
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439||||||||||||||ANL/MCS-TM-137, Revision 1||||||||||||||A Portable Run-Time System for PCNbyIan Foster and Steve TueckeMathematics and Computer Science DivisionTechnical Memorandum No. 137, Revision 1December 1991This work was supported by the Applied Mathematical Sciences subprogram of the O�ce of EnergyResearch, U.S. Department of Energy, under Contract W-31-109-Eng-38.1

ContentsAbstract 11 Introduction 11.1 Core PCN : 11.2 The Program Composition Machine : 21.3 Instruction Set : 31.4 Foreign Interface : 41.5 Performance Tools : 42 Data Structures 42.1 Control Structures : 42.2 PCN Data Types : 62.3 Registers : 103 Abstract Instruction Set 113.1 Control Instructions : 133.2 Build Instructions : 163.3 Put Instructions : 173.4 Test Instructions : 183.5 Term Manipulation Instructions : 203.6 Foreign Instructions : 234 The Communication Component 244.1 Terms : 244.2 Message Processing : 255 Garbage Collection 275.1 Global Collection : 285.2 Local Collection : 315.3 Garbage Collection Failure : 335.4 De�ciencies : 336 System Bootstrap 347 Asynchronous Keyboard Input 34References 35A Abstract Instruction Set and Encoding 36B Coding Examples 37B.1 Partition: Array Version : 37B.2 Partition: De�nitional Version I : 42B.3 Partition: De�nitional Version II : 43iii

A Portable Run-Time System for PCNbyIan Foster, Steve Tuecke, and Stephen TaylorAbstractThis report describes a run-time system to support Program Composition Nota-tion (PCN), a high-level concurrent programming notation. The run-time system isdescribed in terms of an abstract machine. We specify an abstract architecture thatrepresents the state of a PCN computation and executes abstract machine instruc-tions that encode tests on or modi�cations to the computation state. Programs tobe executed on the abstract machine are encoded as sequences of abstract machineinstructions. The abstract machine may be implemented by an emulator written ina low-level language. Alternatively, sequences of abstract machine instructions maybe further compiled to machine code. The run-time system is designed to run onuniprocessors, multiprocessors, and multicomputers.1 IntroductionThis report describes a run-time system to support ProgramComposition Notation (PCN),a high-level concurrent programming notation [1]. The run-time system is described interms of an abstract machine. An abstract machine for a programming notation imple-ments its computational model. It provides an abstract architecture that represents thestate of a computation in the chosen model and executes abstract machine instructionsthat encode tests on or modi�cations to the computation state. Programs to be executedon the abstract machine are encoded as sequences of abstract machine instructions. Theabstract machine may be implemented by an emulator written in a low-level language.Alternatively, sequences of abstract machine instructions may be further compiled to ma-chine code.In designing an abstract machine for PCN, we have emphasized architectural simplic-ity, sometimes apparently at the expense of e�ciency. In particular, we provide no specialsupport for sequential composition or nested choice blocks. Hence, the machine can ex-ecute only directly programs expressed in a PCN subset referred to as core PCN. Weexpect this \RISC"-like approach to permit novel optimizations in an implementation andhence provide good overall performance. However, experience may motivate extensions tosupport particular language features.1.1 Core PCNDe�nitions. A kernel is a process that invokes a primitive operation. A call is a processthat invokes another program. A kernel is nonsuspending if it is a de�nition or if it is anassignment or other kernel for which the input arguments are known to be available atthe time it is called. A kernel is suspending if it is not known to be nonsuspending.1

Core PCN is the language subset in which programs have the following restricted form:1. A program has the form P f? C1, ..., Cng, n > 0.2. Each choice Ci has the form G ! B, where G is either a sequence of guard tests orthe empty test true.3. Each body B has the form f; K1, ..., Kk , f jj P1, ..., Plgg, k, l � 0, where the Kiare nonsuspending kernels and the Pj are calls. If k = 0, the sequential block maybe omitted; if l < 2, the parallel block may be omitted.1.2 The Program Composition MachineThe Program Composition Machine (PCM) consists of three components: a reductioncomponent, a communication component, and a garbage collection component. Theseexecute at every processor.Reduction Component. This provides the facilities required to execute core PCN programs.That is, it maintains a pool of processes and repeatedly selects and attempts to executeprocesses in this pool. Execution of a process involves trying each of the choices in theassociated program. If the guard associated with any choice evaluates to true, any kernelsin the body of that choice are executed, and processes are created to execute any calls.Otherwise, the process is replaced in the pool.Two important optimizations improve the e�ciency of the basic model. These aresupport for tail recursion and a scheduling structure. Tail recursion permits execution tocontinue with a body process when a choice with one or more calls in its body is used toreduce a process. This avoids the overhead of adding the process to the process pool andsubsequently selecting it. To ensure that reduction is just, tail recursion is applied only a�nite number of times before the current process is added to the process pool and a newprocess is selected for reduction. The number of tail recursive calls permitted before sucha process switch occurs is termed the timeslice.The scheduling structure avoids the overhead of repeatedly attempting to reduce pro-cesses whose data is not available. It consists of a single active queue containing allreducible processes plus a suspension structure that links together processes requiringparticular data.Recall that guard execution in PCN reads terms, while de�nition statements mayprovide values for de�nitions. Both read and de�nition operations may generate com-munication if they encounter references to remote terms (i.e., remote references). Thise�ectively provides a global address space.Communication Component. This operates at the end of a timeslice and receives messagesthat arrive at a processor. It can modify local data structures and/or send outgoingmessages. Five types of message can be received: Read, De�ne, Value, Cancel, and Collect.2

The Read message signi�es that a remote processor requests a copy of local data, to beprovided when it becomes available. The Valuemessage carries a data structure to be usedlocally and is received in response to a Read message. The De�ne message signi�es that aremote processor has executed a de�nition operation that refers to a local de�nition. TheCancelmessage indicates that a remote processor no longer requires certain interprocessorreferences. The Collect message signi�es that a remote processor requires this processorto perform a local garbage collection.Garbage Collection Component. Programming systems that support automatic storage al-location and dynamic data structures generally require a garbage collector to reclaiminaccessible storage. PCN is no exception. Global analysis techniques and program an-notations can support optimizations that allow certain programs to execute in constantspace. However, a garbage collector is required in the general case.The garbage collector employed in the PCM has a global and a local component. Theglobal component supports asynchronous garbage collection: that is, it permits individualprocessors to reclaim inaccessible storage independently [3]. The local component employsa stop and copy algorithm [2].1.3 Instruction SetThe PCM instruction set is summarized in Appendix A. To brie
y illustrate the use ofthese instructions, consider the following program:movej(lb,j,s,a,R)int lb,j,s,a[]f ? j � lb, a[j] > s ! f ; j := j { 1, movej(lb,j,s,a,R)g,default ! R = []gThis compiles into the following instruction sequence:movej: try(L1) % Start of 1st choicele(A0,A1) % j � lbbuild static(A5,int,1) % Create space for a[j]get element(A1,A3,A5) % Access a[j]lt(A2,A5) % a[j] > sput data(A6,1) % Build integer 1sub(A1,A6,A7) % j := j { 1copy mut(A7,A1)recurse(movej,5) % Recurse as movejL1: default(5) % Succeed if 1st choice failedbuild static(A5,tuple,0) % Create []de�ne(A4,A5) % R = []halt % Terminate process3

The try instructions encode the beginning of choices; their arguments are labels thatindicate where execution should continue if a choice's guard does not succeed. Matchingand test operations in guards are encoded by using instructions such as le; the build staticand get element instructions are used to access arguments. The body of a choice is encodedby using instructions such as put data, which creates a new integer, sub, which performssubtraction, and de�ne, which encodes a de�nition. The recurse instruction encodes a tail-recursive call to a new program; halt encodes process termination. Another instruction,fork, is used to encode process creation.1.4 Foreign InterfaceA call to a program written in a language such as Fortran or C is compiled to a sequenceof put foreign instructions, which set up a vector of pointers to arguments, followed by acall foreign instruction, which invokes the foreign program. Further, machine-dependentprimitives are required to load foreign code.1.5 Performance ToolsThe PCM incorporates low-level support for the Gauge pro�ling system. Each halt, recurse,and default instruction takes an o�set to a counter as an argument and increments thiscounter each time it is executed. The call foreign instruction takes an o�set to a timeras an argument. This is used to accumulate the total time spent in the foreign program.The counters and timers are stored in code modules and can be accessed by using specialprimitives.Support is also provided for animation tools. A segment of memory may optionally bereserved for storing information about program events; a special primitive allows programsto record events in this area. System facilities support the dumping of logged events toexternal storage.2 Data StructuresIn the rest of this report, we de�ne �rst the various PCM data structures and then theabstract instructions that operate on these data structures. This constitutes a speci�cationfor the reduction component. The communication and garbage collection components aredescribed in separate sections.The PCM uses a set of registers to hold important components of abstract machinestate. Otherwise, it uses only a single data area, the heap. This is a contiguous sequenceof 32-bit cells. All application program data structures and system control structures areallocated on the heap; all structures are cell aligned.2.1 Control StructuresThe PCM maintains various control structures representing processes, the suspensionstructure, interprocessor references, etc. 4

