
Utilities for Building and Optimizing aComputational Graph for AlgorithmicDecomposition�Christian BischofJames HuMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439MCS-TM-148January 1991Abstract. This document describes a utility to construct and evaluate an optimized execution graph from the tape�legenerated by the ADOL-C automatic di�erentiation software. It describes the format of the ADOL-C tape�le, the datastructures used in building and storing the graph, and the optimizations performed in transforming the computationtrace stored in the tape into an e�cient graph representation. In particular, we eliminate assignments, increasegranularity by \hoisting" chains of unary operations, and remove so-called dead roots { intermediate values that haveno inuence on the dependent. Examples show that the optimized graphs contain up to 50% fewer nodes than agraph that would be an exact analogue of the ADOL-C tape. We also describe an attempt at generating compiledcode for the graph evaluation as an alternative to interpretative approaches to evaluating the graph.1 ADOL-C and the Tape�le1.1 ADOL-CADOL-C [?] is a collection of utilities that, given a C program for the evaluation of a functionf : Rm ! Rn, can compute exact derivatives of arbitrary order in a fashion that is transparentto the user. Automatic di�erentiation in ADOL-C is based on the numerical use of the chainrule, in contrast to symbolic di�erentiation packages like MAPLE or REDUCE, or �nite di�erenceapproaches. An explanation of chain-rule based automatic di�erentiation can be found in [?].Given a C code for the computation of a function f and an input value xo, ADOL-C uses theoperator overloading of C++ to produce a trace of the elementary operations performed in computingf(xo). If f(x) = y, we call x the independent variables, and y the dependent variables. The operatoroverloading approach has the following advantages and drawbacks.Advantages:1. Only minimal modi�cations are required in the user program. Essentially one has toidentify the dependent variables, the dependent variables, and redeclare the types of allintermediates.�The work of the �rst author was supported by the Applied Mathematical Sciences subprogram of the O�ce ofEnergy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38. The second author was supportedthrough NSF Cooperative Agreement No. CCR-8809615.1

2. Subprograms are handled without di�culties.3. The trace produced by ADOL-C be used to compute derivatives dix f(xo) for arbitraryorder i.4. Both the forward and reverse mode can be employed to compute derivatives. The forwardand reverse mode of automatic di�erentiation are explained in detail in [?,?], but hereit su�ces to say, that in the forward mode we maintain at every intermediate valueits derivative with respect to the independent values, whereas in the reverse mode wemaintain the partial derivatives of the dependent values with respect to every intermediatevalue.Drawbacks:1. The tape is good only for a set of values in the neighborhood of xo. That is, if loopbounds change or di�erent branches of a conditional are taken, a new \tape" is needed.2. The size of the tape is proportional to the number of oating-point operations performed,so it can be rather large. It should be noted, however, that the ADOL-C utilities accessthe tape in a completely sequential fashion and that the RAM storage requirements area small multiple of the RAM requirements of the original code [?].3. Since only elementary arithmetic operations are overloaded, the structure of the userprogram is not reected in the tape. That is, if a subprogram g is called twice in thecourse of evaluation f(xo), the arithmetic operations performed in g will be recordedtwice on the tape.It should be noted that, except for the �rst point, the \drawbacks" are not an inherent limitation.1.2 The TapeADOL-C introduces the adouble data type for di�erentiable quantities. Usual C double vari-ables are treated as constants with respect to di�erentiation. For the adouble data type, ADOL-Ccurrently overloads the elementary arithmetic operations +, -, *, /, =, +=, -=, *=, /=; ele-mentary functions like cos, sin, exp, sqrt, and tan, and variable constructors and destructorsand provides a mechanism to exploit the fact that a user-de�ned function is de�ned as an integralf(x) = R g(t)dt. Whenever one of the elementary arithmetic operations or functions is executed, itis recorded on the tape.To hold the values of the intermediate values arising during the computation, ADOL-C employsa so-called live variable table which contains the values that are still needed at this point in thecomputation. Which intermediate values are needed is determined through the overloading of theC++ variable constructors and destructors. This should become clear with an example:adouble f(adouble x,adouble y, double z){ adouble t;t = x + y;if (2 * t > 2) {return(x*z) 2

} else {return(sqrt(z/x))} }Thus, for the purposes of di�erentiation, f computes a function from R2 into R (the parameter z isa constant with respect to di�erentiation since it is not an adouble). When we compute f(1; 2; 3),the following actions are `caught' by the operator overloading:x = 1; y = 2; z = 3;construct(t);construct(temp1); /* allocate a temporary */temp1 = x + y; t = temp1;destruct(temp1);construct(temp2);temp2 = 2 * t;destruct{temp2};construct{temp3}temp3 = z/x;temp3 = sqrt(temp3); /* temp3 is returned as function value */destruct(t); /* local variable dies when function exits */An easy way to allocate space for the recording of the computation would be to give every variable(whether compiler-allocated or user-declared) a unique index in an array of doubles where one wouldstore the value of the variable during the course of the computation. For this little example, wewould use eight \slots" corresponding to the eight ops and assignments being performed, and thetape would look as follows:Operation Code Result Input1 Input2 Constantassign independent 1 1.0assign independent 2 2.0assign double 3 3.0plus adouble adouble 4 1 2assign adouble 5 4mult adouble constant 6 5 2.0div constant adouble 7 1 3sqrt op 8 7assign dependent 8Here x, y, z, temp1, t, temp2, and temp3 have been allocated slots 1 { 7 in that order. Taperecord 7,for example, encodes the operation store[7] := store[1]/store[3], when store is thearray allocated for the storage of intermediate variables. The �rst column lists the operation code(see the Appendix), the second the entry in the live variable table indicating where to store theresult, the third the index of the �rst input, and the last the index of the second input or a constantvalue. 3

