
ADIFOR Working Note #3:ADIFOR Exception HandlingbyChristian Bischof, George Corliss, and Andreas GriewankArgonne Technical Memorandum MCS-TM-159, 1991AbstractAutomatic di�erentiation uses recurrence relations based on the rules of calculus. Consequently,the results are guaranteed to be correct only if the relevant mathematical assumptions are satis�ed atleast in a neighborhood of the current argument. Computer programs may violate these conditionsby branching or by calling intrinsic functions such as abs, max, sqrt, and asin at points wheretheir derivative is unde�ned or in�nite. The resulting dependence between the program's inputand output variables may still be di�erentiable, because branch values �t together smoothly ornondi�erentiabilities cancel each other out.We have two objectives. First, we would like to assure the user that the function being eval-uated is indeed locally di�erentiable because all intrinsics are evaluated at smooth arguments andnone of the branching tests are critical. Second, the derivative program should run even when theassumptions of the chain rule are not strictly satis�ed. In this case, the numerical results representat least generalized derivatives under reasonable (but usually unveri�able) regularity assumptions.To achieve these two goals, we must take into account the e�ects of �nite-precision arithmetic.This paper addresses the detection and handling of exceptions. It is an exception in the ADIFOR-generated code to evaluate a function at a point at which the function may not be mathematicallydi�erentiable. When an exception is detected by tests written into the ADIFOR-generated code,an error handler is called. The error handler prints an error message (optionally), halts execution(optionally), and returns a value that allows the user's client program to detect that a requestedderivative is not available.Code is included for all of the necessary Fortran intrinsic functions and for the error handler.1 IntroductionAutomatic di�erentiation is based on the application of the chain rule. It gives the correct answer,provided that all operators and functions are applied at arguments interior to their domains, so thatthe operators and functions are smooth in a neighborhood of the point of application. If the relevantmathematical assumptions are not satis�ed, the results computed by the ADIFOR-generated codecannot be guaranteed. That is, the code generated by ADIFOR computes the correct values of thederivatives almost all of the time. This paper discusses what happens in the remaining rare events.The purpose of this paper is to make explicit the issues and alternatives associated with exceptionhandling in ADIFOR. We assume that the reader is familiar with ADIFOR [1, 2]. The intendedaudience of this paper is the user of ADIFOR who wishes to better understand the error handlingprovided by ADIFOR and the rationale behind it.We address three questions:1. What is an \error?"2. How can we detect that an error has occurred or is about to occur?1

3. What action should we take when an error is detected?We attempt to explicitly state reasonable alternatives.The error-handling mechanisms must be powerful,
exible, portable, e�cient, and easy to use.In the end, the e�ectiveness of the error handling is a major factor in the reliability of ADIFOR.2 De�nition of an ErrorThe (unreachable) goal of the error handling of ADIFOR is to provide a measure of reliabilitywhenever the derivatives computed by the ADIFOR-generated code cannot be guaranteed to becorrect. Hence, we consider it an \error" if we cannot assure the user that ADIFOR has computedthe correct values for the derivatives. Unfortunately, it is too expensive to detect all errors in thisbroad class. We view it as our responsibility to detect and handle in a sensible manner attempts toevaluate derivatives at points of mathematical nondi�erentiability. We do not attempt to handle allover
ow errors.If� all arithmetic operations and intrinsic functions are di�erentiable on some neighborhood ofthe current argument,� the sequence of these elementary functions (the
ow of control) is the same at nearby points,and� computations are performed in exact arithmetic,then the overall function is locally di�erentiable, and ADIFOR computes the correct value of thederivatives.If the elementary functions and their derivatives are evaluated to working accuracy, and noover
ow or under
ow occurs, then the Jacobian columns obtained in the forward mode representthe corresponding exact �rst derivatives for a function de�ned by the same sequence of elementaryfunctions, but with their values and derivatives perturbed by a multipliers of the form (1 + ")2,where " is bounded by the relative machine precision.If these assumptions are not satis�ed, then the derivatives computed by ADIFOR may be correct,or they may be wrong. It is the function of the exception-handling mechanism to detect when theseassumptions are violated, and to take \appropriate" action.We discuss four classes of \error":1. User function is not de�ned, for example, due to a division by 0. This is not our problem.2. Di�erentiable functions | over
ows, for example, exp (large number). Detecting this class oferror is too expensive.3. Nondi�erentiable functions | limf 0 = �1, for example, the derivative of ASIN at 1. Wereturn some special, user-de�ned value.4. Nonsmooth functions | limf 0 does not exist, for example, the derivative of ABS at 0. Wereturn some special, user-de�ned value.We discuss each of these classes of error in Sections 5 through 8. Error classes 3 and 4 constitutethe core of this paper. In Sections 3 and 4, we discuss options for how we detect an error and whatactions we take when one occurs.Several con
icting principles were considered in designing the ADIFOR exception-handling mech-anism: 2

Generalized Gradient: Many algorithms for optimizing nonsmooth functions use generalized gra-dient values. A generalized gradient is any value in the convex hull of derivative values in theneighborhood of the point of nondi�erentiability. For univariant functions, one may obtainany value in the interval [lim inf f 0; lim supf 0]. For example, a generalized gradient for jxj at0 is any number in [�1; 1]. The values we choose to return as \derivative" values at points ofnondi�erentiability are generalized gradient values, provided that the chain rule for generalizedgradients holds as a set inequality, rather than as an inclusion [3].Continuity of Catastrophe: The value at the point of nondi�erentiability should in some sensebe the limit of what happens in a neighborhood. For example, the derivative of asin (x) at 1should be INFINITY. For some functions, the mathematical limit may be di�erent from thecomputational limit, as a result of �nite precision or denormalized numbers.Extreme Point: A necessary condition for the existence of an extreme point is f 0 = 0. A point ofnondi�erentiability is usually at least a local extreme point, so returning a value of 0 as thederivative may signal an optimization algorithm that an extreme point has been found.Scaling: It is critical to scale many applications appropriately before applying an optimizationor ODE-solving algorithm. For example, one might scale by j something j, maximum, orminimum. The derivative is locally not de�ned, but the entire computation is globally di�er-entiable. We have attempted to return derivative values that make sense in connection withcommonly used scaling techniques.Evaluation of Unde�ned Functions: In some computing environments, execution may continueafter an attempt to evaluate a function at a point outside its domain (perhaps with a value ofNaN). If the program has not crashed while evaluating p�2:0 (in real arithmetic), then ourderivative evaluation should not crash, either.These principles clearly con
ict with one another. We made trade-o� choices that we think can bejusti�ed.The idea of scaling is common in scienti�c computation. For example, suppose that some nu-merical routine evaluates a function y = f(x) that is homogeneous, namely, f(cx) = cf(x) for anyscalar multiplier c. Then one might prefer to compute numerically y = jjxjjf(x=jjxjj), where jj � jjcould denote any vector norm including the nonsmooth ones mentioned above. Now, we �nd thatanalytically y0 = jjxjj0 � f(x=jjxjj) + jjxjj � rf(x=jjxjj) � (x0=jjxjj � x � jjxjj0=jjxjj2):The �rst and the last term cancel because f(x) = rf(x) � x for homogeneous functions, where �denotes the dot product. However, this is true only if the two derivative (vectors) jjxjj0 coincide,that is, are de�ned consistently. Even then, they will be multiplied by the di�erence of two numbers,which are theoretically identical but will cancel only up to round-o� in �nite precision. Therefore,we gain by setting the unde�ned values for the derivatives of abs and min or max to zero.3 Detection of an ExceptionWe see the following alternatives for the detection of exceptions (in order of increasingly defensiveposture):Options:I. Rely on the computing environment.II. Provide tests and special handling for nondi�erentiable functions.3

