
ADIFOR Working Note #2:Using ADIFOR to Compute Dense and SparseJacobians�Christian H. Bischofbischof@mcs.anl.govPaul Hovlandhovland@mcs.anl.govMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439{4801Technical Memorandum MCS{TM{158October 1991Abstract. ADIFOR is a source translator that, given a collection of Fortran subroutines for the computation of a\function," produces Fortran code for the computation of the derivatives of this function. More speci�cally, ADIFORproduces code to compute the matrix-matrix product JS, where J is the Jacobian of the \function" with respectto the user-de�ned independent variables, and S is the composition of the derivative objects corresponding to theindependent variables. This interface is
exible; by setting S = x, one can compute the matrix-vector product Jx,or by setting S = I, one can compute the whole Jacobian J . Other initializations of S allow one to exploit a knownsparsity structure of J . This paper illustrates the proper initialization of ADIFOR-generated derivative codes and theexploitation of a known sparsity structure of J .1 IntroductionADIFOR (Automatic Di�erentiation in Fortran) is a tool for the automatic generation ofderivative codes from user-supplied Fortran subroutines. That is, given a collection of Fortransubroutines for the computation of a \function," ADIFOR produces Fortran code for the compu-tation of the derivatives of this function. ADIFOR di�ers from previous approaches to automaticdi�erentiation (see [13] for a recent survey) in several ways:Generality: The \function" can be composed of many subroutines, and these subroutines maycommunicate via parameter lists and/or common blocks. In general, almost all of Fortran-77is supported.Portability: ADIFOR produces vanilla Fortran-77 code.�This work was supported by the Applied Mathematical Sciences subprogram of the O�ce of Energy Research,U.S. Department of Energy, under Contract W-31-109-Eng-38 and through NSF Cooperative Agreement No. CCR-8809615. 1

E�ciency: While primarily based on the so-called forward mode of automatic di�erentiation, AD-IFOR uses the so-called reverse mode to process assignment statements with composite right-hand sides [9,10]. In addition to saving storage, this approach signi�cantly enhances perfor-mance.Parallelism and Vectorization: The code produced by ADIFOR respects the data-
ow struc-ture of the original program. That is, if the code vectorizes and parallelizes well, so does theADIFOR-generated derivative code. If anything, the derivative code o�ers more scope forvectorization and parallelization because of the addition of another `data parallel' dimensionin derivative objects.Extensibility: The fact that ADIFOR employs a consistent subroutine-naming scheme allows theuser to supply his or her own derivative routines. In this fashion, the user can exploit domain-speci�c knowledge, utilize vendor-supplied libraries, and speed up computational bottlenecks.Ease of Use: ADIFOR requires the user to supply the Fortran source code for the subroutinerepresenting the function to be di�erentiated and for all lower-level subroutines. The user thenselects the variables (either in parameter lists or in common blocks) that correspond to theindependent and dependent variables. By using the powerful interprocedural analysis toolsof the ParaScope programming environment [3], ADIFOR then automatically determineswhich other variables throughout the program must have derivative information associatedwith them.Interactive Interface: An X-windows interface for ADIFOR (called xadifor) is also provided.Xadifor makes it easy for the user to set up the problem and to rerun ADIFOR if changesin the code for the target function require a new translation.ADIFOR is applied to the code of the subroutine that corresponds to the subroutine we wish todi�erentiate (foo, say), and to all subroutines called directly or indirectly from foo. Let us assumethat foo describes a function f : [x;w] 7! [y; z] and that we are interested in the derivatives @ y@ x ;that is, the input variable w is treated as constant, and the output variable z is irrelevant. If thisis the case, we call x the independent variable and y the dependent variable. We are awareof the fact that the terms \dependent," \independent," \variable," and \parameters" are used inmany di�erent contexts, yet we found that this terminology corresponds best to our mathematicalidea of derivatives, since we will compute derivatives of the \dependent" variables with respect tothe \independent" ones.We require the user to tell ADIFOR the names of the independent variables and the names ofthe dependent variables. In many codes, dependent and independent variables may share storage.For example, on entry to foo, array A may be initialized to what we consider mathematically to bethe value of the independent variable x, and during the course of executing foo, y will be writteninto A. This poses no problem for ADIFOR. It produces a subroutine named gfoo<n> (where<n> is some number encoding which variables were dependent and independent), which computesthe �rst derivatives of the function computed by foo, as well as foo itself.To propagate derivative information in the forward mode, we have to associate derivative objectswith the independent variables, the dependent variables, and all those program variables whosevalue depends (directly or indirectly) on an independent variable and that in
uence the value of a2