We note that in order to perform the reverse mode of automatic di�erentiation, we have tostore the numerical values of each intermediate quantity. This is easily done when we give eachintermediate quantity a unique index in the table holding intermediate values.One can, however, reduce the storage requirements for intermediate quantities, by exploiting thescoping information contained in the constructors and destructors. Loosely speaking, a \construct"call means that we need a new slot, and a \destruct" call means that we can reuse the slot that wasassigned the variable that is being destructed. Using this information, we can now get by with fourtable locations, since temp1, temp2, and temp3 can reuse the same storage location (store[5] inthis case). The tape then stores the following information:Operation Code Result Input1 Input2 constantassign independent 1 1.0assign independent 2 2.0assign double 3 3.0plus adouble adouble 5 1 2assign adouble 4 5death notice 5mult adouble constant 5 4 2.0death notice 5div constant adouble 5 1 3sqrt op 5 5assign dependent 5A \death notice" indicates that this slot can be reused. In ADOL-C it also has the side e�ect ofstoring the value of this temporary onto an auxiliary tape of \death values" so that we can restorethe value that was stored in a given slot when the corresponding variable died, and perform thereverse mode of automatic di�erentiation. Experience has shown that this technique usually reducesthe size of the table for storing intermediate quantities to about 10% of the number of oating-pointoperations performed. The length of the tapes storing the operations and the death values is stillproportional to the number of oating-point operations, but the tapes are accessed in a completelysequential fashion and can hence be stored out of core, whereas the table of variables currently in usehas to be in RAM storage. Let us then introduce the following terminology: A \live" variable (whichis being stored in the live variable table) corresponds to a value that may be an input argumentto another arithmetic operation later on, whereas a \dead" variable (whose slot in the live variabletable can be reused) will not be used any more in any further operations.1.3 Format of the ADOL-C TapeThe exact format of the operation trace tape is as follows: The �rst eight �elds contain integersprinted in ASCII format in 10 bytes each (see macro LENGTH TAPEHEAD ENTRY in macros.h)denoting the following information:1. the number of times the internal tape bu�er was dumped to �le,2. the number of independent variables, 4

3. the number of dependent variables,4. the size of the internal bu�er used for writing to the �le,5. the maximum number of live variables,6. the length of the tape in bytes,7. the total number of operations recorded (not counting death notices), and8. the number of nodes destroyed (while building the live variable table).When generating the tape, ADOL-C bu�ers output to the �le to speed up I/O handling.To save space, the rest of the tape is stored in binary format and hence is readable only on themachine that generated it. Each tape entry consists of three parts:1. An opcode. The C type for this entry is optype.2. A variable length record, containing the information needed for this opcode. The C type forthis entry is union type t_type_record, de�ned in readtape.h.3. The length of the variable length record. The type for this entry is rlentype.For example, the record for an immediate operator (i.e., x += y) involving another adouble isstruct a_same_arg {locint result,loc_1;};containing the index of x and y in the live variable table. A special type locint (usually de�ned tobe a short int) is used to identify locations in the live variable table. All the various structurescorresponding to the various operations are de�ned in template.h. The Appendix lists whichopcodes correspond to which tape entry types. Some types that are not obvious are as follows:Death Notices: struct death_not_rec {locint loc_1,loc_2;};To avoid cluttering up the tape with death notices whenever a variable goes out of scope, adeath notice is only generated when a certain number of variables in contiguous life variablelocations (from location loc_1 up to including loc_2, where loc_2 is the highest currentlyused slot) have died. Thus, the live variable table behaves like a stack, in that we add anddelete live variables only on the top.Quadrature Functions: struct quadrature {locint result;double r_val;locint old_loc;locint deriv_loc; 5

