
Argonne National Laboratory
���� South Cass Avenue

Argonne� IL �����

ANL�MCS	TM	
��

Users Guide for SnadiOpt� A Package Adding

Automatic Di�erentiation to Snopt�

by

E� Michael Gertz
Mathematics and Computer Science Division

Argonne National Laboratory

Argonne� Illinois �����

Philip E� Gill and Julia Muetherig
Department of Mathematics

University of California� San Diego

La Jolla� California �������		�

Mathematics and Computer Science Division

Technical Memorandum No�
��

January
��

gertz�mcs�anl�gov pgill�ucsd�edu jmueth�ucsd�edu
http���www�mcs�anl�gov��gertz� http���www�scicomp�ucsd�edu��peg� http���www�scicomp�ucsd�edu��julia�

�This work was supported by the Mathematical� Information� and Computational Sciences Division
subprogram of the O�ce of Advanced Scienti�c Computing Research� U�S� Department of Energy� under
Contract W�	
�
���Eng�	� and by National Science Foundation Grant CCR������
�
�

Argonne National Laboratory� with facilities in the states of Illinois and Idaho� is owned
by the United States Government and operated by The University of Chicago under the
provisions of a contract with the Department of Energy�

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government� Neither the United States Government nor any agency thereof� nor The
University of Chicago� nor any of their employees or o�cers� makes any warranty� express
or implied� or assumes any legal liability or responsibility for the accuracy� completeness� or
usefulness of any information� apparatus� product� or process disclosed� or represents that its
use would not infringe privately	owned rights� Reference herein to any speci�c commercial
product� process� or service by trade name� trademark� manufacturer� or otherwise� does not
necessarily constitute or imply its endorsement� recommendation� or favoring by the United
States Government or any agency thereof� The views and opinions of document authors
expressed herein do not necessarily state or re�ect those of the United States Government
or any agency thereof� Argonne National Laboratory� or The University of Chicago�

ii

Contents

Abstract �

�� Introduction �

� Problem Types �

�
 Why Automatic Di�erentiation�

�� ADIFOR �
�� Who Should Use This Package �
�� How to Read This Manual �
�� Basic Usage �
�� Additional Resources �

�� Automatic Di�erentiation �

�� User�Supplied Subroutines �

�� The Function De�nition Routine �
��
 The Initialization Routine �
��� An Example Problem �

	� Invoking SnadiOpt ��

�� Locating Executables and Libraries �

��
 Basic Usage �
��� Files Generated by snadiopt�pl �
��� Merging Changes �
��� Advanced Usage �
��� Summary of All Options �

�� Building the Executable �

�� Typical Usage �
��
 Subordinate Make�les �
��� Useful makefile Targets �
��� Useful makefile Variables �
��� Dense ADIFOR �

References ��

Index ��

iii

�

Users Guide for SnadiOpt� A Package Adding

Automatic Di�erentiation to Snopt

by

E� Michael Gertz� Philip E� Gill� and Julia Muetherig

Abstract

SnadiOpt is a package that supports the use of the automatic di
erentiation package
ADIFOR with the optimization package Snopt�

Snopt is a general�purpose system for solving optimization problems with many
variables and constraints� It minimizes a linear or nonlinear function subject to bounds
on the variables and sparse linear or nonlinear constraints� It is suitable for large�scale
linear and quadratic programming and for linearly constrained optimization� as well as
for general nonlinear programs�

The method used by Snopt requires the �rst derivatives of the objective and con�
straint functions to be available� The SnadiOpt package allows users to avoid the time�
consuming and error�prone process of evaluating and coding these derivatives� Given
Fortran code for evaluating only the values of the objective and constraints� SnadiOpt
automatically generates the code for evaluating the derivatives and builds the relevant
Snopt input �les and sparse data structures�

Keywords Large�scale nonlinear programming� constrained optimization� SQP
methods� automatic di
erentiation� Fortran software�

� Users Guide for SnadiOpt

�� Introduction

This is the users guide for SnadiOpt� a package that adds the automatic di�erentiation
capability to the nonlinear optimization package Snopt ���� SnadiOpt uses the source	to	
source automatic di�erentiation package ADIFOR to perform the di�erentiation�

���� Problem Types

Snopt is a collection of Fortran �� subroutines for solving a nonlinear programming problem

assumed to be stated in the following form�

NP min
x

�or max� Fobj�x�

subject to l � x � u� L � F �x� � U�

where u� U � l� and L are constant vectors of upper and lower bounds� F �x� is a vector of
smooth linear and nonlinear problem functions� and Fobj�x� denotes the component of F to
be minimized or maximized�

Note that upper and lower bounds are speci�ed for all variables and constraints� This
form allows full generality in specifying various types of constraint� Special values are used
to indicate absent bounds �lj � �� or uj � �� for appropriate j�� Free variables and free
constraints ��free rows�� are ones that have both bounds in�nite� Similarly� �xed variables
have lj � uj� and equality constraints have Lj � Uj

The method used by Snopt requires that the elements Jij�x� � �Fi�x���xj of the Jaco	
bian matrix of �rst derivatives be known at any point x� In practice it is often inconvenient
or impossible to code the derivatives� and so Snopt allows the user to code as many deriva	
tives as is convenient� Snopt then estimates unknown derivatives by �nite di�erences� by
making a call to F for each variable xj whose partial derivatives need to be estimated�
However� �nite di�erences reduce the reliability of the optimization algorithm and can be
expensive if there are many such variables xj � The SnadiOpt package allows the user to avoid
the time	consuming and error	prone process of evaluating and coding derivatives without
the need for Snopt to compute �nite di�erences�

Often� an element Jij is constant� which implies that variable xj occurs only linearly
in the problem function Fj�x�� If a signi�cant number of these constant elements are zero�
then J is known as a sparse matrix� and Snopt uses a sparse matrix format to store only
the nonzero elements of J � SnadiOpt automatically identi�es constant and zero Jacobian
elements by using a scheme that evaluates the Jacobian at a number of points close to
the starting point �see Section
�� Given Fortran code for evaluating only F �x�� SnadiOpt
automatically generates code for evaluating J and builds the relevant Snopt input �les and
sparse data structures�

���� Why Automatic Di�erentiation

Writing code for the derivatives of F �x� is di�cult� time consuming� and error prone� es	
pecially when problems involve many variables and constraints� Automatic di�erentiation
�AD� tools� in this case ADIFOR ��
�� quickly provide correct and numerically accurate
derivative functions from the code used to evaluate the objective and constraint functions�

Prior to the wide availability of AD software and AD	based modeling languages� nu	
merical di�erentiation was the only alternative to providing derivative code� Unfortunately�
numerical di�erentiation is an inherently unstable process that causes both theoretical and
practical di�culties for nonlinear solvers� Numerical di�erentiation places a severe theo	
retical limit on the accuracy of the solution that may be computed by an algorithm �see�
e�g�� ��� Chapter ���� In practice� code that uses numerical di�erentiation tends to need

�� Introduction �

more iterations to �nd a solution than does code that uses exact derivatives� Furthermore�
code that uses numerical di�erentiation is typically less robust and will fail to �nd solutions
for problems that might have been solved if analytic derivatives were supplied� Notwith	
standing these di�culties� numerical di�erentiation was often used to avoid the high cost of
hand	coding the exact derivatives�

With modern AD tools� derivative code may be quickly obtained� leading to a signi�cant
increase in user productivity�even on simple problems� Moreover� functions can now be
di�erentiated that were once considered too complex to be coded by hand� An example
is a function de�ned in terms of the output from an ordinary di�erential equation solver�
ADIFOR has been successfully applied to such functions�

Automatic di�erentiation allows users to develop models quickly� This increase in pro	
ductivity makes optimization software a much more useful tool for scientists� who often wish
to experiment with di�erent objective functions and di�erent sets of constraints�

���� ADIFOR

ADIFOR is a robust� mature automatic di�erentiation tool developed through a collabora	
tive project between the Mathematics and Computer Science Division at Argonne National
Laboratory and the Center for Research on Parallel Computation at Rice University� The
package is a source	to	source translator for functions written in Fortran ��� It is widely
available and runs on many popular platforms� Moreover� the source code for the ADI�

FOR libraries �but not the translator� is provided� making it possible to compile and run
ADIFOR	generated code on most platforms�

ADIFOR implements the forward mode for automatic di�erentiation �although it does
make some use of the reverse mode internally�� As a practical matter� this means that
ADIFOR	generated code will tend to run most quickly if the number of variables is not
much larger than the number of constraints�

��	� Who Should Use This Package

It is usually wise to try automatic di�erentiation before attempting to code derivatives by
hand� Some users may be more comfortable using modeling languages with an automatic
di�erentiation capability �see� e�g�� AMPL ��� and GAMS ��� �� SnadiOpt is intended for those
who prefer to code in Fortran� or need to make use of existing Fortran software� Such users
should �nd that this package can provide derivative code quickly and e�ciently�

Programmers who typically write in C or Fortran �� might like to consider developing
their models in Fortran �� so that they may use this package to obtain derivatives� A C

programmer should be able to learn enough Fortran �� to formulate simple to moderately
complicated models within a few hours� C has many features that Fortran �� does not� but it
is exactly those features that can make the automatic di�erentiation of C code problematic�

���� How to Read This Manual

Section �� summarizes the four steps needed to de�ne and solve an optimization model
using SnadiOpt and Snopt� Section
 describes the main features of the SnadiOpt package and
provides some background on the mechanics of automatic di�erentiation �this section may
be omitted on �rst reading�� Section � describes the subroutines that must be provided by
users to de�ne their model� Section � descibes the invocation of the Perl script snadiopt�pl
that automatically generates all input �les for ADIFOR� This discussion includes detailed
information on the various �les generated by SnadiOpt �see Section ����� Finally� Section �
discusses the use of the Make utility to automatically di�erentiate the problem �les and
build an executable �le ready for execution�

� Users Guide for SnadiOpt

���� Basic Usage

In the simplest case� the SnadiOpt package can be used to solve problem NP in four steps�

Step � Construct a �le prob�f containing Fortran subroutines usrini and usrfun �see Sec	
tion ��� Subroutine usrini initializes all data associated with the model� including
the bounds l� u� L� and U � and the component of F that de�nes the objective function�
Subroutine usrfun de�nes the values of the problem functions F at a given value of
x� A Fortran main program is not required� However� subroutine usrini must de�ne
the lengths of all arrays used to de�ne the model�

Step
� Invoke the Perl script snadiopt�pl to generate the input �les needed by the automatic
di�erentiation package ADIFOR� The syntax of the call is
� snadiopt�pl �o prob prob�f

�The symbol ��� is the shell prompt and is not to be typed�� This generates a number
of auxiliary �les with the pre�x prob �see Section ���

Step �� Build the executable �le for the model prob� This step uses ADIFOR to generate the
di�erentiated subroutines needed for Snopt� compiles them and links them with the
Snopt libraries� All these tasks are performed by using the Make utility� where the
makefile is one of the �les automatically generated by snadiopt�pl �see Section ���
To start the build process� type
� make prob

Step �� Solve the optimization problem by typing
� ��prob

Any output from the run will be written to the �les de�ned in the subroutine usrini�

��
� Additional Resources

All users should read the Snopt users guide ���� which details the many user options available
in Snopt that may be set by providing a �specs� �le� The users guide describes the algorithm
and its output and answers many questions about the performance of the optimizer on a
particular model�

SnadiOpt tries to insulate the user from the details of invoking ADIFOR� but users may
wish to read the ADIFOR users guide� In particular� while ADIFOR is very robust� it is
possible to write Fortran code that fools ADIFOR� and the manual will explain how to avoid
this pitfall�

For general information on optimization� we recommend that users explore the NEOS

guide on the Web� http���www�mcs�anl�gov�otc�Guide�index�html�
More information about automatic di�erentiation in general� and ADIFOR in particular�

may be found on the Argonne National Laboratory automatic di�erentiation Web page�
http���www�mcs�anl�gov�autodiff�

Users with complicated functions for which the automatically di�erentiated code appears
to be unacceptably slow can often accelerate their code by refactoring it� Several technical
reports on the automatic di�erentiation page describe how to do this�

The authors of this package also maintain Web pages� Philip Gill�s pagey has links to
published papers and technical reports on Snopt� Michael Gertz maintains a Web pagez at
Argonne National Laboratory�

yhttp���scicomp�ucsd�edu��peg�
zhttp���www�mcs�anl�gov��gertz�

�� Automatic Di�erentiation �

�� Automatic Di�erentiation

Automatic di�erentiation is the process of producing code that evaluates the derivatives
of a function from code that evaluates the function itself� It is closely related to symbolic
di�erentiation but di�ers from it in important ways� Symbolic di�erentiation takes the
mathematical expression for a function and produces another expression that represents the
derivative of that function� Unlike symbolic di�erentiation packages� automatic di�erentia	
tion packages�

� understand programming concepts such as loops� branches and subroutines and

� use intermediate quantities and the chain rule to avoid potentially exponential growth
in the size of the resulting code�

ADIFOR is a source	to	source translator� it takes as its input a function expressed as
a Fortran �� subroutine and generates Fortran code that computes the derivatives of the
dependent variables with respect to the independent variables� Suppose F � IRn � IRm is a
function and

subroutine func � x� n� F� m �

integer m� n

double precision x�n�� F�m�

is a Fortran subroutine that will compute the value of F at any given x� Let J�x� � F ��x�
be the Jacobian of F � ADIFORwill produce code that computes J�x�S for any n�p matrix
S with p � n� Thus� if S � I� ADIFOR will compute the Jacobian itself�

In many optimizationmodels� certain terms that occur in F will be linear and will result
in constant elements in J�x�� SnadiOpt does not require that these elements occur in a
particular part of J�x�� but for the sake of discussion� let us assume that J�x� has the
following structure�

J�x� �

�
N�� L��

L�� L��

�
�

where the elements of L��� L��� and L�� are constant and the elements of N�� may or
may not be constant� but all rows and columns of N�� contain at least one nonconstant
element� Any Jacobian may be transformed to a matrix with this structure by permuting
the constraints �rows� and variables �columns�� Snopt is designed to exploit the constant
elements in J � For instance� the constraints corresponding to �L�� L�� � are linear� and
Snopt will maintain feasibility with respect to the linear constraints� Because the ADIFOR

generated code computes J�x�S� SnadiOpt is able to choose an S in a manner that avoids
the need to reassign L��� L��� and L�� every time J is required�

Snopt is designed to solve problems with sparse derivatives� These are problems for
which many of the elements of J�x� are identically zero� SnadiOpt determines the sparsity
pattern for the Jacobian and identi�es the constant elements automatically� To make this
determination� SnadiOpt computes the value of J�x� at two random perturbations of a user	
supplied initial point x�� If an element of the Jacobian is the same at both points� then
it is taken to be constant� If it is zero at both points� it is taken to be identically zero�
The random points are not chosen close together� so the heuristic will correctly classify the
Jacobian elements in the vast majority of cases� Snopt validates the computed derivatives�
linearity pattern� and sparsity pattern at the point x�� by comparing the supplied values
to values computed using numerical di�erentiation� This additional test at a third point
makes it unlikely that an incorrect sparsity or linearity pattern will be used�

Of course� it is possible to fool this heuristic� SnadiOpt cannot deal well with functions
for which the sparsity pattern or linearity pattern in a �relatively large� region around x is

	 Users Guide for SnadiOpt

not representative of the sparsity or linearity pattern of the function as a whole� Computing
a sparsity pattern for such a function would require signi�cant additional user intervention�
Because we are uncertain of the demand to minimize such functions� we have opted for the
simpler user interface� We welcome examples of real	word optimization models that fall into
this category�

Once SnadiOpt has computed the sparsity and linearity pattern and the appropriate S to
minimize recomputation of the derivatives of linear elements� it calls Snopt as a �black	box�
optimization routine� This means that it presents the optimization data to Snopt in the
same format as a hand	written routine for computing the derivatives� Users have full access
to all the options and features of Snopt and can link the resulting code with their own code
�subject� of course� to any licensing restrictions��

�� User�Supplied Subroutines

In order to use SnadiOpt� the user must provide the following Fortran routines�

usrfun �x��� De�nes the functions Fi�x��

usrini �x��
� De�nes the actual dimension of the problem and initializes all data needed
by Snopt� The workspace for SnadiOpt is also assigned here�

The user routines usrfun and usrini have �xed parameter lists but may have any conve	
nient name� The names of the parameters may also be chosen by the user�

���� The Function De�nition Routine

The user must provide a subroutine that calculates the vector F of objective and constraint
functions at a given point x�

subroutine usrfun� Status� mode� x� n� F� neF�

	 cu� lencu� iu� leniu� ru� lenru �

integer Status� mode� neF� n

double precision F�neF�� x�n�

integer lencu� leniu� lenru

character
� cu�lencu�

integer iu�leniu�

double precision ru�lenru�

On entry�

Status indicates the �rst and last call to usrfun�

If Status � �� there is nothing special about the current call to usrfun�

If Status � � Snopt is calling the subroutine for the �rst time� Some data may
need to be input or computed and saved�

If Status �
� Snopt is calling the subroutine for the last time� The user may wish
to perform some additional computation using the �nal solution�

If the nonlinear functions are expensive to evaluate� it may be desirable to do
nothing on the last call� by including a statement of the form

if �Status �ge� �� return

at the start of the subroutine�

�� User
Supplied Subroutines �

x�n� contains the point at which the problem functions are to be evaluated�

cu�lencu�� iu�leniu�� ru�lenru� are character� integer and real scratch arrays� These
arrays may be used to store any information that needs to be saved between calls
to usrfun�

On exit�

F�neF� holds the values of the objective and constraint functions computed at x� The
objective is component F�ObjRow�� as de�ned in usrini�

mode is used to communicate between Snopt and the user� If the user is unwilling or
unable to evaluate the function at the current point then mode should be set to ��
Snopt will try to provide an alternative point at which to evaluate the function�

If for some reason the user wishes to terminate solution of the current problem�
mode should be set to a negative value �other than ���

cu�lencu�� iu�leniu�� ru�lenru� are character� integer� and double precision arrays in
which the user may store information between calls to usrfun�

���� The Initialization Routine

Subroutine usrini is used to initialize quantities associated with the problem� It is called
once before Snopt�

subroutine usrini� ObjAdd� ObjRow� Prob�

	 x� xlow� xupp� xstate� Names�

	 Fmul� Flow� Fupp� Fstate� FNames�

	 iSpecs� iPrint� iSumm� iErr�

	 cu� iu� ru�

	 cw� iw� rw �

Each argument is fully described below� Many of the arguments are arrays �e�g�� x is the
vector containing an initial guess at the solution�� However� we emphasize that the lengths

of the array arguments do not appear in the argument list � The user must declare all arrays
to be of �xed length at the head of the subroutine usrini� These declarations are used by
the Perl script snadiopt�pl to automatically construct a main program that calls Snopt
with appropriately dimensioned arrays� For example� a typical de�nition of the variables at
the head of usrini is as follows�

integer n� neF

integer nName� nFnames

integer lencw� leniw� lenrw� lencu� leniu� lenru

parameter � lencw ���� leniw ������ lenrw ����� �

parameter � lencu �� leniu �� lenru � �

parameter � n �� neF � �

parameter � nName �� nFnames � �

character
� Names�nName�� FNames�nFnames�

double precision x�n�� xlow�n�� xupp�n�

double precision Flow�neF�� Fupp�neF�� Fmul�neF�

integer xstate�n�� Fstate�neF�

integer iu�leniu�� iw�leniw�

double precision ru�lenru�� rw�lenrw�

character
� cu�lencu�� cw�lencw�

� Users Guide for SnadiOpt

The names of the arguments for usrini are unimportant� but the position of each argument
is signi�cant� For example� if the user prefers to call the vector of variables �vars� and
declares the fourth argument of usrini to be

parameter �maxvars ��

double precision vars�maxvars�

then snadiopt�pl will parse this declaration and include

parameter �n ��

double precision x�n�

in the automatically generated calling routine� SnadiOpt can recognize Fortran style param	
eters and numbers but cannot read more complicated expressions� For instance� declaring
Fmul as �double precision Fmul�n���� will de�nitely confuse it�

Below� we describe each of the arguments of usrini� In many cases� these arguments
are assigned a default value in the automatically generated calling program� If the user
wishes to use the default value of an argument� then it should not be altered in usrini�
The symbol ��� denotes the value of the Snopt optional parameter Infinite bound� which
has default value ����

Parameters�

ObjAdd is a double precision constant that is added to the objective function for printing
purposes� ObjAdd does not a�ect the minimizer found�

Default value� ObjAdd � ����

ObjRow is an integer de�ning the component of F �x� to be used as the objective function
Fobj�x�� If ObjRow � �� then Snopt �nds a point x that satis�es the constraints

l � x � u� and L � F �x� � U �

Default value� ObjRow � �

Prob is an eight	character name for this model�

Default value� The name of the executable� truncated to eight characters�

x is a double precision array containing the point at which Snopt will start searching
for a minimizer�

Default value� x�j� � ����

xlow� xupp are double precision arrays containing the lower and upper bounds l and u
such that l � x � u� By default� xlow and xupp are assumed to be in�nite �i�e��
the value of x is not restricted��

Default values� xlow�j� � ��� xupp�j� � ���

xstate de�nes the initial state for each variable x� One may set xstate�j� � �� x�j� � ���
for all j � � n� All variables will be eligible for the initial basis�

Less trivially� to say that the optimal value of variable j will probably be equal to
one of its bounds� set xstate�j� � � and x�j� � xlow�j� or xstate�j� � � and
x�j� � xupp�j� as appropriate�

Default value� xstate�j� � ��

Names is a character array of symbolic names for the components of x� Each name may
have up to eight characters� If the user does not wish to supply symbolic names for
the variables� Names should be declared to be be an array of length one�

�� User
Supplied Subroutines

Fmul is a double precision array of estimates of the dual variables for the constraints
L � F �x� � U � �Dual variables are sometimes known as Lagrange multipliers or
shadow prices�� Fmul�ObjRow� corresponds to the objective and is ignored�

Default value� Fmul�j� � ����

Flow� Fupp are double precision arrays containing the lower and upper bounds L and U
such that L � Fi�x� � U � The components Flow�ObjRow� and Fupp�ObjRow�

corresponding to the objective is ignored� For an equality constraint of the form
Fi�x� � c� set Flow�j� � Fupp�j� � c�

Default values� Flow�j� � �� and Fupp�j� � ���

FNames is a character array of symbolic names for the constraints� Each namemay consist of
up to eight characters� If the user does not wish to supply names for the constraints�
FNames should be declared to be an array of length one�

iSpecs is an open� readable Fortran �le descriptor pointing to an options� or �specs� �le�
See the Snopt users guide to discover which options are available� If one chooses
not to use an options �le� iSpecs should be set to zero�

Default value iSpecs � ��

iPrint is a Fortran �le descriptor pointing to a �le that will be overwritten with the results
of this run of Snopt� If one does not wish to save the output to a �le� iPrint should
be set to zero�

Default value iPrint � ��

iSumm a Fortran �le descriptor pointing to a �le that will be overwritten with summary
information from this run of Snopt� Typically� iSumm is either set to �� which will
cause the summary output to be printed on the terminal� or set to �� which disables
the printing of summary information�

Default value iSumm � ��

iErr a Fortran �le descriptor pointing to a �le that will be overwritten with diagnostic
information from this run of Snopt� Set iErr to zero to disable printing of diagnostic
information�

Default value iErr � ��

cu� iu� ru are character� integer� and double precision arrays in which the user may store
information between calls to usrfun�

cw� iw� rw are character� integer� and double precision work	space arrays used by Snopt�
These arrays must be declared su�ciently large for Snopt to solve the optimization
problem�

���� An Example Problem

Here we give examples of subroutines usrini and usrfun for the following four variable
problem�

minimize �x� � �x� � x� � x��
� � �x�

subject to �x� �
x� � �
x� � x�

�
� x�

�
�

x�
�
� x�

�
� x� � �

x� � � x� � ��

�� Users Guide for SnadiOpt

In the format of problem NP we have L � F �x� � U � where

L �

�
BBB�
��

�

�

�
CCCA � F �

�
BBB�

�x� � �x� � x� � x��� � �x�

�x� �
x�

x� � x�
�
� x�

�

x�
�
� x�

�
� x�

�
CCCA � U �

�
BBB�

��

��

�

�
CCCA �

The objective function has been assigned to the �rst component of F � which means that
ObjRow � � The objective component is not constrained by Snopt� so there are in�nite
upper and lower bounds on Fobj� �A component with in�nite upper and lower bounds is

known as a �free row� of the problem�� Snopt automatically provides these in�nite bounds
on the objective row� and so it is unnecessary to provide them �unless later the user plans
to set ObjRow � � to make Snopt �nd a feasible point for the constraints��

The upper and lower bounds on the variables are given by l � x � u� where

l �

�
BBB�

�

��

��

�

�
CCCA � x �

�
BBB�

x�

x�

x�

x�

�
CCCA � u �

�
BBB�

��

��

��

��

�
CCCA �

Our version of subroutine usrini performs four tasks� �i� it de�nes the length of the variable	
dimensioned arrays used by Snopt and SnadiOpt� �ii� it opens the print �le and summary
�le� �iii� it initializes the array of variables� and �iv� it de�nes the upper and lower bounds
on x and F �

subroutine usrini� ObjAdd� ObjRow� Prob�

� x� xlow� xupp� xstate� Names�

� Fmul� Flow� Fupp� Fstate� FNames�

� iSpecs� iPrint� iSumm� iErr�

� cu� iu� ru� cw� iw� rw �

implicit none

integer n� neF� nName� nFnames� ObjRow�

� lencw� leniw� lenrw� lencu� leniu� lenru

parameter � lencw � ���� leniw � ������ lenrw � 	���� �

parameter � lencu � �� leniu � �� lenru � � �

parameter � n �
� neF �
 �

parameter � nName � �� nFnames � � �

integer iSpecs� iPrint� iSumm� iErr� xstate�n��

� Fstate�neF�� iu�leniu�� iw�leniw�

double precision ObjAdd� x�n�� xlow�n�� xupp�n�� Flow�neF��

� Fupp�neF�� Fmul�neF�� ru�lenru�� rw�lenrw�

character�� Prob� Names�nName�� FNames�nFnames��

� cu�lencu�� cw�lencw�

� ��

� usrini defines input data for the problem discussed in the

� SnadiOpt Users Guide

� ��

integer i

character�	� lfile

double precision plInfy

parameter �plInfy � ��d�	� �

� ��

� Initial x

�� User
Supplied Subroutines ��

x��� � ��d��

x�	� � ��d��

x��� � ��d��

x�
� � ��d��

xlow��� � ��d��

xlow�
� � ��d��

� Impose bounds on the constraint rows

Flow�	� � ��d��

Flow��� � 	�d�� � Equality constraint

Fupp��� � 	�d��

Flow�
� �
�d�� � Equality constraint

Fupp�
� �
�d��

iSpecs �

iPrint � ��

lfile � �probspc�

open� iSpecs� file�lfile� status��OLD�� err���� �

lfile � �probout�

open� iPrint� file�lfile� status��UNKNOWN�� err���� �

return

��� write�iErr�
���� �Error while opening file�� lfile

��� format�� a� 	x� a �

end � subroutine usrini

Note that default initial values are used for the variables Prob� Fmul� xstate� Fstate� and
ObjAdd� Similarly� only those bounds not equal to their default in�nite values are assigned�

The subroutine usrfun de�nes the values of the vector F �x��

subroutine usrfun� Status� mode�

� neF� n� x� F�

� cu� lencu� iu� leniu� ru� lenru�

� cw� lencw� iw� leniw� rw� lenrw �

implicit none

integer Status� mode� neF� n� lencu� leniu� lenru�

� lencw� leniw� lenrw� iu�leniu�� iw�leniw�

double precision F�neF�� x�n�� ru�lenru�� rw�lenrw�

character�� cu�lencu�� cw�lencw�

� ��

� Usrfun computes the objective and constraint functions for the

� problem featured in the SnadiOpt users guide

� ��

integer Obj

� ��

Obj � � � The objective row

F�Obj� � ��d���x��� � �x��� � x�	� � x������	 � ��d���x�
�

�� Users Guide for SnadiOpt

� Constraint functions

F�	� �
�d���x�	� � 	�d���x���

F��� � x��� � x�	���	 � x�����	

F�
� � x�	���
 � x�����
 � x�
�

end � subroutine usrfun

�� Invoking SnadiOpt

The user	supplied routines must be run through ADIFOR and then compiled and linked into
a complete program� before Snopt may be invoked� There are two steps in the process of
building this complete program� First� the user invokes the script snadiopt�pl to scan the
user	supplied routines and produce the components that are needed to build a complete
executable� notably the main program itself� Second� the user invokes a version of the
program make to perform the build�

Users will typically call snadiopt�pl only once� Most changes made to a model can be
incorporated into the executable by simply typing make� By design� snadiopt�pl generates
a �relatively� straightforward set of components that may be modi�ed at will� In some cases�
particularly if the sizes of the arrays de�ned in usrini change� it may be convenient to call
snadiopt�pl again rather than modifying multiple �les� We have incorporated a feature
into snadiopt�pl to simplify this process� See Section ��� for more information�

	��� Locating Executables and Libraries

Before one can use SnadiOpt� the package must� of course� be installed on the user�s machine�
Installation instructions are provided with the SnadiOpt distribution� Because the installa	
tion process depends on the machine type and the source of the distribution� installation
instructions will not be repeated here� A few words� however� are in order�

The SnadiOpt package consists of a program named snadiopt�pl� some data �les needed
by snadiopt�pl� and code libraries that must be combined �linked� with user	supplied code
to produce a problem executable� Ideally� these components will be installed in an appropri	
ate� system	dependent location� On Unix systems� for instance� the default location is the
�usr�local� directory structure� If the SnadiOpt package is located in some appropriate
system location� then typing

� snadiopt�pl ��help

will provide summary help information about using the snadiopt�pl program� If this
is the case� then the rest of this section may be skipped� If the system cannot �nd the
snadiopt�pl program� then the user will need to tell the system where to �nd it� The
following instructions are for versions of the Unix operating system�

First� one should ask the individual who installed SnadiOpt where the snadiopt�pl

program is located� If it is not in a system	dependent location� it will normally be found in
the bin subdirectory of the Snopt distribution� The cd command may be used to change
the working directory to the directory containing snadiopt�pl� The command used to set
the PATH environment variable depends on which shell is being used� For bash or ksh� the
appropriate command is

� PATH�PATH��PWD

but for csh or tcsh� the command

� setenv PATH ��PATH����PWD�

�� Invoking SnadiOpt ��

must be used� Virtually all users will be using a shell that responds to one of these two
commands� It is safe to try these commands if one is unsure which shell is being used�

Once the PATH environment variable has been set� the system will be able to �nd
snadiopt�pl� One can then generate and compile problem executables� The executa	
bles may not� however� run� While this would seem to be undesirable behavior� there is
actually a reason for it� Modern operating systems support the concept of dynamically
linked libraries� Such libraries are not copied into an executable� but rather are loaded into
memory when a program is run� With such a scheme� several executables may share one
library� SnadiOpt uses dynamically linked libraries whenever possible�

Because dynamically linked libraries must be loaded at run	time� the operating system
must know where to locate these libraries� The simplest scheme is to place the libraries in
a system	dependent location� If one had to set the PATH environment variable to tell the
system where to �nd the snadiopt�pl program� then it is likely that one will need to tell
the system where to �nd the SnadiOpt libraries as well� To do so� one should �rst change
the working directory to the directory containing the SnadiOpt libraries� These libraries will
usually be located in the lib subdirectory of the Snopt distribution� and will have names
similar to libsnddiopt�so and libsnsdiopt�so� If the user is using bash or ksh� the
command

� LD�LIBRARY�PATH�LD�LIBRARY�PATH��PWD

� export LD�LIBRARY�PATH

should be executed� Those using csh or tcsh� must determine whether LD LIBRARY PATH

has already been set� If the command

� printenv LD�LIBRARY�PATH

prints nothing� then the variable has not been set� and

� setenv LD�LIBRARY�PATH ��PWD�

will set it appropriately� Otherwise� typing

� setenv LD�LIBRARY�PATH ��LD�LIBRARY�PATH����PWD�

will add the current directory to the existing LD LIBRARY PATH�
Let us make a few� �nal notes about this process� These days� it is common for a user

to have multiple command windows open� It is a frequent mistake to think that setting
the PATH variable� or any variable� in one window sets its value in all windows� Setting
a variable in one command window does not a�ect the other command windows in any
way� It is usually possible to alter certain initialization �les to set the values of PATH and
LD LIBRARY PATH in every command window automatically at login� It is not possible for
us to describe this process� because it is very system dependent� One should ask a system
administrator how to do this�

	��� Basic Usage

Suppose a user has placed all the code needed to de�ne a certain problem� including the
required subroutines usrfun and usrini� in a �le named prob�f� The command

� snadiopt�pl �o prob prob�f

will generate the �les that are needed to build an executable named prob that solves the
user�s optimization model�

To actually build the executable� invoke the GNU version of the program make� On many
systems� GNU make is installed as make or gmake� and so typing

�� Users Guide for SnadiOpt

� make

or

� gmake

should build a program named prob that may be executed from the command line�

	��� Files Generated by snadiopt�pl

In this section� we brie�y describe the �les generated by snadiopt�pl itself� Other tempo	
rary �les may be generated by the compiler and ADIFOR� A beginning user should not need
to know about the generated �les in order to use this package� Therefore� this section may
be skipped on a �rst reading�

This section lists the �les generated for a problem named prob� The script snadiopt�pl
uses �prob� as the pre�x for most of the �les generated for this problem� If the user had
invoked the command

� snadiopt�pl �o prob prob�f

then �prob� will be the pre�x of the generated �les� In general� the �o option determines
the pre�x of the generated �les� If the option is omitted� then �unnamed� will be the pre�x
used�

GNUmakefile� This is the only generated �le that is not pre�xed by the name of the
problem� The GNUmakefile is meant to be shared by all problems in a given directory� it
contains general information about building and managing problem executables�

Users may wish to modify GNUmakefile to customize the build process� For instance�
GNUmakefilemight be modi�ed to tell the compiler to generate object code suitable for use
with a debugger� The snadiopt�pl program will not overwrite an existing GNUmakefile�
unless it is called with the ��refresh�makefile option� Therefore� it is safe to modify this
�le�

prob submake� prob submake�orig� prob submake�bak� The �le prob submake contains
the commands for building the program� including the commands for calling ADIFOR � The
�le should contain the complete dependency information for the program and should be
capable of rebuilding the program when components are modi�ed�

It is sometimes necessary to modify prob submake� The �le prob submake�orig contains
the original version of this �le� as generated by snadiopt�pl� This allows the user to
compare the modi�ed version of prob submake with the original �le�

If snadiopt�pl detects an existing �le named prob submake� it will save this �le as
prob submake�bak� The user may then reapply any changes made to prob submake to
the newly generated �le� Many times� these changes can be merged automatically� See
Section ��� for more information�

prob main�f� prob main�f�orig� prob main�f�bak� The �le prob main�f contains the
Fortran main program that calls Snopt with the user�s data and problem de�nition func	
tions� It also performs some necessary bookkeeping and initialization and is responsible for
allocating the arrays that the user requests in the usrini subroutine�

Users may wish to modify prob main�f� For instance� a user might wish to output the
results from Snopt in a particular format and so might place the commands for doing so in
prob main�f� The �le prob main�f�orig contains the version of prob main�f generated