Process Records. A process record is a contiguous block of two or more cells. The �rst cellis the next �eld; it contains a pointer and is used for attaching the process into either theactive queue or a suspension structure. The second cell is the program �eld, which containsa pointer to the code that the process is to execute when it is scheduled. Additional cellscontain references to process arguments.Active Queue. The active queue is a list of process records, linked together by using thenext �eld in each record. Pointers to the �rst and last entries in the queue are held inabstract machine registers (cf. AF and AB, respectively).Incoming Reference Table (IRT). A processor's IRT is used to record references from otherprocessors to terms on the local heap. This permits garbage collection to be performedon a single processor independently of other processors. The IRT consists of a contiguousarray of IRT entries, initially located at the bottom of the heap. A �xed-sized IRT isallocated initially; free entries are linked in a free list. If this free list becomes empty, theIRT is extended, as described in Section 5.1.An IRT entry comprises two cells. The �rst is a 32-bit quantity representing theweight associated with the referred-to object. The second contains a pointer to either thereferred-to object or, if the weight is zero, the next entry in the IRT free list.Outgoing Reference Table (ORT). A processor's ORT is used to record local references toterms located on other processors. This permits the processor to cancel these referenceswhen local garbage collection indicates that they can be discarded. The ORT is maintainedas a linked list of entries located on the heap. A pointer to the �rst element of this list iskept in a register (cf. OH). The list is compacted at local garbage collection by removingfree entries (i.e., those with weight zero). At other times, free entries are linked in both afree list and the ORT list.Each ORT entry represents an outgoing reference to another processor and, if it has notbecome inaccessible, is referenced by a remote reference or value note (described below)located within local memory. An entry consists of four cells. The �rst contains a 31-bitinteger value representing the weight associated with the interprocessor reference, plus a
ag (the top bit) that indicates whether a Read request has been generated on that remotereference. The second contains an integer value representing an IRT index. The third cellcontains either an integer value representing a processor identi�er or a reference to thenext entry in the ORT free list. The fourth contains a reference to the next entry in theORT. In addition, the high bit of the second cell is used as a mark bit during local garbagecollection. The third cell is used to link an ORT entry into the ORT free list when theweight of that ORT entry is zero, indicating that the remote reference has been deleted.Suspension Structure. During a reduction attempt, matching or guard evaluation mayrequire values that are not yet available. These values may be either local de�nitions orremote terms referenced via remote references. A suspension register (cf. SU) is usedto record the suspension status of the current process. This register is set to 0 before5

a reduction attempt. If matching or guard evaluation requires a value, SU is set to theaddress of the required de�nition or remote reference. If subsequent evaluation requires afurther value, SU is set to the value {1 to indicate that the current process requires morethan one value. If a process requires more than one value, a Read message is generated forremote references, unless other processes have already read them. A
ag associated witha remote reference indicates whether a Read message has already been generated.If guard evaluation succeeds for any choice, the suspension register is reset, causingentries to be discarded. If execution reaches the default choice, indicating that all previouschoices have failed or suspended, the register's value is examined to determine whether thecurrent process must be added to the suspension structure, as follows. If the value is zero,all previous choices have failed, and so execution proceeds with the body of the defaultchoice. If the value is neither 0 nor {1, the process requires the value of a single de�nitionor remote reference: the process is then added to a circular queue associated with thede�nition or remote reference. This case occurs most often and is the prime suspensiontechnique.A process that requires the value of more than one variable or remote reference (SU= {1) is added to a Global Suspension Queue. Pointers to the �rst and last entries in thisqueue are held in machine registers (see AF and AB, respectively). If the active queue everbecomes empty, all processes recorded on the global suspension queue are moved to theactive queue. Execution then proceeds normally. However, if the active queue becomesempty again without any intervening reductions, the abstract machine enters a suspendedstate, which it exits only upon receipt of input from the keyboard or other processors. Inorder to ensure that reduction is just, the global wakeup is also performed at regular (butinfrequent) intervals, even if the active queue never becomes empty.Value Note. The communication component attaches a value note to an unbound de�nitionwhen it receives a Read message requesting its value. This permits a Value message tobe generated if the variable becomes bound. A value note consists of four contiguouscells. The �rst is the next �eld; it points at the next process or suspension record inthe suspension structure. The second contains a null value. The third is the ORT �eld;it contains a pointer to the ORT entry for the remote term for which a Read request ispending. The fourth �eld contains a pointer to the de�nition, so that its value can beaccessed when the value note is processed.2.2 PCN Data TypesBoth application program data structures and executable code are represented on the heapby sequences of cells. Tuples, integers, reals, strings, arrays, and code are represented byheader cell containing the tag and size information, followed by one or more untaggeddata cells representing the data structure. This organization simpli�es communicationwith programs written in other languages. Four data types are supported: Tuple, String,Integer, and Real. In addition, De�nitions are represented by tagged cells, and referencechains are represented by tagged Remote Reference and Local Reference cells.Tagged data types have a three-bit tag located in the low bits of a cell. The Local6

Table 1: Tag ValuesType Tag 22 21 20Reference REF { 0 0Unde�ned UNDEF 0 1 0Remote Ref RREF 1 1 0Tuple TUP 0 0 1String STR 1 0 1Integer INT 0 1 1Real REAL 1 1 1Reference data type is distinguished by zeros in bits 0 and 1; all other data types have atleast one of these bits set to 1. The tag values used to represent the di�erent types aregiven in Table 1.Data Headers. A data header cell has the general form< SIZE(31-4), INLINE(3), TAG(2-0) >The SIZE �eld contains a positive size, expressed in terms of the number of elements(integers, reals, characters, tuple arguments) contained in the data structure. The INLINE�eld is 1 if the data structure is embedded in a module, and 0 otherwise.Integers are stored as 32-bit quantities and reals as double-precision, 64-bit quantities.Strings contain four bytes per cell and are padded with null characters to a cell boundary.References. References are represented by a single cell with the two low bits zero. Hence,a reference cell's contents can be interpreted as a pointer to a cell-aligned data structure.De�nitions. De�nitions are represented by a single cell with a tag value of 2 (hexadecimal).The remainder of the cell contains a 29-bit cell o�set from the beginning of the heap, whichis used to construct a pointer to a circular suspension queue.Remote References. A remote reference is represented by two cells. The �rst has a tagvalue of 3 (hexadecimal); the remainder of the cell contains a 29-bit cell o�set from thebeginning of the heap, which is used to construct a pointer to a circular suspension queue.The second cell contains a pointer to an ORT entry.Code. Compiled code modules are represented as strings with a particular internal struc-ture. A code module cannot be distinguished from other strings except by context. Fig-ure 1 illustrates the format of a code module.A module's header cell has a string tag, an inline
ag of 0, and a size corresponding tothe actual size of the module in bytes. The code string itself contains the following �elds,in the following order: 7

@@@@��
��@@@@����
@@@@���� """"""""bbbbbbbb

STR 0 Module SizeCounter O�setFirst O�setrrr0First ProgramSecond ProgramrrrLast ProgramNo of CountersNo of TimersFirst CounterrrrLast Timer
Idle O�setModuleCode SizeA Code BytesNameProgram� O�set toProgramExportTablePrograms