dependent variable. That is, if x is independent, y is dependent, and z depends on x and y dependson z, then z also needs a derivative object. A variable with which we associate a derivative object iscalled an active variable, any other variable is a passive variable. Dependent and independentvariables are always active, and integer variables are always passive.The user need not specify as passive or active variables local to foo or parameters or localvariables in routines called by foo. Using the powerful interprocedural analysis tools availablein the ParaScope environment [3], we can determine all active variables from a de�nition of theindependent and dependent ones. This allows for a simple user interface that corresponds as muchas possible to the mathematical intuition underlying foo.The derivative codes produced by ADIFOR have a gradient object associated with every activevariable. The convention is to associate a gradient g$<var> of leading dimension ldg$<var> withvariable <var>. The calling sequence of gfoo<n> is derived from that of foo by inserting anargument g$p denoting the length of the gradient vectors as the �rst argument, and then copyingthe calling sequence of foo, inserting g$<var> and ldg$<var> after every active variable <var>.Passive variables are left untouched.In its simplest form, the functionality of ADIFOR can be summarized as follows:In general, if x(1:n) are the independent variables, and y(1:m)the dependent ones, then g$x is a g$p�n matrix (ldg$x � g$p),and g$y is a g$p�m matrix (ldg$y � m). The functionality ofg$foo is: Given input values x and g$x, this subroutine computesy = foo(x), and g$y = (foo0(x)g$xT)T .In this paper, we shall not concern ourselves with the way code is generated or with the inputprovided to ADIFOR. For these details, the reader is referred to [2]. Even though the ADIFOR in-terface conceptually never changes, the actual initialization of ADIFOR code may vary dependingon context. We focus instead on the proper and e�cient use of ADIFOR-generated codes throughdetailed examination of the following cases:� Dense Jacobian, one independent, one dependent variable� Dense Jacobian, multiple independent, multiple dependent variables� Sparse Jacobian, one independent, one dependent variable� Sparse Jacobian, two independent variables, one dependent variable� Partially separable functionsIn most of these cases, a \variable" denotes an array; thus, we shall be dealing with vector-valuedfunctions. 3

2 Case 1: Dense Jacobian, one independent, one dependent variableOur �rst example is adapted from Problem C2 in the STDTST set of test problems for sti�ODE solvers [7] and was brought to our attention by George Corliss. The routine FCN2 computesthe right-hand side of a system of ordinary di�erential equations y0 = yp = f(x; y) by calling asubordinate routine FCN:C File: FCN2.fSUBROUTINE FCN2(M,X,Y,YP)INTEGER NDOUBLE PRECISION X, Y(M), YP(M)INTEGER ID, IWTDOUBLE PRECISION W(20)COMMON /STCOM5/W, IWT, N, IDCALL FCN(X,Y,YP)RETURNENDC File: FCN.fSUBROUTINE FCN(X,Y,YP)C ROUTINE TO EVALUATE THE DERIVATIVE F(X,Y) CORRESPONDING TO THEC DIFFERENTIAL EQUATION:C DY/DX = F(X,Y) .C THE ROUTINE STORES THE VECTOR OF DERIVATIVES IN YP(*). THEC DIFFERENTIAL EQUATION IS SCALED BY THE WEIGHT VECTOR W(*)C IF THIS OPTION HAS BEEN SELECTED (IF SO IT IS SIGNALLEDC BY THE FLAG IWT).DOUBLE PRECISION X, Y(20), YP(20)INTEGER ID, IWT, NDOUBLE PRECISION W(20)COMMON /STCOM5/W, IWT, N, IDDOUBLE PRECISION SUM, CPARM(4), YTEMP(20)INTEGER I, IIDDATA CPARM/1.D-1, 1.D0, 1.D1, 2.D1/IF (IWT.LT.0) GO TO 40DO 20 I = 1, NYTEMP(I) = Y(I)Y(I) = Y(I)*W(I)20 CONTINUE40 IID = MOD(ID,10) 4

C ADAPTED FROM PROBLEM C2YP(1) = -Y(1) + 2.D0SUM = Y(1)*Y(1)DO 50 I = 2, NYP(I) = -10.0D0*I*Y(I) + CPARM(IID-1)*(2**I)*SUMSUM = SUM + Y(I)*Y(I)50 CONTINUEIF (IWT.LT.0) GO TO 680DO 660 I = 1, NYP(I) = YP(I)/W(I)Y(I) = YTEMP(I)660 CONTINUE680 CONTINUERETURNENDMost software for the numerical solution of sti� systems of ODEs requires the user to supply asubroutine for the Jacobian of f with respect to y. Such a subroutine can easily be generated byADIFOR. For the purposes of automatic di�erentiation, the vector Y is the independent variable,and the vector YP is the dependent variable. Then ADIFOR producessubroutine g$fcn2$6(gp, m, x, y, gy, ldgy, yp, gyp, ldgyp)CC ADIFOR: runtime gradient indexinteger gpC ADIFOR: translation time gradient indexinteger g$pmax$parameter (g$pmax$ = 20)C ADIFOR: gradient iteration indexinteger giC integer ldg$yinteger ldg$ypinteger ndouble precision x, y(m), yp(m)integer id, iwtdouble precision w(20)common /stcom5/ w, iwt, n, idCC ADIFOR: gradient declarationsdouble precision g$y(ldg$y, m), g$yp(ldg$yp, m)if (gp .gt. g$pmax$) thenprint *, "Parameter g$p is greater than g$pmax."stopendifcall gfcn6(gp, x, y, gy, ldgy, yp, gyp, ldgyp)5