III. Compute a measure of \relative safety" from unde�ned derivatives.IV. Compute a measure of \relative safety" from unde�ned derivatives and over
ows.V. Compute a \trust region" in terms of the independent variables.VI. Fully guard derivative computations against unde�ned derivatives.VII. Fully guard derivative computations against unde�ned derivatives and over
ows.\Errors" may arise either from functions that are not di�erentiable or from e�ects of �nite computerarithmetic. In this paper, we address Options I and II, which cover the handling of exceptionalevents. Options III{VII are concerned with quantifying how close an argument is to the boundaryof the domain of di�erentiability. We shall address those issues in a later paper.Issues related to error detection are discussed in this section. Issues related to the handling ofthe errors once they are detected are discussed in the next section.An advantage of the Fortran-to-Fortran source translation nature of the ADIFOR tool is thatthe user has the Fortran source code and can edit it, if necessary to handle special situations.3.1 Reliance on the Computing EnvironmentArithmetic errors that occur in the evaluation of derivatives should be treated in exactly thesame way as similar errors that arise in the evaluation of the user's original code. Depending on thehost computing environment, the user may choose to set traps, test for IEEE arithmetic
ags, ortake other defensive measures against over
ows, divisions by zero, or similar errors caused either bythe user's function not being mathematically de�ned in exact arithmetic or else by e�ects of �nite-precision arithmetic. Error detection of this type for the user's function is clearly the responsibilityof the user. As a by-product, the same detection applies to operations performed in evaluating thederivatives.This option is easy to implement, and it is a part of the error-handling strategy of ADIFOR.However, it is not portable, since the same program behaves di�erently in di�erent computingenvironments. Worse, it ignores nondi�erentiability caused by branches in the program or by non-di�erentiable functions such as abs.The use of IEEE arithmetic �ts into this class of error detection. If the host computing envi-ronment uses IEEE arithmetic and an error occurs in the evaluation of derivative values, then theIEEE arithmetic provides several di�erent mechanisms for informing the user of that fact.3.2 Tests and Special Handling for Nondi�erentiable FunctionsThe Fortran intrinsic functions abs, sign, aint, max, min, and dim have points at which theyare nondi�erentiable. It is a simple matter for ADIFOR to detect calls to these functions and togenerate special code to handle the points of nondi�erentiability.4 Exception-Handling ModuleIn the preceding section, we described options for detecting the presence of an error in thederivative evaluation. In this section, we describe a mechanism for taking action and what actionsshould be taken. In Sections 5{8, we specify that whenever an error is detected, we should call theexception-handling module described here. Fortran code for a simple implementation is given inAppendix A.The error handler can� initialize error handler (optional),� print an error message (if desired), 4

� either STOP execution, or else return a value to let execution continue. On a machine withIEEE arithmetic, either NaN or INFINITY are logical choices. Then, the user's client programcould detect that a requested derivative is not meaningful and take an appropriate action.� report on the number of errors of each class (optional).The user can controlClassN: Class of error to which the error belongsMsgTxt: Content of the message textPrintF: Printing of the messageErrFil: Logical unit number to which the error messages should be printed.HaltFg: Halting executionInfVal: Value returned if derivative limit is in�niteNoLmVl: Value returned if derivative has no limitTieVal: Partial derivative of max(x; y) or min(x; y) with respect to x when x = yIf the user has complicated exception-handling requirements, we supply the code for g$error sothat it can be customized as necessary.We generate augmented code of the formr$0 = funct (t)if (t .ne. BAD_POINTS) thengr0 = result of derivative calculationselsegr0 = g$error (n, 'Derivative of funct does not exist')end ify = r$0The function g$error has the formfunction g$error (Class_Number, Message_Text)common / g$error_block / Print_Flag, Halt_Flag, Error_File,Infinite_Value, No_Limit_Value, Tie_Valueif (Print_Flag)write (Error_File) Message_Textif (Halt_Flag)stopif (Class_Number .lt. 10) theng$error = Infinite_Valueelseif (Class_Number .lt. 15) theng$error = Tie_ValuereturnendThe variables Print Flag, Halt Flag, Error File, Infinite Value, No Limit Value, and Tie Valuebelong to a common block g$error block. Appropriate default values are provided.5

Variable Default ValuePrint Flag TRUEHalt Flag FALSEError File 6In�nite Value 0No Limit Value 0Tie Value 1/2Several con
icting principles listed in Section 2 were considered in selecting these default values.We made choices for these default values that we think can be justi�ed. The rationale is includedwith the discussions in the following sections where the values are used. A knowledgeable user maychange the values directly or calling the routine we supply:subroutine g$Init_Error (Print_F, Halt_F, Err_F, Infin, No_Lim, Max_V)boolean Print_F, Halt_F, Err_Freal Infin, No_Limcommon / g$error_block / Print_Flag, Halt_Flag, Error_File,Infinite_Value, No_Limit_Value, Tie_ValuePrint_Flag = Print_FHalt_Flag = Halt_FError_File = Err_FInfinite_Value = InfinNo_Limit_Value = No_LimTie_Value = Max_VreturnendThe user who wishes even more control can write his own function g$error to handle errorsin any way he sees �t.A subroutine g$ReptEr (LUnitN) is provided to optionally report the cumulative number oferrors of each class.5 Error Class 1: Unde�ned User Function5.1 De�nition of an ErrorAccording to the de�nition of a derivative, a function must have a �nite real value in order to havea derivative. The �rst class of errors we consider is the case where the original program ADIFORreceives from the user cannot be evaluated at certain arguments. This may happen either becausethe mathematical function the user has described is unde�ned (e.g., Detecting x=0) or becausethe mathematical function is well de�ned, but it cannot be evaluated accurately in �nite-precisionarithmetic according to the algorithm the user has programmed (e.g., x="2). Currently, ADIFORcan only handle real arithmetic. Hence, the square root is considered to be unde�ned at negativevalues.5.2 Detection of an ErrorOptions:I. Let the user's program crash.II. Augment the user's program with tests to detect a priori erroneous conditions such as divisionby zero. ADIFOR would generate tests similar to that shown in the code fragment below.6

