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Abstract. Data Grids provide an environment for communities of researchers to share, replicate and manage access to copies 
of large datasets. In such environments, fetching data from one of the several replica locations requires accurate predictions of 
end-to-end transfer times. Predicting transfer time is significantly complicated due to the involvement of several shared 
components such as networks, disks, etc., in the end-to-end data path each of which experiences load variations that can 
significantly affect the throughput. Of these, disk accesses are rapidly growing in cost, and have not been previously 
considered, although on some machines they can be up to 30% of the transfer time. 
In this paper, we present techniques to combine observations of end-to-end application behavior and disk I/O throughput load 
data. We develop a set of regression models to derive predictions that characterize the effect of disk load variations on file 
transfer times. We also include network component variations and apply these techniques to the logs of transfer data using the 
GridFTP server, part of the Globus Toolkit™. We observe up to 9% improvement in prediction accuracy when compared with 
approaches based on past system behavior in isolation. 

  
 
1 Introduction 
 
Increasingly, scientific discovery is driven by computationally intensive analyses of massive data collections. This promising 
recent trend has encouraged the research and development of sophisticated infrastructures for maintaining large data collections in 
a distributed, secure fashion, and improving the rapid access of large subsets of data files. 

One example of this is in high-energy physics experiments, such as ATLAS [MMR+01] and CMS [HSS00], that have agreed 
upon a tiered architecture [HJS+00, Holtman00] for managing and replicating the petascale data generated by the LHC 
experiment at CERN beginning 2006. The current architecture proposes to manage these petabytes of data, generated at CERN 
(Tier0), by replicating subsets (approximately an order of magnitude reduction) across national (Tier1) and regional (Tier2) 
centers.  

As data grid environments begin to be deployed and used, the amount of replication of data will likely grow rapidly as more 
users cache copies of datasets nearby for better performance. Thus, a particular copy of a dataset will reside at multiple locations, 
and a choice of site to retrieve it from must be made. 

In previous work [VS02, VSF02], we addressed this replica selection problem by having replica locations expose transfer 
performance estimates. Estimates were derived from past history of transfers (using the GridFTP server, part of the Globus 
Toolkit™) between sources and sinks, and by also factoring in the network link load to account for the sporadic nature of data 
grid transfers using regressive techniques. Our results showed prediction accuracy to hover around 15-24% for predictors solely 
based on past transfer behavior, but improved 5-10% when network load variations were factored in. In this paper, we consider 
the effects of disk I/O as well. 

The addition of disk I/O behavior in our predictions is motivated by three main factors. 1) Disk I/O currently plays a large 
role, up to 30% on our testbed, in large data transfer times (as detailed below). 2) This role will only become more important due 
to trends in disk size and network behavior. 3) Having access to additional data streams become more important as Grid 
environments grow, and not all resources will have the same information available about them. 

In fact, we observe that disk I/O can account for up to 30% of the transfer time (Figure 1). In Figure 1, we show the 
percentage of I/O time spent on an average data transfer. We compare the cost of performing a local GridFTP read/write (source 
disk to device abstraction at source, essentially eliminating the network) to the wide-area transfer cost (source disk to device 
abstraction at sink). For these experiments, the disks on the source ends were all high-end RAID servers. On lower-end disk 
systems the effect would be even more significant. 

In addition to current behavior, trends in disk storage and networking suggest that disk I/O will play an even larger role in the 
future. Disk capacity is increasing at the rate of about 100x per decade [GS00]. However, the ratio between disk capacity and disk 
throughput is increasing at only 10x per decade, indicating that storage capacity is far outpacing disk speeds. Further, Gilder’s law 
predicts that network bandwidth will triple every year for the next 25 years [GS00], so both network throughput and storage 
capacity are outpacing advances in disk speeds. Therefore, as link speeds increase the network latency significantly drops and 
disk accesses are likely to become the bottleneck in large file transfers across the Grid.  