returnendsubroutine gfcn6(gp, x, y, gy, ldgy, yp, gyp, ldgyp)CC ADIFOR: runtime gradient indexinteger gpC ADIFOR: translation time gradient indexinteger g$pmax$parameter (g$pmax$ = 20)C ADIFOR: gradient iteration indexinteger giC integer ldg$yinteger ldg$ypC ROUTINE TO EVALUATE THE DERIVATIVE F(X,Y) CORRESPONDING TO THEC DIFFERENTIAL EQUATION:C DY/DX = F(X,Y) .C THE ROUTINE STORES THE VECTOR OF DERIVATIVES IN YP(*). THEC DIFFERENTIAL EQUATION IS SCALED BY THE WEIGHT VECTOR W(*)C IF THIS OPTION HAS BEEN SELECTED (IF SO IT IS SIGNALLEDC BY THE FLAG IWT).double precision x, y(20), yp(20)integer id, iwt, ndouble precision w(20)common /stcom5/ w, iwt, n, iddouble precision sum, cparm(4), ytemp(20)integer i, iiddata cparm /1.d-1, 1.d0, 1.d1, 2.d1/CC ADIFOR: gradient declarationsdouble precision g$y(ldg$y, 20), g$yp(ldg$yp, 20)double precision g$sum(g$pmax$), g$ytemp(g$pmax$, 20)if (gp .gt. g$pmax$) thenprint *, "Parameter g$p is greater than g$pmax."stopendifif (iwt .lt. 0) thengoto 40endifdo 99999, i = 1, nC ytemp(i) = y(i)do gi = 1, gpg$ytemp(g$i$, i) = g$y(gi, i)enddoytemp(i) = y(i) 6

C y(i) = y(i) * w(i)do gi = 1, gpg$y(g$i$, i) = w(i) * g$y(gi, i)enddoy(i) = y(i) * w(i)20 continue99999 continue40 iid = mod(id, 10)C ADAPTED FROM PROBLEM C2C yp(1) = -y(1) + 2.d0do gi = 1, gpg$yp(g$i$, 1) = -g$y(gi, 1)enddoyp(1) = -y(1) + 2.d0C sum = y(1) * y(1)do gi = 1, gpg$sum(g$i$) = y(1) * g$y(gi, 1) + y(1) * g$y(g$i$, 1)enddosum = y(1) * y(1)do 99998, i = 2, nC yp(i) = -10.0d0 * i * y(i) + cparm(iid - 1) * (2 ** i) * sumdo gi = 1, gpg$yp(g$i$, i) = cparm(iid - 1) * (2 ** i) * g$sum(g$i$) + -1*0.0d0 * i * g$y(gi, i)enddoyp(i) = -10.0d0 * i * y(i) + cparm(iid - 1) * (2 ** i) * sumC sum = sum + y(i) * y(i)do gi = 1, gpg$sum(g$i$) = g$sum(gi) + y(i) * g$y(g$i$, i) + y(i) * g$y*(gi, i)enddosum = sum + y(i) * y(i)50 continue99998 continueif (iwt .lt. 0) thengoto 680endifdo 99997, i = 1, nC yp(i) = yp(i) / w(i)do gi = 1, gpg$yp(g$i$, i) = (1 / w(i)) * g$yp(gi, i)enddoyp(i) = yp(i) / w(i)C y(i) = ytemp(i)do gi = 1, gpg$y(g$i$, i) = g$ytemp(gi, i)enddo 7

y(i) = ytemp(i)660 continue99997 continue680 continuereturnendIn accordance with the general policy outlined in x 1, the derivative objects g$y and g$yp aredeclared as matrices with 20 columns (since both y and yp were declared as vectors of length 20) andleading dimension ldg$y and ldg$yp, respectively. The parameter g$p denotes the actual lengthof the gradient objects in a call to g$fcn2$6. Since Fortran 77 does not allow dynamic memoryallocation, derivative objects for local variables are statically allocated with leading dimension pmax,whose value was selected by the user during the invocation ofADIFOR. A variable and its associatedderivative object are treated in the same fashion; that is, if x is a function parameter, so is g$x.Derivative objects corresponding to locally declared variables or variables in common blocks aredeclared locally or in common blocks as well.Subroutine g$fcn2$6 relates to the JacobianJyp = 0BB@ @yp1@y1 � � � @yp1@ym... ...@ypm@y1 � � � @ypm@ym 1CCAas follows: Given input values for gp, m, x, y, gy, ldgy, and ldg$yp, the routine g$fcn2$6computes both yp and g$yp, whereg$yp(1:g$p,1:m) = (Jyp(g$y(1:g$p,1:m)T))T :The superscript T denotes matrix transposition. The user must allocate g$yp and g$y with leadingdimensions ldg$yp and ldg$y that are at least g$p. While the implicit transposition may seemawkward at �rst, this is the only way to handle assumed-size arrays (like real a(*)) in subroutinecalls.Assume that m and g$p are 20 and that ldg$yp and ldg$y are at least 20. Then we can computethe derivative matrix Jyp simply by initializing g$y to the identity:*************** Approach 1 ***************DO 10 I = 1, MDO 5 J = 1, MG$Y(I,J) = 0.0D5 CONTINUEG$Y(I,I) = 1.0D010 CONTINUEcall g$fcn2$6(20, m, x, y, gy, ldgy, yp, gyp, ldgyp)On exit from g$fcn2$6, the variable g$yp contains the transpose of the Jacobian Jyp.Alternatively, we could have computed the Jacobian one column at a time:8