5.3 Possible ActionsRecommendation: Let the user's program crash.Rationale: We should not alter the workings of the original code supplied by the user.However, the user's original code may have error-detection and error-handling features built in.If so, those features are carried over to the augmented code. If the user does not guard operations,those operations will not be guarded in the augmented code either. For example, the original codeIF (X .NE. 0.0) THENY = A / XELSECALL ERROR ('Please do not divide by zero.')END IFproduces the generated codeif (x .ne. 0.0) thenC y = a / xr$0 = a / xxbar = -r$0 / xdo 99936 gi = 1, gpg$y(g$i$) = xbar * g$x(gi)99936 continuey = r$0elsecall g$error$0(g$p$, 'Please do not divide by zero.')endifOn the other hand, the original codeY = A / Xproduces the generated codeC y = a / xr$0 = a / xxbar = -r$0 / xdo 99935 gi = 1, gpg$y(g$i$) = xbar * g$x(gi)99935 continuey = r$0If the original code crashes, the augmented code crashes in exactly the same way. In either case, theoriginal code and the augmented code behave the same way with respect to the erroneous conditionx = 0.The issue with respect to errors in the user's code is that the behavior of the original code isretained. In this class of error, we are not concerned that the evaluation of the derivative valuesmay over
ow. We are making no statements about what sort of test the user may determine tobe appropriate. In particular, we are not objecting at this point in the discussion to the test forequality in this example. That objection comes later.For the most part, the code generated by ADIFOR behaves exactly the same as the user's origi-nal code with respect to the values computed or with respect to errors that might occur. ADIFORretains the parallelizability or vectorizability of the original code. It does not reorder statements.However, ADIFOR does assign some previously anonymous intermediate results to temporary stor-age locations. Assigning the results of intermediate computations may cause some compilers tocompute answers that di�er by one or two units in the last place. It is also possible that code rely-ing on side e�ects and on a speci�c order of evaluation within an expression could produce a di�erentvalue. Otherwise, the function values computed by ADIFOR's code agree with those computed bythe user's original code. 7

6 Error Class 2: Di�erentiable Functions | Over
owsMany of the operators and intrinsic functions of Fortran (+, -, *, sin, cos, atan, sinh, cosh, exp)are everywhere di�erentiable. Some other operators and intrinsic functions (/, tan, log, log10, tanh)fail to be di�erentiable only at points where they fail to be de�ned. We refer to operators andfunctions in either set as di�erentiable because they are mathematically di�erentiable at each pointin their domains.If the user's original program evaluates di�erentiable functions without crashing, then we mayalso evaluate their derivatives. Hence, error handling for these operators and functions is completelywithin the domain of the user's original program, and we have no further error handling to do.Properly speaking, the statement in the preceding paragraph is true only if no over
ow occurs.For functions involving /, tan, log, log10, or tanh, the values of derivatives may be larger than thevalues of functions. Hence, the computations for derivatives may over
ow, even when the evaluationof the function does not. If f(t) = ln(t) or tan(t), for example, then jf 0(t)j >> jf(t)j as t! 0+, or�=2, respectively.6.1 De�nition of an ErrorAn error belongs to this class if� the function f is di�erentiable,� the function f can be evaluated by the original user's program,� the code generated by ADIFOR su�ers over
ow or under
ow while computing the derivative,and hence� the generated code crashes or computes the wrong values for the derivatives.The \error" here is that �nite-precision arithmetic cannot compute the value that is mathematicallyde�ned.6.2 Detection of an ErrorWe settle for possibly detecting the occurrence of under/over
ow in the derivative computations.It might be that the correct derivative values can be computed even in the presence of under/over
ow,but we have no hope of recognizing that. Hence, we may \detect" under/over
ow events that donot really belong to this class of error.The detection of errors in this class requires careful de�nitions of the domains in which eachoperation and elementary function can be evaluated without under/over
ow, and tests of each argu-ment before each derivative is computed. Alternatively, on a machine supporting IEEE arithmetic,NaNs and INFINITYs generated during derivative computations signal over
ow.The cost of detecting this class of error in software is so high that we rely on the host computingenvironment.6.3 Possible ActionsIf we have some way of knowing that the generated code is running on a machine with IEEEarithmetic, we should take advantage of its capabilities.As an example to illustrate the high cost of detecting and handling this class of error, considerthe assignment statementY = A / X + TAN (X) + LOG (X) + LOG10 (X) + TANH (X)where A is a passive variable and X and Y are active. ADIFOR generates the code8

C y = a / x + tan(x) + log(x) + log10(x) + tanh(x)r$0 = a / xr$9 = cosh(x)xbar = 1.0 / (r$9 * r$9)xbar = xbar + 1.0 / (x * log(10.0))xbar = xbar + 1.0 / xr$10 = cos(x)xbar = xbar + 1.0 / (r$10 * r$10)xbar = xbar + (-r$0 / (x))do 99932 g$i$ = 1, gpg$y(g$i$) = xbar * g$x(gi)99932 continuey = r$0 + tan(x) + log(x) + log10(x) + tanh(x)which has many possible sources of over
ow, depending on the value of X. We might de�neREAL LOGBIG, LOGSMALL, HALFBIGLOGBIG = LOG (Max_Real) - epsilonLOGSMALL = LOG (Min_Positive_Real) + epsilon= - LOGBIGHALFBIG = Max_Real / 2 - epsilonand generate annotated code like this to detect and prevent over
ow errors. The following code imple-ments Option VII: Fully guard derivative computations against unde�ned derivatives and over
ows.We give the generated code in full detail in order to communicate by example what code must begenerated. We conclude that this option is too expensive at run time.C y = a / x + tan(x) + log(x) + log10(x) + tanh(x)r$0 = a / xr$9 = cosh(x)TMP = 2 * LOG (ABS (r$9))IF (TMP .GE. LOGBIG) THENXBAR = G$ERROR (OVERFLOW_FLAG, 'tanh')ELSE IF (TMP .LE. LOGSMALL) THENXBAR = G$ERROR (OVERFLOW_FLAG, 'tanh')ELSExbar = 1.0 / (r$9 * r$9)END IF. . .do 99932 gi = 1, gpTMP = LOG (ABS (XBAR)) + LOG (ABS (g$x(g$i$)))IF ((TMP .LE. LOGSMALL) .OR. (TMP .GE. LOGBIG)) THENg$y(g$i$) = G$ERROR (OVERFLOW_FLAG, 'assignment')ELSEg$y(g$i$) = xbar * g$x(gi)END IF99932 continuey = r$0 + tan(x) + log(x) + log10(x) + tanh(x)It is more e�cient in Fortran 77 to test the values rather than their logarithms. However, thein Fortran 90, it is as e�cient to use the built-in functions to return the exponent of a number (toreplace the calls to LOG) as it is to test the values themselves.9

7 Error Class 3: Nondi�erentiable Functions | Lim f 0 = �1This section and the next form the core of this paper. Together, they describe how ADIFORdeals with Fortran intrinsic functions that are not globally di�erentiable.Not all operators and intrinsic functions are di�erentiable. We call a function nondi�erentiableif there are points in its domain for which its derivative does not exist. We are not concerned withpoints outside the domain of the functions because the augmented program will already behave thesame way as the user's original program at such points. Our only concern is with points at whichthe function can be evaluated by using �nite-precision arithmetic, but the derivative cannot.There are only a few such points with which we must be concerned. The following table is anexhaustive listing. Function Points of nondi�erentiabilitysqrt (x) x = 0asin (x) x = �1acos (x) x = �1x**y Depends on implementationx � 0abs (x) x = 0sign (x, y) x = 0, or y = 0aint (x) x = �1;�2; : : :max (x, y) x = ymin (x, y) x = ydim (x, y) x = yWe have divided these functions into two classes (by the horizontal line). For sqrt, asin, and acos,the derivatives approach �1 as t! point of nondi�erentiability. These functions will be treated inthis section. The power operator (**) is a special case. ADIFOR currently computes the derivativefrom t**u = exp (u ln (t)). For a more sophisticated implementation, the power operator is notde�ned if t � 0 and u is fractional.The second class of function (below the horizontal line) are nonsmooth as functions and will betreated in the next section.7.1 De�nition of an ErrorAn error belongs to this class if� the function f is di�erentiable,� the function f can be evaluated by the original user's program, and� the function involves elementary functions sqrt, asin, acos, and **, evaluated at (or near) thepoint of nondi�erentiability.An error can belong to this class even when the mathematical function is well behaved, but inter-mediate results produce this error. For example (from H. Fischer [4]), letf(x; z) :=px4 + z4;where x and z are both active variables. The function f is di�erentiable at the point (x; z) = (0; 0).However, a step-wise evaluation of f 0 forms u(x; z) = x4 + z4 �rst, then forms f = pu. Sinceu(0; 0) = 0, the derivative of f is unde�ned and produces an error in this class when evaluating10

f = pu. To avoid this problem, one would have to examine the interaction between successiveapplications of elementary functions and operations. Such \symbolic" analysis is beyond the scopeof ADIFOR and of automatic di�erentiation in general.7.2 Possible ActionsFor each function in this class, we generate augmented code of the formr$0 = funct (t)if (t is not near BAD_POINTS) thengr0 = result of derivative calculationselsegr0 = g$error (1, 'Derivative of funct does not exist')end ify = r$0The function g$error is described in Section 4.For the reverse mode accumulation of adjoints within expressions, this class of error is handledin exactly the same manner as the previous class.In the rest of this section, we discuss each of the functions sqrt, asin, acos, and **. Whenevera call to one of the �rst three functions appears in the original code, ADIFOR generates a callto a function g$sqrt, g$asin, or g$acos; ** is handled specially by in-line code as described inSection 7.5. Elementary functions described in this section that require error handling are treatedby ADIFOR in the same manner as elementary functions like sin and cos which do not require errorhandling. The codes for each function are in Appendix A.7.3 SqrtThe function g$sqrt returns the derivative value for SQRT: d(px)=dx. The function g$sqrt isused like this in the code generated by ADIFOR:C Z = SQRT (X)r$1 = sqrt (x)temp = g$sqrt (x, r$1)do 99990 g$i$ = 1, gpg$z(g$i$) = temp * g$x(gi)99990 continueor xbar = xbar + zbar * g$sqrt (x, r$1)Let y :=pjxj. Then, the value returned by g$sqrt isg$sqrt(x) :=8<: 1=(2y) for x > 0;InfVal from g$error for x = 0; and�1=(2y) for x < 0:Rationale: At the point of nondi�erentiability x = 0, the default for InfVal = 0 is a generalizedgradient value if we assume that SQRT (x) := SQRT (ABS (x)). Further, it makes expressions likeSQRT (X*X*X*X + Y*Y*Y*Y) have the correct derivative. However, it violates the principle ofcontinuity of catastrophe. Alternatively, the value of InfVal = INFINITY makes the one-sided limitcorrect.Denormalized: If x is a denormalized number, then y is well into the range of normalized numbers.Hence, 1=(2y) cannot over
ow. The computed value of y is zero if and only if x is zero.11

7.4 Asin and acosThe functions g$asin and g$acos return the derivative values for ASIN: d(asin(x))=dx and forACOS: d(acos(x))=dx, respectively. The functions g$asin and g$acos are used in the code generatedby ADIFOR in the same manner as g$sqrt.The values returned by g$asin and g$acos areg$asin(x) := 8<: 1=p1� x2 for jxj < 1;InfVal from g$error for jxj = 1; andInfVal from g$error for jxj > 1:g$acos(x) := 8<: �1=p1� x2 for jxj < 1;InfVal from g$error for jxj = 1; andInfVal from g$error for jxj > 1:Rationale: At the points of nondi�erentiability x = �1, the default for InfVal = 0 indicates anextreme point. However, it violates the principle of continuity of catastrophe. Alternatively, thevalue of InfVal = INFINITY makes the one-sided limit correct. If jxj > 1, usually the user's originalcode will have already crashed while evaluating ASIN (x). If it has continued execution (perhapswith value NaN), we should continue execution also. No value is reasonable since the function isnot de�ned, so we choose to return the same value at at x = �1. Alternatively, we could returnwhatever was assigned to the value of ASIN (x).Denormalized: No matter how close x is to �1, neither 1� x nor 1+ x can be very small relativeto the machine epsilon. Hence, the derivative evaluated at a machine-representable number cannotover
ow.7.5 Power: **The power operator is treated di�erently from the other elementary functions. For xy = x**y,we must be prepared to handle separate cases for either or both x and y being active variables. Wemust be able to compute derivatives with respect to either or both of them.Following the general philosophy of the other exception-handling routines, we try to catch thesituations where the function value itself is at least mathematically de�ned, but the derivatives arenot. In contrast to the other intrinsic functions, we prefer to generate the necessary code in-line,except for a call to g$error in the exceptional cases. \In-line" here means that we branch directlyon the bar quantity assignments.Depending on whether we wish to di�erentiate xy with respect to x or with respect to y, weshould consider it as a \power" or as an \exponential." Correspondingly, the error classi�cationnumber should be 5 or 10, respectively, in the call to g$error. When both x and y are active reals,we consider xy simultaneously as a power and as an exponential.We assume that xy has a well-de�ned value if x � 0 or y is an integer with 00 = 1. On particularsystems, the values may be de�ned di�erently if x = 0 or y = 0, and there will be over
ow wheny < 1 and x is su�ciently small. We will do nothing about this because we would otherwise alsohave to safeguard simple divisions.For �xed y, the derivative of xy with respect to x is mathematically de�ned except when x = 0,and 0 < y < 1. This case is a generalization of the square root situation. Therefore, we set thederivative to InfVal. When y = 0, we set the derivative with respect to x to zero and do not callg$error, even if x = 0.For �xed x, the derivative of xy with respect to y is mathematically de�ned except when x � 0,and the value of y is an integer. When x is negative, xy is not de�ned for any fractional y. Therefore,we set the value of the derivative to NoLmVl at integral values of y. When x = 0, the derivative iszero for all y > 0. For y = 0, we may again use NoLmVl.12

