

ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue
Argonne, IL 60439

ANL/MCS-TM-262

The Taming of the Grid:
Virtual Application Services

by

Katarzyna Keahey and Khalid Motawi
{keahey, kmotawi}@mcs.anl.gov

Mathematics and Computer Science Division

Technical Memorandum No. 262

May 2003

This work was supported by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing Research, Office
of Science, SciDAC Program, U.S. Department of Energy, under Contract W-31-109-
ENG-38.

Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory,
is operated by The University of Chicago under contract W-31-109-Eng-38.

 DISCLAIMER

This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor any agency thereof, nor The University of Chicago, nor any of their
employees or officers, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of document authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

Available electronically at http://www.osti.gov/bridge/

Available for a processing fee to U.S. Department of
Energy and its contractors, in paper, from:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov

 ii

mailto:reports@adonis.osti.gov

Contents

Abstract ... 1

1 Introduction... 1

2 Requirements and Scenarios ... 3

2.1 Motivating Scenario.. 3
2.2 Problem Definition.. 4

3 Architecture... 4

3.1 VAS Factory ... 6
3.2 Execution Broker .. 6
3.3 Service Proxy (Virtual Service) .. 7
3.4 Resource Manager .. 7

4 Implementation ... 7

4.1 VAS Factory ... 8
4.2 Execution Broker .. 9
4.3 Resource Manager .. 10
4.4 DSRT Scheduler ... 10
4.5 Service Proxy.. 11
4.6 Service Instance Implementation.. 11

5 Empirical Results .. 11

6 Related Work .. 12

7 Conclusions and Future Work .. 13

References... 16

 iii

The Taming of the Grid:
Virtual Application Services

by

Katarzyna Keahey and Khalid Motawi

{keahey, kmotawi}@mcs.anl.gov

Abstract

 In this report we develop a view of the Grid based on the application

service provider (ASP) model. This view enables the user to see the Grid
as a collection of application services that can be published, discovered,
and accessed in a relatively straightforward manner, hiding much of the
complexity involved in using computational Grids and thus making it
simpler and more accessible to a wider range of users. However, in order
to satisfy the requirements of real-time scientific application clients, we
combine the ASP model with representation of quality of service about the
execution of services and the results they produce. Specifically, we focus
on real-time, deadline-bound execution as the quality of service derived by
a client. We describe an architecture implementing these ideas and the
role of client and server in the context of the functionality we develop. We
also describe preliminary experiments using an equilibrium fitting
application for magnetic fusion in our architecture.

1 Introduction

In the prevalent model of software sharing, service providers typically port their software
to a standard set of platforms; community users then install and use this software on their
machines. This process is often arduous from the viewpoint of both the user and the
provider. The user must go through the (usually complex) process of installing the code
and its dependencies, then must maintain that code, and also must update the installation
whenever a new version comes out. This process is made more difficult by the fact that
scientific codes are often updated frequently to reflect improvements in modeling
techniques. From the provider’s point of view, the necessity of supporting the code on
even a limited set of platforms can require significant cost and effort. In addition,
maintaining and debugging a community code on an unfamiliar platform can mean that a
significant amount of effort is spent simply in reproducing, let alone fixing, a problem.

 1

mailto:kmotawi}@mcs.anl.gov

The emergence of computational Grids [1] motivated some communities, such as the
National Fusion Collaboratory (NFC) [2], to adopt the Application Service Provider
(ASP) model [3] so that code is shared by members of a virtual organization (VO)
through remotely accessible “network services”. In this model, code providers maintain
the code on a familiar and easily accessible set of platforms and make that code available
to remote users belonging to the VO. While a service interface allows a code to be
published, discovered, and accessed much like a Web page, the demands placed on
service execution can be considerably larger. For example, some of the NFC code
executions must satisfy strident real-time constraints.