*************** Approach 2 ***************DO 10 I = 1, M** initialize first row of G$Y to i-th unit vector* DO 5 J = 1, MG$Y(1,J) = 0.0D5 CONTINUEG$Y(1,I) = 1.0D0** call ADIFOR-generated derivative code* call g$fcn2$6(1, m, x, y, gy, ldgy, yp, gyp, ldgyp)** store ith column of the Jacobian in ith row of Jactrans array* DO 15 J = 1,MJACTRANS(I,J) = G$YP(1,J)15 CONTINUE10 CONTINUEEven though g$yp(i,j) as computed in Approach 1 equals jactrans(i,j) computed in Ap-proach 2, the second method is signi�cantly less e�cient. This ine�ciency arises from the fact thatthe value of yp itself is computed once in the �rst approach, but m times in the second approach.Thus, it is usually best to compute as large a slice of the Jacobian as memory restrictions will allow.3 Case 2: Dense Jacobian, multiple independent and multiple dependent variablesThe second example involves a code that models adiabatic
ow [16], a commonly used module inchemical engineering. This code models the separation of a pressurized mixture of hydrocarbons intoliquid and vapor components in a distillation column, where pressure (and, as a result, temperature)decrease. This example was communicated to us by Larry Biegler.In its original version, the top-level subroutinesubroutine aifl(kf)integer kfhas only one argument. All other information is passed in common blocks. For demonstrationpurposes, we changed the interface slightly tosubroutine aifl(kf,feed,pressure,liquid,vapor)integer kfreal feed(*), pressure(*), liquid(*), vapor(*)9

copying the values passed in those arguments into the proper common blocks in aifl. As our �rstexample, assume that we are interested in @ liquid@ feed and @ vapor@ feed y. In this case, ADIFOR generatessubroutine g$aifl$26(g$p, kf, feed, g$feed, ldg$feed, pressure,$ liquid, g$liquid, ldg$liquid,$ vapor, g$vapor, ldg$vapor)integer gp, kf, ldgfeed, ldg$liquid, ldg$vaporreal feed(*), g$feed(ldg$feed,*), pressure(*),$ liquid(*), g$liquid(ldg$liquid,*),$ vapor(*), g$vapor(ldg$vapor,*)In our example, the feed was a mixture of the hydrocarbons N-butane, N-pentane, 1-butene,cis-2-butene, trans-2-butene, and propylene, so the length of feed, liquid, and vapor was six, withfeed(1) corresponding to the N-butane feed, and so on. So if we set g$p=6 and initialize g$feed toa 6� 6 identity matrix, then on exit g$liquid(i,j) contains@ (component j in liquid)@ (component i in feed) ;which predicts by what amount the liquid portion of substance j will change, if the feed of componenti changes.Suppose that we also wish to treat the pressure at the various inlets as an independent variable,but (because of the conservation law) we decide not to declare \vapor" as a dependent variable,ADIFOR generatessubroutine g$aifl$14(g$p, kf, feed, g$feed, ldg$feed,$ pressure, g$pressure, ldg$pressure,$ liquid, g$liquid, ldg$liquid, vapor)The initialization is a little more complicated this time. Assuming that we have 3 feeds (sopressure has three elements), the total number of independent variables is 6 + 3 = 9. g$liquidmeasures the sensitivity of the 6 substances with respect to changes in the 9 independent variables.Thus, Jliquid = � @ liquid@ pressure ; @ liquid@ feed �is a 6� 9 matrix. ADIFOR computesg$liquid = Jliquid g$feedTg$pressureT !!T :If we wish to compute the whole Jacobian J , then g$feedTg$pressureT !yActually, it is su�cient to compute one or the other, since, because of conservation laws, @ liquid@ feed + @ vapor@ feed equalsthe identity matrix. 10

must be initialized to a 9 � 9 identity matrix. Thus, g$feedT must contain the �rst six rows of a9� 9 identity matrix (since there are six variables in the feed), and g$pressureT must contain thelast three rows of a 9� 9 identity matrix. This con�guration is achieved by initializingg$feed = 0BBBBBBBBBBBB@ 1 0 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 1 00 0 0 0 0 10 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 1CCCCCCCCCCCCA , and g$pressure = 0BBBBBBBBBBBB@ 0 0 00 0 00 0 00 0 00 0 00 0 01 0 00 1 00 0 1 1CCCCCCCCCCCCA :4 Case 3: Sparse Jacobian, one independent, one dependent variableFrom the previous discussion, ADIFOR may seem to be well suited for computing dense Jaco-bian matrices, but rather expensive for sparse Jacobians. A primary reason is that the forward modeof automatic di�erentiation upon which ADIFOR is mainly based (see [2]) requires roughly g$p op-erations for every assignment statement in the original function. Thus, if we compute a Jacobian Jwith n columns by setting g$p = n, its computation will require roughly n times as many operationsas the original function evaluation, independent of whether J is dense or sparse. However, it is wellknown [5,8] that the number of function evaluations that are required to compute an approximationto the Jacobian by �nite di�erences can be much less than n if J is sparse. Fortunately, the sameidea can be applied to greatly reduce the running time of ADIFOR-generated derivative code aswell.The idea is best understood with an example. Assume that we have a functionF = 0BBBB@ f1f2f3f4f5 1CCCCA : x 2 R4 7! y 2 R5whose Jacobian J has the following structure (symbols denote nonzeros, and zeros are not shown):J = 0BBBB@