�� Invoking SnadiOpt ��

by the last call to snadiopt�pl� This allows the user to compare the modi�ed prob main�f

with the original �le�
If snadiopt�pl detects an existing �le named prob main�f� it will save that �le as

prob main�f�bak before proceeding� All changes that the user had made to the existing
prob main�f are saved in that back	up �le� and the user may reapply these changes to
the newly generated �le� Many times� these changes can be merged automatically� See
Section ��� for more information�

prob�adf� The �le prob�adf contains the ADIFOR �script� for di�erentiating the model�s
functions� See the ADIFOR users guide for more information� It is unlikely that a user will
need to modify this �le�

prob admain�f� ADIFOR requires a complete compilable program in order to di�erentiate
a function called from that program� The �le prob admain�f contains a phony program
that calls usrfun� We know of no reason for users to modify this �le�

prob sparse dispatch�f� prob dense dispatch�f� These �les call library routines sup	
porting the use of ADIFOR with Snopt� The existence of these �les is an artifact of the
Fortran language not having syntax for storing a reference to a subroutine� We know of no
reason for users to modify these �les�

prob�cmp� The �le user�cmp is not generated by snadiopt�pl� but rather is created as
an intermediate �le in the build process� It contains a list of Fortran �les that are to be
sent to ADIFOR� One should not not modify this �le� one should modify the AD SOURCE and
AD OTHER FILES variables in the �le prob submake�

	�	� Merging Changes

Users need to call snadiopt�pl only once� The components that it creates may then be
modi�ed at will� and the executable rebuilt using make� However� on some occasions it may
be useful to call snadiopt�pl again� particularly when

� the sizes of the arrays in usrini have changed� The array sizes in prob main�f and
possibly prob�adf must also be modi�ed� The program snadiopt�pl will update
these quantities automatically�

� the names of the parameters of usrfun have changed� The user must either call
snadiopt�pl again� or edit prob�adf to update the names of the independent variables
�AD IVARS� and the names of the dependent variables �AD DVARS��

� the names of Fortran source �les are modi�ed� or new source �les are added� Users
will need to update prob submake� or call snadiopt�pl again�

It is not uncommon� however� for users to want to modify prob submake to customize
the build process� or modify prob main�f to perform some action on the results of snopt�
Normally� when snadiopt�pl is called� it overwrites these �les� saving copies of the existing
�les as prob main�f�bak and prob submake�bak� Users may then reapply the changes they
had made to the old prob main�f and prob submake to the newly generated �les�

There are� however� Unix utilities that are able to merge changes between versions au	
tomatically� The snadiopt�pl ��merge option provides an interface to these tools� Simply
call snadiopt�pl with the arguments

� snadiopt�pl ��merge �o prob prob�f

�	 Users Guide for SnadiOpt

The merge is based only on the comparison of blocks of text� It does not pretend to
understand the meaning of the code� However� it is e�ective remarkably often� In case the
merge is ine�ective� the �les that snadiopt�pl would have produced without the merge
option may be found in prob submake�orig and prob main�f�orig�

Rarely� there will be con�icts that make it impossible to complete the merge� In these
cases� lines of the form

������� prob�submake�bak

lines from prob�submake�bak

lines from prob�submake�orig

������� prob�submake�orig

will be inserted in the �les� and these sections must be edited by hand�
The merge option uses the standard Unix utilities diff� and ed� Merging is not sup	

ported on platforms on which these programs are not available� We don�t support automatic
merging of the other generated �les� Merging requires that the �les prob main�f�orig and
prob submake�orig generated by the last call to snadiopt�pl be present in the current
directory�

	��� Advanced Usage

Multiple Source Files� The script snadiopt�pl is not restricted to scanning a single
�le� If several Fortran �les are needed to de�ne the problem� all �le names should be included
on the command line�

Library Source Files� ADIFOR understands Fortran intrinsics� operators such as sqrt
that look like functions but actually have special status in the language� It must� however�
have the source code to actual functions used in the program� such as the functions de�ned
in the BLAS ���� Source �les for these functions must be included on the command line�

If a user is certain that the included library functions do not need to be di�erentiated�
and would rather link against the installed library than recompile� he may include the
source �le names in the AD OTHER FILES variable in the prob submake� See Section � for
more information�

Using Alternative Function Names The snadiopt�pl script tries to be �exible about
the names of the problem de�nition functions� Several options that allow these names and
the names of certain output �les to be speci�ed by the user� The available options are
summarized in Section ����

	��� Summary of All Options

Usage� snadiopt�pl �switches� file��f �file��f�

�help Print this message�

�version Print the version number of snadiopt�pl�

�o PROGRAM The optimization problem �and binary executable�

will be named PROGRAM� �default� a�out�

�makefile MAKEFILE The output makefile will be named MAKEFILE�

�default� PROGRAM�submake or unnamed�submake

if PROGRAM is not specified��

�refresh�makefile Create MAKEFILE� even if it already exists�

Unless given this option� the script will not

�� Building the Executable ��

overwrite an existing MAKEFILE�

�usrfun NAME The FORTRAN subroutine named NAME computes the

functions needed in this optimization problem�

�default� usrfun�

�usrini NAME The FORTRAN subroutine named NAME initializes

this optimization problem� �default� usrini�

�merge Merge changes between prob�main�f�orig and

the current version of prob�main�f into the newly

generated prob�main�f� Do the same for

prob�submake�

	� Building the Executable

The Unix Make utility is used to generate targets� in this case executables that solve speci�c
optimization problems� from source �les� The rules that Make uses to build these targets
are speci�ed in �les known as make�les� The Make utility is also commonly used to perform
certain bookkeeping tasks� such as removing �les generated by the build process�

This project uses the GNU dialect of Make� This dialect has certain pattern substitution
features that are absent in other versions of Make� Furthermore� GNUMake is freely available
on virtually every platform� Vendor	speci�c versions of Make are not consistent in interface�
language� or quality� Thus� we use GNU make to get predictable performance on a wide
variety of platforms�

We assume that the reader has a basic knowledge of the Make utility� �For a good
introduction to Make� see ��� or ���� This section describes how we have arranged our
make�les� the targets that are available� and variables that may be modi�ed to e�ect the
build process� Most users will simply invoke GNU Make without any arguments to build all
problems in the current directory �provided that snadiopt�pl has already been invoked to
create the necessary components�� For the rest of this section� we assume that GNU Make

has been installed and may be invoked by the command make� Users should substitute the
command that they use to invoke GNU Make wherever appropriate�

On Unix systems� if the SnadiOpt package is not installed in an appropriate system
location� the user may have to set the LD LIBRARY PATH environment variable before the
executables that are built will run� See Section �� for instructions on how to do this�

���� Typical Usage

Before invoking Make� users must call snadiopt�pl to generate the components of each
problem they wish to build� Then� typing make will cause executables to be built for all
models in the current directory� If users wish to build executables for only some of the
problems� they may instead list the names of the executables that they wish to build� For
instance�

� make prob� prob�

would build only the executables prob� and prob��

���� Subordinate Make�les

Traditionally�Make takes all its input froma single �le� typically named makefile� Makefile�
or GNUmakefile� This scheme has proven to be too restrictive in practice� so many versions
of Make� and GNU make in particular� support the include directive� A line of the form

include filename

�� Users Guide for SnadiOpt

tells Make to act is if all the text in ��lename� were included literally in the make�le�

In a problem directory� there will be a single �le named GNUmakefile and one or more
�les with the su�x �submake�� Each of the �les with an appended submake is called a
subordinate make�le� because it does not contain a complete set of rules and dependencies
for building the executable for a problem� The GNUmakefile uses the include directive to
include the text of all the subordinate make�les� Each model in a directory will have its
own subordinate make�le� which will contain the speci�c rules� variables� and dependencies
for building an executable that optimizes that model� The text of GNUmakefile contains
generic rules and dependencies that are needed to build any model�

Subordinate make�les are useful for several reasons�

� Users may wish to have more than one model in a directory� Having complete� sepa	
rately named make�les for each model becomes awkward� requiring the user to specify
the name of the make�le for each build�

� Users may want to build the executable for more than one model or to take some other
action that a�ects more than one model� When subordinate make�les are used� the
rules for all the models are available� so a user may build any combination of targets
by typing their names on the command line� The command �make all� works as
expected and is the default target�

� Sometimes multiple models will share one or more �les� Because Make is given the
complete set of dependencies for the executables of all the models� it can quickly
determine which �les need to be rebuilt� If each model had a separate make�le� the
user would have to make this determination or� alternatively� call Make once for every
executable�

The Make program can scan all the subordinate make�les and build a complete set of
dependencies quickly� The time taken is typically many times shorter than the time needed
to compile a single �le� Some users may be surprised by this speed� See ��� for a discussion
of issues a�ecting the e�ciency of Make�

���� Useful makefile Targets

In addition to the names of the programs� a number of �phony� targets may be speci�ed
for Make� These targets cause some action to be taken� rather than causing the target to
be built� These targets commonly are de�ned to perform useful project	management tasks�
such as deleting ��o� �les�

all builds everything� This is the default� so make all is equivalent to Make�

check checks the consistency of the Fortran �les used to build each program� This requires
that ftnchek has been installed� The ftnchek program and documentation are freely
available and may be obtained from http���www�netlib�org�

clean removes object ���o�� �les and some common �garbage� �les� such as core �les�
This does not remove the executable �le or any �les generated by ADIFOR�

veryclean removes more �les generated by the build process� including the executable
and all output from ADIFOR� This target also removes �les named �prob�out�� the
traditional name for output from the solvers�

�� Building the Executable �

distclean cleans up for distribution� This target is like veryclean but does not delete the
di�erentiated Fortran problem �les� since those �les are considered part of a distribu	
tion� Use this target to distribute the �les to a machine on which the ADIFOR transla	
tor is not available� This target invokes clean� adifor�clean and snadiopt�clean�

maintainer�clean deletes everything that can be rebuilt� This includes the �les created
by a call to snadiopt�pl and the make�les themselves�

adifor�clean removes ADIFOR auxiliary �les� but not the autodi�erentiated Fortran �les�

adifor�veryclean removes ADIFOR auxiliary �les and the di�erentiated Fortran �les �and

�cmp��

snadiopt�clean removes auxiliary �les generated by SnadiOpt for use with all the pro	
grams� These are the ��bak� and ��orig� �les�

snadiopt�veryclean removes all �les generated by SnadiOpt for use with all the programs�
Files generated by SnadiOpt cannot be rebuilt by using commands in the make�le� This
target is intended to reverse the e�ect of calling snadiopt�pl�

These targets also have versions that are limited to the components of a single module�
For instance� make prob�clean will remove auxiliary �les generated in a build of the ex	
ecutable prob� In general� any of these targets may be pre�xed by the name of a speci�c
problem�

��	� Useful makefile Variables

Each subordinate make�le contains the following variables that users might need to modify�

prob USER LIBS de�nes any libraries that need to be linked with the user�s code to produce
an executable� The SnadiOpt libraries are automatically included�

prob SOURCE is a list of all Fortran source �les for the model prob� A reference to the
variables prob AD SOURCE and prob AD G SOURCE should appear in this list�

prob AD SOURCE is the list of �les to be di�erentiated by ADIFOR�

prob AD OTHER FILES is a list of �les that must be passed to ADIFOR in addition to those of
prob AD SOURCE in order to make a complete program� The �les in this list di�er from
the �les in prob AD SOURCE in that neither the original �le nor the result computed by
ADIFOR need be compiled into the problem executable� Phony main programs and
phony library stubs belong on this list�

���� Dense ADIFOR

Snopt is a sparse optimization solver� its internal data is stored in sparse matrix format�
Sparse matrix format is designed to take advantage of the fact that many the elements of
the matrix will be identically zero�

ADIFOR can either generate derivative code that uses sparse matrices internally or code
that uses dense matrices internally� For small problems� typically problems with fewer than
�� variables� the derivative code generated by dense ADIFOR can be more e�cient� This is
typically not an important issue unless the problem is highly nonlinear �otherwise� it is just
a small simple problem and will be solved quickly regardless of which version of ADIFOR is
used��

A sequence of commands of the form

�� References

� make adifor�veryclean

� make AD�FLAVORdense

will cause ADIFOR to generate code that uses dense matrices to compute derivatives� It
is important to make adifor�veryclean whenever switching between dense and sparse
versions of ADIFOR� The make program is unable to tell that a user has switched versions
of ADIFOR� and it thus cannot tell which �les need to be rebuilt�

References

�
� C� Bischof� A� Carle� G� Corliss� A� Griewank� and P� Hovland� ADIFOR� Generating derivative
codes from Fortran programs� Sci� Programming�
 �
����� pp�

����

��� C� Bischof� A� Carle� P� Khademi� and A� Mauer� ADIFOR ���� Automatic di�erentiation of

Fortran �� programs� IEEE Computational Science � Engineering� 	 �
����� pp�
�	��

�	� A� Brooke� D� Kendrick� and A� Meeraus� GAMS� A User�s Guide� Release ���	� Scienti�c Press�

��

��� R� Fourer� D� M� Gay� and B� W� Kernighan� AMPL� A Modeling Language for Mathematical

Programming� Duxbury Press�Brooks�Cole Publishing Company�
��	�

��� P� E� Gill� W� Murray� and M� A� Saunders� SNOPT� An SQP algorithm for large
scale constrained

optimization� Numerical Analysis Report ����� Department of Mathematics� University of California�
San Diego� La Jolla� CA�
����

��� � User�s guide for SNOPT 	��� a Fortran package for large
scale nonlinear programming� Nu�
merical Analysis Report ����� Department of Mathematics� University of California� San Diego� La
Jolla� CA�
����

��� P� E� Gill� W� Murray� and M� H� Wright� Practical Optimization� Academic Press� London�
�
�

�� C� L� Lawson� R� J� Hanson� D� Kincaid� and F� T� Krogh� Basic linear algebra subprograms for

FORTRAN usage� ACM Trans� Math� Soft�� � �
����� pp� 	��	�	�

��� P� Miller� Recursive make considered harmful� http���www�pcug�org�au��millerp�rmch�recu�make�
cons�harm�html�

�
�� A� Oram and S� Talbott� Managing Projects with make� �nd edition� O�Reilly � Associates�
��
�

�

� R� M� Stallman and R� McGrath�GNU Make� A Program for Directing Recompilation� Free Software
Foundation� April �����

Index

AD �automatic di
erentiation�� ���� see dif�
ferentiation

AD FLAVOR� ��
AD OTHER FILES� 	�� 	�
AD SOURCE� 	�
ADIFOR� �� �

�les for model prob� 	�
for dense Jacobians� 	�
generated �les� 	��	�
input�output� �
libraries� �� 	�
library source �les� 	�
linking other �les� 	�
removing ADIFOR di
erentiated �les� 	�
removing ADIFOR auxiliary �les� 	�
removing �o �les� 	�
sparse vs� dense� 	�� ��
users guide� �
Web page� �

adifor�clean� see makefile targets
adifor�veryclean� see makefile targets
all� see make targets� see makefile targets
AMPL� �
Argonne National Laboratory� �

Basic Linear Algebra Subroutines� BLAS� 	�
bounds� �
bounds on F� see Flow and Fupp

bounds on x� see xlow and xupp

C compiler� �
check� see makefile targets
clean� see makefile targets
constrained optimization� see nonlinear con�

strained optimization
constraint functions� see F vector
constraint names� see Fnames

constraints� �
cu�lencu� �user character scratch array�

argument of usrfun� �
argument of usrini� �
description� �� �

cw�lencw� �Snopt character work array�
argument of usrini� �
description� �

data initialization routine� see usrini

dense ADIFOR� 	�
dense matrix format� ��
derivatives of F � see Jacobian matrix �J�
derivatives of F� �
di
erentiation

automatic� 	��� �

numerical� �� �� �
symbolic� �

distclean� see makefile targets
dual variables� see Fmul

F �x�� �� �� �� 	�
F �array of problem function values�� �

argument of usrfun� �
description� �

Fobj�x�� �� �� �� 	�

Flow �lower bounds on F �
argument of usrini� �
default values� �
description� �

Fmul �array of multipliers�
argument of usrini� �
default values� �
description� �

FNames �names of F �
argument of usrini� �
description� �

Fortran compiler� 	� �
code recognized by SnadiOpt� �
Fortran ��� �
Fortran ��� �
intrinsics� 	�

forward mode �for AD�� �
ftnchek� 	�

Web page� 	�
function de�nition routine� see usrfun

Fupp �upper bounds on F �
argument of usrini� �
description� �

GAMS� �
GNU Make� 	�� 	�� 	�
gmake� see GNU Make

GNUmakefile� see makefile

iErr �diagnostic �le descriptor�
argument of usrini� �
default value� �
description� �

In�nite bound� �
initial point x�� calculation of sparse Jaco�

bian� �
iPrint �print �le descriptor�

argument of usrini� �
default value� �
description� �

iSpecs �specs �le descriptor�
argument of usrini� �
default value� �

�� INDEX

description� �
iSumm �summary �le descriptor�

argument of usrini� �
default value� �
description� �

iu�leniu� �user integer scratch array�
argument of usrfun� �
argument of usrini� �
description� �� �

iw�leniw� �Snopt integer work array�
argument of usrini� �
description� �

Jacobian matrix �J�� �� �
constant elements� �
linearity pattern� �
sparse matrix format� �� 	�
sparsity pattern� �

L� �� �� �� 	�
l� �� �� �� 	�
Lagrange multipliers� see Fmul

libraries
ADIFOR� 	�
SnadiOpt� 	�

linearity pattern� �

maintainer�clean� see makefile targets
Make

GNU version of make� 	�
used to build executables� 	�

Makefile� see makefile

makefile

GNUmakefile� 	�
include directive� 	�
recursive invocation� 	�
subordinate� 	�
targets

adifor�clean� 	�� ��
adifor�veryclean� 	�� ��
all� 	�
check� 	�
clean� 	�
distclean� 	�
maintainer�clean� 	�
phony� 	�
prob�clean� 	�
snadiopt�clean� 	�
snadiopt�veryclean� 	�
veryclean� 	�

use of submake� 	�
mode

argument of usrfun� �
description� �

Names �variable names�

argument of usrini� �
description� �

NEOS� �
nonlinear constrained optimization� �� 	�
nonlinear programming� �� 	�

Objadd �objective additive constant�
argument of usrini� �
default value� �
description� �

objective function� see ObjRow

ObjRow �objective row�
argument of usrini� �
bounds ignored� �
component of F � �
default value� �
description� �

optimization Web page� �
options �le� see Snopt specs �le
ordinary di
erential equation solver� �

Perl� �� �
phony� see makefile targets
Prob �model name�

argument of usrini� �
default value� �
description� �

prob �les
prob submake� 	�

prob �les
combining multiple source �les� 	�
Fortran source �les� �� �� 	�
prob �executable�� �� 	�� 	�� 	�
probadf� 	�
probcmp� 	�
probf �user supplied�� �� �� 	�
probout� 	�
prob admainf� 	�
prob dense dispatchf� 	�
prob main� 	�� 	�
prob mainforig� 	�
prob main� 	�
prob mainfbak� 	�
prob sparse dispatchf� 	�
prob submake� 	�� 	�

prob�clean� see makefile targets
prob AD OTHER FILES� 	�
prob AD SOURCE� 	�
prob SOURCE� 	�
prob USER LIBS� 	�

Rice University� �
ru�lenru� �user double scratch array�

argument of usrfun� �
argument of usrini� �
description� �� �

INDEX ��

rw�lenrw� �Snopt double work array�
argument of usrini� �
description� �

scratch arrays
character� cu�lencu�
argument of usrfun� �
argument of usrini� �
description� �

integer� iu�leniu�
argument of usrfun� �
argument of usrini� �
description� �

real� ru�lenru�
argument of usrfun� �
argument of usrini� �
description� �

shadow prices� see Fmul

SnadiOpt package� 	� �� �� �
basic usage� ���
libraries� 	�
make targets� 	�
treatment of sparse Jacobians� �

snadiopt�clean� see makefile targets
snadiopt�veryclean� see makefile targets
snadioptpl� �� �

merge option� 	�
basic usage� �
build process� 	�
generated �les� 	�
help option� 	�
invocation� 	�
loading multiple source �les� 	�
merging changes� 	�� 	�
options� 	�

Snopt� 	
call to Snopt� �
input of the Jacobian� �
nonlinear optimization package� �
sparse optimization� �� 	�
specs �le� �
specs �le� �� see also iSpecs

user work�space� see scratch arrays
users guide� �
Web page� �
work�space� see work arrays

source �les� see prob �les
sparse Jacobian� �
specs �le� see Snopt specs �le
SQP methods� 	
Status

argument of usrfun� �
description� �

subordinate make�le� see makefile

summary �le� see iSumm

U � �� �� �� 	�
u� �� �� �� 	�
UNIX� 	�

diff� and ed� 	�
merge option� 	�� 	�

user�supplied subroutines� see usrfun� usrini
usrfun �user�supplied subroutine�� �� �

called byprob admainf� 	�
example� �
merging changes� 	�
speci�cation� �
using an alternate name� 	�

usrini �user�supplied subroutine�� �� �
changing the source� 	�
example� �
merging changes� 	�
speci�cation� �
using an alternate name� 	�

variable names� see Names

variables� see x

vector of constraints� see F

vector of variables� see x

veryclean� see makefile targets

work arrays� �

x �array of variables�
argument of usrfun� �
argument of usrini� �
default values� �
description� �� �

xlow �lower bounds on x�
argument of usrini� �
default values� �
description� �

xstate �status of bounds on x�
argument of usrini� �
default values� �
description� �

xupp �upper bounds on x�
argument of usrini� �
default values� �
description� �

