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User Guide for the MINPACK-2 Test Problem CollectionbyBrett M. Averick and Jorge J. Mor�e
ABSTRACTThe Army High Performance Computing Research Center at the University of Minnesotaand the Mathematics and Computer Science Division at Argonne National Laboratory arecollaborating on the development of the software package MINPACK-2. As part of theMINPACK-2 project we are developing a collection of signi�cant optimization problemsto serve as test problems for the package. This report describes the software associatedwith the preliminary version of the MINPACK-2 test problem collection. The discussioncenters on the description of subroutine parameters, but additional information on theimplementation of these subroutines is also provided. The information in this report shouldbe su�cient to use these subroutines for testing and evaluating software.



1 IntroductionThis report describes software associated with the preliminary version of the MINPACK-2test problem collection. The discussion centers on the description of subroutine parameters,but additional information on the implementation of these subroutines is also provided.The information in this report should be su�cient to use these subroutines for testing andevaluating software.Averick, Carter, and Mor�e [1] describe the preliminary version of the MINPACK-2test problem collection. This reference should be consulted for information on problemformulation and for additional details on the relationship between the subroutine parametersand the original problem.The problems contained in the current version of the test problem collection fall intothree categories:1. Systems of Nonlinear Equations.2. Nonlinear Least Squares.3. Minimization.For systems of nonlinear equations and nonlinear least squares problems, code is supplied forthe evaluation of the vector-valued functions and the Jacobian matrices; for minimizationproblems, code is supplied for the evaluation of the functions and the gradients. In addition,if lower or upper bounds are part of the problem formulation, code is supplied for theevaluation of the bounds.These subroutines were written to be easily read and understood. More e�cient imple-mentations that take advantage of high-performance architectures are possible. Note thatthere is no checking of input parameters in these subroutines. The information providedin this report should be su�cient to use these subroutines safely, but the user should readthe documentation within each subroutine for additional information. Particular attentionshould be paid to problem dimension parameters.Code listings for the double precision version of these subroutines can be found in theappendix. Single precision versions of these subroutines are also available. Either versioncan be obtained by sending email toaverick@mcs.anl.govand specifying which version is desired. Comments on these subroutines or suggestions foradditional problems can also be sent to this address.1



2 Systems of Nonlinear EquationsThe subroutines described in this section de�ne systems of nonlinear equations of the formf(x) = 0; xl � x � xu;where f : <n ! <n de�nes the residuals, and xl, xu are bounds on the solution. The actionof the subroutines depends on the character variable task as follows:Evaluate the function if task = 'F'.Evaluate the Jacobian matrix if task = 'J'.Evaluate the function and the Jacobian matrix if task = 'FJ'.Evaluate the standard starting point xs if task = 'XS'.Evaluate the lower bound xl if task = 'XL'.Evaluate the upper bound xu if task = 'XU'.The function value is returned in the array fvec, the Jacobian matrix is returned in thearray fjac (with leading dimension ldfjac), and the starting point xs and bounds xl, xuare returned in the array x.Problems 2.1 and 2.2 arise in the discretization of systems of boundary value problemsin one spatial dimension by a k-stage collocation method. If boundary conditions are givenat t = a and t = b, and a = t1 < t2 < � � �< tn0 < tn0+1 = bis a partitioning of [a; b] into n0 subintervals, the collocation method approximates thesolution to a system of p boundary value problems by a vector-valued piecewise polynomialfunction u� : [a; b]! <p. The use of the collocation method leads to a system of nonlinearequations. An advantage of the implementation of the collocation method used in thesetest problems is that if ms is the order of the s-th boundary value problem, then the s-thcomponent of u(j�1)� (ti); 1 � i � n0; 1 � j � ms;is directly available from the solution vector to the system of nonlinear equations. The s-thcomponent of u(j�1)� (ti) is stored in the �p(i� 1) + �s�1 + j location of the array x, where�r = rk+ rXl=1ml:This information is useful for obtaining plots of the j-th derivative of the s-th componentof u� . If the variable nint is the number n0 of subintervals, and the variables n1 and n2contain �p and �s�1, respectively, then the pseudo-code2