 34 34 24 2 1CCCCA :That is, the function f1 depends only on x1, f2 depends only on x1 and x4, and so on. The key ideain sparse �nite di�erence approximations is to identify so-called structurally orthogonal columns ji11

of J{ that is, columns whose inner product is zero, independent of the value of x. In our example,columns 1 and 2 are structurally orthogonal, and so are columns 3 and 4. This means that the setof functions that depend nontrivially on x1, and the set of functions that depend nontrivially on x2are disjoint.To exploit this structure, recall that ADIFOR (ignoring transposes) computes J �S, where S isa matrix with g$p columns. For our example, setting S = I4�4 will give us J at roughly four timesthe cost of evaluating F , but if we exploit the structural orthogonality and setS = 0BB@ 1 01 00 10 1 1CCA ;the running time for the ADIFOR code is roughly halved. Note that the ADIFOR-generated coderemains unchanged.As a more realistic example, we consider the swirling
ow problem, part of the MINPACK-2 testproblem collection [1]. Here we solve a nonlinear system of equations F (x) = 0 for F : Rn ! Rn.The swirling
ow code has the formsubroutine dswirl3(nxmax,x,fvec,fjac,ldfjac,job,eps,nint)integer nxmax, ldfjac, job, nintdouble precision x(*), fvec(*), fjac(ldfjac,*), epsLike all codes in the MINPACK-2 test collection, it is set up to compute the function values (infvec) and, if desired, the analytic �rst-order derivatives (in fjac) as well. The vectors x and fvecare of size nxmax = 14*nint. For example, for nint = 4, the Jacobian of F is of size nxmax = 56and has the structure shown in Figure 1.The derivative subroutine produced by ADIFOR issubroutine g$dswrl3$3 (g$p, nxmax, x, g$x, ldg$x,+ fvec, g$fvec, ldg$x,+ fjac, ldfjac, 1, eps, nint)If we initialize g$x to a 56�56 identity matrix, and let g$p=56, and if ldg$x is at least 56, then onexit from g$dswrl3$3, g$fvecwill contain the transpose of @ F@ x , stored as a dense matrix. As it turnsout, less than 7 % of the total operations performed with gradient objects in the ADIFOR codeinvolve nonzeros. On the other hand, by using a graph-coloring algorithm designed to identifystructurally orthogonal columns (we used the one described in [4]), we can determine that thisJacobian can be grouped into 14 sets of structurally orthogonal columns, independent of the sizeof the problem. In our example, columns 1, 16, 31, and 51 were in the �rst group; columns 2, 17,37, and 43 were in the second group; and so on. We can take advantage of this fact by initializingthe �rst column of g$xT such that it has 1.0 in rows 1, 16, 31, and 51; by initializing the secondcolumn of g$xT such that it has 1.0 in rows 2, 17, 37, and 43; and so on. The structure of g$xT thusinitialized is shown in Figure 2 together with the resulting compressed Jacobian g$fvecT . Note thatinstead of g$p= 56 we now can get by with g$p= 14, a sizeable reduction in cost.12

o
o

o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o

o o o o o o o o
o o o o o o o

o o o o o o
o o o o o o o

o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o

o o o o o o o o
o o o o o o o

o o o o o o
o o o o o o o

o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o

o o o o o o o o
o o o o o o o

o o o o o o
o o o o o o o

o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o

o o o o o o o
o o o o o oFigure 1: Structure of the swirling
ow Jacobian, n = 56Assuming that color(i) is the \color" of column i of the Jacobian and that nocolors is thenumber of colors (in our example we had 14 colors), the following code fragment properly initializesg$x, calls g$dswrl3$3 to compute the compressed Jacobian, and then extracts the Jacobian.n = 14*nintdo i = 1, ndo j = 1, nocolorsg$x(j,i) = 0enddog$x(color(i),i) = 1enddocall g$dswrl3$3 (nocolors, nxmax, x, g$x, pmax,+ fvec, g$fvec, pmax,+ fjac, ldfjac, 1, eps, nint)c job = 1 indicates that only the function value is to be computed inc dswrl3.c nonzero(j,i) is TRUE if the (j,i) entry in the Jacobian is nonzero,c and FALSE otherwise.do i = 1, ndo j = 1, nif nonzero(j,i) thenjac(j,i) = g$fvec(color(i),j)13

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o
o o o o o o o o

o o o o o o o
o o o o o o

o o o o o o o
o o o o o o

o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o
o o o o o o o o
o o o o o o o

o o o o o o
o o o o o o o

o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o
o o o o o o o o
o o o o o o o

o o o o o o
o o o o o o o

o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o

o o o o o o o
o o o o o oFigure 2: Left: Structure of (g$x)T Right: Structure of (g$fvec)Telsejac(j,i) = 0.0endifenddoenddoComputing the Jacobian with ADIFOR in this way performed at least as well as the analyticMINPACK-2 Jacobian on both a SPARC-compatible Solbourne 5E/900 and a one-processor CrayY/MP.5 Case 4: Sparse Jacobian, two independent variables, one dependent variableThe coating thickness problem, conveyed to us by Janet Rogers of the National Institute ofStandards and Technology, presents many alternatives for using ADIFOR-generated subroutines.The code for this problem is (in abbreviated form) shown below:SUBROUTINE fun(n,m,np,nq,+ beta,xplusd,ldxpd,+ f,ldf)c Subroutine Argumentsc ==> n number of observationsc ==> m number of columns in independent variablec ==> np number of parametersc ==> nq number of responses per observation14