Figure 1: Graph Representation of x+=y};As mentioned before, the derivative of a function f(x) = R xa g(t)dt is easy to compute: it issimply g(x). For example, arctan(x) = R x0 11+x2 , and So ddx arctan(x)jx=xo = 11+x2o . The �eldsin the quadrature record have the following meaning:result: live variable slot where f(xo) is stored.r val: f(xo). We have to store f(xo) with the record, because f(xo) will be computed withsome numerical quadrature routine and when we read the tape in the forward mode, wehave to be able to restore the value at an intermediate quantity (but we may not haveaccess to the quadrature routine any more).old loc: slot where xo is stored.deriv loc: deriv loc is the live variable slot where g(xo) is stored. In computing the deriva-tives, we have to evaluate g(xo), so there will be records on the tape to do just that.2 Building the Execution GraphIn the execution graph, each node corresponds to some intermediate value computed during theexecution of the program to compute f(xo). A graph node represents both an operation and thevalue that is the result of performing that operation with the given input values. We say that nodec is a \child" of node p, if the value computed at c is an input value to the operation performedat p; p is called the \parent" of c. Since all operations are at most binary, each node has at mosttwo children, but may have many parents. The computational graph is acyclic, with the leavesrepresenting the independent variables and the roots representing the dependent variables.It is important to understand that a node in the computational graph represents a value, nota storage location. For example, the operation x+=y will be translated into the graph shown inFigure ??. The child node labeled x represents the value in storage location x before the addition;the parent node labeled x represents the value in storage location x after the addition has beenperformed.We can draw an analogy between ADOL-C's live variables and our graph nodes as follows: AnADOL-C store location is alive if its value may still be read as an input to another operation; thiscorresponds to the graph node that may still acquire parents. When a store location dies, its valuewill not be used any more; this corresponds to a graph node who will not acquire any more parents.6

2.1 Overall FrameworkThe overall framework for building and representing the computational graph is shown in Fig-ure ??. We have three main components:Live Node Table: Each entry in this table points to a \live"graph node, that is, a node that maystill acquire parents as nodes still to be constructed use its value as input. Further, each entrypoints to a linked list of (opcode,constant) pairs. While on the ADOL-C tape each tape entrycorresponds exactly to one operation, we will perform an operation called \hoisting" (see x??)which may associate a chain of operations with an opcode.Node, Opcode, and Parent Pointer Blocks: In order to minimize memory requirements andmemory fragmentation, the graph structure is stored in three separate arrays. The nodestorage blocks store the core node structure t node, described in more detail below. Theopcode block stores (opcode,constant) pairs, and the parent pointer blocks store pointers toparents. Both opcode structures and parent addresses are stored consecutively for maximummemory usage.Node Freelist: Nodes identi�ed as dead roots (i.e, they have no inuence on the values of thedependent variables, see x??) are removed from the graph by hoisting them into other nodes(see x??). As a result, the corresponding slot in a node storage block can be reused, and itsaddress will be put on the freelist. The freelist is a stack implemented as a doubly-linked listof �xed-sized arrays. All stack operations can be performed in constant time, and the stackcan grow as needed.The rationale for this setup was both to minimize memory fragmentation and to exploit thelocality that the creation of graph nodes is likely to exhibit. In other words, we wished to store theinformation pertaining to neighboring nodes close together in memory.When we read a new record from the tape, we write out the graph node corresponding to the livevariable slot that is being reused, and construct a new graph node that will be hooked up to thatslot. For example, when we read the record corresponding to store[2] := store[6] + store[7],we know that the value represented by the node (a, say) hanging o� location 2 in the live nodetable (call this location live[2]), will not be used any more. This situation is shown in Figure ??.We copy the opcode list of node a into the opcode storage array (the opcode �elds in the opcodelist hanging o� live[2] are set to UNUSED, indicated by NOP in the �gure, so that they can bereused). (At this point we could try to perform some optimizations on node a; We return to thissubject later.) We then allocate a new graph node (d, say), hook it up to live[2], copy its opcodeinto the opcode list o� live[2], and make the nodes b and c pointed to by live[6] and live[7] thechildren of the new node. This is shown in Figure ??. Assignments between adoubles (as recordedwith the assign_a opcode) are a special case, in that there is no reason to explicitly represent themin our graph. For example, an assignment of the form store[4] := store[7] can be representedby having store[4] point to the same node as store[7]. While this saves us storage, it createscomplications when we wish to remove superuous nodes. For example, if the value in store[7]on the ADOL-C tape had no inuence on the dependent variables, we would assume that we canremove the node o� live[7] at the point when store[7] is reused. But this is the case only whenthere is no live node entry pointing to the node currently pointed to by store[7]. Otherwise the7

Opcode Storage

Parent Pointer Storage Free Node List

Node StorageLive Node
Table

Opcode Linked List

(storage of both active and completed nodes)