Thus, it is important that application servers be provided with the capability to negotiate
and provide quality-of-service (QoS) guarantees required by a user. Frequently, these
QoS guarantees will depend on the underlying resource management framework; hence,
the application server will have to negotiate with other resources, such as hardware or
software license providers. To support this capability we require a general-purpose
infrastructure capable of automatically and dynamically establishing and managing
relationships between multiple resources. The user will no longer map specific binary
installations, application configurations, and licenses to a hardware platform in order to
satisfy his or her QoS objectives; this generic functionality should be provided by an
infrastructure. Much like a virtual storage system might be implemented by combining
the capability of several actual storage systems, these virtual application services (VAS)
will draw on a variety of application configurations, resources and management
capabilities. This view of computational Grids hides much of their complexity, allowing
it to appeal to a broader range of users.

The VAS model requires the development of new capabilities. One of these is the ability
to specify application-level QoS interfaces. Since the user is no longer dealing directly
with hardware, but rather with application-specific qualities, specifying expectation about
service execution in terms of the hardware constraints (e.g., “use 8 processors”) is no
longer relevant. Furthermore, since the hardware resources are no longer well known to
the user, their effect on the application is best estimated and described by the service
provider. The user should be able to specify constraints on service execution in
application-specific qualities (such as time bounds, application-specific accuracy
measures, and cost) that can be used to map application constraints to a given machine.
Bridging the gap between resource specific descriptions developed by the service
provider, application models, and user requirements requires the development of models
and protocols that allow the service provider to automatically map user demands into the
available resources and make estimates and reservations satisfying these demands.

In this paper we describe the concept of virtual application services and architecture for
QoS-based application service execution that realizes the concept of network services.
We present an implementation of this architecture based on the Open Grid Service
Infrastructure (OGSI) model [4, 5] as implemented by the Globus Toolkit®. In addition,
we discuss the results obtained by experimenting with one of our target applications with
execution time as our QoS metric. Although our approach was motivated by a scenario
using code resident on a set of machines, we believe that the resulting architecture can

 2

also be used in a scenario where a VO can broker highly portable codes to a set of
resources that can be provisioned to run those codes.

This paper is organized as follows. In Section 2 we introduce the scenario that motivated
our work, and we derive our problem definition. In Section 3 we describe the architecture
underlying our solution, and in Section 4 we discuss the architecture implementation. In
Section 5 we present results of our work as applied to our motivating scenario. In Section
6 we describe related work, and in Section 7 we conclude with a brief summary and an
outline of future work.

2 Requirements and Scenarios

We begin with an example scenario motivating our work. Based on this scenario, we then
define the problem we address in this paper.

2.1 Motivating Scenario

Our motivating scenario comes from the National Fusion Collaboratory (NFC) project
[6], which defines a virtual organization devoted to fusion research and addresses the
needs of codes running during fusion experiments. Magnetic fusion experiments operate
in a pulsed mode producing plasmas of up to 10 seconds duration every 15 to 20 minutes,
with multiple pulses per experiment. Decisions for changes to the next plasma pulse are
made by analyzing measurements from the previous plasma pulse (hundreds of
megabytes of data) within roughly 15 minutes between pulses. This mode of operation
could be made more efficient by the ability to do more analysis and simulation in a short
time using codes running on remote resources if only their execution time could be
guaranteed.

The specific applications targeted by our work are EFIT [7], an analysis code computing
magnetic equilibrium reconstruction, and TRANSP [8], a code computing particle
transport. A typical scenario for a run is as follows. A scientist at one of the NFC sites (a
client site) needs to remotely run code installed and maintained at another NFC site (a
service provider site) during an experiment within time bound T. Before the experiment,
an automated script is prepared that will download experimental data for the application
input once that data becomes available. Since some applications, such as TRANSP, can
run for a long time, a suitable “short-running” configuration, capable of executing within
T , is prepared by the service provider. To ensure that the code executes with the required
QoS (in this case: within time T), the scientist at the client site makes a reservation with
the application server and as a result is guaranteed code execution within T any time it is
requested during the experimental window (roughly a day). Since only a few such
executions may be requested during that day, and the service provider resources have to
be shared with other clients, it is essential that resource allocations not be overgenerous
and that other codes can share the resource with the time-critical application, getting
preempted whenever the situation requires.

 3

In other words, the reservation made with service provider must not preclude other
computation on a resource. Hence, the time-critical runs must be able to preempt all other
computations and claim as much CPU power as is needed. After the high-priority
experimental run completes, other processes may reclaim their CPU share.

