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ABSTRACT

The Army High Performance Computing Research Center at the University of Minnesota
and the Mathematics and Computer Science Division at Argonne National Laboratory are
collaborating on the development of the software package MINPACK-2. As part of the
MINPACK-2 project we are developing a collection of significant optimization problems
to serve as test problems for the package. This report describes the software associated
with the preliminary version of the MINPACK-2 test problem collection. The discussion
centers on the description of subroutine parameters, but additional information on the
implementation of these subroutines is also provided. The information in this report should

be sufficient to use these subroutines for testing and evaluating software.



1 Introduction

This report describes software associated with the preliminary version of the MINPACK-2
test problem collection. The discussion centers on the description of subroutine parameters,
but additional information on the implementation of these subroutines is also provided.
The information in this report should be sufficient to use these subroutines for testing and
evaluating software.

Averick, Carter, and Moré [1] describe the preliminary version of the MINPACK-2
test problem collection. This reference should be consulted for information on problem
formulation and for additional details on the relationship between the subroutine parameters
and the original problem.

The problems contained in the current version of the test problem collection fall into

three categories:
1. Systems of Nonlinear Equations.
2. Nonlinear Least Squares.
3. Minimization.

For systems of nonlinear equations and nonlinear least squares problems, code is supplied for
the evaluation of the vector-valued functions and the Jacobian matrices; for minimization
problems, code is supplied for the evaluation of the functions and the gradients. In addition,
if lower or upper bounds are part of the problem formulation, code is supplied for the
evaluation of the bounds.

These subroutines were written to be easily read and understood. More efficient imple-
mentations that take advantage of high-performance architectures are possible. Note that
there is no checking of input parameters in these subroutines. The information provided
in this report should be sufficient to use these subroutines safely, but the user should read
the documentation within each subroutine for additional information. Particular attention
should be paid to problem dimension parameters.

Code listings for the double precision version of these subroutines can be found in the
appendix. Single precision versions of these subroutines are also available. Either version
can be obtained by sending email to

averick@mcs.anl.gov
and specifying which version is desired. Comments on these subroutines or suggestions for

additional problems can also be sent to this address.



2 Systems of Nonlinear Equations

The subroutines described in this section define systems of nonlinear equations of the form
f(x):()v 2] < < dy,,

where f : R" — R™ defines the residuals, and z;, 2, are bounds on the solution. The action

of the subroutines depends on the character variable task as follows:

Evaluate the function if task = °F’.

Evaluate the Jacobian matrix if task = *J’.

Evaluate the function and the Jacobian matrix if task = *FJ’.
Evaluate the standard starting point z; if task = ’XS’.
Evaluate the lower bound z; if task = *XL°.

Evaluate the upper bound =z, if task = *XU’.

The function value is returned in the array fvec, the Jacobian matrix is returned in the
array fjac (with leading dimension 1dfjac), and the starting point =, and bounds z;, z,
are returned in the array x.

Problems 2.1 and 2.2 arise in the discretization of systems of boundary value problems
in one spatial dimension by a k-stage collocation method. If boundary conditions are given
at t = a and t = b, and

a=1 <ty < - <ty <tpy41 =20

is a partitioning of [a,b] into ng subintervals, the collocation method approximates the
solution to a system of p boundary value problems by a vector-valued piecewise polynomial
function . : [a,b] — RP. The use of the collocation method leads to a system of nonlinear
equations. An advantage of the implementation of the collocation method used in these
test problems is that if m, is the order of the s-th boundary value problem, then the s-th
component of

dI70(),  1<i<ng, 1<j<m,,

ks

is directly available from the solution vector to the system of nonlinear equations. The s-th

(-1

component of uy  ’(¢;) is stored in the 0,(7 — 1) + 0,1 4 j location of the array x, where

,
o, =1k + Z my.
=1
This information is useful for obtaining plots of the j-th derivative of the s-th component
of u,. If the variable nint is the number ng of subintervals, and the variables n1 and n2

contain o, and o5_1, respectively, then the pseudo-code



do i = 1, nint
v(i) = x((i-1)n1+n2+j)
end do

stores in the array v the value of the s-th component of ugrj_l)(ti). Given the array v,

(-1)

standard plotting subroutines can be used to obtain plots of u;

2.1 Flow in a Channel

The subroutine
dflow(n,x,fvec,fjac,ldfjac,task,r,nint)

defines the flow in a channel problem. The parameter r is the Reynolds number R and
must be positive. The parameter nint is the number ng of subintervals in the collocation
method used to discretize the boundary value problem. The user must provide a positive
value of nint and set n = 8*nint.