Live
Node

Completed

Free
Slot

Node

Figure 2: Implementation of Computational Graph8

Figure 3: Situation before Inserting a New Node in Location 2
a

d

cb

Opcode Storage

2

6

7

Live Node Table

NOPa+a

Figure 4: Situation after Inserting a New Node in Location 29

t = a+b;
z = a*t;
y = t/b;

z y

a b

* /

+

+

ba

t

* /

=

Figure 5: Sample Code Fragment and its Representation with and without Assignment Nodesremoval of this node will create a dangling pointer. To avoid this problem, we associate a referencecounter with every node, and we remove a node only when the reference counter indicates that thereis only one live node still pointing to this node. Removing assignments does reduce the size of thegraph that ultimately has to be represented. An example is shown in Figure ??.In transforming the ADOL-C tape into a computational graph, we also exploit simple mathe-matical facts to reduce the number of opcodes that we will have to deal with later. For example, wehave no div_a_d opcode denoting a division of an adouble by a constant. Since we store constantsdirectly with the opcodes, we can represent this operation as a mult_a_d opcode (multiplication ofan adouble with a constant) and store the reciprocal of the constant. These transformations reducesthe number of opcodes from 40 to 19 and greatly simpli�es the further system design.Currently we also do not take into account the special structure of quadrature opcodes. Wesimply store them as unary operations, with live[result] being the parent of live[old_loc].The subtree for the computation of the integrand that is hanging o� live[deriv_loc] will later beremoved as a spurious root.Uninitialized variables create problems with building the graph, in the sense that if store[2] isan uninitialized variable, then live[2] does not point to any node, but nonetheless it can happenthat in the user program this value is used as input for a later operation. If such a situation occurs,we call the routine bogus_node, which allocates a node, its value initialized to 0, and prints an errormessage, but allows the construction of the graph to continue.10

2.2 Graph Data StructureThe data structure representing a graph node is as follows:typedef struct node_type {unsigned int visited:1; /* flag to mark during a traversal */unsigned int id; /* unique identifier */struct node_type *left; /* pointer to left child */struct node_type *right; /* pointer to right child */unsigned int num_parents; /* number of parents */unsigned int num_opcodes; /* number of opcodes */unsigned int height; /* max distance from a leaf */union {unsigned int blink; /* back link to table entry */unsigned int slot; /* index in array of intermediate values duringserial evaluation */} b;union {unsigned int aliascount; /* number of aliases to a node */unsigned int depth; /* max distance from a root */} d;union {struct node_type **upptr; /* pointer to array of parents */struct node_type *parent; /* pointer to last referenced parent */} p;union {t_op opdef; /* a single operation */t_op *opptr; /* an array of operations */} o;} t_node;The �elds have the following signi�cance:visited: A Boolean ag used during graph traversals.id: A unique integer number identifying this node in the range from 0 to (total number of nodes -1); used in debugging.left, right: Pointer to left and right child, UNUSED if no such child exists. By convention, a unaryoperator has right==UNUSED.num parents: The number of parents.num opcodes: The number of arithmetic operations represented by this node.height: The maximal distance from a root.Union structures are used to allow for space sharing between variables that will never be used atthe same time. Fields used in `live' nodes (i.e. nodes that are still hanging o� the live table) are11

blink: If this node is pointed to by live[i], then blink == i. If this graph node is completed,blink == UNUSED.aliascount: If this node is pointed to from k entries, then aliascount == k-1.parent: This is a pointer to the last parent of this node. In particular, this will be THE parent ifthe node had only one parent (this is important for hoisting).Fields used in completed nodes areslot: The slot in the storage area that this node will be evaluated in; de�ned in live_analysis(see x3.1).depth: The maximal distance from a root.upptr, parent: If a node has only one parent, its address is stored directly in parent. If a nodehas more parents, upptr points to the address in a parent storage block where the parents arestored in consecutive order.opdef, opptr : If a node represents only one operation, it is stored directly in opdef. Other-wise, opptr points to the address in an opcode storage block where the opcodes are stored inconsecutive order.The core data structure representing the graph is as follows:typedef struct graph_type {/**** core structure ****/t_nodelist *roots; /* linked list of nodes that are roots */t_nodelist *rootcur; /* root list cursor (points to the end of the list) */t_nodelist *leaves; /* linked list of nodes that are leaves */t_nodelist *leafcur; /* leaf list cursor (points to the end of the list) */unsigned int max_live; /* max number of live variables */unsigned int slot; /* storage slot in our storage allocation scheme */unsigned int num_roots; /* number of dependent variables */unsigned int num_leaves; /* number of independent variables */unsigned int num_nodes; /* number of nodes in the graph *//**** for statistics ****/unsigned int num_opcodes; /* total number of opcodes encountered *//* (not counting assignments) */unsigned int num_assign; /* number of assignments encountered */unsigned int num_hoisted; /* number of nodes that have been hoisted */unsigned int num_deleted; /* number of nodes that were dead roots */struct {int *hoists;int *parents;int *children;} histogram;unsigned int n_size; /* memory (in bytes) used by node_blocks */unsigned int o_size; /* memory (in bytes) used by op_blocks */12