Note that ybar remains unchanged if x = 0 and y > 0.When y is not active, there is no ybar, and the second part of the calculation can be omitted. Ify is of type integer, the �rst part can be reduced to the single statementif (x .ne. 0.0) xbar = xbar + y * zbar * r$0 / xIf x is passive, there is no xbar, and the �rst part can be omitted. Finally, if either a or y areconstants that can be evaluated at compile time, further simpli�cations are possible.ADIFOR should generate code like this:C z = x**yr$0 = x**yzbar = 1.0xbar = 0.0ybar = 0.0CC First, do the derivative with respect to x.C if (x .ne. 0.0) thenxbar = xbar + y * zbar * r$0/xelseif ((y .gt. 0.0) .and. (y .lt. 1.0)) thenxbar = xbar + zbar+ * g$error (5, 'Fractional power of zero')end ifend ifC Second, do the derivative with respect to y.if (x.gt.0.0) thenybar = ybar + zbar * r$0*log(x)elseif ((x .lt. 0.0) .or. (y .eq. 0.0)) thenybar = ybar + zbar+ * g$error (10, 'Negative basis or 0**0')end ifend ifz = r$0do 99990 g$i$ = 1, gpg$z(g$i) = xbar*g$x(g$i) + ybar*g$y(g$i)99990 continue8 Error Class 4: Nonsmooth Functions | Lim f 0 does not existThe functions abs (x), sign (x, y), aint (x), max (x, y), min (x, y), and dim (x, y) are not smooth.Although the user's original program can evaluate the functions, they are not di�erentiable at certainpoints. As for functions whose derivatives have in�nite limits, we have the same alternatives asbefore, but now it is less clear what value should be returned.8.1 De�nition of an ErrorIt is an error in this class to evaluate one of the functions abs (x), sign (x, y), aint (x), max (x,y), min (x, y), or dim (x, y) at a point of nondi�erentiability.13

8.2 Possible ActionsIn many calculations, variable vectors are scaled by their L1 norm or L1 norm (i.e., the sum ormaximum of the component moduli). Later on, this scaling is undone so that the overall calculationis mathematically smooth, even when some of the components are zero or their absolute values aretied at the maximum. Then the automatic di�erentiation should go through and yield the rightresults.For the rest of this section, we give the code to be generated for each of the functions in thisclass.8.3 AbsThe function g$abs returns the derivative value for ABS: d(jxj)=dx. The function g$abs is usedlike this in the code generated by ADIFOR:C Z = ABS (X)r$1 = abs (x)temp = g$abs (x, r$1)do 99990 g$i$ = 1, gpg$z(g$i$) = temp * g$x(gi)99990 continueor xbar = xbar + zbar * g$abs (x, r$1)Then, the value returned by g$abs isg$abs(x) :=8<: �1 for x < 0;NoLmVl from g$error for x = 0; and1 for x > 0:Rationale: At the point of nondi�erentiability x = 0, the default for NoLmVl = 0 is a generalizedgradient value that indicates an extreme point.8.4 SignThe function g$sign returns the derivative value for SIGN: d(SIGN (x; y)=dx. It is not necessaryto di�erentiate with respect to y because d(SIGN (x; y)=dy = 0. Fortran's SIGN (x, y) := jxj �signum (y). The function g$sign is used by ADIFOR in the same way as g$abs. The value returnedby g$sign depends on the signs of both x and y:x=y � 0 +� 1 NoLmVl �10 NoLmVl NoLmVl NoLmVl+ �1 NoLmVl 1Rationale: At the point of nondi�erentiability x = 0, the default for NoLmVl = 0 is a generalizedgradient value equal to the average of the two limits from each side.8.5 Aint and anintThe functions g$aint and g$anint return the derivative values for AINT and ANINT, respec-tively. Fortran's AINT (x) truncates toward 0, so it is not di�erentiable at x = �1, �2, : : :. ANINTrounds to the nearest integer, so it is not di�erentiable at x = odd multiples of 1=2. The func-tions g$aint and g$anint return InfVal at the points of nondi�erentiability, and 0 elsewhere. Analternative choice is NoLmVl = 0, the limit from each side.14

8.6 ModThe function g$mod returns the derivative value for MOD. Fortran's MOD (x, y) = x�aint (x=y)�y, so it is not di�erentiable at x = multiples of y. The function g$mod returns InfVal at the pointsof nondi�erentiability, and 1 elsewhere. An alternative choice is NoLmVl = 0 to signal an extremevalue, or 1, the limit from both sides.8.7 DimThe function g$dim returns the derivative value for DIM: d(DIM (x; y))=dx. It is su�cient tocompute the derivative with respect to x because d(DIM (x; y))=dx = d(DIM (x; y))=dy. Fortran'sDIM (x, y) = max (x� y, 0), so it is not di�erentiable at x = y. The function g$dim returnsg$dim(x; y) := 8<: 1 for y < x;NoLmVl from g$error for y = x; and0 for y > x:Rationale: At the points of nondi�erentiability x = y, the default for NoLmVl = 0 is a generalizedgradient. An alternative choice is 1/2, the average of the limits from both sides.8.8 Max and MinThe functions g$max and g$min return the derivative values for MAX and MIN, respectively.MAX and MIN are not necessarily di�erentiable at points where their arguments are equal. In thatcase, we return the average of the two derivatives. At the points of nondi�erentiability, the defaultfor TieVal = 1/2 is a generalized gradient. It is su�cient to compute d(MAX (x; y))=dx becaused(MAX (x; y))=dy = 1 � d(MAX(x; y))=dx, and similarly for MIN. Hence, the values returned bythe functions g$max and g$min areg$max(x; y) :=8<: 1 for x > y;TieVal from g$error for x = y; and0 for x < y:g$min(x; y) :=8<: 1 for x < y;TieVal from g$error for x = y; and0 for x > y:Fortran's MAX and MIN functions accept more than two arguments. If ADIFOR encounters suchcalls, it translates them into a sequence of binary calls to MAX or MIN and applies the exceptionhandling described here to each binary call. This procedure has the unfortunate consequence thatif many arguments are equal, their slopes are weighted 1/2, 1/4, 1/8, : : :. Hence, we are consideringmore sophisticated ways to handle MAX and MIN.In some applications, especially to univariate functions, one might prefer a di�erent formulation.If f := max(x; y), we might de�nef 0 :=8>><>>: x0 for x > y;y0 for x < y;(x0 + y0)=2 if x = y and x0 � y0 > 00 if x = y and x0 � y0 � 0:This de�nition is attractive because the derivative value of zero is taken by many optimization codesas a signal for a local optimum. This de�nition has the disadvantage, however, that its value is notalways appropriate in the context of multidimensional optimization. If this interpretation of thederivatives of max and min is desired, calls to MAX and MIN can be replaced by calls to my max andmy min, respectively, and the user can supply subroutines g$my max and g$my min which implementthe alternative de�nition. 15

9 Future DirectionsSo far in this paper, we have described the ADIFOR exception-handling mechanism. We arecontinuing to work on several related issues which we outline brie
y in this section.9.1 Quantifying Distance to DangerIn Section 3, we listed options based in relative safety or trust region approaches to indicate whenthe function is being evaluated at or near a point of nondi�erentiability. The relative safety measureis inexpensive, but hard to interpret. The trust region is easy to interpret in terms of the originalindependent variables, but it is expensive to compute. We are exploring the nature of that cost andways to economize by combining the relative safety measure with the trust region approach. Theresults will appear in a later paper.9.2 BranchingThe user's original programmay contain IF statements which have the e�ect of de�ning functionsthat are not di�erentiable or are not even continuous. The augmented code executes the appropriatebranches in the manner described by Kedem [5]. However, the value of the derivatives computed atpoints at which equality holds are suspect. The derivatives computed are those that would resultfrom taking limits of points for which inequality holds. The result may appear to be a derivativevalue at a point for which the mathematical derivative does not exist. The following example ofpossible user's code to compute the absolute value illustrates some of the dangers.Suppose that the user's original code includes the following code to compute an absolute value:if (t .ge. 0.0) thenabs = telseabs = -tend ifThen, we would conclude that abs0(t) = � 1 if t � 0�1 if t < 0:An equally reasonable programmer might writeif (t .gt. 0.0) thenabs = telseabs = -tend ifor if (t .gt. 0.0) thenabs = telse if (t .lt. 0.0) thenabs = -telseabs = 0.0end ifThe three di�erent equivalent programs for abs give values for the derivative at 0 as +1, �1, and 0,respectively.Another unintended consequence of an IF statement is illustrated by another example fromFischer [4]. If the function f(x) := x2 is programmed as16

if (x .eq. 1.0) thenf = 1.0elsef = x * xend ifthen automatic di�erentiation of this program would incorrectly compute f 0(1) = 0. While fewprogrammers would implement x2 in this manner, we have encountered similar formulations inproduction codes. It is a reasonable way to program when function values are known explicitly forspecial points and evaluation of the formula is expensive.The \fault" in the abs and x2 examples is not with automatic di�erentiation; the results areunavoidable consequences of the style of the original program supplied by the user. ADIFOR cur-rently handles programs with IF statements. The
ow of control in the derivative code is the sameas the
ow of control in the original code. If tests do not occur at equality, the point of evaluationis interior to the domain of di�erentiability, and ADIFOR computes the correct derivative values.If tests at equality do occur, the results are usually appropriate for some one-sided limit, but theycan be incorrect.The user of ADIFOR should be aware of the possibility that IF statements can be used tocompute derivative values for nondi�erentiable functions. Relative safety or trust region techniqueswill allow us to alert the user to danger.9.3 Mathematical PitfallsAutomatic programming is no substitute for mathematical insight. Automatic di�erentiation isno exception. The following examples are from Fischer [4].Example 1: Let f2(x) := x�exp(�x2) and fk(x) = fk�1(x)�exp(f2(x)). For x = 1, limk!1 f 0k(0) =1, while f 0(0) = 0.Example 2: Let fn(x) := 12n� � sin(2n�x), for n = 1; 2; : : :. Then the sequence of function valuesffng converges everywhere pointwise to f � 0, but the sequence of derivative values ff 0ng convergesto 1 for in�nitely many values of x.The \problem" here is that di�erentiation and limits are not interchangeable. The use of AD-IFOR to perform the di�erentiation does not change that mathematical fact. Automatic di�eren-tiation correctly computes the requested derivative, but it remains the responsibility of the user tointerpret the derivative correctly.AcknowledgmentsWe thank Alan Carle and Paul Hovland for their helpful suggestions on exception handling andfor their essential roles in the ADIFOR development project.
17

Appendix A. Exception-Handing CodeIn Section 4, we described the functionality of the error-handling module. Here we give theFortran code for a simple implementation.C Purpose: Simple error handler for ADIFORC Authors: George F. Corliss and Andreas GriewankC Description:C Initialize error handler (optional).C When an error occurs:C Conditionally print an error messageC Conditionally STOP execution,C or else return a value to let execution continue.C Report the number of errors in each class (optional).CC The user can control:C ClassN Class of error to which the error belongsC MsgTxt Content of the message textC PrintF Printing of the messageC ErrFil Logical unit number to which the error messagesC should be printed.C HaltFg Halting executionC InfVal Value returned if derivative limit is infiniteC NoLmVl Value returned if derivative has no limitC TieVal Partial derivative of Max (x, y) or Min (x, y)C with respect to x when x = yC g$error Source code can be customized, if necessaryCC Contents:C block dataC function g$error (ClassN, MsgTxt)C subroutine g$InitEr (PFlag, HFlag, ErrF, Infin, NoLim, MaxV)C subroutine g$ReptEr (LUnitN)C real function g$sqrt (x, y)C real function g$asin (x)C real function g$acos (x)C real function g$aint (x, y)C real function g$anint (x, y)C real function g$mod (x, y, z)C real function g$abs (x)C real function g$sign (x, y)C real function g$dim (x, y)C real function g$max (x, y)C real function g$min (x, y)CC Usage:C Initialize error handlerC Optional. These happen to be the default parameters.C call g$InitEr (.True., .False., 6, 0.0, 0.0, 0.5)C . . .C if (All is fine) thenC Answer = Normal processingC elseC Answer = g$error (1, 'Something is wrong!')C end if 18

C . . .C Optional. If you want to know how many errors of each type.C call g$ReptEr (6)C Reference:C Christian Bischof, Alan Carle, George Corliss, Andreas Griewank,C Paul Hovand, Generating Derivative Codes from Fortran Programs,C Preprint No. MCS--P263--0991, Mathematics and Computer ScienceC Division, Argonne National Laboratory, 1991. Also appeared asC Technical Report No. 91185, Center for Research in ParallelC Computation, Rice University, Houston, TX., 1991.block dataC Purpose: Initialize default values for error handling.C PrintF Print FlagC 0 No printingC 1 Print error messageC Default: PrintC HaltFg Halt FlagC 0 Continue executionC 1 Halt executionC Default: ContinueC ErrFil Error FileC Logical unit number to which error messagesC (if any) should be written.C Default: Standard outputC InfVal Infinite ValueC In case HaltFg = 0 so that execution continues,C this is the value returned in cases like sqrt (0)C for which the function is defined, but theC derivative has an infinite limit. On aC machine with IEEE arithmetic, INFINITY or NaNC would be good choices.C Default: 0.0C NoLmVl No Limit ValueC In case HaltFg = 0 so that execution continues,C this is the value returned in cases like abs (0)C for which the function is defined, but theC derivative has no limit.C Default: 0.0C TieVal Value returned for Max (x, x) or Min (x, x)C In case HaltFg = 0 so that execution continues,C this is the value returned for Max (x, x) orC Min (x, x). The average is a generalized gradient.C Default: 0.5common / g$ErrBlk / PrintF, HaltFg, ErrFil, InfVal, NoLmVl,+ TieVal, KtErrlogical PrintF, HaltFginteger ErrFil, KtErr(20)real InfVal, NoLmVl, TieValdata PrintF / 1 /,+ HaltFg / 0 /,+ ErrFil / 6 /, 19