2.2 Problem Definition

The following assumptions describe our environment from the service provider’s point of
view. For the purposes of this work we assume that we have a deployment domain for our
application service: a set of preconfigured application installations on a set of dedicated
resources. We can make resource reservations and enforce priority-based preemption on
those resources. We further assume that we have multiple application configurations to
choose from, each described by metadata referring not only to installation information
about a particular application but also to experimental data in the form of, for example,
the application execution times and application-specific quality measures on the results
they produce. This data is defined by the service provider as part of the process of service
installation. In this particular work we also assume that we have complete control and
consequently full knowledge of this domain. These assumptions can later be relaxed to
incorporate Grid monitoring, adaptive scheduling and resource management techniques,
and movement of portable code. We introduce them here to provide a tractable solution
for the problem described above.

From the service client’s point of view we must address two challenges:

• Provide a persistent, remotely accessible application server that can create
application services on demand, scaling in the number of clients and thus freeing
the client from the necessity of installing and maintaining an unfamiliar code.

• Allow the clients to specify execution constraints in terms of application-specific
qualities rather than resource-specific qualities, and later enforce those
constraints, thus ensuring QoS in a resource environment that is no longer
familiar to, or controlled by, the client.

Providing reliable QoS entails monitoring the execution of the selected service instance,
potentially restarting it, and so forth. These actions should be transparent to the client;
that is, we require an intermediary to represent the service instance to the client. We use
the term virtual application service to describe the service that fulfills these creation and
execution constraints.

3 Architecture

In this section we describe the architecture designed to implement the scenario described
in the preceding section, and we identify the role of each component within that
architecture (the implementation details of our prototype are described in the following
section.)

 4

The architecture is depicted in Figure 1. The client interacts with this architecture in the
following steps:

1. Client Negotiation. The client first negotiates with the VAS factory for the future
creation of a service with certain QoS guarantees on its functionality. After
successful negotiation the factory issues a service level agreement (SLA) that
describes the agreed upon QoS constraints to be available in a certain timeframe
(possibly immediate timeframe). Although in general an SLA can be very
complex and involve complex information related to change, payment, and
security issues [9], in our current prototype it is a simple statement guaranteeing
certain qualities to be fulfilled.

2. Service Instantiation. Service instantiation takes place when the client submits

the SLA to the VAS factory during the agreed upon availability window. Service
instantiation involves creating a service proxy (or a virtual service) that represents
the service to the client. A proxy handle is then returned to the client.

3. Service Execution. The client requests the execution of desired actions through

the proxy. Using the proxy handle, the client can also obtain information related
to the execution of these actions as well as manage and terminate the service.

Figure 1: VAS architecture: The key component is the execution broker, which interacts with
resource managers (RM) associated with each of the resources relevant to service execution. The
rectangles to the right represent the resources with possibly special software installed on them, and
the oblong black rectangles a set of service installations available on a given resource. A black
rectangle represents the execution of a specific application service; the client interacts with that
service through the service proxy.

We next describe in detail each of the architecture components. The key functionality is
provided by the execution broker (EB) that implements the main functions of the VAS
factory (that of reserving and claiming resources). In order to do that, the execution
broker interacts with resource managers (RMs) specific to every resource that might be
necessary for service execution.

 5

3.1 VAS Factory

The VAS factory is a persistent service that extends the concept of OGSA factory [4] by
a negotiation interface. It thus fulfills two roles: that of a negotiation agent and that of an
instantiation interface. In its role as a negotiation agent, it creates service level
agreements for execution of actions associated with specific services (similar to task
service level agreements described in [10]). Because its function is restricted to service
creation and because negotiation and instantiation are assumed to be relatively short
operations in our model, it is assumed that the VAS factory can handle many clients with
little delay.

3.2 Execution Broker

The execution broker implements much of the functionality of the VAS factory. Its main
tasks are building an execution plan capable of running a service with the quality of
service requested by the client, and then implementing that architecture when the service
is instantiated.

3.2.1 Designing an Execution Plan

In designing an execution plan, the execution broker searches for the best ways to satisfy
the QoS requested by the user, given available resources and application installations.

The capabilities of a specific application installation are evaluated through application
metadata describing its configuration. These metadata include both system-related
information, such as for example installation and environment details of a specific
executable, and application-related modeling information that allows the execution
broker to estimate how fast a given application can be executed on available resources.
The latter may be provided in terms of scalability or other analytical data or may be based
on empirical data of previous executions.

After hardware needs have been determined based on the metadata, the availability of
hardware resources is determined through interaction with resource managers. During
this process the execution broker communicates with resource managers running on each
machine belonging to the deployment domain of the application, evaluates their
availability, and makes reservations. Although in this work we focus on CPU reservation,
in general the execution plan may comprise multiple resource reservations (CPU,
network, disk). It may also involve pre-execution operations (data prefetching), starting
up and combining multiple services, staging data, and the like. For such complex
execution plans, it is important to define QoS milestones to aid in monitoring execution.

Hardware and software availability must be further reconciled with factors such as use
policies specified by a virtual organization and resource owner. A user may, for example,
have suitable execution privileges only for a certain service configuration or only on a

 6

certain set of platforms or may face QoS constraints (such as priority execution). We
partially address this problem elsewhere [11] but have not yet integrated the solution in
this work. Effectively, in the planning stage the execution broker binds the requested
actions to specific resource managers for future execution.

The result of this phase is an SLA, forwarded to the client, and an execution plan
maintained by the execution broker that can be retrieved and executed based on the SLA.

3.2.2 Service Instantiation

In the service instantiation phase, the execution broker retrieves an execution plan based
on an SLA presented by the client. It then implements the execution plan by claiming all
the reservations and configuring and launching its components. In this phase, the
execution broker works with resource managers to ensure that the launched application
processes are given resource allocations estimated when the execution plans were
formed, that they are load-balanced over the deployment domain, or that they are
replicated in order to improve reliability of execution. After instantiating the service, the
execution broker creates a service proxy and returns it to the client.

3.3 Service Proxy (Virtual Service)

The proxy abstracts the notion of the actual service execution. For example, in order to
improve the reliability of execution, the actual service execution may be replicated over
the Grid resources. Also, the proxy may monitor QoS milestones of an execution, send
updates to the client, and adaptively readjust it as need arises in order to meet the QoS.

3.4 Resource Manager

During the negotiation process the execution broker communicates with resource
managers associated with each resource belonging to the deployment domain of the
application. In the current design the main purpose of resource managers is to keep track
of reservations for a given machine. The RMs also provide an interface to resource-
specific mechanisms implementing, for example, priority assignments and performing
some monitoring functions.

4 Implementation

We implemented a prototype of the architecture described in the preceding section, using
the technology preview implementation of OGSI [5] provided by the Globus Project™.
We extended the OGSA abstraction of service factory by mechanisms allowing the user
to negotiate service creation with specific QoS constraints. We also relied on OGSA
discovery mechanisms for publishing and discovering services. The enforcement of CPU
reservations was implemented by using the Dynamic Soft Real-Time (DSRT) scheduler
[12] described in Section 4.4. The main components of the architecture were
implemented in Java and made available as Grid services; they are described in the rest of

 7

this section. In our implementation we assumed that we have one factory and one
execution broker per application (or service type).

4.1 VAS Factory

The VAS factory is a persistent service and a front-end component of the execution
broker. In the current implementation the client negotiates with the VAS factory based on
two constraints: execution-time bounds (with limited accuracy) and accuracy (with
unlimited execution time). These constraints are closely tied to specific installation
configurations and affect execution plan decisions made by the execution broker, as well
as application-related factors such as the number of iterations made by the network
service.

The negotiation is conducted in two phases: an iterative negotiation phase, where the
desired QoS is agreed on, and a reservation phase, which yields a service level
agreement. In the negotiation message a user requests a reservation for execution such
that, if it is submitted within a certain availability window, it will fulfill certain QoS
requirements. The QoS measures we currently use are execution time and (as a crude
measure of accuracy) the number of timesteps by which the computation advanced.
These lead to a QoS request of the following form:

 <complexType name=QOSType">
 <sequence>
 <element name="schedule"/>
 <complexType name="eb-types:ScheduleType">
 <sequence>
 <element name="startTime" type="dateTime"/>
 <element name="windowSize" type="int"/>
 </sequence>
 </complexType>
 </element>
 <element name="measures"/>
 <complexType name="eb-types:MeasureType"/>
 <sequence>
 <element name="timeBound" type="int"/>
 <element name="timeSteps" type="int"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>

The factory replies with a list of proposed SLAs and a flag indicating success of the
operation. If the operation succeeds, the SLA list contains only one SLA element
fulfilling the requested QoS; if not, the list contains other proposed SLAs (counteroffers).
The user can then choose an SLA and make a reservation, or can continue the negotiation
process. The SLA element is as shown below; in addition to the QoS it underwrites, it
contains a handle and an expiration time on that handle. The expiration time on the offers
is set so that the time bound measure fits in the execution time window.

 8

 <complexType name="SLAType">
 <sequence>
 <element name="handle" type="string"/>
 <element name="expirationTime" type="dateTime"/>
 <element name="qosReqs" type="eb-types:QosType"/>
 </sequence>
 </complexType>

The original expiration time of counteroffers is short; the reservation confirmation
extends it. After the client reserves the selected SLA, the VAS factory confirms it and
releases any other reservations. In the current implementation the SLA agreements are
not signed; we assume a trusted environment.

This negotiation protocol is similar to SNAP [10], differing in that in case of failure to
obtain the exact requested SLA, the negotiation process returns multiple SLAs instead of
just one. Although this requires an additional confirmation message, it also increases the
probability that an acceptable SLA is returned and therefore stands to shorten the
negotiation process.

4.2 Execution Broker

At startup, the execution broker configures itself to so that it can create a particular
application by reading metadata service descriptions associated with that application
instance. The application metadata contains both configuration metadata (information,
describing specific application configuration on a given host) and QoS metadata
(information relevant to estimating QoS properties of each installation). The
configuration metadata contains information about the required environment setup, the
location and activation information about the executable on a given machine, additional
input arguments, pre- and postprocessing scripts, and similar configuration details. The
QoS metadata currently contains the number of timesteps for a given configuration as
well as execution time, t100%, measured while running the application at full application
allocation of CPU on a given machine (supplied by application provider at configuration
time).

The QoS metadata is used to estimate the execution time for the application configuration
given the available resources. Given the execution time t100% and the requested execution
timebound (trequested < t100%), we use a simple function (allocation%= (t100% * 100%) /
trequested) to estimate the percentage of CPU that needs to be allocated in order to satisfy
the request. The execution broker then places a reservation for the CPU allocation at a
time indicated in the client’s request with the resource manager.

If the reservation succeeds, the execution broker formulates an execution plan that
involves starting up the application as described in the configuration metadata and then
claiming and assigning the CPU reservation through the resource manager. Having
obtained the resource, the execution broker now issues an SLA guaranteeing application
execution within the requested time constraint. When the SLA is claimed, the execution

 9

broker puts the execution plan into action, creates a service proxy, and returns the proxy
handle to the client.

4.3 Resource Manager

The resource manager is based on a similar construct introduced in GARA [13]. Because
the execution broker may make tentative reservations during the negotiation process, the
resource manager supports a two-stage reserve/confirm reservation process. Reservations
are associated with an expiration time; if the reservation is not confirmed before the time
expires, the reservation is deleted.

The main tool used by the resource manager is a slot table. It provides the general
capability to reserve a number of units of a resource for a particular range of time. The
RM uses the slot table to store the percentage of CPU that has been allocated to each
reservation. The slot table also supports the ability to search for available units based on
two criteria: best allocation within a specified time range, and earliest time range for a
specified number of units. In response to a reservation request, the RM creates a slot. A
slot identifier is then returned to the execution broker.

Reservations are claimed by providing the RM with a slot identifier and the process
identifier of a running process. The RM uses slot start and end times to create timed
events that instruct DSRT to start and stop managing the CPU allocation of a process.
Processes that do not complete during the span of their reservation will continue to run,
but without special allocations.

4.4 DSRT Scheduler

The Dynamic Soft Real-Time scheduler provides the basic capability to reserve a
percentage of the CPU for a given process. It is also preemptive; that is, a process that
does not hold a CPU allocation from DSRT can be deprived of its CPU share by a
process that does hold such a reservation. Typically, at least 10% of the CPU is left
unreserved to ensure that important nonreserved systems processes are not starved out. In
our implementation we increased this number to 30% to account for the CPU time
consumed by OGSA implementation. Thus, in our implementation we have a system
allocation of 30% and an application allocation of 70%.

To provide a CPU allocation, DSRT sets the priority of a process to the highest level
priority for a percentage of time in a period corresponding to the percentage of CPU
reserved. For example, a process with a 50% reservation will have the highest priority for
50 out of 100 milliseconds.

 10

4.5 Service Proxy

The service proxy presents the service interface to the client, hiding the fact that the
actual service may be replicated in order to provide better reliability of execution. It
implements the service interface by forwarding the requests on to an actual service
implementation. The service proxy is created by the execution broker when a client
presents a valid SLA. In addition to duplicating the interface of the service itself, the
proxy supports additional operations that are used by the execution broker. These
operations include setting a reservation handle and binding the proxy to the actual
service.

4.6 Service Instance Implementation

Since our target scientific applications are implemented as C programs and since C
binding is not yet available in OGSA, our service instances were represented as a
combination of the OGSA job manager (JM) service, a C program wrapper, and the
application. We use the C program wrapper to access application-specific information
such as the process id. The application is activated by using the JM to launch a C
wrapper, which claims the reservation slot by sending its process identifier and a
reservation handle to the resource manager. The wrapper then replaces itself with the
application executable. Since each OGSA JM instance can manage exactly one process at
a time, an instance of the combined service is created for each application request.

The availability of a C hosting environment for OGSA would enable us to simplify this
process by associating with a given application (now implemented as an OGSA service)
service data elements representing application-specific information such as the process
id. This information would be then accessible by invoking the FindServiceData operation
standard for all Grid services.

5 Empirical Results

We ran preliminary experiments in order to evaluate how well our implementation
estimates the execution time, makes corresponding resource reservations, and then, based
on those reservations, delivers results within the estimated time. In our tests, we used the
EFIT application described in Section 2 as representative of the class of applications that
normally run in these conditions. To simplify the problem, we assumed the same set of
fitting parameters for each run. Since one of the premises of our work is that any CPU
allocation not claimed as a reservation may be used by non-time-critical executions, we
verified our results on a loaded system, that is, with other time-shared (not scheduled
through DSRT) and real-time (scheduled through DSRT for the remainder of application
allocation) processes present during a time-critical execution.

 11

For each test, we repeated the following sequence. A client requests an EFIT execution,
fixed in the number of timesteps (the same in all tests), within a certain time bound and
save the resulting SLA. A load of real-time and time-shared jobs are started, and
subsequently the client claims the reservation. As a result, EFIT is started by the
execution broker, and its execution time is recorded. After the EFIT finishes, the
background job load is shut down. To test the behavior of the system for different CPU
reservations, we varied the timeframe to correspond to a percentage of CPU allocation for
a fixed number of timesteps.

Figure 2 compares predicted (“promised”) execution time (based on formula in Section
4.2) and actual (measured) execution times. The results show relatively high variability
for low CPU allocations (10% and 20%) and little variability for larger CPU allocations;
in the worst case the standard deviation across CPU allocations was 10%. The variability
was much greater for lower CPU percentage ranges because the increased swapping
between active and idle status for the application over longer execution timeframes
caused greater numbers of interruptions and disk or cache effects.

To assess the influence of different kinds of job loads on a time-critical run, we compared
the results of a time-critical EFIT execution under an unloaded system, a system loaded
with time-shared jobs, and a system loaded with real-time. Figure 3 shows median values
of obtained results. The behavior of EFIT is similar under all three conditions, showing
that background jobs do not seriously impair the effectiveness of our system. Also, the
patterns of result variability in the loaded experiments were the same as in the unloaded
experiments.