Figure 6: Sample Code Fragment and its Graph Representation before and after Hoistingunsigned int p_size; /* memory (in bytes) used by parent blocks *//**** for debugging ****/t_node **lookup; /* lookup array for the nodes */} t_graph;In the histogram structure, and the lookup pointer. hoists[i] contains the number of nodesthat represent i+1 operations, parents[i] contains the number of nodes having i parents, andchildren[i] contains the number of nodes having i children. lookup points to a table that, giventhe identi�er number of a node, returns its address.2.3 HoistingWe already mentioned that assignments are not represented as nodes in our computational graph.Another optimization we perform is that we collapse chains of unary operations into one node, anoperation that we call hoisting. As is depicted in Figure ??, hoisting allows us to represent a chainof unary operations much more succinctly. Instead of using �ve graph nodes with one opcode each,we represent this chain of operations in one graph node with �ve opcodes. Apart from savingmemory, this operation increases the granularity of the graph in that more oating-point operationsare associated with the evaluation of that particular graph node.We can hoist a particular node n when its location in the live table is to be overwritten andthe following conditions are all true:� n has exactly one parent. 13

� We still have the address of the parent of n. This may not be the case for the following reason:Assume that n had two parents, p1 and p2, and that p2 was the last parent added to n. Sop.parent in n contains the address of p2. Then we remove p2 because it is a spurious root,decrementing n's parent counter, and setting p.parent to NULL in n, since this parent wasremoved. We would have to traverse the graph in order to �nd out that p1 is the remainingparent of n, since we store only child pointers when we build the graph, and we considered thepotential payo� not worth the e�ort. As a result we may not perform some hoists that wouldhave been made possible through a dead root removal.� The parent of n does not represent a dependent variable. These nodes represent the outputvalues of the graph, and we wished to keep them uniform.� n's reference count indicates that only one link is pointing to this node. If more than onepointer is pointing to n, it could still be used as an input value later on, and removing it wouldcreate a dangling pointer.� n is not a leaf. Most leaves represent independent variables (the other alternative is constantinitializations) and are pointed to from the leaf list. Hoisting them would create danglingpointers (unless we would update the leaf list, which we chose not to do).� n's parent has only one child. We cannot hoist into a binary operation.� The parent is still alive. Live nodes have their opcodes in a linked list that hangs o� thelive node table, and so it is no problem inserting new opcodes. Completed nodes have theiropcodes stored either in the node (if they only have one opcode), or in an array of �xed size,so we cannot easily insert a new opcode. If we wished to hoist into that node, we would haveto �nd more space for the expanded opcode list, which we could do by copying it to the end,but again we considered this an unnecessary complication.The mechanism is easiest to understand with an example as shown in Figure ??. Assume thatthe operation we read o� the tape is a binary operation, e.g., store[3] = store[8] - store[10].We then generate a new node new to represent this operation and have its children pointers pointto the nodes o� live[8] and live[10]. For the nodes o� live[8] and live[10], we make theirparent pointer point to new.Before having live[3] point to new, we check node n (which is about to be unlinked fromlive[3]) for hoistability. Now assume that the node n currently pointed to by live[3] is hoistableinto node p as is shown in the left half of Figure ??. Hoisting involves updating p's children pointers,updating the number of children p has, splicing n's opcode list in at the beginning of p's opcode list,increasing p's opcode count, and updating the parent pointer for n's children (since they now havep instead of n as a parent). Thereafter n can be removed; that is, its address in a node storage areawill be put on the free list. Lastly, we connect new to live[3]. The resulting situation is shown onthe right side of Figure ??.The situation may be more complicated with unary operators since the new node that is beinggenerated can be the parent of the node to be hoisted (this cannot happen for binary operators sincewe will never hoist into a binary node). For example, assume that we read store[3] = store[3] * 2.0o� the ADOL-C tape. We create a new node new to represent the new operation, and make its left14

Figure 7: Normal Hoisting Processchild pointer point to the node pointed to by live[3] (call it n, say), and set n's parent pointerto new. This situation is shown on the left side of Figure ??. Now we want to hoist n into new.Since new is not installed in the live node table yet, it does not have an opcode list yet, so in thiscase we insert the opcode corresponding to new at the end of n's opcode list, and then proceed asin the case for the hoisting of a binary node. The resulting situation is shown on the right half ofFigure ??.2.4 Dead Root RemovalAnother optimization that we perform is the removal of \dead roots", which are nodes whosevalue has no inuence on the dependent variables. Most commonly, those nodes arise as a by-productof the evaluation of some control ow condition. As with hoisting, this optimization is tried when anode is about to be unhooked from the live node table.A node can be removed from the graph with impunity if the following conditions are met:� It does not have any parents.� Only one live variable entry is pointing to it.� It does not represent a dependent variable.� It is not a leaf. The last condition ensures that we do not remove independent variables thatare not used in the course of the computation (a more common occurrence than one wouldthink).If a node is a dead root, then we recursively descend to the nodes that are reachable from it,and remove all those completed children that have become dead roots themselves. If children are15