In addition to the proportionality of the disk I/O time to the full transfer time, we must consider that data grids are potentially 
highly dynamic with resources joining and leaving communities. The availability of data sources (required for obtaining 
forecasts) can also vary unpredictably due to failures in the various components, monitoring sensors, etc. Thus, we need to be able 
to derive forecasts from several combinations of “currently available” data sources. For example, we can build predictions using 
1) just past GridFTP transfer logs, 2) transfer logs combined with current network load observations, 3) transfer logs with disk I/O 
load data, or 4) a combination of past transfer logs, network and disk load traces. In our previous work, we investigated (1) and 
(2), while this paper explores techniques to derive predictions for the two latter cases. 
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Figure.1. Disk I/O time as a percentage of the total data
transfer time for our experiments. Sites include Argonne
National Laboratory (ANL), Lawrence Berkeley National
Laboratory (LBL), University of Southern California’s
Information Science Institute (ISI) and University of
Florida at Gainesville (UFL). Transfers include several file
sizes ranging from 10MB to 1GB. Transfers were
conducted over three distinct two-week periods. 

In this paper, we extend our previous work to combine transfer log data with disk throughput data using regressive 
techniques. We develop multiple regression models, deriving predictions from past transfer logs, disk and network load data 
combined. Our results denote an improvement in prediction accuracy of up to 4% when using regression techniques between 
GridFTP transfers and disk I/O throughput data when compared to predictions based on past GridFTP behavior in isolation; 9% 
when combining all three data sources. 

In the remainder of the paper we present related and previous work (Section 2), prediction model (in Section 3), an evaluation 
of our techniques (in Section 4) and finally conclude (Section 5). 
 
2 Related and Previous Work 
 
Our goal is to obtain an accurate prediction of file transfer times between a storage system and a client.  Achieving this can be 
challenging because numerous devices are involved in the end-to-end path between the source and the client, and the performance 
of each (shared) device along the end-to-end path may vary in unpredictable ways. 

One approach to predicting this information is to construct performance models for each system component (CPUs at the 
level of cache hits and disk access, networks at the level of the individual routers, etc.) and then use these models to determine a 
schedule for all data transfers [SC00], similar to classical scheduling [Adve93, Cole89, CQ93, Crovella99, ML90, Schopf97, 
TB86, ZLP96]. In practice, however, it is often unclear how to combine this data to achieve accurate end-to-end measurements. 
Also, since system components are shared, their behavior can vary in unpredictable ways [SB98]. Further, modeling individual 
components in a system will not capture the significant effects these components have on each other, thereby leading to 
inaccuracies [GT99]. 

Alternatively, observations from past application performance of the entire system can be used to predict end-to-end 
behavior, which is typically what is of interest to the user.  This technique is used by Downey [Downey97] and Smith et. al., 
[SFT98] to predict queue wait times and by numerous tools (Network Weather Service [Wolski98], NetLogger [NetLogger02], 
Web100 [Web100Project02], iperf [TF01], and Netperf [Jones02]) to predict the network behavior of small file transfers. We 



used this technique in [VSF02], but found that it had large errors due to the sporadic nature of GridFTP transfers, and that we 
needed to be able to include additional data about current system conditions in order to improve the predictions. 

In our previous work [VS02], we combined end-to-end throughput observations from past GridFTP data transfers and current 
network load variations using regression models to obtain better predictions. A similar effect was addressed by Faerman et.al., 
[FSW+99] using the NWS and adaptive linear regression models  for the Storage Resource Broker [BMR+98] and SARA 
[SARA02]. That work compared transfer times obtained from a raw bandwidth model (Transfer-
Time=ApplicationDataSize/NWS-Probe-Bandwidth, with 64 KB NWS probes) with predictions from regression models and 
observed accuracy improvements ranging from 20% to almost 100% for the sites examined. Swany and Wolski have also 
approached the problem by constructing cumulative distribution functions (CDF) of past history and deriving predictions from 
them as an alternative to regressive models. This has been demonstrated for 16MB HTTP transfers with improved prediction 
accuracy when compared with their univariate prediction approach [SW02]. 

 GridFTP and NWS GridFTP and Disk I/O 
 Aug’01 Dec’01 Jan’02 Aug’01 Dec’01 Jan’02 
 Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper Lower 
LBL-ANL 0.8 0.5 0.5 0.3 0.6 0.2 0.6 0.1 0.5 0.2 0.5 0.1 
LBL-UFL 0.7 0.5 0.7 0.4 0.6 0.1 0.5 0.2 0.5 0.3 0.5 0.3 
ISI-ANL 0.8 0.5 0.6 0.4 0.7 0.3 0.5 0.2 0.6 0.4 0.6 0.3 
ISI-UFL 0.9 0.4 0.6 0.2 0.5 0.1 0.5 0.1 0.6 0.3 0.5 0.2 
ANL-UFL 0.5 0.2 0.6 0.2 0.6 0.1 0.5 0.2 0.4 0.1 0.4 0.2 

 
Figure.2. 95% Confidence for the upper and lower limits of the rank-order correlation coefficient for the GridFTP, 
NWS and Disk I/O datasets between four sites in our testbed. Denotes coefficients for our three datasets. 