+ InfVal / 0.0 /,+ NoLmVl / 0.0 /,+ TieVal / 0.5 /,+ KtErr / 20 * 0 /endfunction g$error (ClassN, MsgTxt)C Purpose: Conditionally print message, conditionally STOP.C Input parameters:C ClassN Class NumberC Derivative limit is infiniteC 1 sqrt (0)C 2 asin (+-1), acos (+-1)C 3 Fractional power of zeroC 4 Negative basis or 0**0C 5 aint (integer)C 6 mod (n*y, y)C Derivative limit does not existC 11 abs (0)C 12 sign (0, x) or sign (x, 0)C 13 dim (x, x)C 15 Max, MinC 20 Values hit equality in IF testsC MsgTxt Message Textinteger ClassNcharacter*40 MsgTxtcommon / g$ErrBlk / PrintF, HaltFg, ErrFil, InfVal, NoLmVl,+ TieVal, KtErrlogical PrintF, HaltFginteger ErrFil, KtErr(20)real InfVal, NoLmVl, TieValC Increment error counter.KtErr(ClassN) = KtErr(ClassN) + 1C Conditionally print an error message.if (PrintF) thenwrite (ErrFil, 1010) MsgTxt1010 format (/ 'ERROR: ', A40 /)end ifC Conditionally halt execution.if (HaltFg) thenC!!! S T O PSTOPC!!! S T O Pend ifC What value should we return?if (ClassN .le. 9) theng$error = InfValelse if (ClassN .le. 14) theng$error = NoLmVl 20

elseg$error = TieValend ifreturnendsubroutine g$InitEr (PFlag, HFlag, ErrF, Infin, NoLim, MaxV)C Purpose: Optionally called to override error handler defaultsC Input parameters:C PFlag Print FlagC HFlag Halt FlagC Err_F Error FileC Infin Infinite ValueC No_Lim No Limit ValueC TieVal Maximum/Minimum valuelogical PFlag, HFlaginteger ErrFreal Infin, NoLim, MaxVcommon / g$ErrBlk / PrintF, HaltFg, ErrFil, InfVal, NoLmVl,+ TieVal, KtErrlogical PrintF, HaltFginteger ErrFil, KtErr(20)real InfVal, NoLmVl, TieValPrintF = PFlagHaltFg = HFlagErrFil = ErrFInfVal = InfinNoLmVl = NoLimTieVal = MaxVdo 10 i = 1, 20KtErr(i) = 010 continuereturnendsubroutine g$ReptEr (LUnitN)C Purpose: Optionally report the cumulative number of errorsC of each class.C Input parameter:C LUnitN Logical Unit Number to which the report should be written.C Output: Report on LUnitNinteger LUnitNcommon / g$ErrBlk / PrintF, HaltFg, ErrFil, InfVal, NoLmVl,+ TieVal, KtErrlogical PrintF, HaltFginteger ErrFil, KtErr(20)real InfVal, NoLmVl, TieVal 21

write (LUnitN, 1010) KtErr(1), KtErr(2), KtErr(3), KtErr(4),+ KtErr(5), KtErr(6), KtErr(11), KtErr(12), KtErr(13),+ KtErr(15)1010 format (// 'How many errors did the ADIFOR-generated code ',+ 'detect?',+ / 'Error: Function is defined,',+ / ' but not differentiable in exact arithmetic.'+ // ' Class Number Number of errors',+ / ' Derivative limit is infinite: ',+ / ' 1 sqrt (0) ', i4,+ / ' 2 asin (+-1), acos (+-1) ', i4,+ / ' 3 Fractional power of zero ', i4,+ / ' 4 Negative basis or 0**0 ', i4,+ / ' 5 aint (integer) ', i4,+ / ' 6 mod (n*y, y) ', i4,+ / ' Derivative limit does not exist: ',+ / ' 11 abs (0) ', i4,+ / ' 12 sign (0, x) or sign (x, 0) ', i4,+ / ' 13 dim (x, x) ', i4,+ / ' 15 Max (x, x) or Min (x, x) ', i4 //)returnendreal function g$sqrt (x, y)C Purpose: Return the derivative value for SQRT.C d (SQRT (x)) / d x.C Input parameter:C x Argument to SQRTC y Result of SQRT (x)C Instead, we could compute y = SQRT (x) locally.C Returned value:C if x < 0 g$sqrt = -1 / (2 y)C Usually will have previously crashed whileC evaluating SQRT (x). If it did not crash,C we assume SQRT (x) := SQRT (ABS (x)).C if x = 0 g$sqrt = InfVal from g$errorC if x > 0 g$sqrt = 1 / (2 * y)C Rationale: At the point of nondifferentiability, the defaultC for InfVal = 0 is a generalized gradient value if we assumeC SQRT (x) := SQRT (ABS (x)). Further, it makes expressionsC like SQRT (X*X*X*X + Y*Y*Y*Y) have the correct derivative.C However, it violates the principle of continuity of catastrophe.C Alternatively, the value of InfVal = INFINITY makes theC one-sided limit correct.C Denormalized: If x is a denormalized number, then y is well intoC the range of normalized numbers. Hence, 1 / (2 y) cannotC overflow. The value of y is zero if and only if x is zero.C Usage in ADIFOR-generated code:C C Z = SQRT (X)C r$1 = sqrt (x)C temp = g$sqrt (x, r$1)C do 99990 g$i$ = 1, gpC g$z(g$i$) = temp * g$x(gi) 22