Figure 8: Special Case in Hoisting Unary Nodes
b

a

dead root

Figure 9: Removal of dead roots16

not completed yet (i.e., they are still pointed to from the live table), we quit, since they may stillacquire parents. If a node n is removed, we also set the parent pointer in its children to NULL ifit had pointed to n before. An example is given in Figure ??, where the removal of dead root atriggers the removal of node b. Note that dead root removal is oblivious to the number of opcodesassociated with a node; that is, supernodes are removed in the same fashion as normal nodes.3 Related UtilitiesIn addition, we provided some utilities for evaluating the function de�ned by the computationalgraph, generate C code for evaluating the function, and to print out the graph structure for debuggingpurposes.3.1 A Storage Allocation SchemeTo evaluate the function represented by the graph, we must allocate storage slots to the valuesrepresented by the graph nodes. The simplest procedure, of course, is to allocate a storage slot forevery graph node, but we tried to do better. Our goal was to divide the graph into several levels,such that for all nodes the level of a child was less than the level of a parent. If all nodes on alevel have di�erent storage slots assigned to them, the following schedule will compute the functioncorrectly:for i = 1 to max level doevaluate all nodes on level i (in any order)end forThe live_analysis routine implements an attempt to reuse storage slots while assigning themin such a way that the level scheme above works. Our approach is implemented using a double stackscheme:put leaves on stack1for current level = 0 to max level dowhile (stack1 is not empty) dopop a node n from the stack1if (level(n) == current level) thenassign a storage slot to npush all unvisited children of n on stack2and mark them as visitedelsepush n on stack2end ifend whilestack1 $ stack 2end forTo determine when we can reuse storage slot k (say) that was assigned to a node n (say), wekeep track of how many of n's parents have been assigned a slot. Once the last parent of n has been17

assigned a slot, we can reuse n's slot since its value will not be needed any more. It should be notedthat we can reuse n's slot only at the next level, since we do not want to assume any particular orderin the evaluation of the nodes on the same level.There are several possibilities to de�ne the \level" of a node in a fashion that is consistent withthe child-parent partial ordering of the nodes. In the absence of any superior alternative, we chosethe height of a node to de�ne its level. The height of a node is de�ned in the routine node_height,so one could easily try out new numbering schemes.3.2 A Code Building UtilityTo test the validity of our storage allocation scheme and to get a feeling for how much overheadwe encur when evaluating the tape in an interpretative fashion, we implemented a routine calledbuildcode which prints out C code to compute f(xo). Code for statements is written out by levels,with the storage locations determined by the live variable analysis described above. An example isgiven in Figure ??. The code in (a) yields the graph shown in (b). The generated code in (c) thenresults when the node levels are de�ned by heights.We then used this code to develop a parallel execution schedule by placing the statements ateach level into a parallel do-loop and putting a barrier synchronization point between each level.3.3 Debugging UtilitiesTo help in debugging our codes, we implemented a utility that, given the unique number node->idthat we assigned a graph node, prints out the subgraph that has this node as root. It also allows oneto print information stored in subnodes. Another useful utility is the eval_graph routine, whichevaluates the graph serially, using the storage locations determined by the scheme described in x??.If eval_graph computes the same function value f(xo) as ADOL-C, then we have a rather highdegree of con�dence that our graph structure and storage allocation scheme are correct.4 Experimental ResultsIn this section we report on experimental results that we obtained by applying our graph gen-eration, transformation, and evaluation utilities to ADOL-C tapes generated for the following threeapplication codes:Shallow: This code solves the shallow-water equation to simulate the development of the atmo-sphere in a rectangular region. We had 243 independent variables, corresponding to an initialstate de�ned by a 9� 9 grid with 3 variables at each node. Starting from this initial state, weintegrated over 31 time steps. There is only one dependent variable, corresponding to the sumof squares between the measured and computationally predicted values.Bratu: Bratu is a PDE model of the exothermic reaction in a section of a cylindrical combustionchamber. The code assumes radial symmetry and converts the problem to a two-dimensionalgrid with mixed boundary conditions. These results were obtained with a 40� 80 grid of thechamber section, yielding 3,200 independent variables and 3,200 dependent variables.18

printf("root(%d) = %e;\n", 1, root[0]);

do_level_0();
do_level_1();
do_level_2();
do_level_3();

(c)

(b)

(a)

}
root[0] = t[0];
void do_level_3() {

}
t[0] = exp(r_plus(t[1], t[2]));
void do_level_2() {

}
t[2] = cos(t[0]);
t[1] = r_plus(1.0, t[0]);
void do_level_1() {

}
t[0] = 1.5;
void do_level_0() {

}

int main() {

double root[1];
double t[3];

#define r_divide(x, y) ((x) / (y))
#define r_times(x, y) ((x) * (y))
#define r_minus(x, y) ((x) - (y))
#define r_plus(x, y) ((x) + (y))

#include <stdio.h>
#include <math.h>

=

+,exp

cos1+

1.5=

y = t3;
t3 = exp(t2);
t2 += t1;
t2 = cos(x);
t1 = 1 + x;
x = 1.5;