 
3 Prediction Model 
 
In this section, we examine the various data sources we used, their relations, regressive models and our prediction algorithm. 
 
3.1 Data Transfer Logs and Component Data 
 
In this section, we describe our three primary data sources. We use the GridFTP server to perform our data transfers and log its 
behavior every time a transfer is made, thereby recording the end-to-end transfer behavior. However, since these events are very 
sporadic in nature, we also need to capture data about the current environment to have accurate predictions. We use the Network 
Weather Service network probe data as an estimate of bandwidth for small data transfers and the iostat disk throughput data to 
measure disk behavior. 

GridFTP [AFN+01] is part of the Globus Toolkit™  [FK98, Globus02] and is widely used as a secure, high-performance data 
transfer protocol [ACF+02, AFN+01, DataGrid02, GriPhyN02]. It extends standard FTP implementations with several features 
needed in Grid environments, such as security, parallel transfers, partial file transfers, and third party transfers, etc.  We 
instrumented the GT 2.0 wuftp-based GridFTP server to log the source address, file name, file size, number of parallel streams, 
stripes, TCP buffer size for the transfer, start and end timestamps, nature of the operation (read/write), and logical volume to/from 
which file was transferred, etc. [VSF02]. 

Since the GridFTP logging data is very sporadic in nature, we also use two sets of data about the current environment. The 
iostat tool is part of the sysstat [SYSSTAT02], system-monitoring suite. It collects disk I/O throughput data. Iostat can be 
configured to periodically monitor disk transfer rates, block read/write rates, etc., of all physically connected disks. We are 
particularly interested in the disk transfer rate that represents the throughput of a disk. 

The Network Weather Service [Wolski98] monitors the behavior of various resource components by sending out light-weight 
probes or querying system files at regular intervals. NWS sensors exist for components such as CPU, disk, and network. We used 
the network bandwidth sensor with 64KB probes to estimate the current network throughput. 

In subsequent sections, we see how forecasts can be derived from these correlated data streams using regressive techniques. 
 
3.2 Correlation 
 
Correlation gives a measure of the linear strength of the relationship between two variables and is often used as a test of 
significance before linear regression analysis is performed [Edwards84]. For our data sources, namely GridFTP logs, iostat load 
and NWS traces we computed rank order correlation (a distribution free test). Figure 2 shows 95% confidence interval for the 
correlation and indicates a moderate correlation between the variables. 



 

3.3 Algorithm 
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Figure.3. Algorithm for deriving predictions from
GridFTP (G), Disk load (D) and NWS (N) data streams by
using regression techniques. 

 
Our three data sources (GridFTP, disk I/O and NWS network data) are collected exclusive of each other and rarely had same 
timestamps. However, in order to use common statistical techniques on the data streams, we need to line up the values to be 
considered. Because of this, we are required to match values from these three sets such that for each GridFTP value, we find disk 
I/O and network observations that were made around the same time. 

For each GridFTP data point (TG, G), we match a corresponding disk load (TD, D) and NWS data point (TN, N) such 
that TN and TD are the closest to TG, are established. By doing this, the triplet (Ni,Dj,Gk) represents an observed end-to-end 
GridFTP throughput (Gk) resulting from a data transfer that occurred with the disk load (Dj) and network probe value (Ni). At the 
end of the matching process the sequence looks like the following: 

(Ni,Dj,Gk)(Ni+1, Dj+1, _)…(Ni+m, Dj+m, Gk+1) 
where Gk, and Gk+1 are two successive GridFTP file transfers,  Ni and Ni+m are NWS measurements, and Dj and Dj+m are disk load 
values that occurred in the same timeframe as the two GridFTP transfers. The sequence also consists of a number of disk load and 
NWS measurements between the two transfers for which there are no equivalent GridFTP values, such as (Ni+1, Dj+1, _). Note that 
these interspersed network and disk load values also need to be time-aligned as they seldom have same timestamps. 