do i = 1, nintv(i) = x((i-1)n1+n2+j)end dostores in the array v the value of the s-th component of u(j�1)� (ti). Given the array v,standard plotting subroutines can be used to obtain plots of u(j�1)� .2.1 Flow in a ChannelThe subroutinedflow(n,x,fvec,fjac,ldfjac,task,r,nint)de�nes the ow in a channel problem. The parameter r is the Reynolds number R andmust be positive. The parameter nint is the number n0 of subintervals in the collocationmethod used to discretize the boundary value problem. The user must provide a positivevalue of nint and set n = 8*nint.The tangential velocity u0 is of interest in this problem. Plots of the tangential velocitycan be obtained by noting that u0(ti), 1 � i � n0, is stored in location 8(i� 1) + 2 of thearray x.2.2 Swirling FlowThe subroutinedswrl3(n,x,fvec,fjac,ldfjac,task,eps,nint)de�nes the swirling ow problem. The parameter eps is the viscosity parameter � and mustbe positive. The parameter nint is the number n0 of subintervals in the collocation methodused to discretize the boundary value problem. The user must provide a positive value ofnint and set n = 14*nint.The radial velocity f 0 and the angular velocity g are of interest in this problem. Plotsof the radial velocity can be obtained by noting that f 0(ti), 1 � i � n0, is stored in location14(i� 1) + 2 of the array x. Plots of the angular velocity can be obtained by noting thatg(ti), 1 � i � n0, is stored in location 14(i� 1) + 9 of the array x.2.3 The Human Heart DipoleThe subroutineddgv(n,x,fvec,fjac,ldfjac,task,prob)de�nes the human heart dipole problem. The user must set n = 8. The parameter probspeci�es one of �ve versions of the problem. Lower and upper bounds are provided.3



2.4 Combustion of PropaneThe subroutinedmorgf(n,x,fvec,fjac,ldfjac,task)de�nes the combustion of propane problem. The user must set n = 11. Lower bounds areprovided.2.5 Combustion of Propane { Reduced Formulationdmorgr(n,x,fvec,fjac,ldfjac,task)de�nes the reduced formulation of the combustion of propane problem. The user must setn = 5. Lower bounds are provided.3 Least Squares ProblemsThe subroutines described in this section de�ne nonlinear least squares problems of theform minfkf(x)k22 : xl � x � xug;where f : <n ! <m de�nes the residuals of the least squares problem, and xl, xu are boundson the solution. The action of the subroutines depends on the character variable task asfollows:Evaluate the function if task = 'F'.Evaluate the Jacobian matrix if task = 'J'.Evaluate the function and the Jacobian matrix if task = 'FJ'.Evaluate the standard starting point xs if task = 'XS'.Evaluate the lower bound xl if task = 'XL'.Evaluate the upper bound xu if task = 'XU'.The function value is returned in the array f, the Jacobian matrix is returned in the arrayfjac (with leading dimension ldfjac), and the starting point xs and bounds xl, xu arereturned in the array x. 4



3.1 Isomerization of �-pinene { Direct FormulationThe subroutinedapdir(m,n,x,fvec,fjac,ldfjac,task,nh)de�nes the direct formulation of the �-pinene problem. The user must set m = 40 andn = 5. The parameter nh is the number of consecutive Runge-Kutta steps taken betweenobservations. A typical value is nh = 10. Lower bounds are provided.3.2 Isomerization of �-pinene { Collocation FormulationThe subroutinedapcol(m,n,x,fvec,fjac,ldfjac,task,nint,sigma)de�nes the collocation formulation of the �-pinene problem. The parameter nint is thenumber of subintervals in the collocation method used to discretize the initial value problem.The user must provide a positive value of nint and set m = 25�nint+40 and n = 25�nint+5.The parameter sigma de�nes the weights used in the l2 penalty approach by setting �i = �,where �i is the weight for the i-th constraint, and � is the value de�ned by sigma. A typicalvalue is � = 106.As is the case for problems 2.1 and 2.2, the vector x contains information on the ap-proximate solution to the original problem. In this problem the approximate solution u(�; �)to the linear kinetic problem is of interest. Plots of the components of u(�; �) can be ob-tained by noting that the s-th component of u(ti; �), 1 � i � n0, is stored in location25(i� 1) + 5(s� 1) + 1 of the array array x.3.3 Coating Thickness StandardizationThe subroutinedrog1(m,n,x,fvec,fjac,ldfjac,task)de�nes the coating thickness standardization problem. The user must set m = 252 andn = 134.3.4 Exponential Data Fitting IThe subroutinedosb1(m,n,x,fvec,fjac,ldfjac,task)de�nes the exponential data �tting I problem. The user must set m = 33 and n = 5. Lowerand upper bounds are provided. 5



3.5 Exponential Data Fitting IIThe subroutinedosb2(m,n,x,fvec,fjac,ldfjac,task)de�nes the exponential data �tting II problem. The user must set m = 65 and n = 11.Lower and upper bounds are provided.3.6 Thermistor ResistanceThe subroutinedmeyer(m,n,x,fvec,fjac,ldfjac,task)de�nes the thermistor resisitance problem. The user must set m = 16 and n = 3.3.7 Analysis of an Enzyme ReactionThe subroutinedkmor(m,n,x,fvec,fjac,ldfjac,task)de�nes the analysis of an enzyme reaction problem. The user must set m = 11 and n = 4.3.8 Chebyshev QuadratureThe subroutinedcquad(m,n,x,fvec,fjac,ldfjac,task)de�nes the Chebyshev quadrature problem. Any positive values of m � n are permissible.Lower and upper bounds are provided.4 Minimization ProblemsThe subroutines described in this section de�ne minimization problems of the formminff(x) : xl � x � xug;where f : <n ! <, and the vectors xl, xu specify bounds on the solution. The action of thesubroutines depends on the character variable task as follows:Evaluate the function if task = 'F'.Evaluate the gradient if task = 'G'. 6



Evaluate the function and the gradient if task = 'FG'.Evaluate the standard starting point xs if task = 'XS'.Evaluate the lower bound xl if task = 'XL'.Evaluate the upper bound xu if task = 'XU'.The function value is returned in the parameter f, the gradient is returned in the arrayfgrad, and the starting point xs and bounds xl, xu are returned in the array x.The problems in this section arise as �nite element approximations to a variationalproblem. The vector x 2 <n de�nes a piecewise linear approximation v to the solution of thevariational problem. For these problems the approximation v is de�ned on a triangulationof a rectangular domain D with nx interior points in the x-direction and ny interior pointsin the y-direction. The value of v at the (i; j) vertex of the triangulation is stored in the(j � 1)nx + i location of the array x. Thus, the pseudo-code segmentdo j = 1, nydo i = 1, nxv(i,j) = x((j-1)nx+i)end doend dostores in the array v the values of the approximation v. Given the array v, standard plottingsubroutines can be used to obtain plots of the approximation v. These problems can bemade arbitrarily large by increasing nx and ny . In this formulation ny = 1 for 1-dimensionaldomains.4.1 Elastic-Plastic TorsionThe subroutinedtor(nx,ny,x,f,fgrad,task,c)de�nes the elastic-plastic torsion problem. The parameter c is the angle c of twist per unitlength on the bar. A typical value is c = 5. Lower and upper bounds are provided.4.2 Pressure Distribution in a Journal BearingThe subroutinedjourb(nx,ny,x,f,fgrad,task,ecc,b)de�nes the journal bearing problem. The parameter ecc is the eccentricity � of the journalbearing, and b speci�es the domain D = (0; 2�)�(0; b). Typical values for these parametersare � = 0:1 and b = 10. Lower bounds are provided. The subroutine7



djours(nx,ny,w,ecc,b)determines a diagonal scaling matrix w as the square root of the diagonal elements of theHessian matrix.4.3 Minimal SurfacesThe subroutinedmnsur(nx,ny,x,f,fgrad,task,bottom,top,left,right)de�nes the minimal surface problem. The arrays bottom,top,left,right specify theboundary conditions for the surface. The subroutinedennbc(nx,ny,hx,hy,bottom,top,left,right)determines the boundary conditions for Enneper's minimal surface. Other boundary con-ditions can be obtained by modifying dennbc.4.4 Optimal Design with Composite MaterialsThe subroutinedoptd(nx,ny,x,f,fgrad,task,lambda)de�nes the optimal design problem. The parameter lambda is the multiplier � of the optimaldesign problem. Values of interest are � 2 [0; 1]; a typical value is � = 0:008 The subroutinedpsif(t,mu1,mu2,t1,t2,result,task,lambda)computes  (t) and computes  0(t)=t. Other functions can be obtained by modifying dpsif.4.5 Inhomogeneous SuperconductorsThe subroutinedgland(n,x,f,fgrad,t)de�nes the inhomogeneous superconductor problem. The parameter t speci�es the temper-ature t. Values of interest are t 2 [3:73; 7:32]; a typical value is t = 5.8
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