c ==> beta current values of parametersc ==> xplusd current value of independent variable, i.e., x + deltac ==> ldxpd leading dimension of xplusdc <== f predicted function valuesc ==> ldf leading dimension of fc Variable DeclarationsINTEGER i,j,k,ldf,ldxpd,m,n,np,nq,numparsINTEGER ia, ibDOUBLE PRECISION beta(np),f(ldf,nq),xplusd(ldxpd,m)double precision par(20),fn(2)do 10 k=1,nppar(k) = beta(k)10 continuedo 100 i=1,ndo 20 j=1,mpar(np+j) = xplusd(i,j)20 continuec compute function values (fn) given parameters (par)call fnc(par,fn)f(i,1) = fn(1)f(i,2) = fn(2)100 continuereturnendsubroutine fnc(x,fn)integer m,np,nqparameter (np=8,m=2,nq=2)integer idouble precision x(np+m),fn(nq)double precision beta(np),xplusd(m)do 10 i=1,npbeta(i) = x(i)10 continuedo 20 i=1,mxplusd(i) = x(np+i)20 continue 15

c compute �rst of multi-response observationsfn(1) = beta(1)+ + beta(2)*xplusd(1)+ + beta(3)*xplusd(2)+ + beta(4)*xplusd(1)*xplusd(2)c compute second of multi-response observationsfn(2) = beta(5)+ + beta(6)*xplusd(1)+ + beta(7)*xplusd(2)+ + beta(8)*xplusd(1)*xplusd(2)returnendThe special format of this code is due to its embedding in the ODRPACK software for orthogonaldistance regression. We are interested in the derivatives of f with respect to the variables beta andxplusd. We shall explore various ways to do this in some detail.5.1 Approach 1 { Generate derivatives only for fncThe easiest approach is to generate the derivative code only for fnc, since it is clear from thecode that f(i,1:2) depends only on beta(1:np) and xplusd(i,1:m). ADIFOR then producessubroutine gfnc3(x,gx,ldgx,fn,gfn,ldgfn)integer m, np, nqparameter(np = 8, m = 2, nq = 2)double precision x(np+m), fn(nq), g$x(ldg$x,np+m), g$fn(ldg$fn,nq)If inside fun we replace the call to fnc with a call to gfnc3, always initializing g$x to a 10 � 10identity matrix before the call, theng$fn(k; j) = @ f(i; j)@ beta(k) ; k = 1; : : :8; j = 1; 2:and g$fn(k; j) = @ f(i; j)@ xplusd(i; k� np) ; k = 9; 10 :Closer inspection reveals that the 10� 2 array g$fn always has the following structure (numbersare used to identify nonzero elements): 16

0BBBBBBBBBBBB@ 1 02 03 03 00 50 60 70 89 1011 12 1CCCCCCCCCCCCA :In other words, fn(i,1) depends only on beta(1:4), and fn(i,2) depends only on beta(5:8).Hence, we can compute a compressed version of g$fn at reduced cost by merging rows 1 and 5, 2and 6, 3 and 7, and 5 and 8 of g$fn. Keeping in mind that g$fn is the transpose of the Jacobian,this is an especially simple case of the compression strategy outlined in the previous section. Thisis achieved by initializing g$x =0BBBBB@ 1 0 0 0 1 0 0 0 0 00 1 0 0 0 1 0 0 0 00 0 1 0 0 0 1 0 0 00 0 0 1 0 0 0 1 0 00 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 1 1CCCCCA ;which results in g$fn = 0BBBBB@ 1 52 63 74 89 1011 12 1CCCCCA :All the nonzero values of the Jacobian are now computed at roughly 60% of the cost of the previousapproach.On a SPARC-compatible Solbourne 5E/900 with a clock resolution of 0.01 seconds, executing funtook 0.01 seconds, computing derivative values using g$fnc without compression took 0.06 seconds,and exploiting the structure of g$fn through the initialization of g$x shown above reduced that timeto 0.03 seconds.5.2 Approach 2 { Generate derivatives for funAn alternative method of applying ADIFOR is to process subroutine fun. ADIFOR detectsthe interprocedural data dependence between fun and fnc and therefore generates gfun176 aswell as gfnc3, with gfnc3 called properly within gfun176. We obtainsubroutine gfun176(g$p,n,m,np,nq,beta,g$beta,ldg$beta,17