After matching the data streams we need to address the tuples that do not have G values. This is caused by the sporadic 
nature of data grid transfers – we will have more disk I/O and network data than GridFTP data. Regression models expect a one-
to-one mapping between the data values, so we can either discard unaccounted network and I/O data (for which there are no 
equivalent GridFTP data) or fill in synthetic transfer values for the unaccounted data. We use three strategies to fill in missing 
values both in this work and in previous work [VS02]. These filling in techniques are: discard unaccounted disk I/O and network 
data (NoFill), use last GridFTP transfer values as a filling (LV) for unaccounted data, and use average of previous transfers as a 
filling (Avg) for unaccounted data. After filling in G values, these datasets are fed to the regression models (Figure 3). 
 
3.4 Regressive Techniques 
 
In order to predict the end-to-end GridFTP throughput and study the effect of the disk I/O component, we use standard regressive 
techniques. Regression provides the necessary mechanisms to analyze the impact of several independent variables (in our case, 
I/O traces or NWS bandwidth data) on the dependent variable (GridFTP throughput). 
 
3.4.1 Simple Regression 
 
In our previous work, we developed simple regression techniques between GridFTP (G) and NWS network data (N). We built a 
set of linear as well as nonlinear regression models between the two variables and derived forecasts from it. In this paper, we 



employ similar techniques to analyze the effect of disk I/O variations (D) on end-to-end GridFTP bandwidth. We constructed a 
linear model between two variables D and G as follows: G|=a+bD, where G| is the prediction of the observed value of G for the 
corresponding value of D. The coefficients, a and b are calculated based on a regression function that accounts for previous Ds 
and Gs, using the method of least squares: 

a = Mean(G) – b * Mean(D) 
while the coefficient b is calculated by using the formula: 

∑DG – (∑D∑G/size) 
       b = 

∑G2 – (∑G)2/size 
where “size” is the total number of values in the dataset [Edwards84]. 
 
3.4.2 A Case for Multiple Regression 
 
In addition to simple regression, we study the effect of deriving predictions from all three data sources. For this purpose, we 
construct multiple regression strategies. Multiple regression techniques allow us to study the effect of several independent 
variables on a dependent variable. 

We constructed multiple regression models by adding terms corresponding to various components to the simple regression 
equation. Similar to the disk component discussed earlier, to include network variations into the equation, we add a network load 
term. Thus, the multiple regression model is as follows: G|=a+b1D+b2N, where G| is the prediction of the observed value of G for 
the corresponding values of N and D. The regression coefficients are calculated [Edwards84] as follows: 

a =  Mean(G) – (b1*Mean(D)) – (b2*Mean(N)) 
 

(∑DG ∑N2) - (∑NG ∑DN) 
b1 = 

(∑D2 ∑N2) - (∑DN)2 
 

(∑NG ∑D2) - (∑DG ∑DN) 
b2 =  

(∑D2 ∑N2) - (∑DN)2 
Including further components (that which contribute to the end-to-end data path) would mean adding terms to the multiple 

regression equation, whose coefficients can then be computed using the method of least squares [Edwards84]. To summarize, we 
are interested in predicting the performance of the dependent variable, GridFTP, by studying the impact of adding independent 
components such as disk and network link loads to the regression model.  
 
4 Evaluation 
 
In order to analyze the performance of our predictors, we conducted several wide-area experiments between our testbed sites 
comprising of resources from Argonne National Laboratory (ANL), Lawrence Berkeley National Laboratory (LBL), University 
of Southern California’s Information Sciences Institute (ISI) and University of Florida at Gainesville.  

First, we setup GridFTP experiments between these sites transferring files ranging from 10M-1G at random intervals in 
twelve-hour durations for a two-week period (during August 2001, December 2001 and January 2002). All transfers were made 
with tuned TCP buffers size of 1MB and eight parallel streams. Disk I/O throughput data was collected using the iostat tool 
logging transfer rates every five minutes. NWS was setup to monitor network bandwidth between these sites at five-minute 
intervals using 64KB probes. All logs were maintained at the respective sites. 