Figure 10: A Code Generation Example19

Cavity: This problem is a discretization of an incompressible Navier-Stokes equation in a rectanglewith constant uid ow over one end of the rectangle. The rectangle is represented as a 31 x31 grid, yielding 961 independent variables and 961 dependent variables.4.1 ADOL-C Tape StatisticsTable ?? contains some statistics on the tape�les as they were produced by ADOL-C, version 1.0.For each problem, we show how many instances of an operation were on the tape, what percentageof the total number of operations this corresponded to, how much storage (in bytes) operations ofthis type consumed, and what percentage of the total storage required for the tape this correspondsto. \Death notices" are not shown in this statistic. For \Shallow", we had 29,131 death notices; for\Bratu", 25459; and for \Cavity",12628; each death notice required 10 bytes on the tape. Togetherwith the storage for the opcodes, shown in the \Totals" row of Table ??, the total storage requiredfor \Shallow" is 4.1 Mbytes; for \Bratu", 3.4 Mbytes, and for \Cavity", 1.8 Mbytes. In contrast,the RAM requirements, determined by the maximum number of live variable, were rather modest.The maximum number of live variables was 18,365 for \Shallow"; 6,413 for \Bratu"; and 2,355 for\Cavity". These results correspond to 6.5%, 2.6%, and 1.6% of the numbers of operations performed.4.2 E�ect of the Graph OptimizationsIn transforming the ADOL-C tape into a computational graph, we performed the three types ofoptimization previously described:Assignment Removal: We deleted nodes containing the assign_a opcode by aliasing nodes throughpointers and keeping reference counts.Hoisting: We collapsed chains of operations into supernodes.Dead Root Removal: We eliminated nodes whose values had no inuence on the �nal results.In Table ?? we show the e�ect of those optimizations. We display the total number of operationsstored in the original ADOL-C tape, the number of assignments removed, the number of opcodesdeleted as a result of dead root removal, the number of opcodes remaining in the �nal graph thathave been amalgamated into a supernode as a result of our hoisting operation, and the remainingnumber of nodes in the optimized graph. We show both absolute and relative values. We shouldalso note that the dead root elimination process did remove quite a few supernodes as well. Forexample, in \Cavity", we deleted 3,850 nodes, but eliminated 13,732 opcodes. We see that ouroptimizations have quite a noticeable e�ect. Between removing assign_a opcodes and dead roots,we eliminate 35.0%, 13.8%, and 45.9% of the operations to be performed. For emphasis these dataare listed again in Table ??, where we show the number of opcodes in the optimized graph, thenumber of bytes that would be required to encode the optimized graph as an ADOL-C tape, andthe percentage savings that this represents compared to the original ADOL-C operation count andstorage requirements. Since the graph-building optimizations are applied on the y, and employADOL-C's live variable analysis, these results suggest the use of on-the-y assignment elimination20

Table 1: Statistics of Original ADOL-C TapeShallowopcode # operations % operations # bytes % bytesassign ind 3483 1.2 20898 0.5assign dep 1 0.0 6 0.0assign a 61236 21.7 612360 15.9assign d 7955 2.8 143190 3.7eq plus a 24984 8.9 249840 6.5plus a a 43062 15.3 602868 15.7plus a d 10890 3.9 196020 5.1min a a 30537 10.8 427518 11.1mult a a 50823 18.0 711522 18.5mult a d 48834 17.3 879012 22.9Totals 281805 100.0 3843234 100.0Bratuopcode # operations % operations # bytes % bytesassign ind 3200 1.4 19200 0.6assign dep 3200 1.4 19200 0.6assign a 30578 13.8 305780 9.6eq plus a 24178 10.9 241780 7.6plus a a 36267 16.4 507738 16.0plus a d 12089 5.5 217602 6.8mult a a 12089 7 5.5 169246 5.3mult a d 75734 34.1 1363212 42.8div d a 12089 5.5 217602 6.8exp op 12089 5.5 120890 3.8Totals 246972 100.0 3182250 100.0Cavityopcode # operations % operations # bytes % bytesassign ind 961 0.7 5766 0.3assign dep 961 0.7 5766 0.3assign a 49139 35.9 491390 27.9assign d 6284 4.6 87976 5.0plus a a 19220 14.0 269080 15.3plus a d 4933 3.6 88794 5.0min a a 34976 25.5 489664 27.8min d a 961 0.7 17298 1.0mult a a 11532 8.4 161448 9.2mult a d 8072 5.9 145296 8.2Totals 149667 100.0 1762478 100.021

Table 2: E�ect of Graph OptimizationsShallow Number PercentADOL-C tape operations 281805 100.0assign a opcodes 61236 21.7dead opcodes 37390 13.3hoisted opcodes 29694 10.5graph nodes 153485 54.5Bratu Number PercentADOL-C tape operations 221513 100.0assign a opcodes 30578 13.8dead opcodes 0 0.0hoisted opcodes 48356 21.8graph nodes 142579 64.4Cavity Number PercentADOL-C tape operations 137039 100.0assign a opcodes 49139 35.9dead opcodes 13732 10.0hoisted opcodes 6144 4.5graph nodes 68024 49.6Table 3: Statistics of ADOL-C Tape Generated from Optimized GraphShallow Bratu Cavitynumber of opcodes 183179 190935 74168% savings compared to ADOL-C opcodes 34.9 14.1 46.0tape storage (bytes) 2703106 2876470 1063928% savings compared to ADOL-C storage 29.7 9.3 39.822

