes
 a concept of class factorization was introduced� Thus


�b��� b��� � � � � bss� � ����� ���� � � � � �ss��r��� r��� � � � � rss� �����

implies that

bii � �iirii�  	 i 	 s�

Moreover
 in view of ����� and �����
 we have immediately

�s��b��� b��� � � � � bss�� � �s������ ���� � � � � �ss���s��r��� r��� � � � � rss��� ���	�

De�nition ��	 A prime upper class is one of the form �p�� � p�� � � � � � p�s �� where p is

a prime and 	i � ��

Each memberQ of this upper class is a prime power rule of order N�Q� � p�����������s�
The prime factorization of an upper class is one in which each factor is a prime upper
class
 corresponding to a di�erent prime� An example of a prime factorization is

���� ��� �� � ��� �� ����� �� ���� � ��� �����

Thus ��� �� � is one of the prime factors of ���� ��� ���

In view of ����� we have

�s��p
�� � p�� � � � � � p�s �� � p������������s����s� ����

One context in which this concept of factorization is helpful is in applications of the
following theorem�

Theorem ���� �LSK��� Theorem ��� � Let s�s nonsingular integer matrices B and

R be the generator matrices of �B and �R� respectively� Then �R � �B if and only

if L � BR�� is an integer matrix�

The proof is straightforward and is given in �LSK��� If we treat B in utlf and seek R
in upper triangular form
 then L is also in upper triangular form� Moreover
 in this
situation we require bii � �iirii for  	 i 	 s� In �LSK�� it is shown in detail how R
may be obtained in utlf�

An almost trivial consequence of this theorem is the following result�

Theorem ���� Let �R and �B be of upper classes �r��� r��� � � � � rss� and �b��� b��� � � � � bss��
respectively� For �R to be a superlattice of �B� that is� �R � �B� it is necessary that

�r��� r��� � � � � rss� be a factor of �b��� b��� � � � � bss��

�



Since the earliest papers on lattice rules
 for example
 �SL	��
 the structure of lattice
rules in terms of �nite group theory has in�uenced the development of the general
theory� In �LJ���
 the classical theory regarding the decomposition of an Abelian
group as the direct sum of Sylow p�components was applied in a constructive manner
to lattice rules� We now review brie�y some of this theory and extend it in a minor
way�

The order of a point x is the smallest integer 
 for which 
x � ��� For every prime
number p
 the subset of points in � having orders 
 p
 and all higher integer powers
of p form a sublattice which is termed the Sylow p�component of � and is denoted
here by ��p��

A sum operator for integration lattices was de�ned� the lattice sum � � �� � ��

comprises all points x that may be expressed in the form x � x��x�
 where x� � ��

and x� � ��� It was shown that any integration lattice � for which N�Q�
 the order
of Q���
 has the prime factor decomposition

N�Q� � p��� p��� � � � p�q

q �����

may be uniquely expressed as the lattice sum of its Sylow components�

� � ��p�� � ��p�� � � � �� ��pq�� �����

Each Sylow component ��pi� is of inverse order p�i

i and is the unique sublattice of �
having this inverse order� A simple way of obtaining the D�Z form for each Q���pi��
from the D � Z form ��� of Q��� is given in �LJ����

In the present context
 we are interested in the upper class to which the dual lattice of
��pi�
 the Sylow pi�component
 belongs� This is given by the following not unexpected
theorem�

Theorem ���
 Let �� � �b� have order ������ and let the unique prime factoriza�

tion of �b� be

�b� � ���p��� ���p��� � � � ���pq���

���pj�� being the unique prime factor of �b� having order p
�j

j � Then the dual lattice

���pj��� of the Sylow component in ����� belongs to the upper class ���pj���

Proof� This is almost self�evident and depends critically on the uniqueness of a Sylow
p�component� Let ���pj��� belong to some upper class �r�� Since ��pj� is a sublattice
of � of inverse order p