We analyze the performance of our regressive techniques in the following cases: (1) regression between GridFTP transfer 
data and disk I/O trace data, (2) regression between GridFTP, disk I/O and NWS network data. We compare the results from these 
approaches against prediction based on GridFTP data in isolation [VSF02] and prediction based on regressing GridFTP and NWS 
data [VS02]. In all of the above, we compare several of our filling strategies.  
 
4.1 Metrics 
 
We calculate the prediction accuracy using the normalized percentage error calculation 

       ∑ | MeasuredBW – PredictedBW | 
% Error =          * 100 

(size * MeanBW) 



where “size” is the total number of predictions and the Mean is the average measured GridFTP throughput. We show our results 
based on the August 2001 dataset. Elaborate results for all our datasets can be found at [Traces02]. 

In addition to just evaluating the error of our predictions, we evaluate information about the variance. Depending on the use 
case, a user may be more interested in selecting a site that has reasonable performance bandwidth estimates with a relatively low 
prediction error instead of a resource with higher performance estimates and a possibly much higher error in prediction. In such 
cases, it can be useful if the forecasting error can be stated with some confidence and with a maximum/minimum variation range. 
These limits can also, in theory, be used as catalysts for corrective measures in case of performance degradation.  

In our case, we can also use these limits to verify the inherent cost of accuracy of the predictors. Comparing the confidence 
intervals of these prediction error rates, we can determine if the accuracy achieved is at the cost of greater variability, in which 
case, there is little gain in increasing the component complexity of our prediction approach.  

Thus, for any predictor (for any site pair), the information denoted by the following triplet can be used as a metric to gauge 
its accuracy: 

Accuracy-Metric = [Throughput, % Error-Rate, Confidence] 
where Throughput is the predicted GridFTP value (higher the better), with a certain percentage error (lower the better) and a 
percentage confidence interval (smaller the better). Interested parties can use a function of this accuracy metric to choose one site 
from the other. 
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Figure.4. Normalized percent prediction error rates for the various site pairs for the August 2001 dataset. Figure denotes four 
categories: (1) Prediction based on GridFTP data in isolation (Moving Avg), (2) Regression between GridFTP and NWS 
network data with the three filling in techniques (G+N), (3) Regression between GridFTP and disk I/O data with the three 
filling in techniques (G+D), (4) Regression based on all three data sources (G+N+D). Shaded portions indicate a comparison 
between our approaches. 

 
Figure 4 presents the average normalized percent error based on all transfers for the site pairs we examined. They are classified as 
follows: MovingAvg corresponds to prediction based on GridFTP in isolation [VSF02]; G+N corresponds to regression between 
GridFTP and NWS network data [VS02]; G+D corresponds to regression between GridFTP and disk I/O with all th

egies; G+N+D corresponds to regressing all three datasets. We have shown all results in the interest of continuity. 
From Figure 4, we can observe that including disk I/O component load variations in the regression model provides us with 

gains of up to 4% (G+D Avg) when compared with M
niques (G+D Avg and G+D LV) perform similarly. 
Further, from Figure 4, we see that all variations of G+N perform better than G+D in general – i.e., regression using network 

data performs better than regression using disk I/O data. This observation is in sync with our initial measurements that only 15-
 of the total transfer time is spent in I/O, while majority of the transfer time (in our experiments) is spent in network transport. 
When we include both disk I/O and NWS network data in the regression model (G+N+D) along with GridFTP transfer data, 

we see that prediction error drops up to 3% when compared with G+N (second and fourth shaded columns in Figure 4). Overall, 
we see up to 9% improvement when we compare G+N+D against our original predictio

 and speeds continue to stay the same we believe this will be even more significant. 
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From Figure 5b we can observe that the interval does in fact reduce with more accurate predictors, but the reduction is not 
significant for our datasets. 
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Figure.5. (a) Normalized percent prediction error and 95% confidence limits for August 2001 dataset due to (1)
prediction based on GridFTP in isolation (MovingAvg), (2) regression between GridFTP and disk I/O with Avg filling
strategy (G+D Avg); (3) regression between GridFTP and NWS network data with Avg filling strategy (G+N Avg), and
(4) regressing all three datasets (G+N+D Avg). Confidence Limits denote the upper and lower bounds of prediction error.
For instance, the LBL-ANL pair had a prediction range of [17.3% + 5.2%]. (b) Comparison of the percentage of
variability among the predictors. 