Counters
Figure 1: The Module Data Type8

1. Counter O�set. The o�set, in cells, to the Counters �eld.2. Export Table. A sequence of cell o�sets to programs that are exported by the module(i.e., that appear in its export declaration). The last entry in the export table is acell containing zero.3. Programs. A sequence of compiled programs.4. Counters. A sequence of counters and timers.Each compiled program has the following �elds in the following order:1. Idle O�set. The o�set to the timer used to accumulate idle time attributed to theprogram.2. Module. A cell containing the cell o�set from itself to the beginning of the module.This �eld is used only during garbage collection.3. Arity and Code Size. A cell whose top byte is the arity of the program and whoselow three bytes contain the size of the program in cells; this corresponds to the o�setto the string for the program name. The Arity �eld must be a number less than 256and is used when scheduling a process for execution.4. Code Bytes. The assembled abstract machine instructions for the program. All ab-stract machine instructions are cell aligned.5. Name. The program's name, as a null-terminated string padded with nulls to a cellboundary.Note that o�sets within a module are always to the code cells for a program, notthe start of the program. The Module, Code Size, and Arity �elds are accessed by usingnegative o�sets from the code cells.Finally, the Counters area contains a one-cell counter for each halt, recurse, and suspendinstruction in the module, and a two-cell timer for each program and for each call foreigninstruction. The �rst two cells of this area specify the number of counters and timers.Subsequent cells contain �rst a sequence of counters, then a possible alignment cell toensure double-cell alignment, and �nally a sequence of timers. The order of the countersand the timers corresponds to the order of the corresponding instructions in the programde�nitions.Code modules may be stored on disk in �les. In this case, the module is precededby a cell containing a magic number and version number, and the second cell containsthe size (in cells) of the remainder. To ensure portability across machines with di�erentbyte ordering conventions, o�sets, reals, and integers contained inside code are stored ina portable format.Code modules on disk also contain three sections that are not placed on the heapwhen the module is loaded. The �rst two sections contain lists of the foreign object �lesand foreign libraries, respectively, that are needed to resolve foreign function references in9

this module. These sections are (optionally) used to dynamically link in foreign code atrun time. The third section contains a list of all foreign functions that are referenced bythis module, as well as a list of where in the code each function is called. This section isused during both dynamic and static linking of resolve foreign function references in themodule.2.3 RegistersThe state of the abstract machine is held in registers. The following registers hold pointersto cells located on the heap:� HP Heap Pointer, points to the top of the heap.� AF Active queue Front, points to the �rst process in the active queue.� AB Active queue Back, points to the last process in the active queue.� GF Global queue Front, points to the �rst process in the global queue.� GB Global queue Back, points to the last process in the global queue.� CP Current Process, points to the process currently being reduced.� SP Structure Pointer, a pointer used for building structures.� IFL IRT Free List, points to the �rst entry in the IRT free list.� OFL ORT Free List, points to the �rst entry in the ORT free list.� OH ORT Head, points to the �rst entry in the ORT.� SU Suspension, either points to a de�nition or remote reference for which the valueis required by the current process, or contains the value 0 or {1.� ES Event Stream, points to the tail of the global event stream.� KS Keyboard Stream, points to the tail of the keyboard input stream.� PC Program Counter, points to instruction cells on the heap.� FL Failure Label, points to an instruction to branch to in case of choice failure.Finally, the following auxiliary registers are used:� TS Time Slice, an integer designating the remaining timeslice for the current process.� BU Bu�er
ag, a Boolean value that is set to true during tail recursion; otherwisefalse.� CA Current Arity, an integer designating the arity of the current process.10

� A registers A set of 256 registers that may hold references to heap cells. The Aregisters are used to hold process arguments and temporary values.� F registers A set of 64 registers that may hold pointers to untagged data structureson the heap. The F registers are used to hold arguments to foreign procedures.� FP Foreign Pointer, a pointer used for building calls to foreign procedures.� ISZ IRT Size, an integer designating the number of entries in the IRT.� RF Resize Flag, a Boolean value that is set to true when the IRT has been resized;otherwise false.3 Abstract Instruction SetThe instruction set includes six types of instruction:1. Control Instructions: used to encode process scheduling and manipulation of variousmachine registers.2. Build Instructions: used to construct data structures on the heap.3. Put Instructions: used to place references to data structures in memory cells.4. Test Instructions: used to encode guard execution.5. Term Manipulation Instructions: used to encode various operations on terms.6. Foreign Instructions: used to encode calls to foreign procedures.The instruction set is summarized in Appendix A; example encodings are presentedin Appendix B. Each instruction is assembled into one or more cell-aligned values. Thetop byte of the value is an op-code in the range zero to N � 1 (where N is the number ofabstract machine instructions). The main emulation loop simply inspects the op-code atthe current program counter, increments the program counter, and dispatches to executethe code for that instruction.In the sections that follow, a Pascal-like notation is used to explain the operation ofeach abstract machine instruction. Block structure is represented by indentation. Thefollowing notation is also used:� X := Y Assignment of one variable to another.� =, 6= Equality and inequality.� TAG<value> A cell with TAG and value �elds.� HEADER<tag,size> A data header cell with tag and size �elds (and inline = 0).11

� is xxx(P) Tests for speci�c data types (e.g., is integer(P) tests whether the cell atlocation P is a reference to an integer).� cell at(P), real at(P) The byte, cell, real, etc., at address P.� byte 1(P), byte 2(P), byte 3(P) Byte 1, 2, or 3 of the cell at address P.� tag at(P) The tag value of the cell at address P.� o�set to pointer(P) Adds the 32-bit integer o�set at location P to the pointer P andyields a new pointer to a cell.� case A case statement in which execution enters and exits a single case and may notfall through to alternatives.� size in cells(tag,count) Returns the number of cells required to hold count elementsof type tag.The following auxiliary functions will be used to de�ne the instruction set:� is unknown(C) returns true if the heap cell C is a variable or a remote reference;false otherwise.� suspend on(P) manipulates the suspension register (SU) to record the fact that thecurrent process requires the value at location P. Execution continues at the currentfailure label (FL).� fail() causes execution to continue at the current failure label (FL).� dereference(P) causes the reference P to be followed until P does not point to areference.� enqueue process(P) places process P at the rear of the active queue using the activequeue back register (AB).� schedule process() schedules a process from the front of the active queue using theactive queue front register (AF). The process is made the current process by loadinga pointer to it into the current process register (CP). Its arguments are then loadedinto consecutive A registers beginning at register 0. This can be achieved since theprogram associated with a process includes the number of arguments (arity) in theprocess (see Arity in Figure 1). The program counter (PC) is initialized to point atthe encoded program associated with a process. In addition, the BU
ag is set tofalse to indicate that the process arguments are currently unbu�ered, and the CAregister is loaded with the process Arity.� process susp list(P) processes the list of suspended processes and value notes at P .Processes are added to the active queue; Value messages are generated for valuenotes. Note that processes and value notes can be distinguished by the value of theirsecond cell: processes contain a non-null pointer in this �eld, and value notes a nullvalue. 12

� suspend process() suspends a process according to the value of the suspension register(see Section 2.1).� save arguments(N) saves the contents of the �rstN A registers in the current process,if it is large enough (register CA � N), or in a new process record otherwise.� signal(M) appends a message M to the global event stream (cf. register ES).� increment counter(P) increments the counter located at o�set to pointer(P).� try events() checks whether garbage collection needs to be performed and processesany pending keyboard input and messages from other processors.Detailed speci�cations are provided for most instructions in following sections. Unlessstated otherwise, instructions assume that their arguments are dereferenced and availableat the time of call. Hence, calls to most instructions cannot suspend. Type and rangechecking is optional; if such checking is performed, errors are signaled on the global eventstream. In the speci�cations that follow, no type or range checking is performed.3.1 Control InstructionsThe process pool computational model is implemented with �ve control instructions: fork,halt, recurse, default, and try. The instructions are responsible for scheduling processesfrom the active queue, generating suspension structures, testing whether garbage collectionshould be performed, etc. In addition, the run instruction is used to initiate execution ofa process using a module and the send instruction to send a message on the global eventstream.fork(Label,Arity) allocates a new process record with a speci�ed Arity and adds it to therear of the active queue. The program �eld in the process is set to be Label and SP is setto point at the �rst argument of the process.P := make process(byte 1(PC))cell at(program �eld(P)) := REFERENCE<o�set to pointer(PC+1)>SP := arguments of(P)PC := PC + 2enqueue process(P)recurse(Label,Arity,CountO�) encodes tail recursion. It uses the values of the A registersand the current process record for the next reduction and thus saves process scheduling.If the timeslice (TS) is zero, then Arity arguments (bu�ered in A registers) are saved in aprocess record (see save arguments). The process is then placed in the active queue withits program �eld set to Label, and a new process is scheduled. If the timeslice is not over,execution proceeds from Label, and the timeslice is decremented. The Bu�er
ag (BU) isset to true, indicating that the process arguments are now bu�ered. The Current Process13

Arity (CA) register is set to Arity. The suspension register is reset to indicate that thereare no suspensions for the next reduction attempt. A check is made to determine whethergarbage collection is required. The counter associated with the instruction is incremented.increment counter(PC+1)if (TS = 0) thensave arguments(byte at(PC))cell at(program �eld(CP)) := REFERENCE<o�set to pointer(PC+2)>enqueue process(CP)schedule process()elseTS := TS { 1BU := Truecell at(program �eld(CP)) := REFERENCE<o�set to pointer(PC+2)>PC := program �eld(CP) + o�set to code bytesSU := 0try event()halt(CountO�) is used when a process reduces using a choice that has an empty body andthus terminates; this necessarily signi�es the end of the current timeslice. The suspensionregister is reset. Another process is then scheduled, and a test is made to determinewhether garbage collection is required. The counter associated with the instruction isincremented.increment counter(PC+1)SU := 0schedule process()try event()default(Arity,CountO�) causes the current process to proceed to the next instruction, tosuspend on a single value, or to suspend on the global suspension queue, according to thevalue of the suspension register (see Section 2.1). If suspension foll,ows a recursive callthen the arguments, bu�ered in A registers, must be saved in a process record. Suspensionalso requires that another process be scheduled and that the counter associated with theinstruction be incremented.
14

if (SU = 0) thenPC := PC+2elseincrement counter(PC+1)if (BU) then save arguments(byte 1(PC))suspend process()schedule process()try event()try(Label) is used to encode conditional execution. It sets the failure label (FL) to Label;execution continues at the next instruction.FL := o�set to pointer(PC+1)PC := PC + 2run(M,P) is used to initiate execution of a process represented by a string or tuple P usingthe module M. An error is signaled if the program to be executed by P is not exported byM. P1 := A[byte 1(PC)]P2 := A[byte 2(PC)]C := mlookup(P1,P2)if (C = Null) then send(unde�ned(P1))NP := make process() % Create a new process recordprogram �eld(NP) := C % New process is to execute P\copy args from P2 to NP"enqueue process(NP) % Add new process to active queuePC := PC + 1send(Reg) is used to append the term referenced by Reg to the global event stream. Anyprocesses suspended on the de�nition referenced by ES are woken up; this de�nition isthen overwritten with a reference to a new list structure. The contents of Reg are copiedto the head of the new list structure, and a reference to a new de�nition is placed in boththe list tail and ES. 15

P1 := A[byte 1(PC)]if (suspensions at(ES)) then process susp list(ES)cell at(ES) := REFERENCE<HP>cell at(HP) := HEADER<tuple tag,2>cell at(HP+1) := REFERENCE<P1>cell at(HP+2) := REFERENCE<HP+3>cell at(HP+3) := DEFINITION<0>ES := HP+3HP := HP+4PC := PC + 13.2 Build InstructionsThe instructions build static, build dynamic, and build def construct a data structure onthe heap and place a reference to the new structure in a register. They di�er only in thestructures that they build.build static(Reg,Byte,Tag,Size) constructs a data area of speci�ed Tag and Size on the heap,and places a reference to this area in Reg. If the data area represents a tuple, the structurepointer (SP) is set to point to its �rst element. This instruction is used to build arrays,mutable values, and tuples of size less than 31.A[byte 1(PC)] := REFERENCE<HP>cell at(HP) := HEADER<byte 2(PC),integer at(PC+1)>if (byte 2(PC) = tuple tag) thenSP := HP + 1HP := HP + 1 + size in cells(byte 2(PC), integer at(PC+1))PC := PC + 2build dynamic(Tag,Register1,Register2) constructs a integer array, real array, character ar-ray, or tuple �lled with de�nitions (as speci�ed by Tag), of size speci�ed by the integerreferenced by Register1, and places a reference to the structure in Register2.
16

tag := byte 1(PC)size := integer refed by(A[byte 2(PC)])A[byte 3(PC)] := REFERENCE<HP>cell at(HP) := HEADER<tag,size>HP := HP + 1if (tag = tuple tag) theni := sizewhile (i > 0) docell at(HP+size) := DEFINITION<0>HP := HP + 1i := i { 1HP := HP + 1 + size in cells(tag,size)PC := PC + 1build def(Register) constructs a de�nition on the heap and places a reference to the de�ni-tion in a Register.A[byte 1(PC)] := REFERENCE<HP>cell at(HP) := DEFINITION<0>HP := HP + 1PC := PC + 13.3 Put InstructionsThe instructions put data, put value, and copy place a reference to a data structure in amemory cell. They di�er only in the type of reference that they construct and where theyput it.put data(Reg,Tag,Size,Value) places a reference to a value with tag Tag in Reg and incre-ments PC by Size. The instruction is used to encode strings, single integers, and reals.The instruction is followed by a negative o�set to the beginning of the module, a dataheader cell with the INLINE �eld set to 1, and one or more data cells containing the datavalue. A[byte 1(PC)] := REFERENCE<PC+3>PC := PC + byte 3(PC) 17

put value(Register) places the value in Register at the structure pointer, SP.cell at(SP) := A[byte 1(PC)]SP := SP + 1PC := PC + 1copy(Register1,Register2) copies the contents of Register1 to Register2.A[byte 2(PC)] := A[byte 1(PC)]PC := PC + 13.4 Test InstructionsTest instructions encode test operations on process arguments. They are type, data, equal,neq, get tuple, lt, and le. Of these, only type, data, and get tuple can suspend. The otherinstructions assume that their arguments are available and dereferenced at the time ofcall.In general, these instructions �rst obtain the number of an A register by using thecurrent program counter (PC). The register contents is then compared against some value.If the comparison succeeds, execution proceeds at the next abstract machine instruction.Otherwise, execution proceeds at the current failure label. If the argument to a type, data,or get tuple instruction dereferences to a variable or remote reference, this fact is recordedby the suspension register, and execution proceeds at the current failure label (FL).type(Register,Tag) tests that Register dereferences to a cell with the speci�ed Tag. If thetest succeeds, Register is overwritten with a reference to the dereferenced value.P := A[byte 1(PC)]dereference(P)if (is unknown(P)) then suspend on(P)if ((tag at(P) 6= byte 2(PC)) then fail()A[byte 1(PC)] := REFERENCE<P>PC := PC + 1
18

data(Register) succeeds when the value of the term referenced by Register becomes avail-able. Register is overwritten as in the type instruction.P := A[byte 1(PC)]dereference(P)if (is unknown(P)) then suspend on(P)A[byte 1(PC)] := REFERENCE<P>PC := PC + 1get tuple(Register1,Arity,Register2) is used to match structures. It tests that Register1dereferences to a tuple of size Arity. If the test succeeds, then the arguments of the tupleare loaded into consecutive A registers beginning with Register2.P := A[byte 1(PC)]dereference(P)if (is unknown(P)) then suspend on(P)arity := byte 2(PC)if (not is tuple(P) OR arity 6= cell size at(P)) then fail()B := byte 3(PC)while (arity > 0) doA[B] := cell at(P)P := P + 1arity := arity { 1B := B + 1PC := PC + 1le(Register1,Register2) tests that the value of the integer or real referenced by Register1 isless than the value of that referenced by Register2.
19

P1 := A[byte 1(PC)]P2 := A[byte 2(PC)]PC := PC + 1if (is integer(P1) and is integer(P2)) thenif (integer at(P1+1) > integer at(P2+1)) then fail()else if (is real(P1+1) and is real(P2+1)) thenif (real at(P1+1) > real at(P2+1)) then fail()else if (is integer(P1+1) and is real(P2+1)) thenif (integer at(P1+1) > real at(P2+1)) then fail()else if (is real(P1+1) and is integer(P2+1)) thenif (real at(P1+1) > integer at(P2+1)) then fail()else fail()equal(Register1,Register2) tests that Register1 and Register2 reference single integers, singlereals, or strings with the same value, or that they reference tuples of the same arity withequal subterms. Strings are compared by using the C function strcmp(): they are comparedon a character by character basis until the �rst null character. Hence, this function cannotbe used to test equality of character arrays.3.5 Term Manipulation InstructionsThe instructions get element, put element, and get arg provide access to arrays and tuples.The instruction sizeof determines the size of a data structure. Arithmetic expressions onthe right-hand side of calls to := are compiled to calls to �ve arithmetic kernels: add, sub,div, mul, and mod, which implement addition, subtraction, division, multiplication, andmodulus, respectively. Each takes two values as input, each either an integer or a real,and constructs either a real (if either input is a real) or an integer (if both inputs areintegers) as output. The copy mut instruction copies one mutable value to another of thesame type. The coerce mut instruction copies a mutable value to another that may be ofa di�erent type; this may require type coercion. The arguments to all these instructionsare assumed to be available, dereferenced, and of the correct type. Finally, the de�neinstruction is used in conjunction with build instructions to encode de�nition statements.de�ne(Register1,Register2) checks that Register1 dereferences to a variable or remote refer-ence and generates an error if it does not. Otherwise, it processes any suspension queueattached to this location and assigns the location the contents of Register2. If the locationis a remote reference, then a De�ne message is generated.20

P1 := A[byte 1(PC)]P2 := A[byte 2(PC)]PC := PC + 1dereference(P1)if (is unknown(cell at(P1))) thenif (is rem ref(cell at(P1))) then send de�ne(P1,P2)if (suspensions at(P1)) then process susp list(P1)cell at(P1) := cell at(P2)elsesignal bad de�ne()add(Register1,Register2,Register3) adds the numerical values referenced by Register1 andRegister2, constructs a real or integer result on the heap, and places a reference to theresult in Register3. The sub, mul, div, andmod instructions are similar; themod instructionexpects integer arguments.P1 := A[byte 1(PC)]P2 := A[byte 2(PC)]A[byte 3(PC)] := REFERENCE<HP>PC := PC + 1if (is integer(P1) and is integer(P2)) thencell at(HP) := HEADER<integer tag,1>integer at(HP+1) := integer at(P1+1) + integer at(P2+1)HP := HP + 2elsecell at(HP) := HEADER<real tag,1>if (is integer(P1)) then d1 := integer at(P1+1)else d1 := real at(P1+1)if (is integer(P2)) then d2 := integer at(P2+1)else d2 := real at(P2+1)real at(HP+1) := d1 + d2HP := HP + 3get element(Register1,Register2,Register3) extracts an element of an integer, real, or char-acter array. Register1 is assumed to reference an integer index, and Register2 an array. Adata structure of the correct type to hold the retrieved element (an integer in the case ofa character or integer array; otherwise a real) is constructed on the heap, and a referenceto this structure is placed in Register3. 21

P1 := A[byte 1(PC)]P2 := A[byte 2(PC)]P3 := REFERENCE<HP>if (is integer(P2)) thencell at(HP) := HEADER<integer tag,1>integer at(HP+1) := integer at(P2 + integer at(P1+1))HP := HP + 2else if (is real(P2)) thencell at(HP) := HEADER<real tag,1>real at(HP+1) := real at((real *) P2 + integer at(P1+1))HP := HP + 3else if (is string(P2)) thencell at(HP) := HEADER<integer tag,1>integer at(HP+1) := (integer) character at((char *) P2 + integer at(P1+1))HP := HP + 2PC := PC + 1put element(Register1,Register2,Register3) copies an integer or real value in a data itemto a speci�ed index in an integer, real, or character array. Register1 provides the index,Register2 the array, and Register3 the element. Type coercion is performed if necessary(integer to character, real to integer, integer to real).P1 := A[byte 1(PC)]P2 := A[byte 2(PC)]P3 := A[byte 3(PC)]if (is integer(P2) and is integer(P3)) thenP := P2 + integer at(P1+1)integer at(P) := integer at(P3+1)else if (is real(P2) and is real(P3)) thenP := (real *) P2 + integer at(P1+1)real at(P) := real at(P3+1)else if (is character(P2) and is integer(P3)) thenP := (char *) P2 + integer at(P1+1)character at(P) := (character) integer at(P3+1)else if (is real(P2) and is integer(P3)) thenP := (real *) P2 + integer at(P1+1)real at(P) := (real) integer at(P3+1)else if (is integer(P2) and is real(P3)) thenP := (integer *) P2 + integer at(P1+1)integer at(P) := (integer) real at(P3+1)PC := PC + 1 22

get arg(N,Tuple,Register) places a reference to the Nth argument of Tuple in Register.P1 := A[byte 1(PC)]P2 := A[byte 2(PC)]A[byte 3(PC)] := REFERENCE<P2 + 1 + integer at(P1+1)>PC := PC + 1sizeof(Register1,Register2) determines the size (i.e., number of elements) of the term ref-erenced by Register1 and places an integer representing this size in the mutable integerreferenced by Register2.P1 := A[byte 1(PC)]P2 := A[byte 2(PC)]integer at(P2+1) := cell size at(P1)PC := PC + 1copy mut(Register1,Register2) copies the value of the mutable data structure referencedby Register1 into the mutable data structure referenced by Register2. The two structuresare assumed to be of the same type and size. The coerce mut instruction is similar butperforms coercion.P1 := A[byte 1(PC)]P2 := A[byte 2(PC)]i := size in cells(cell tag at(P1), cell size at(P1))while (i > 0) docell at(P2) := cell at(P1)i := i { 1P1 := P1 + 1P2 := P2 + 1PC := PC + 13.6 Foreign InstructionsTwo instructions, put foreign and call foreign, are used to encode calls to procedures writtenin languages such as C and Fortran.put foreign(Register) places a pointer to the data structure referenced by Register in the Fregister referenced by the register FP, and increments FP. Register is assumed to containa previously dereferenced reference to a structure of the correct type.23

cell at(FP) := A[byte at(PC)] + 1FP := FP + 1PC := PC + 1call foreign(Arity,Address,TimeO�) places a null pointer in the F register referenced by FPand invokes the procedure at Address, passing the address of F[0] as the base address forthe argument vector. It resets FP and, upon return, increments the timer associated withthe instructions.then := time()cell at(FP) := NULLFP := address of(F[0])CALL(byte 1(PC),integer at(PC+1),FP)FP := address of(F[0])increment timer(PC+2, time() { then)PC := PC + 34 The Communication ComponentThere are �ve types of message: Read, Value, De�ne, Cancel, and Collect. At the end ofeach time-slice, the communication component is invoked to process any pending messages.Each message received is deposited directly onto the heap. When sending a term it iscopied into contiguous locations of a message bu�er and absolute pointers are translatedinto relative o�sets. On arrival, the term is scanned to perform the reverse translation.4.1 TermsCopying Terms. The copy term procedure copies a term from the heap to the messagebu�er to be sent as part of a Value or De�ne message. The size of the term copied isdetermined by the size of the message bu�er. A term is copied depth �rst with remotereferences to unbound subterms and to subterms that do not �t. A depth-�rst traversalis used because it is particularly e�cient for commonly used stream structures.An IRT entry must be allocated when a new remote reference is created in a message.A reference to the local term is stored in this entry, and a remote reference to the IRTentry (consisting of the node identi�er and the IRT entry's index) is placed in the message.Both the newly created IRT entry and the remote reference are given the same large initialweight.A remote reference may be encountered during copying. In this case, the ORT entrythat it references is located. If this entry contains a weight greater than 1, a copy of theinitial remote reference is included in the message. The weight associated with the ORT24

entry is split: a proportion (e.g., one third) is allocated to the remote reference, and theremainder retained locally.If an interprocessor reference is repeatedly duplicated, its weight will eventually becomeone. Such a reference is chained the next time it is duplicated: that is, a new reference tothe reference with weight one is created, with a large initial weight. This process involvescreating a new IRT entry, as if a de�nition had been encountered.A remote reference in a message has a di�erent format from one to a remote referenceon the heap. It consists of three cells. The �rst cell contains an integer value representinga weight, with a remote reference tag. The second and third cells contain integer valuesrepresenting a node identi�er and a location within a node, respectively.The copy term procedure should be coded as an iterative algorithm that traverses aterm and continues copying while there is room in the message bu�er. In order to copythe term depth-�rst, the algorithm should maintain a stack of uncopied subterms. If theremaining space in the message bu�er is adequate only for remote references to stackedsubterms, copying terminates and these remote references are created.Scanning Terms. Scanning a term serves two purposes: it converts relative references intoabsolute references and allocates an ORT entry for each remote reference in the message.An ORT entry records the weight, processor identi�er, and IRT index associated with theremote reference. The remote reference in the message is replaced in the heap by a remotereference data type containing a reference to the ORT entry.scan term(P)while (not end of message(P)) doif (relative reference(P)) thencell at(P) := REFERENCE<P + o�set at(P)>if (remote reference(P) thenP1 := allocate ort entry(Weight(P),Node(P),Locn(P))cell at(P) := REMREF<P1>P := P + size of(term at(P))4.2 Message ProcessingDe�ne. The De�ne message contains a term to be copied locally and two integer values,which specify the IRT entry corresponding to the location to be assigned to and the weightassociated with the remote reference to which the de�ne operation was initially applied.The destination IRT entry speci�ed in the message is accessed to determine the locationthat is to be de�ned. The weight contained in the message is then subtracted from theweight associated with this IRT entry. If the location to be de�ned is a variable or a remotereference, the message is scanned. The location is then overwritten with the scanned term,and suspended processes are woken up. If the location is a remote reference, the messageis forwarded; if it already has a value, a de�nition error is signaled.25

de�ne()extract from message(index,weight)locn := irt address(index)cancel irt entry(index,weight)dereference(locn)scan(term)case tag at(locn)Variable : process susp list(locn)cell at(locn) := REFERENCE<term>RemRef : process susp list(locn)send assign(locn,fnode,�ndex,term)cell at(locn) := REFERENCE<term>Otherwise : send(deferror(locn,term))A De�ne message is generated when a de�nition operation is applied to a remotereference. The remote reference speci�es an ORT index; the ORT entry with this in-dex is accessed to determine the remote processor identi�er, remote address, and weightcomponents of the message. The ORT entry is then canceled.Value. A Valuemessage contains a term to be copied locally and an IRT index representinga location at which the term is to be placed. If this location is a remote reference orde�nition, the message is scanned. The location is then overwritten with the scannedterm, and suspended processes are woken up. Otherwise the message is discarded. Inboth cases the weight of the IRT entry is decremented by one.value()extract from message(index,term)locn := irt address(index)cancel irt entry(index,1)dereference(locn)if (is unknown(cell at(locn)) thenscan(term)process susp list(locn)heap at(locn) := REFERENCE<term>Read. A Read message contains three integer values, which specify the IRT entry repre-senting the location to be read, the source processor, and the IRT entry representing thelocation to which the value is to be returned. The latter two �elds specify the location ofthe remote reference at which the Read message originated.If a Read message is received and it refers to a variable, a value note is attached to thevariable. If it refers to a value, a Value message is generated to the requesting processor.If it refers to a remote reference, the message is forwarded. In neither case is the IRT26

entry modi�ed.read() extract from message(index,fnode,�ndex)locn := irt address(index)dereference(locn)case tag at(locn)Variable : V := make value note(locn,fnode,�ndex)enqueue on variable(V,locn)RemRef : send read(locn,fnode,�ndex)Otherwise : send value(fnode,�ndex,locn)Cancel. A Cancelmessage contains an integer value specifying how many cancellations areencoded in the rest of the message, followed by a sequence of integer pairs that encodethese cancellations. Each pair consists of an IRT index and a weight. A processor receivinga Cancel request decrements the weight of each referenced IRT entry by the associatedweight. If the weight becomes zero, the IRT entry is added to the free list.Collect. A Collect message requests a processor to perform immediate garbage collection.5 Garbage CollectionRecall that the PCM locates all data structures created in the course of a computation| such as terms, code, and process records | in a memory area termed the heap. Newstructures are continually being created. However, most structures are never explicitlydestroyed. Garbage collection must therefore be performed periodically to free heap spaceoccupied by structures that are no longer required.The garbage collector employed in the PCM has a global and a local component. Theglobal component permits individual processors to reclaim inaccessible storage indepen-dently. In many situations, this can reduce both garbage collection overhead and real-timedelays resulting from garbage collection. The global algorithm is based on that describedin [3].Many PCN processes iterate over lists. The iterative aspect of program behavior mayresult in a high proportion of useless verses useful data. It is thus bene�cial to basethe local algorithm on a stop-and-copy method [2]. Hence, the heap at each processor isorganized as two semi-spaces: oldspace and newspace. Garbage collection causes accessiblestructures in the oldspace to be copied to the newspace; the two semi-spaces then exchangeroles. 27

RREFX' ORTw1- IRTw2 - X-Figure 2: Incoming and Outgoing Reference Tables5.1 Global CollectionThe global component of the garbage collector uses an extended reference counting algo-rithm (�rst described in [4]) to determine when memory cells accessed by remote refer-ences can be reclaimed. This algorithm can maintain reference counts in a multicomputerwith substantially less communication than conventional reference counting. It associatesweights with both interprocessor references and referenced objects. When an interproces-sor reference is created, the reference is given an initial large weight and the weight of thereferenced object is incremented by the same value. If the reference is subsequently du-plicated, the weight in the reference is shared between the original reference and the copy(unless the weight is one, as discussed later). If the reference is reclaimed, a cancellationrequest is sent containing its weight to the object that it references. The weight of thereference is subtracted from the weight of the object. The algorithm hence maintains theinvariant that the sum of weights of all references to an object (whether located on otherprocessors or in messages in transit between processors) is equal to the weight associatedwith that object. When this weight becomes zero, there are no interprocessor referencesto the object, and it may be reclaimed by local garbage collection. Optimizations reducethe number of interprocessor communications generated by garbage collection.Indirection tables are introduced to support the integration of reference-counting inter-processor garbage collection and copying intraprocessor collection. These permit reloca-tion of data during local collection, identi�cation of terms referenced from other processors,and concise storage of weights. The indirection tables are termed the Incoming ReferenceTable (IRT) and Outgoing Reference Table (ORT). A processor's IRT records referencesfrom other processors to local objects. A processor's ORT records references to termslocated on other processors. Hence, every interprocessor reference has an entry in twoindirection tables: one in the originating processor's ORT, and one in the IRT of theprocessor on which the referred-to object is located. Figure 2 illustrates this: a remotereference X 0 to a variable X passes via an ORT entry on one processor and an IRT entryon the other. The terms w1 and w2 represent the weights associated with the referenceand the referred-to object, respectively. Note that w1 must be less than or equal to w2.The form of the IRT and ORT has been described in Section 2.1. Here, we de�ne theprocedures that are used to manipulate these data structures.28

Operations on the IRTThe IRT and its three associated registers (IFL, ISZ, RF) are manipulated by using thefollowing procedures.irt address(N) converts an IRT index into a heap address.if (RF = True) then return(current space + N)else return(other space + N)irt index(P) converts a heap address into an IRT index.if (RF = True) then return(P { current space)else return(P { other space)allocate irt entry(Address,Weight) allocates an IRT entry from the IRT free list, extendingthe IRT if the free list is empty.if (IFL = NULL) then extend irt()T := IFLIndex := irt index(IFL)IFL := cell at(IFL+1)cell at(T) := Weightcell at(T+1) := REFERENCE<Address>return(Index)cancel irt entry(Index,Weight) decrements the weight associated with an IRT entry. If theentry's weight becomes zero, the entry is added to the IRT free list.Address := irt address(Index)cell at(Address) := cell at(Address) { Weightif (cell at(Address) = 0) thencell at(Address+1) := REFERENCE<IFL>IFL := Addressextend irt() is used to extend the IRT when the IRT free list becomes empty. This processinvolves copying the contents of the IRT to the bottom of the inactive semi-space, if thishas not already be done, and setting the Resize Flag (RF); allocating space in the inactivesemi-space, contiguous with the existing IRT, and linking this space into the IRT free list;modifying the contents of the IRT Size register (ISZ) to re
ect the new size of the IRT;and decrementing the amount of space available for the heap proper (free space).29

if (RF = False) thenI := 0while (I < ISZ*2) docell at(other space + I) := cell at(current space + I)I := I + 1RF := TrueIFL := other space + ISZP := other space + ISZwhile (P < other space + IRT INCREMENT { 2) docell at(P) := 0cell at(P+1) := REFERENCE<P+2>P := P + 2cell at(P) := 0cell at(P+1) := REFERENCE<0>ISZ := ISZ + IRT INCREMENTfree space := free space { IRT INCREMENTOperations on the ORTOperations on the ORT and the associated registers OFL and OH are de�ned as follows.allocate ort entry(Weight,Node,Location) allocates a new ORT entry, from the free list ifpossible and otherwise from the heap.if (OFL == NULL) thenOAddress := HPHP := HP + 4cell at(OAddress + 3) := REFERENCE<OH>OH := OAddresselse OAddress := OFLOFL := cell at(OFL+2)cell at(OAddress) := Weightcell at(OAddress+1) := Nodecell at(OAddress+2) := Locationreturn(OAddress)
30

cancel ort entry(Address) returns an ORT entry to the ORT free list.cell at(Address+1) := 0cell at(Address+2) := REFERENCE<OFL>OFL := Address5.2 Local CollectionLocal garbage collection causes accessible structures in the oldspace to be copied to thenewspace. Accessible structures are those accessible from pointers into the heap. It isassumed that local garbage collection is performed only between reductions and thatthere is no current process. Hence, the pointers that must be followed comprise the queueregisters (AF, AB, GF, and GB), the IRT, and pointers supporting asynchronous inputand event handling (KS and ES).The local garbage collector marks ORT entries that it encounters when copying;these correspond to accessible remote references. Once copying is completed, the ORTis scanned; unmarked entries can be discarded from the ORT. A cancellation request isgenerated for each unmarked entry. These requests are bundled in Cancel messages.In outline, the algorithm operates as follows:collect()hp := lp := newspacecopy irt to new space()OH := copy ort to new space(OH)AF, AB, GF, GB, KS, ES := copy to new space(AF, AB, GF, GB, KS, ES)while(lp < hp) doif (newspace at(lp) refers to oldspace) thenP := newspace at(lp)dereference(P)if (in new space(P)) thennewspace at(lp) := Pelsenewspace at(lp) := copy to new space(P)lp := lp + sizeof(object at(lp))process ort()\swap oldspace and newspace"
31

copy to new space(pointer)\copy single level of structure at pointer to newspace at hp, representsubstructures by references to their location in oldspace"\replace each copied item by a reference to its location in newspace"\increment hp by size of data copied"\return value of hp prior to increment"Minor elaborations of this basic algorithm are required to ensure that untyped datastructures are copied in their entirety. An untyped data structure is one whose structurecan be determined only by its context and not by its representation on the heap. This isthe case with process records and IRT and ORT entries. Hence, the IRT and ORT arecopied before other structures and are traced in a separate stage. Similarly, when tracingthe active process queue (which originates in the register AF) and suspension structures,copying proceeds until all process records encountered have been copied to the new space.Finally, PCN data structures must be dealt with specially, to ensure that mutable datastructures are not duplicated.A process's code pointer references a program in a module. An entire module mustbe copied if any of its programs are referenced. The module �eld associated with eachprogram is used to locate the start of a module and perform this operation when copyinga process. The module's header cell is then overwritten with the new address of themodule, to indicate that copying has occurred.A reference to a tuple in the old space may be encountered when scanning the newspace. The following algorithm is used to copy a tuple of arity A at location P. It returnsa pointer to the location of the tuple in the new space.copy tuple(P,A)copy tuple sizeforeach argumentcopy arguments to new heap�rst argument := reference to new heapreturn new address of �rst argumentWhen copying encounters a reference to a data structure other than a tuple, the headercell is examined. If the INLINE bit is set, the item is in a module. The negative o�setcontained in the preceding cell is applied to locate the beginning of the module. If themodule's preceding cell is a reference to the new heap, then the module has already beencopied; otherwise, the entire module is copied. If the INLINE bit is not set, the datastructure is copied, and the header cell is set to reference the new location on the newheap. Finally, the position of the data structure in the new space (whether copied or not)is returned.The algorithm used to copy data structures other than tuples (i.e., integer, real, orstring) is summarized in the following description:32

copy data item(P)if (inline(P)) then % Data in moduleP1 := P + integer at(P{1) % access module beginningP1 := copy data item(P1) % copy the moduleP2 := P1 { integer at(P-1) % new location of datacell at(P) := REFERENCE<P2> % set old to point to newreturn(P1 { integer at(P{2)) % return new locationelse % Ordinary data structurecopy cells(cell size at(P)) % copy itcell at(P) := REFERENCE<newspace location>return(newspace locations)5.3 Garbage Collection FailureGarbage collection is said to fail when computation cannot continue because of lack of freespace. In local failure, a single processor runs out of space; in global failure, all processorsrun out of space. A garbage collector can in principle recover from local failure but notfrom global failure. Two mechanisms address the problem of local failure.Broadcast. A processor in which local collection fails requests other processors toperform local collection, by broadcasting a Collect message. It then waits until either itreceives a Cancelmessage, in which case it performs local garbage collection, or a time-outperiod elapses. If local free memory remains insu�cient, the broadcast is repeated. Anerror is reported if a broadcast is repeated some �xed number of times without storagebeing reclaimed. A broadcast may be directed at all processors or, in a large parallelmachine, to some subset of all processors.Idle Collection. Idle processors perform local collection after a speci�ed idle period.This optimization tends to reduce the frequency with which the broadcast mechanismmust be invoked.5.4 De�cienciesWe claim (but have not proved) that the garbage collector described here will eventuallyreclaim all garbage created by successful execution of a legal PCN program. However,illegal or nonterminating programs can create circular structures that cannot be reclaimed.Illegal Programs. Illegal PCN programs that create circular data structures (i.e., def-initions of the form X = Y, where Y contains X) can generate garbage that cannot bereclaimed.Nonterminating Programs. If a nonterminating (and hence erroneous) program createsprocesses that suspend on more than one variable, these processes will remain on theglobal suspension queue inde�nitely. Memory occupied by these processes and their datastructures will never be reclaimed. 33

6 System BootstrapThe bootstrapping of a PCN system involves loading a bootstrap module to each proces-sor, building a collection of streams to link di�erent processors, and creating an initialprocess that invokes the bootstrap process on each processor. By convention, the initialprocess is called boot. It is provided with a tuple as an argument; this contains the initialinterprocessor streams. The boot argument has the formfKeybd,Events,ProcId,ProcCnt,UseHost,[In1,..,InN],[Out1,...,OutN],gwhere Keybd is a stream from the keyboard, Events is the processor's event stream, ProcIdis the processor identi�er of this processor, ProcCnt is the number of processors beingused, UseHost indicates whether the host node is to be used for process mapping (value =\y" or \n"), and the In's and Out's are streams to neighboring processors, used for inputand output, respectively. Processors are assumed to be numbered 0...N -1, for N nodes,where node N � 1 is the host.The input streams (In's) from other processors will be remote references to variablesat known locations in the heap. The output streams are variables written into knownlocations for the bene�t of other processors.M = load initial moduleC = mlookup(M,boot)if (C 6= Null) thenP := make process()procedure �eld(P) := CS := build boot tuple()argument(P,0) := REFERENCE<S>enqueue process(P)schedule process()elseexitIn addition, the bootstrap procedure must initialize the various machine registers.7 Asynchronous Keyboard InputA convenient interface to asynchronous keyboard input is provided by a keyboard eventstream which is incrementally bound to a list of characters typed at the keyboard. Ar-chitectural support for the event stream consists of a single machine register, KS. Thispoints to the tail of the stream. A check is made at the end of each timeslice to determinewhether input is pending; if so, the event stream is bound, and KB is modi�ed to pointto the new tail. The nature of the check performed at each timeslice depends on thecapabilities of the underlying operating system. Two alternative techniques can be used.The �rst, preferred, technique is to provide an interrupt service routine that sets a
ag34

when input is available. A new machine register, IP (the Input Pending
ag), is used forthis purpose. The implementation then needs only to check this
ag at the end of eachtimeslice. The second technique should be used only if the underlying operating systemdoes not provide access to interrupts. In this case, the implementation must physicallypoll for events. If this is an expensive operation, polling may need to be performed lessfrequently (e.g., once every 100 time slices).The keyboard event stream is made available to the initial process created at bootstraptime (see Section 6).References[1] Chandy, M., and Taylor, S. The composition of parallel programs, Proc. Supercom-puting 89, Reno, 1989.[2] Cohen, J. Garbage collection of linked data structures, Computing Surveys, 13(3),341{367, 1981.[3] Foster, I. A multicomputer garbage collector for a single-assignment language, Inter-national Journal of Parallel Programming, 19(6), 1989.[4] Weng, K., An abstract implementation for a generalized data
ow language. MITLaboratory for Computer Science TR-228, 1980.

35

A Abstract Instruction Set and EncodingAbstract Instruction OP B1 B2 B3 Cell 1 Cell 2fork(Procedure,A) 0 A 0 0 O�setrecurse(Procedure,A) 1 A 0 0 CountO� O�sethalt 2 0 0 0 CountO�default(A) 3 A 0 0 CountO�try(Label) 4 0 0 0 O�setrun(R1,R2) 5 R1 R2 0send(R) 6 R 0 0build static(R,T,Size) 7 R T 0 Sizebuild dynamic(T,R1,R2) 8 T R1 R2build def(R) 9 R 0 0put data(R,T,S,Value) 10 R T S Value1 Value2 ...put value(R) 11 R 0 0copy(R1,R2) 12 R1 R2 0get tuple(R1,A,R2) 13 R1 A R2equal(R1,R2) 14 R1 R2 0neq(R1,R2) 15 R1 R2 0type(R1,Tag) 16 R1 Tag 0le(R1,R2) 17 R1 R2 0lt(R1,R2) 18 R1 R2 0data(R) 19 R1 R2 0sizeof(R1,R2) 20 R1 R2 0de�ne(R1,R2) 21 R1 R2 0get arg(R1,R2,R3) 22 R1 R2 R3get element(R1,R2,R3) 23 R1 R2 R3put element(R1,R2,R3) 24 R1 R2 R3add(R1,R2,R3) 25 R1 R2 R3sub(R1,R2,R3) 26 R1 R2 R3mul(R1,R2,R3) 27 R1 R2 R3div(R1,R2,R3) 28 R1 R2 R3copy mut(R1,R2) 29 R1 R2 0coerce mut(R1,R2) 30 R1 R2 0put foreign(R) 31 R 0 0call foreign(A,Address) 32 A 0 0 TimeO� Addressexit() 33 0 0 036

B Coding ExamplesB.1 Partition: Array VersionPCNpartition(lb,ub,i,j,s,a) % partition arrayint i,j,a[];f ? i<j ! % not done yetf ; f jj movej(lb,j,s,a), movei(ub,i,s,a) g, % move in paralleli<j ! f ; swap(i,j,a), i := i+1, j := j{1 g,partition(lb,ub,i,j,s,a) % continueggCore PCNpartition(lb,ub,i,j,s,a,L,R)int i,j,a[];f ? data(L), i<j !f jjmovej(lb,j,s,a,L,M1),movei(ub,i,s,a,L,M2),barrier2(M1,M2,R1),new$1(i,j,a,R1,R2),partition(lb,ub,i,j,s,a,R2,R)g,default ! R = []gAbstract Instructionspartition/8: try(L1)data(R6)data(R2)data(R3)lt(R2,R3)build def(R8) % M1build def(R9) % M2build def(R10) % R1build def(R11) % R2fork(movei)put value(R1)put value(R2)put value(R4) 37

put value(R5)put value(R6)put value(R8)fork(barrier2)put value(R8)put value(R9)put value(R10)fork(new$1)put value(R2)put value(R3)put value(R4)put value(R10)put value(R11)fork(partition)put value(R0)put value(R1)put value(R2)put value(R3)put value(R4)put value(R5)put value(R11)put value(R7)copy(R3,R1)copy(R4,R2)copy(R5,R3)copy(R6,R4)copy(R8,R5)recurse(movej,6)L1: default(8)build static(R9,tuple,0)de�ne(R8,R9)haltAuxiliary Program barrier2Core PCNbarrier2(M1,M2,R)f? data(M1), data(M2) ! R = [] g 38

Abstract Instructionsbarrier2/3: try(L1)data(R0)data(R1)build static(R3,tuple,0)de�ne(R2,R3)haltL1: default(3)Auxiliary Program new$1Core PCNnew$1(i,j,a,L,R)int i,j,a[];f ? data(L), i<j !f jjswap(i,j,a,L,R1),new$2(i,j,R1,R)g,default ! R = []gAbstract Instructionsnew$1/5: try(L1)data(R3)data(R0)data(R1)lt(R0,R1)build def(R5)fork(new$2)put value(R0)put value(R1)put value(R5)put value(R4)copy(R5,R4)recurse(swap,5)L1: default(5)build static(R5,tuple,0)de�ne(R4,R5)halt 39

Auxiliary Program new$2Core PCNnew$2(i,j,L,R)int i,j;f ? data(L) ! f ; i := i+1, j := j{1, R = [] ggAbstract Instructionsnew$2/4: try(L1)data(R2)put data(R4,1)add(R0,R4,R5)copy mut(R5,R0)sub(R1,R4,R6)copy mut(R6,R1)build static(R7,tuple,0)de�ne(R3,R7)haltL1: default(4)Auxiliary Program swapCore PCNswap(i,j,a,L,R)int i,j,a[];f? data(L) ! f ; tmp = a[i], a[i] := a[j], a[j] := tmp, R = []g gAbstract Instructionsswap/5: try(L1)data(R3)get element(R0,R2,R5) % tmp1 := a[i]build def(R6) % tmpde�ne(R6,R5) % tmp = tmp1get element(R1,R2,R6) % tmp2 := a[j]put element(R0,R2,R6) % a[i] := tmp2put element(R1,R2,R5) % a[j] := tmpbuild static(R7,tuple,0)de�ne(R4,R7)haltL1: default(5) 40

Auxiliary Program movejCore PCNmovej(lb,j,s,a,L,R)int j,a[];f ? data(L), j >= lb, a[j] > s ! f ; j := j { 1, movej(lb,j,s,a,L,R) g,default ! R = []gAbstract Instructionsmovej/6: try(L1)data(R4)data(R0) % lbdata(R2) % sle(R0,R1)get element(R1,R3,R6)lt(R2,R6)put data(R7,1)sub(R1,R7,R8)copy mut(R8,R1)recurse(movej,6)L1: default(6)build static(R6,tuple,0)de�ne(R5,R6)halt
41

B.2 Partition: De�nitional Version IPCNpart(X,Y,L,R)f ? Y ?= [NjNs], X > N ! f jj L = [NjNs1], part(X,Ns,Ns1,R) g,Y ?= [NjNs], X � N ! f jj R = [NjNs1], part(X,Ns,L,Ns1) g,Y ?= [] ! f jj L = [], R = [] ggCore PCNpart(X,Y,L,R,Lc,Rc)f ? data(Lc), Y ?= [NjNs], X > N ! f jj L = [NjNs1], part(X,Ns,Ns1,R,Lc,Rc) g,data(Lc), Y ?= [NjNs], X � N ! f jj R = [NjNs1], part(X,Ns,L,Ns1,Lc,Rc) g,data(Lc), Y ?= [] ! f jj L = [], R = [], Rc = [] g,default ! Rc = []gAbstract Instructionspart/6: try(L1)data(R4)get tuple(R1,2,R6) % R6: N, R7: Nsdata(R0) % Xdata(R6) % Nlt(R6,R0)build def(R8) % Ns1build static(R9,tuple,2)put value(R6)put value(R8)de�ne(R2,R9) % L = [NjNs1]copy(R7,R1)copy(R8,R2)recurse(part,6)... etc ...
42

B.3 Partition: De�nitional Version IIAn alternative version that makes N mutable and hence performs snapshots.Core PCNpart(X,Y,L,R,Lc,Rc)int N;f ? data(Lc), Y ?= [NjNs], X > N ! f jj L = [NjNs1], part(X,Ns,Ns1,R,Lc,Rc) g,data(Lc), Y ?= [NjNs], X � N ! f jj R = [NjNs1], part(X,Ns,L,Ns1,Lc,Rc) g,data(Lc), Y ?= [] ! f jj L = [], R = [], Rc = [] g,default ! Rc = []gAbstract Instructionspart/6: build static(R12,int,1)try(L1)data(R4) % data(Lc)get tuple(R1,2,R6) % R6: N, R7: Nsdata(R0) % Xdata(R6) % Ncopy mut(R6,R12) % local copy of Nlt(R12,R0) % X > Nbuild static(R13,int,1)copy mut(R12,R13)build def(R8) % Ns1put tuple(R9,2)put value(R13)put value(R8)de�ne(R2,R9) % L = [NjNs1]copy(R7,R1)copy(R8,R2)execute(part,6)... etc ...
43