�j

j 
 it follows that ���pj��� is a superlattice of �� of order p
�j

j �

Thus �r� is of order p
�j

j � Also
 since ���pj��� is a superlattice of ��
 Theorem ���
reveals that �r� is a factor of �b�� The unique upper class �r� satisfying both these
conditions is ���pj��� �

�



Let �b� � ���p������p��� � � � ���pq�� be the prime factorization of �b�
 and let the order
of each element �� belonging to �b� be N � b��b�� � � � bss � p��� p��� � � � p

�q
q � It follows

from ���	� that

�s��b�� �

qY
j��

�s���
�pj���� �����

In this paper we are interested in calculating �s�r��b��
 the number of rules of rank r
belonging to �b�
 and incidentally

��s�r��b�� �
rX

m��

�s�m��b���

the number of rules belonging to �b� whose rank does not exceed r� It was established
in �LJ��� that

r�Q���� � max
��j�q

r�Q���pj����

Thus the lattices in the upper class �b� that are of rank r or less stem from lattices
in ���pj�� that are of rank r or less� Limiting the contributions in ����� in this way
gives

��s�r��b�� �

qY
j��

��s�r���
�pj����

This allows us to restrict our attention to ��s�r�����
 where ��� is a prime upper class�

� Number of Prime Power Lattice Rules Having Speci�ed

Upper Class and Rank

In this section we treat prime power rules only� The main result is Theorem ��
below
 which shows that �s�r��p��� p�� � � � � � p�s�� may be expressed simply in terms of
���r��p� p� � � � � p��� Here the prime p occurs � times
 where � is the number of nonzero
components of ��

While dealing exclusively with prime upper classes
 it is convenient to modify the
notation� Since �b� � �b��� b��� � � � � bss� is now of the form �p�� � p�� � � � � � p�s �
 we shall
replace �b� by ���
 the value of p being understood� We set

�s�r��b�� � �s�r��b��� b��� � � � � bss�� � �s�r��p
�� � p�� � � � � � p�s ��

� �s�r�	�� 	�� � � � � 	s� � �s�r����

We shall also abbreviate by �s�r�
s� the quantity

�s�r��p� p� � � � � p�� � �s�r�� � � � � � ��

�



The same notation
 but without the r subscript
 refers to the total number of rules
in the upper class�

Theorem ��� Let ���� be the number of nonzero components in �� and let �s��� be
the total number of members having upper class �p��� p�� � � � � � p�s�� Then

�s�r���

�s���
�
���r���

�����
� �����

where ����� and ���r��� are the number of lattice rules in upper class �p� p� � � � � p� �the
p being repeated � times� and the number of these of rank r� respectively�

Let us de�ne the ratio

�s�r��� �
�s�r���

�s���
�����

as a rank proportionality factor� Then Theorem �� equates two distinct rank pro�
portionality factors
 that is
 �s�r��� � ���r���� We refer to this theorem as the rank
proportionality theorem�

The formula ����� holds when � is replaced by �� in the numerators� Here


��s�r��� �
rX

m��

�s�m���

is the number of lattice rules of this upper class having rank not exceeding r�

To establish the rank proportionality theorem
 we �rst de�ne two subsets of f� � � � � � sg�
these are

T ��� � fj � 	j � g� U��� � fj � 	j � �g�

And we de�ne

�	j � min�� 	j� �

�
 when j � T� i�e� when 	j � �
� when j � U� i�e� when 	j � ��

Lemma ��� The rank proportionality factor ����� satis�es

�s�r��� � �s�r�����

Proof� Let Ls��� be the set of s � s matrices in utlf of upper class ��� and let
M � Ls��� be speci�ed� Then there is a unique member B of Ls���� whose non�
diagonal elements are bij � mij mod p and whose diagonal elements are p	�i 
 that is

p or  according to whether 	i is positive or zero� On the other hand
 for speci�ed
B � Ls����
 there are precisely

Q
j�T p

�j�����j��� matrices M � Ls���� These are
obtained from B by replacing the diagonal elements by p�j and
 for j � T and

	



i � j
 by setting mij to be one of the p�j�� values for which mij 
 bij �mod p� with
bij � ��� p�� �When j � U 
 both mij and bij are zero��

SinceM mod p � B mod p
 it follows from Theorem ��� that M and B have the same
lattice rank� Thus
 corresponding to eachB � Ls����
 there are NT �

Q
j�T p

�j�����j���

matricesM � Ls��� having the same lattice rank� Since this is an NT to  correspon�
dence between elements of Ls��� and Ls���� and this correspondence preserves the
lattice rank r
 it follows that the proportion in each set is the same� This establishes
the lemma� �

We now use a similar argument to establish the following result�

Lemma ��� Let �	j be  or � according to whether 	j �  or 	j � �� and let � be the

number of unit components in ��� Then for  	 r 	 ��

�s�r���� � ���r�
���

Proof� Suppose B � Ls����� Since �� has precisely s � � zero components
 s � �
diagonal elements of B are units and their corresponding column vector includes only
one nonzero element
 which appears in the diagonal position� Using elementary row
and column interchanges one may transform B into B� having the form

B� �

�
Is�� C
� B��

�
�

where Is�� is a unit matrix and B�� is a member of L����� Theorem ��� shows that
r�B� � r�B�� � s � �p�B��� Since �p�B�� � s � � � �p�B��� � s � ��p�B���
 we see
that the lattice rank of B coincides with the lattice rank of B�� and is independent
of the elements in C� Because C is obtained from B by deleting every column with
a unit diagonal element and every row without a unit diagonal element
 we see that
the elements of C are bij for i � U and j � T � When j � i
 then bij � �� when j � i

bij may take any value in ��� p�� Suppose there are n elements bij such that i � U 

j � T 
 and j � i� These are the only elements in C that can be nonzero�

Suppose B�� is of lattice rank r� Then corresponding to thisB�� are pn distinct matrices
B of this lattice rank
 these being obtained by allowing the n elements in C that can
be nonzero to take values in ��� p� independently of each other�

Since every distinct matrix B � Ls���� corresponds to one unique matrix B�� � L����

it follows that the proportion of matrices having a particular rank is the same for
each set� That is


�s�r���� �
�s�r����

�s����
�
���r���

�����
� ���r�

���

This establishes the lemma and hence Theorem ��� �

�



A direct corollary of Theorem �� is obtained by a double substitution of ���� in
������

Corollary ��
 Let ���� be the number of nonzero components in �� and let �s��� be
the total number of members having upper class �p��� p�� � � � � � p�s�� Then

�s�r��� � ���r�
��p������������s����s�p���������

where ���r��� is the number of lattice rules of rank r in upper class �p� p� � � � � p��

This reduces signi�cantly the scope of the problem� Essentially the dependency on
� has been factored out of �s�r���� We now need only expressions for ���r���
 a
two�parameter set�

� Recurrence Relations for ���r����

In simple cases
 we may obtain expressions for ���r���
  	 r 	 �
 directly� For
example
 we have ������� � � This is a consequence of Theorem ���� the number of
matrices B �� for which �B � B �� mod p has matrix rank zero is just � We shall now
derive a recurrence formula that yields expressions for other choices of the parameters
r and � relatively painlessly as polynomials in p�

Theorem ��� For  	 r 	 ��

�����r�
���� � �p� � p��r����r�

�� � p����r���r���
���

Proof� Suppose E � L�������� has lattice rank r
 and let �E � E mod p� Then the
��� � � ��� � matrix �E may be written as

�E �

�
�B b

� �

�
�

where �B � B mod p for some B � L���� and b is a � �  column vector having
components in ��� p�� Note that there are p� possible choices of the vector b and that
each �B corresponds to a unique B� The matrix E has lattice rank r if and only if
�E has matrix rank � � � r� In this situation
 �B must have a matrix rank of either
��  � r or �� r�

If �B has matrix rank ���r
 then it has ���r linearly independent column vectors

say
 �b�� � � � � �b����r� When �E has matrix rank � �  � r
 b is linearly dependent on
these vectors
 and hence we may write

b �
����rX
i��


i�bi mod p�

�



where 
i � ��� p�� We see that each choice of the 
i produces a di�erent b� Thus the
number of possible b for which both �B and �E have matrix rank �� � r is given by
p����r� Moreover
 there are ���r����� matrices �B that have matrix rank ���r
 and
so we conclude that the number of matrices �E for which both �E and �B have matrix
rank � � � r is given by p����r���r������

In the second case
 when �B has matrix rank � � r
 the argument in the preceding
paragraph shows that there are p��r vectors b that result in �E having matrix rank
� � r� It then follows that there are p� � p��r vectors b for which �E has the desired
matrix rank � � � r� Thus the number of matrices �E for which �E has matrix rank
� �  � r and �B has matrix rank � � r �and hence rank de�ciency r� is given by
�p� � p��r����r����

The arguments in the two preceding paragraphs then establish that for  	 r 	 �


�����r�
���� � �p� � p��r����r�

�� � p����r���r���
��� �����

�

This may be used as a recurrence relation to evaluate ���r��� as long as it is correctly
anchored� For this
 one needs ������� �  and ������� � � for � � �

In Theorem ��
 we obtained the recurrence relation ����� for ���r�
��
 this being

the number of ��dimensional lattice rules of rank r belonging to the upper class
�p� p� � � � � p�� We now note some minor algebraic corollaries that could be useful in
practice�

In some contexts
 one requires the number of rules ����r��� of the upper class ��� whose
rank does not exceed r� As mentioned after the statement of Theorem ��
 this is

��s�r��� �
�s���

�����

rX
m��

���m�
�� �

�s���

�����
����r�

��� �����

An independent recurrence relation for ����r��� can be obtained by elementary ma�
nipulation of ������ This yields

������r�
���� � �p� � p��r�����r�

�� � p��r����r���
�� for  	 r 	 �� �����

anchored by �������� � ����� � p�������� and �������� � � for � � � Note that ����� and
����� are almost identical� the di�erence being the replacement of a single coe�cient
p����r by p��r in the second term� The same remark applies to ����� and ���	� below�

The expressions for ���r��� obtained in this way contain signi�cant factors of the form
�p � �apb� These can be factored out of the recurrence relation ������ It can readily
be established that

���r�
�� �

���r���

�p� ���rp���r����r�����
�����





satis�es the recurrence relation

�����r�
���� �

pr � 

p � 
���r�

�� � p����r���r���
�� for  	 r 	 �� �����

anchored by ������� �  and ������� � � for � � �

Analogously
 one may show that

����r�
�� �

����r���

�p� ���rp���r����r�����
�����

satis�es the recurrence relation

������r�
���� �

pr � 

p� 
����r�

�� � p��r����r���
�� for  	 r 	 �� ���	�

anchored by ������
�� � p�������� and ������

�� � � for � � �

This formula together with ����� was used to generate the expressions for ���r�
�� and

����r��� for  	 r 	 � 	 � given in Table �

Table � Expressions for ���r��� and ����r���

� r ���r��� ����r���

   

�   

�  p

�   

� �p �  �p� � ���p � �

�  p�

�   

� �p� � �p �  p� � �p� � �p � 

� �p� � �p �  �p
 � ���p � �

�  p


�   

� �p� � �p� � �p �  p� � �p� � �p� � �p � 

� �p� � 	p� � �p� � �p �  p� � �p
 � �p � �p� � �p� � �p� � �p � 

� �p� � �p� � �p �  �p�� � ���p � �

�  p��

�



� Summary and Example

We summarize here the steps in the calculation of �s�r��b��� In practice
 we evaluate
��s�r��b�� and �nally set �s�r��b�� � ��s�r��b��� ��s�r����b���

As described in Section �
 we obtain the prime factorization of �b� and set

��s�r��b�� �

qY
j��

��s�r���
�pj����

���pj�� being a prime factor of �b�� The class of the corresponding Sylow p�component
is of the form

���p�� � �p�� � p�� � � � � � p�s ��

and for  	 r 	 � �see ������


��s�r���
�p��� � ����r�

��p������������s����s���������

� ����r�
���p� ���rp���r����r�����p������������s����s����������

where � is the number of positive integers in the set f	i �  	 i 	 sg� Note that the
�rst factor in this last expression
 which depends on � and r
 is a polynomial in p of
degree not more than �������� The second and third factors depend on ���r� only�
The �nal factor depends on 	i and on �� For r � �
 we set ��s�r����p��� � ��s������p����

As an example
 we apply these formulas to obtain the number of three�dimensional
rules of various ranks belonging to upper class ���� ��� ��� Using the prime factoriza�
tion given in �����
 we �nd

����r����� ��� ��� � ����r���� �� �������r���� �� ������r���� � ���� ����

For the �rst factor on the right
 p � �
 � � �� �� �
 and � � �
 giving

����r���� �� ��� � ����r�
����� ���r����r����r����������������� � ����r�

������r����r����� � ��

From Table  with � � �
 we �nd

������
�� � � ������

�� � �p� � ���p � � � �� ������
�� � p� � 	�

yielding

����r���� �� ��� � �� �� and � for r � � �� ��

A similar calculation for the other two factors is marginally shorter �since � � �
 the
result for r � � coincides with that for r � ��� We �nd

����r���� �� �� � �� �� and � for r � � �� �

�



and

����r���� � ��� � ��� ��� and �� for r � � �� ��

Putting these values into ���� we obtain

���������� ��� ��� � �� �� �� � ��	�

���������� ��� ��� � � � �� �� � ����

���������� ��� ��� � � � �� �� � �����

These are the number of rules of that upper class having rank r or less� The number
having rank r may be obtained by subtraction
 giving

���r����� ��� ��� � ��	� ���� and 		� for r � � �� ��

We note that these numbers are in surprisingly simple ratio to one another� For
example ����� � ������� A similar observation
 in a somewhat similar list appearing in
�JH���
 motivated the present work�

Previously published formulas for the number of lattice rules satisfying various con�
ditions are signi�cantly di�erent from those presented here� The easiest formulas �see
�LS	��� are for �s�N�
 the number of s�dimensional rules of order N � Formulas for
�s�n�� n�� � � � � ns�N�
 the number of rules having speci�ed invariants n� � n� � � � � �
ns
 were derived independently in �L��� and in �JH���� Both formulas use what is
essentially a Sylow p�component decomposition� Formulas are given for

�s�p
�j��

j � p
�j��

j � � � � � p
�j�s

j � p
�j

j ��

where N �
Qq

j�� p
�j

j and ni �
Qq

j�� p
�j�i

j are the prime factor decompositions withPs
i�� j�i � j�

The relation of these results with the present results is tenuous� In our example
 the
rules belonging to ���� ��� �� form a subclass of �� ��� rules of the total number of
��� ��� �	�� � �� ���� ���� ��� rules �see �LS	��� of order ��� ��� � � �� �	�
There are ����� � �� possible sets of invariants� If we are interested in the number of
rules having only rank 
 one can �nd that there are ��	��������� � � ��� �	�� ���
rank� rules in this set�The problem treated here
 however
 is essentially di�erent� The
new result could
 of course
 be used
 in extremis
 to �nd the number of rank�r rules
of order N � but this approach would require �nding all the upper classes of order N
and evaluating �s�r��b�� for each�

� Concluding Remarks

The rank of a lattice rule is one of its signi�cant theoretical properties� For a given
lattice rule
 however
 calculating its rank is not trivial� This paper is limited to

�



�nding the number of lattice rules of rank r in a given upper class by using a noncon�
structive argument based on proportions� This quantity is �rst calculated for prime
upper classes using recurrence relations� Then the Sylow p�decomposition allows the
calculation for any upper class�

At present
 it appears to be easier to determine the number of lattice rules of a given
rank than to determine the rank of any particular rule� In a companion paper
 we
shall treat the practical task of determining the individual rank of a given lattice rule
when its corresponding generator matrix for the dual lattice
 B
 is available in utlf�
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