(a) Comparison of normalized percent errors for the predictors with 95% confidence limits
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Figure.6. Predictors for 100M transfers between ISI and ANL for August 2001 dataset. In both graphs, GridFTP, G+D
Avg, G+N+D Avg and NWS are plotted on the primary Y-axis; while Disk I/O is plotted on the secondary Y-axis. I/O
throughput denotes transfers pe

 
 
 



5 Conclusion 
 
In this paper, we present techniques to combine observations of end-to-end application behavior and disk I/O throughput load 
data. We develop a set of regression models to derive predictions that characterize the effect of disk load variations on file 
transfer times. Our methodology for deriving predictions used simple statistical tools that are reasonably straightforward and easy 
to implement and therefore easy to apply to other datasets. 

Using disk I/O data improved prediction accuracy by up to 4% when compared to predicting with just past GridFTP 
behavior; Similarly predicting based on I/O, NWS and GridFTP data improved accuracy further, by up to 9%. By adding 
additional data streams, each of which describing a piece of the end-to-end GridFTP transfer path, we saw improvements in the 
accuracy of the predictions generated. For our datasets, we observed no improvements in using polynomial regression. 

Future work includes exploring rank functions to evaluate the accuracy of predictors, using the variance information of 
predictors to perform scheduling decisions, etc. 
 
Acknowledgments 
 
We thank all the system administrators of our testbed sites for their valuable assistance. This work was supported in part by the 
Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing 
Research, U.S. Department of Energy, under contract W-31-109-Eng-38. 
 
References 
 
[ACF+02] Allcock, W., A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, The Data Grid: Towards an 

Architecture for the Distributed Management and Analysis of Large Scientific Datasets. Network and Computer 
Applications, 2002. 

[Adve93] Adve, V.S., Analyzing the Behavior and Performance of Parallel Programs, in Department of Computer Science. 1993, 
University of Wisconsin. 

[AFN+01] Allcock, W., I. Foster, V. Nefedova, A. Chevrenak, E. Deelman, C. Kesselman, A. Sim, A. Shoshani, B. Drach, and D. 
Williams. High-Performance Remote Access to Climate Simulation Data: A Challenge Problem for Data Grid 
Technologies. in Supercomputing. 2001. 

[BMR+98] Baru, C., R. Moore, A. Rajasekar, and M. Wan. The SDSC Storage Resource Broker. in CASCON'98. 1998. 
[Cole89] Cole, M., Algorithmic Skeletons: Structured Management of Parallel Computation. 1989: Pitman/MIT Press. 
[CQ93] Clement, M.J. and M.J. Quinn. Analytical Performance Prediction on Multicomputers. in Supercomputing'93. 1993. 
[Crovella99] Crovella, M.E., Performance Prediction and Tuning of Parallel Programs, in Department of Computer Science. 

1999, University of Rochester. 
[DataGrid02] The Data Grid Project, http://www.eu-datagrid.org, 2002. 
[Downey97] Downey, A. Queue Times on Space-Sharing Parallel Computers. in 11th International Parallel Processing 

Symposium. 1997. 
[Edwards84] Edwards, A.L., An Introduction to Linear Regression and Correlation. 1984: W.H. Freeman and Company. 
[FK98] Foster, I. and C. Kesselman. The Globus Project: A Status Report. in IPPS/SPDP '98 Heterogeneous Computing 

Workshop. 1998. 
[FSW+99] Faerman, M., A. Su, R. Wolski, and F. Berman. Adaptive Performance Prediction for Distributed Data-Intensive 

Applications. in ACM/IEEE SC99 Conference on High Performance Networking and Computing. 1999. Portland, 
Oregon. 

[Globus02] The Globus Project, http://www.globus.org, 2002. 
[GriPhyN02] The GriPhyN Project, http://www.griphyn.org, 2002. 
[GS00] Gray, J. and P. Shenoy. Rules of Thumb in Data Engineering. in International Conference on Data Engineering 

ICDE2000. 2000. San Diego: IEEE Press. 
[GT99] Geisler, J. and V. Taylor. Performance Coupling: Case Studies for Measuring the Interactions of Kernels in Modern 

Applications. in SPEC Workshop on Performance Evaluation with Realistic Applications. 1999. 
[HJS+00] Hoschek, W., J. Jaen-Martinez, A. Samar, and H. Stockinger. Data Management in an International Grid Project. in 