Overall, we conclude that this system has potential to provide QoS for deadline-bound
execution. The 10% variability in execution time is acceptable because EFIT operates
under soft real-time conditions that can tolerate this amount of variability. Although our
predictions can be made more conservative based on this information, we prefer the
approach where we attach the variability as a “confidence measure” to the SLA, and
leave this decision to the user. Another observation that allowed us to improve our initial
handling of predictions and reservations is that because of the relatively high variability,
we decided not to based time-critical executions on CPU allocations of less than 30%.

We recognize that our method depends on the availability of historical data for pre-
configured executions (as those become available during the preparations for an
experiment). Prediction in different situations has been addressed by others [14];
however, the same principles apply: a measure of confidence, reflected in the SLA, could
then be attached to those predictions.

6 Related Work

Different variations of the ASP model have been explored and found useful in the Grid
context before [15-18]. The work of [18] is especially remarkable in that it dynamically
addresses the problem of service performance scalability, which is relevant from the

 12

perspective of establishing QoS-based contracts between the service provider and the
client.

At the same time, the idea took hold that QoS representations can be made not only about
underlying resource-level elements, but also about object and components [19, 20]. We
combine these ideas with the resource management technology available for the Grids,
specifically the work on resource reservation developed in GARA [13], and show how it
can be leveraged in providing real-time QoS for applications.

Other related work, such as combining QoS-aware aggregation models [21] with
workflow models [15] can be used to extend this work to include end-to-end QoS for
multicomponent applications..

7 Conclusions and Future Work

We have presented an architecture enabling a client to enter into a QoS contract with an
application service provider. The application service provider can then perform
provisioning actions that enable it to execute on a chosen resource within the QoS
requested by the client. This architecture allows us to bridge the gap between resource-
specific descriptions developed by the service provider and user requirements, allowing
the service provider to automatically map user demands into the available resources and
make estimates and reservations realizing their goals. We also showed how this approach
can also be used to satisfy real-time quality-of-service requirements in real-life scenarios.
In order to satisfy them fully, more complex relationships between resources may need to
be scheduled; however, in this paper we provide a proof of concept of the feasibility of
this approach.

In order to provide end-to-end QoS, the execution broker execution plans will be more
complex and involve more complex multiresource provisioning. Furthermore, realistic
multi-user scenarios will require combining the provisioning with use policies
enforcement to ensure that codes and resources are used as intended. We introduced the
service proxy component to create potential for application-level reliability and adaptivity
but have not realized it in the current implementation. Improved strategies (such as
replication), as well as adaptive techniques, especially combined with execution
milestone monitoring, will allow us to demonstrate the potential of this component.
Moreover, combining work on application prediction and SLAs will make this work
applicable to a wider range of applications.

 13

EFIT Execution Duration

0

200

400

600

800

1000

1200

1400

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Reserved CPU Percentage

Se
co

nd
s

Median

Predicted

Figure 2: Execution time per CPU allocation. The graph shows relatively high variability for low
CPU allocations (10% and 20%) and low variability for higher CPU allocations. The data is based on
15 measurements per CPU allocation.

 14

EFIT Execution Duration Comparison

0

200

400

600

800

1000

1200

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

CPU Percentage Reserved

Se
co

nd
s

Unloaded Time-Share Loaded Real-Time Loaded

Figure 3: Results under varying load conditions

 15

References

1. Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. International Journal of High Performance
Computing Applications, 2001. 15(3): p. 200-222.

2. Keahey, K., T. Fredian, Q. Peng, D.P. Schissel, M. Thompson, I. Foster, M.
Greenwald, and D. McCune, Computational Grids in Action: the National Fusion
Collaboratory. Future Generation Computing Systems (to appear), October 2002.
18(8): p. 1005-1015.

3. Tao, L., Shifting Paradigms with the Application Service Provider Model. IEEE
Computer. 34(10): p. 32-39.

4. Tuecke, S., K. Czajkowski, I. Foster, J. Frey, S. Graham, and C. Kesselman, Grid
Services Specification (Draft 3, 7/17/2002). 2002,

.
http://www.gridforum.org/ogsi-

wg/drafts/GS_Spec_draft03_2002-07-17.pdf
5. I. Foster, C. Kesselman, J. Nick, and S. Tuecke, The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration. available at
, 2002. www.globus.org/ogsa

6. The National Fusion Collaboratory. . http://www.fusiongrid.org
7. Lao, L.L., H. St. John, R.D. Stambaugh, A.G. Kellman, and W. Pfeiffer,

Reconstruction of Current Profile Parameters and Plasma Shapes in Tokamaks.
Nucl. Fusion, 1985. 25: p. 1611.

8. J. Ongena, M.E., D. McCune, Numerical Transport Codes. Proceedings of the
Third Carolus Magnus Summer School on Plasma Physics, March, 1998. 33: p.
181-191.

9. Ludwig, H., A. Keller, A. Dan, and R.P. King, A Service Level Agreement
Language for Dynamic Electronic Services. IBM Research Report RC22316
(W0201-112), January 24, 2002.

10. K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke, SNAP: A
Protocol for Negotiating Service Level Agreements and Coordinating Resource
Management in Distributed Systems. 8th Workshop on Job Scheduling Strategies
for Parallel Processing, July 2002.

11. Keahey, K. and V. Welch, Fine-Grain Authorization for Resource Management in
the Grid Environment. to appear in the Proceedings of Grid2002 Workshop,
November 2002.

12. Nahrstedt, K., H. Chu, and S. Narayan. QoS-aware Resource Management for
Distributed Multimedia Applications. in Journal on High-Speed Networking, IOS
Press. December 1998.

13. Foster, I., C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A
Distributed Resource Management Architecture that Supports Advance
Reservations and Co-Allocation. In Proc. International Workshop on Quality of
Service. 1999.

 16

14. Valerie Taylor, X.W., Xin Li, Jonathan Geisler, Zhiling Lan, Mark Hereld, Ivan
R. Judson and Rick Stevens, Prophesy: Automating the Modeling Process.
Annual International Workshop on Active Middleware Services, August 2001.

15. Gannon, D., R. Ananthakrishnan, S. Krishnan, M. Govindaraju, L. Ramakrishnan,
and A. Slominski, Grid Web Services and Application Factories. (notes available
at , 2002. http://www.extreme.indiana.edu/xgws/afw/)

16. Arnold, D.C. and J. Dongarra, The NetSolve Environment: Progressing Towards
the Seamless Grid. Proceedings of the International Conference on Parallel
Processing (ICPP-2000), 2000.

17. Satoshi Matsuoka, H.N., Mitsuhisa Sato, Satoshi Sekiguchi, Design issues of
Network Enabled Server Systems for the Grid. GRID 2000, Springer-Verlag,: p.
4-17.

18. Weissman, J.B. and B.-D. Lee, The Virutal Service Grid: An Architecture for
Delivering High-End Network Services. In Concurrency: Practice and Experience,
2002.

19. Loyall, J.P., R.E. Schantz, J.A. Zinky, and D.E. Bakken. Specifying and
Measuring Quality of Service in Distributed Object Systems. in ISORC. 1998.
Kyoto, Japan.

20. Raje, R.R., B.R. Bryant, A.M. Olson, M. Auguston, and C. Burr, A Quality-of-
Service-Based Framework for Creating Distributed Heterogeneous Software
Components. Concurrency and Computation: Practice and Experience, 2002. 14:
p. 1009-1034.

21. Gu, X. and K. Nahrstedt. A Scalable QoS-Aware Service Aggregation Model for
Peer-to-Peer Computing Grids. in 11th IEEE International Symposium on High
Performance Distributed Computing. July 2002.

 17

	DISCLAIMER
	Introduction
	Requirements and Scenarios
	Motivating Scenario
	Problem Definition

	Architecture
	VAS Factory
	Execution Broker
	Designing an Execution Plan
	Service Instantiation

	Service Proxy (Virtual Service)
	Resource Manager

	Implementation
	VAS Factory
	Execution Broker
	Resource Manager
	DSRT Scheduler
	Service Proxy
	Service Instance Implementation

	Empirical Results
	Related Work
	Conclusions and Future Work
	References