Table 4: Number of Opcodes per Graph Node# opcodes/node Shallow Bratu Cavity1 123791 (80.65%) 118401 (83.04%) 62008 (91.16%)2 29694 (19.35%) - 5890 (3.84%)3 - 24178 (16.96%) 124 (0.08%)4 - - 2 (<0.01%)Table 5: Compiled Graph Evaluation Code Scheduled by Height of Nodes# processors serial 1 2 4 6 8execution time (secs) 0.80 0.97 0.57 0.58 0.54 0.6and dead root elimination in the construction of the ADOL-C tape�le itself in order to reduce boththe execution time for evaluating the tape and the storage required to create it.The storage requirements for our graph and computational granularity are then further improvedby hoisting. The size of the graph nodes is displayed in more detail in Table ??. We see that inthe cases tested our supernodes usually have 2 or 3 opcodes and that the distribution is ratherproblem-dependent.4.3 Generating Compiled Code from the Execution GraphWe tested our code building and parallel execution utility on the \Cavity"problem. For thepurpose of parallel scheduling, we de�ned the level of a node by its height. All the nodes at a givenheight were then assigned to parallel processes in batches of 1000. So if we had 4,500 nodes, wegenerated �ve parallel processes; if we had 500 nodes, we generated only one process. Altogetherwe generated 67,924 lines of C-code, and we required 47,727 intermediate storage locations. Wecompiled this code on the Sequent Symmetry and obtained the (rather disappointing) results shownin Table ??. We see that the parallel code hardly does much better than the serial version. Themain reason is that our execution schedule is rather unbalanced, as is shown by Figure ?? whichshows the node-height distribution. As can be seen, the scope for exploiting parallelism within agiven height is rather limited. Most of the time we have fewer than 3,000 nodes for a given leveland cannot sensibly use more than three processes. It also turns out that our code is severely I/Obound. Each line of code is executed only once, so it takes rather long to fetch instructions frommemory onto the chip. In particular, there is no locality of reference in the instruction cache.AcknowledgmentsWe thank Andreas Griewank and Shawn Reese for many helpful discussions. We also thank TedGaunt for his help in gathering and evaluating the statistics.23

0

2000

4000

-2 0 2 4 6 8 10 12 14 16

height of node

Figure 11: Level Distribution of `Cavity' GraphReferences[1] Christian Bischof, Andreas Griewank, and David Juedes. Exploiting parallelism in automaticdi�erentiation. Preprint MCS-P204-0191, Argonne National Laboratory, Mathematics and Com-puter Sciences Division, 1991.[2] Andreas Griewank. On automatic di�erentiation. In Mathematical Programming: Recent Devel-opments and Applications, pages 83{108. Kluwer Academic Publishers, 1989.[3] Andreas Griewank, David Juedes, and Jay Srinivasan. ADOL-C, a package for the automaticdi�erentiation of algorithms written in C/C++. Preprint MCS-P180-1190, Argonne NationalLaboratory, Mathematics and Computer Sciences Division, 1990.Appendix: ADOL-C opcodesThis appendix lists the di�erent opcodes (de�ned in opcode.h) and the name of the tape structure(de�ned in template.h) that is used for this opcode.Assignment operators:opcode assign ind (structure d assign rec): Assignment to an independent variableopcode assign dep (structure dep assign rec): Assignment to a dependent variable24

opcode assign a (structure a assign rec): adouble := adoubleopcode assign d (structure d assign rec): adouble := constantElementary Arithmetic Operations:Immediate Assignment Operators:Opcodes of the form eq op type, where op 2 fplus, min, mult, divg and type 2fd, ag, corresponding to a constant (double), or adouble argument. The tape struc-tures used are a same arg when the second argument is an adouble, and d same argwhen the second argument is a constant.Binary Operators:Opcodes of the form op type1 type2, where op 2 fplus, min, mult, divg and type1, type2 2fd, a, ig, corresponding to a constant (double, adouble, or integer) argument. Thetape structures used are two a rec for a binary operation involving two adoubles, andargs i a, args a i, args a d, args d a depending on the type of the arguments.Elementary Functions (structure single op):Opcodes exp op, log op, sin op, cos op, tan op, sqrt op, corresponding to ex, log(x),sin(x), cos(x), tan(x), and px, respectively.Quadrature Functions (structure quadrature):Elementary Quadrature Functions: Opcodes atan op, asin op, acos op, correspond-ing to arctan; arcsin; arccos, respectively.User-supplied Quadrature Functions: Opcode gen quad denotes a user-supplied quadra-ture function.Death Notice (structure death not rec) Opcode death not.Padding: opcode ignore me corresponds to a record of type padtype. Padding records are neededto �ll up the remaining bytes in the tape bu�ers before writing them out, and for properlyaligning structures on word boundaries.
25