$ xplusd,g$xplusd,ldg$xplusd,ldxpd,f,gf,ldgf,ldf)integer gp, n, m, np, nq, ldgbeta,ldg$xplusd,ldxpd,ldg$f,ldfdouble precision beta(np), g$beta(ldg$beta,np),$ xplusd(ldxpd,m), g$xplusd(ldg$xplusd,ldxpd,m),$ f(ldf,nq), g$f(ldg$f,ldf,nq)Now we have three-dimensional derivative objects, which somewhat complicates the initialization ofg$xplusd and the interpretation of the results in g$f. However, this is not too di�cult if we keepin mind that we wish to initialize g$betaTg$xplusdT !to an identity matrix. The number of elements in xplusd is n*m, and the number of elements inbeta is np. For the coating thickness problem, n=63, m=2, and np=8. Hence, the identity matrixshould be 134 � 134. This is also the value we shall use for g$p. Initialization of g$beta followsthe scheme outlined in x 3; that is, the �rst 8 rows should be an 8 � 8 identity matrix, and theremaining 126 rows should be initialized to zero. How to initialize g$xplusd is less readily apparent,for it is not immediately obvious how to form a 126� 126 identity matrix from a three-dimensionalstructure. However, if one looks at the way Fortran stores two-dimensional structures in memory,a simple scheme for storing the Jacobian develops. In Fortran, element (j; i) in an n � m arrayis stored as if it were element n � (i � 1) + j of a one-dimensional array. Thus, we can apply thistechnique to map the 126 columns of the Jacobian that should be initialized to the identity ontog$xplusd. Speci�cally, element (np+ k; j; i) is initialized to 1 if and only if k = 63� (i� 1)+ j. Thefollowing code segment accomplishes this initialization.c n=63, m=2, np=8gp = np + m*ndo 44 i = 1, npdo 144 j = 1, gpg$beta(j,i) = 0.0144 continueg$beta(i,i) = 1.044 continuedo 45 i = 1, mdo 145 j = 1, ndo 245 k = 1, gpg$xplusd(k,j,i) = 0.0245 continueg$xplusd(np+((i-1)*n)+j,j,i) = 1.0145 continue45 continueWhen initialized in this manner, ADIFOR computes18

g$f = �Jf = � @ f@ beta ; @ f@ xplusd��T :However, the performance of this approach is poor, since we totally ignore the sparsity structureof the Jacobian. As a result, the computation of Jf takes 0.77 seconds on a Solbourne 5E/900. Abetter way to �nd the Jacobian of f using gfun176 is to take note of the structures used by fun.From this, it becomes obvious that @f [i;j]@xplusd[k;l] is nonzero only when i = k. As a consequence, wemay change theg$p = np + m*n. . .g$xplusd(np+((i-1)*n)+j,j,i) = 1.0to the much simplerg$p = np + m. . .g$xplusd(np+i,j,i) = 1.0with the understanding that g$f(np+i,j,k) (i = 1::m) represents @f [j;k]@xplusd[j;i] . This is equivalent toinitializing g$beta = 0BBBBBBBBBBBBBB@ 1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 10 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1CCCCCCCCCCCCCCA , and g$xplusd[n] = 0BBBBBBBBBBBBBB@ 0 00 00 00 00 00 00 00 01 00 1 1CCCCCCCCCCCCCCA :This implementation is much more e�cient than that described in the preceding paragraph and moreclosely mimics the behavior of the original subroutine fun. As a consequence, the time required toexecute gfun176 using this initialization is 0.07 seconds.As discussed in x 5.1, only half of the derivatives of f with respect to beta are nonzero. Specif-ically, @f [i;1]@beta[j] is nonzero for j = 1::4 and zero for j = 5::8, while @f [i;2]@beta[j] is zero for j = 1::4and nonzero for j = 5::8. This information can be used to further compress the Jacobian. Theinitialization 19

g$beta = 0BBBBBB@ 1 0 0 0 1 0 0 00 1 0 0 0 1 0 00 0 1 0 0 0 1 00 0 0 1 0 0 0 10 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1CCCCCCA , and g$xplusd[n] = 0BBBBBB@ 0 00 00 00 01 00 1 1CCCCCCAcompresses the Jacobian into only 6 columns. Columns 1 through 4 represent the nonzero derivativesof f with respect to beta, while columns 5 and 6 correspond to the derivatives of f[i,j] withrespect to xplusd[i,1..2], as above. This initialization may be accomplished with the followingcode fragment.c n=63, m=2, np=8halfnp = 4gp = 4 + mdo 44 i = 1, halfnpdo 144 j = 1, gpg$beta(j,i) = 0.0g$beta(j,i+halfnp) = 0.0144 continueg$beta(i,i) = 1.0g$beta(i,i+halfnp) = 1.044 continuedo 45 i = 1, mdo 145 j = 1, ndo 245 k = 1, gpg$xplusd(k,j,i) = 0.0245 continueg$xplusd(halfnp+i,j,i) = 1.0145 continue45 continueThis approach is e�cient, capable of computing all derivatives in 0.03 seconds. However, it has thedisadvantage that the initialization routine might have to be changed if fnc or np is altered.6 Computing Gradients of Partially Separable FunctionsA particular class of functions that arises often in optimization contexts is that of the so-calledpartially separable functions [6,11,12,14,15]. That is, we have a function f : Rn ! R which can beexpressed as f(x) = nfXi=1 fi(x):Usually each fi depends on only a few (say, ni) of the x's, and one can take advantage of this factin computing the (sparse) Hessian of f . 20