2000 Internationsl Workshop on Grid Computing (GRID 2000). 2000. Bangalore, India. 
[Holtman00] Holtman, K. Object Level Replication for Physics. in 4th Annual Globus Retreat. 2000. Pittsburgh. 
[HSS00] Hafeez, M., A. Samar, and H. Stockinger. Prototype for Distributed Data Production in CMS. in 7th International 

Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2000). 2000. 
[Jones02] Jones, R. The Public Netperf Homepage, http://www.netperf.org/netperf/NetperfPage.html. 2002. 

http://www.eu-datagrid.org/
http://www.globus.org/
http://www.griphyn.org/
http://www.netperf.org/netperf/NetperfPage.html


[ML90] Mak, V.W. and S.F. Lundstrom, Predicting the Performance of Parallel Computations. IEEE Transactions on Parallel 
and Distributed Systems, 1990: p. 106-113. 

[MMR+01] Malon, D., E. May, S. Resconi, J. Shank, A. Vaniachine, T. Wenaus, and S. Youssef. Grid-enabled Data Access in 
the ATLAS Athena Framework. in Computing and High Energy Physics 2001 (CHEP'01) Conference. 2001. 

[NetLogger02] NetLogger: A Methodology for Monitoring and Analysis of Distributed Systems. 2002. 
[SARA02] SARA: The Synthetic Aperture Radar Atlas, http://sara.unile.it/sara/, 2002. 
[SB98] Schopf, J.M. and F. Berman. Performance Predictions in Production Environments. in IPPS/SPDP'98. 1998. 
[SC00] Shen, X. and A. Choudhary. A Multi-Storage Resource Architecture and I/O, Performance Prediction for Scientific 

Computing. in 9th IEEE Symposium on High Performance Distributed Computing. 2000: IEEE Press. 
[Schopf97] Schopf, J.M. Structural Prediction Models for High Performance Distributed Applications. in Cluster Computing 

(CCC'97). 1997. 
[SFT98] Smith, W., I. Foster, and V. Taylor. Predicting Application Run Times Using Historical Information. in IPPS/SPDP '98 

Workshop on Job Scheduling Strategies for Parallel Processing. 1998. 
[SW02] Swany, M. and R. Wolski. Multivariate Resource Performance Forecasting in the Network Weather Service. Submitted 

for Publication. 2002. 
[SYSSTAT02] SYSSTAT Utilities Homepage, http://perso.wanadoo.fr/sebastien.godard/, 2002. 
[TB86] Thomasian, A. and P.F. Bay, Queuing Network Models for Parallel Processing of Task Systems. IEEE Transactions on 

Computers, 1986. 35(12). 
[TF01] Tirumala, A. and J. Ferguson. Iperf 1.2 - The TCP/UDP Bandwidth Measurement Tool, 

http://dast.nlanr.net/Projects/Iperf. 2001. 
[Traces02] GridFTP predictor Trace Data, http://www.mcs.anl.gov/~vazhkuda/Traces, 2002. 
[VS02] Vazhkudai, S. and J. Schopf. Predicting Sporadic Grid Data Transfers. in 16th IEEE High Performance Distributed 

Computing (HPDC-11). 2002. Edinburgh, Scotland: IEEE Press. 
[VSF02] Vazhkudai, S., J. Schopf, and I. Foster. Predicting the Performance Wide-Area Data Transfers. in 16th International 

Parallel and Distributed Processing Symposium (IPDPS). 2002. Fort Lauderdale, Florida: IEEE Press. 
[Web100Project02] The Web100 Project, http://www.web100.org, 2002. 
[Wolski98] Wolski, R., Dynamically Forecasting Network Performance Using the Network Weather Service. Cluster Computing, 

1998. 
[ZLP96] Zaki, M.J., W. Li, and S. Parthasarathy. Customized Dynaimic Lad Balancing for Network of Workstations. in High 

Performance Distributed Computing (HPDC'96). 1996. 
 

http://sara.unile.it/sara/
http://perso.wanadoo.fr/sebastien.godard/
http://dast.nlanr.net/Projects/Iperf
http://www.mcs.anl.gov/~vazhkuda/Traces
http://www.web100.org/

	1Introduction
	2Related and Previous Work
	3Prediction Model