The tangential velocity u’ is of interest in this problem. Plots of the tangential velocity
can be obtained by noting that w/(¢;), 1 < i < ng, is stored in location 8(i — 1) + 2 of the

array Xx.

2.2  Swirling Flow

The subroutine
dswrl3(n,x,fvec,fjac,ldfjac,task,eps,nint)

defines the swirling flow problem. The parameter eps is the viscosity parameter € and must
be positive. The parameter nint is the number ng of subintervals in the collocation method
used to discretize the boundary value problem. The user must provide a positive value of
nint and set n = 14*nint.

The radial velocity f’ and the angular velocity ¢ are of interest in this problem. Plots
of the radial velocity can be obtained by noting that f'(¢;), 1 <14 < ng, is stored in location
14(i — 1) + 2 of the array x. Plots of the angular velocity can be obtained by noting that
g(t;), 1 <t < ng, is stored in location 14(z — 1) + 9 of the array x.

2.3 The Human Heart Dipole

The subroutine
ddgv(n,x,fvec,fjac,ldfjac,task,prob)

defines the human heart dipole problem. The user must set n = 8. The parameter prob

specifies one of five versions of the problem. Lower and upper bounds are provided.



2.4 Combustion of Propane

The subroutine
dmorgf(n,x,fvec,fjac,1dfjac,task)

defines the combustion of propane problem. The user must set n = 11. Lower bounds are

provided.

2.5 Combustion of Propane — Reduced Formulation

dmorgr(n,x,fvec,fjac,1dfjac,task)

defines the reduced formulation of the combustion of propane problem. The user must set

n = 5. Lower bounds are provided.

3 Least Squares Problems

The subroutines described in this section define nonlinear least squares problems of the

form
min{|| f(2)||3 : 2 < @ < 2},

where f : " — R™ defines the residuals of the least squares problem, and z;, , are bounds
on the solution. The action of the subroutines depends on the character variable task as

follows:
Evaluate the function if task = °F’.
Evaluate the Jacobian matrix if task = *J’.
Evaluate the function and the Jacobian matrix if task = *FJ’.
Evaluate the standard starting point z; if task = ’XS’.
Evaluate the lower bound z; if task = *XL°.
Evaluate the upper bound =z, if task = *XU’.

The function value is returned in the array £, the Jacobian matrix is returned in the array
fjac (with leading dimension 1dfjac), and the starting point x5 and bounds z;, z, are

returned in the array x.



3.1 Isomerization of a-pinene — Direct Formulation

The subroutine
dapdir(m,n,x,fvec,fjac,ldfjac,task,nh)

defines the direct formulation of the a-pinene problem. The user must set m = 40 and
n = 5. The parameter nh is the number of consecutive Runge-Kutta steps taken between

observations. A typical value is nh = 10. Lower bounds are provided.

3.2 Isomerization of a-pinene — Collocation Formulation

The subroutine
dapcol(m,n,x,fvec,fjac,ldfjac,task,nint,sigma)

defines the collocation formulation of the a-pinene problem. The parameter nint is the
number of subintervals in the collocation method used to discretize the initial value problem.
The user must provide a positive value of nint and set m = 25%xnint+40 and n = 25*nint+5.
The parameter sigma defines the weights used in the [; penalty approach by setting o; = o,
where o; is the weight for the ¢-th constraint, and o is the value defined by sigma. A typical
value is o = 10°.

As is the case for problems 2.1 and 2.2, the vector x contains information on the ap-
proximate solution to the original problem. In this problem the approximate solution (-, )
to the linear kinetic problem is of interest. Plots of the components of u(-,6) can be ob-
tained by noting that the s-th component of u(t;,6), 1 < i < ng, is stored in location
25(¢ — 1)+ 5(s — 1) + 1 of the array array x.

3.3 Coating Thickness Standardization

The subroutine
drogl(m,n,x,fvec,fjac,ldfjac,task)

defines the coating thickness standardization problem. The user must set m = 252 and
n = 134.

3.4 Exponential Data Fitting I

The subroutine
dosbl(m,n,x,fvec,fjac,ldfjac,task)

defines the exponential data fitting I problem. The user must set m = 33 and n = 5. Lower

and upper bounds are provided.