As was pointed out to us by Andreas Griewank, this structure can also be used advantageouslyin computing the (usually dense) gradient rf of f .Assume that the code for computation of f looks as follows:subroutine f(n,x,fval)integer nreal x(n), fval, tempfval = 0call f1(n,x,temp)fval = fval + temp......call fnb(n,x,temp)fval = fval + tempreturnendIf we submit f to ADIFOR, it generatessubroutine g$fn(n,x,g$x,ldg$x,fval,g$fval,ldg$fval).To compute rf , the �rst (and only) row of the Jacobian of f , we set g$p= n and initialize g$x toa n � n identity matrix. Hence, the cost of computing rf is of the order of n times the functionevaluation.As an alternative, we realize that with f : Rn ! Rnb de�ned asg = 0B@ f1...fnb 1CA ;we have the identities f(x) = eTg(x), and hence rf(x) = eTJg ;where e is the vector of all ones, and Jg is the Jacobian of g. We can get the gradient of f bycomputing Jg and adding up its rows. The corresponding code fragment for computing f issubroutine f(n,x,fval)integer nreal x(n)integer nf, iparameter (nf = <whatever>)real gval(nf) 21

call g(n,x,gval)fval = 0do i = 1,nbfval = fval + gval(i)enddoreturnendIt may not appear that we have gained anything, since Jg is nf � n: if we initialize g$x insubroutine g$g(gp,n,x,gx,ldg$x,gval,g$gval,ldg$gval)to an n � n identity matrix, then the computation of Jg still takes about n times as long as thecomputation of g (or f).The key observation is that the Jacobian Jg is likely to be sparse, sinceJg = 0B@ (rf1)T...(rfnb)T 1CA ;and each of the fi's depends only on ni of the x's. By using the graph coloring techniques describedin Section 4, we can compute Jg at a cost that is proportional to the number of columns in thecompressed Jg, and then add up its (sparse) rows. As a result, we can compute rf at a cost thatis potentially much less than n times the evaluation of f .7 ConclusionsThis report demonstrated how to properly use ADIFOR-generated derivative codes. One ofthe strengths of ADIFOR is that it does not assume a particular calling sequence of the functionto be di�erentiated. We gave examples that showed how to properly use ADIFOR-generatedcodes for various styles of codes. We also showed how to exploit a known sparsity structure of thederivative matrix in the initialization of ADIFOR code. By properly initializing the derivativeobjects corresponding to independent variables, we can merge structurally orthogonal columns andhence compute derivatives at greatly reduced cost. We also mentioned partially separable functions,where this technique can also be applied advantageously to the computation of dense gradientobjects.AcknowledgmentsWe would like to thank Alan Carle, George Corliss and Andreas Griewank for the many sugges-tions that found their way into this report. We would also like to thank Larry Biegler and JanetRogers for supplying us with test problems. 22

References[1] Brett Averick, Richard G. Carter, and Jorge J. Mor�e. The MINPACK-2 test problem collec-tion (preliminary version). Technical Report ANL/MCS{TM{150, Mathematics and ComputerScience Division, Argonne National Laboratory, 1991.[2] Christian Bischof, Alan Carle, George Corliss, and Andreas Griewank. ADIFOR{generatingderivative codes from Fortran programs. ADIFOR Working Note #1, MCS{P263{0991, Math-ematics and Computer Science Division, Argonne National Laboratory, 1991.[3] D. Callahan, K. Cooper, R.T. Hood, K. Kennedy, and L.M. Torczon. ParaScope: a parallel pro-gramming environment. International Journal of Supercomputer Applications, 2(4), December1988.[4] Thomas F. Coleman. Large Sparse Numerical Optimization, volume 165 of Lecture Notes inComputer Science. Springer-Verlag, New York, 1984.[5] Thomas F. Coleman, Burton S. Garbow, and Jorge J. Mor�e. Software for estimating sparseJacobian matrices. ACM Transactions on Mathematical Software, 10(3):329{345, 1984.[6] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. An introduction to the structure of large scalenonlinear optimization problems and the LANCELOT project. Report 89-19, Namur University,Namur, Belgium, 1989.[7] Wayne H. Enright and John D. Pryce. Two FORTRAN packages for assessing initial valuemethods. ACM Trans. Math. Software, 13(1):1{22, 1987.[8] D. Goldfarb and P.L. Toint. Optimal estimation of Jacobian and Hessian matrices that arisein �nite di�erence calculations. Mathematics of Computation, 43:69{88, 1984.[9] Andreas Griewank. On automatic di�erentiation. In: Mathematical Programming: RecentDevelopments and Applications, Kluwer Academic Publishers, Amsterdam, 1989, pages 83{108.[10] Andreas Griewank. The chain rule revisited in scienti�c computing. Preprint MCS{P227{0491,Mathematics and Computer Science Division, Argonne National Laboratory, 1991.[11] Andreas Griewank and Philippe L. Toint. On the unconstrained optimization of partially sep-arable objective functions. In: Nonlinear Optimization 1981, M.J.D. Powell, editor, AcademicPress, London, 1981, pages 301{312.[12] Andreas Griewank and Philippe L. Toint. Partitioned variable metric updates for large struc-tured optimization problems. Numerische Mathematik, 39:119{137, 1982.[13] David Juedes. A taxonomy of automatic di�erentiation tools. In: Proceedings of the Workshopon Automatic Di�erentiation of Algorithms: Theory, Implementation, and Application, AndreasGriewank and George Corliss, eds., SIAM, Philadelphia, 1991. To appear.[14] M. Lescrenier. Partially separable optimization and parallel computing. Ann. Oper. Res.,14:213{224, 1988. 23

[15] J. J. Mor�e. On the performance of algorithms for large-scale bound constrained problems. In:Large-Scale Numerical Optimization, F. Coleman and Y. Li, editors, SIAM, Philadelphia, 1991.[16] J. M. Smith and H. C. Van Ness. Introduction to Chemical Engineering. McGraw-Hill, NewYork, 1975.

24