3.5 Exponential Data Fitting 11

The subroutine
dosb2(m,n,x,fvec,fjac,ldfjac,task)

defines the exponential data fitting II problem. The user must set m = 65 and n = 11.

Lower and upper bounds are provided.

3.6 Thermistor Resistance

The subroutine
dmeyer(m,n,x,fvec,fjac,1dfjac,task)

defines the thermistor resisitance problem. The user must set m = 16 and n = 3.

3.7 Analysis of an Enzyme Reaction

The subroutine
dkmor (m,n,x,fvec,fjac,ldfjac,task)

defines the analysis of an enzyme reaction problem. The user must set m = 11 and n = 4.

3.8 Chebyshev Quadrature

The subroutine
dcquad(m,n,x,fvec,fjac,1dfjac,task)

defines the Chebyshev quadrature problem. Any positive values of m > n are permissible.

Lower and upper bounds are provided.

4 Minimization Problems
The subroutines described in this section define minimization problems of the form
min{f(z): 2 < a < ay,},

where f : R — R, and the vectors z;, , specify bounds on the solution. The action of the

subroutines depends on the character variable task as follows:

Evaluate the function if task ’F.

Evaluate the gradient if task = ’G’.



Evaluate the function and the gradient if task = *FG’.
Evaluate the standard starting point z; if task = ’XS’.
Evaluate the lower bound z; if task = *XL°.

Evaluate the upper bound =z, if task = *XU’.

The function value is returned in the parameter £, the gradient is returned in the array
fgrad, and the starting point x4 and bounds z;, z,, are returned in the array x.

The problems in this section arise as finite element approximations to a variational
problem. The vector x € R defines a piecewise linear approximation » to the solution of the
variational problem. For these problems the approximation v is defined on a triangulation
of a rectangular domain D with n, interior points in the x-direction and n, interior points
in the y-direction. The value of v at the (i, j) vertex of the triangulation is stored in the
(j — 1)ny + @ location of the array x. Thus, the pseudo-code segment

do j =1, ny
do i=1, nx
v(i,j) = x((j-1)nx+i)

end do
end do

stores in the array v the values of the approximation ». Given the array v, standard plotting
subroutines can be used to obtain plots of the approximation ». These problems can be
made arbitrarily large by increasing n, and n,. In this formulation n, = 1 for 1-dimensional
domains.
4.1 Elastic-Plastic Torsion
The subroutine

dtor(nx,ny,x,f,fgrad,task,c)
defines the elastic-plastic torsion problem. The parameter c is the angle ¢ of twist per unit
length on the bar. A typical value is ¢ = 5. Lower and upper bounds are provided.
4.2 Pressure Distribution in a Journal Bearing
The subroutine

djourb(nx,ny,x,f,fgrad,task,ecc,b)

defines the journal bearing problem. The parameter ecc is the eccentricity € of the journal
bearing, and b specifies the domain D = (0,27) x (0,b). Typical values for these parameters

are ¢ = 0.1 and b = 10. Lower bounds are provided. The subroutine



djours(nx,ny,w,ecc,b)

determines a diagonal scaling matrix w as the square root of the diagonal elements of the

Hessian matrix.

4.3 Minimal Surfaces

The subroutine
dmnsur (nx,ny,x,f,fgrad,task,bottom,top,left,right)

defines the minimal surface problem. The arrays bottom,top,left,right specify the

boundary conditions for the surface. The subroutine
dennbc(nx,ny,hx,hy,bottom,top,left,right)

determines the boundary conditions for Enneper’s minimal surface. Other boundary con-

ditions can be obtained by modifying dennbc.

4.4 Optimal Design with Composite Materials

The subroutine
doptd(nx,ny,x,f,fgrad,task,lambda)

defines the optimal design problem. The parameter lambda is the multiplier A of the optimal
design problem. Values of interest are A € [0, 1]; a typical value is A = 0.008 The subroutine

dpsif(t,mul,mu2,t1,t2,result,task,lambda)

computes 1(t) and computes 1'(¢)/t. Other functions can be obtained by modifying dpsif.

4.5 Inhomogeneous Superconductors
The subroutine
dgland(n,x,f,fgrad,t)

defines the inhomogeneous superconductor problem. The parameter t specifies the temper-

ature t. Values of interest are t € [3.73,7.32]; a typical value is t = 5.
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