C 99990 continueC orC xbar = xbar + zbar * g$sqrt (x, r$1)real x, yif (x .gt. 0.0) theng$sqrt = 1.0 / (2.0 * y)else if (x .lt. 0.0) theng$sqrt = -1.0 / (2.0 * y)elseg$sqrt = g$error (1,+ 'Computed the derivative of SQRT (0)')end ifreturnendreal function g$asin (x)C Purpose: Return the derivative value for ASIN.C d (ASIN (x)) / d x.C Input parameter:C x Argument to ASINC Returned value:C if |x| < 1 g$asin = 1 / sqrt (1 - x*x)C if |x| = 1 g$asin = InfVal from g$errorC if |x| > 1 g$asin = InfVal from g$errorC Usually will have previously crashed whileC evaluating ASIN (x).C Rationale: At the points of nondifferentiability, the defaultC for InfVal = 0 indicates an extreme point.C However, it violates the principle of continuity of catastrophe.C Alternatively, the value of InfVal = INFINITY makes theC one-sided limit correct.C Denormalized: No matter how close x is to +- 1, neither 1 - xC nor 1 + x can be very small. Hence, the derivative evaluatedC at a machine-representable number cannot overflow.C Usage in ADIFOR-generated code:C C Z = ASIN (X)C r$1 = asin (x)C temp = g$asin (x)C do 99990 gi = 1, gpC g$z(g$i$) = temp * g$x(gi)C 99990 continueC orC xbar = xbar + zbar * g$asin (x)real xif (abs (x) .lt. 1.0) theng$asin = 1.0 / sqrt ((1.0 - x) * (1.0 + x))elseg$asin = g$error (2,+ 'Computed the derivative of ASIN (1)')23

end ifreturnendreal function g$acos (x)C Purpose: Return the derivative value for ACOS.C d (ACOS (x)) / d x.C Input parameter:C x Argument to ACOSC Returned value:C if |x| < 1 g$acos = -1 / sqrt (1 - x*x)C if |x| = 1 g$acos = InfVal from g$errorC if |x| > 1 g$acos = InfVal from g$errorC Usually will have previously crashed whileC evaluating ACOS (x).C Rationale: At the points of nondifferentiability, the defaultC for InfVal = 0 indicates an extreme point.C However, it violates the principle of continuity of catastrophe.C Alternatively, the value of InfVal = INFINITY makes theC one-sided limit correct.C Denormalized: No matter how close x is to +- 1, neither 1 - xC nor 1 + x can be very small. Hence, the derivative evaluatedC at a machine-representable number cannot overflow.C Usage in ADIFOR-generated code:C C Z = ACOS (X)C r$1 = acos (x)C temp = g$acos (x)C do 99990 gi = 1, gpC g$z(g$i$) = temp * g$x(gi)C 99990 continueC orC xbar = xbar + zbar * g$acos (x)real xif (abs (x) .lt. 1.0) theng$acos = -1.0 / sqrt ((1.0 - x) * (1.0 + x))elseg$acos = g$error (2,+ 'Computed the derivative of ACOS (1)')end ifreturnendreal function g$abs (x)C Purpose: Return the derivative value for ABS.C d (ABS (x)) / d x.C Input parameter:C x Argument to ABSC Returned value:C if x < 0 g$abs = -1 24

C if x = 0 g$abs = NoLmVl from g$errorC if x > 0 g$abs = 1C Rationale: At the point of nondifferentiability, the defaultC for NoLmVl = 0 is a generalized gradient value equal to theC average of the two limits from each side. It satisfies theC principle of continuity of catastrophe, and indicates anC extreme point.C Usage in ADIFOR-generated code:C Z = ABS (X)C r$1 = abs (x)C temp = g$abs (x)C do 99990 gi = 1, gpC g$z(g$i$) = temp * g$x(gi)C 99990 continueC orC xbar = xbar + zbar * g$abs (x)real xif (x .gt. 0.0) theng$abs = 1.0else if (x .lt. 0.0) theng$abs = -1.0elseg$abs = g$error (11,+ 'Computed the derivative of ABS (0)')end ifreturnendreal function g$sign (x, y)C Purpose: Return the derivative value for SIGN (x, y).C d (SIGN (x, y)) / d x.C d (SIGN (x, y)) / d y = 0.C Input parameter:C x, y Arguments to SIGNCC SIGN (x, y) := ABS (x) * signum (y). sign (0) := +1.CC y - 0 +C xC - -x * (-1) -x * 1 -x * 1C x' -x' --> 0 -x'C 0 0 * (-1) 0 * 1 0 * 1C NE --> 0 NE --> 0 NE --> 0C + x * (-1) x * 1 x * 1C -x' x' --> 0 x'CC Returned value:C g$sign =C x \ y - 0 +C - 1 NoLmVl -1C 0 NoLmVl NoLmVl NoLmVl 25

C + -1 NoLmVl 1CC Rationale: At the point of nondifferentiability, the defaultC for NoLmVl = 0 is a generalized gradient value equal to theC average of the two limits from each side.C Usage in ADIFOR-generated code:C Z = SIGN (X, Y)C r$1 = sign (x, y)C temp = g$sign (x, y)C do 99990 g$i$ = 1, gpC g$x(g$i$) = temp * g$x(gi)C 99990 continueC orC xbar = xbar + zbar * g$sign (x, y)real x, yif ((x .eq. 0.0) .or. (y .eq. 0.0)) theng$sign = g$error (12,+ 'Computed the derivative of SIGN (0, or 0)')else if (x .gt. 0.0) thenif (y .gt. 0.0) theng$sign = 1.0elseg$sign = -1.0end ifelseif (y .gt. 0.0) theng$sign = -1.0elseg$sign = 1.0end ifend ifreturnendreal function g$aint (x, y)C Purpose: Return the derivative value for AINT.C d (AINT (x)) / d x.C Input parameter:C x Argument to AINTC y Result of AINT (x)C Instead, we could compute y = AINT (x) locally.C Returned value:C AINT truncates toward zero.C if x = +-1, +-2, ... g$aint = InfVal from g$errorC otherwise g$aint = 0C Rationale: At the points of nondifferentiability, the limitC of the derivative is infinite. An alternative choice isC NoLmVl = 0, the limit from each side.C Usage in ADIFOR-generated code:C Z = AINT (X)C r$1 = aint (x) 26

C temp = g$aint (x, r$1)C do 99990 gi = 1, gpC g$z(g$i$) = temp * g$x(gi)C 99990 continueC orC xbar = xbar + zbar * g$aint (x, r$1)real x, yif ((y .eq. 0) .or. (y .ne. x)) theng$aint = 0.0elseg$aint = g$error (5,+ 'Computed the derivative of AINT (integer)')end ifreturnendreal function g$anint (x, y)C Purpose: Return the derivative value for ANINT.C d (ANINT (x)) / d x.C Input parameter:C x Argument to ANINTC y Result of ANINT (x)C Instead, we could compute y = ANINT (x) locally.C Returned value:C ANINT rounds to the nearest whole number.C if x = +-1/2, +-3/2, ... g$anint = InfVal from g$errorC otherwise g$anint = 0C Rationale: At the points of nondifferentiability, the limitC of the derivative is infinite. An alternative choice isC NoLmVl = 0, the limit from each side. Determination ofC the points of nondifferentiability is problematic.C Usage in ADIFOR-generated code:C Z = ANINT (X)C r$1 = anint (x)C temp = g$anint (x, r$1)C do 99990 g$i$ = 1, gpC g$z(g$i$) = temp * g$x(gi)C 99990 continueC orC xbar = xbar + zbar * g$anint (x, r$1)real x, yif ((x .eq. y - 0.5) .or. (x .eq. y + 0.5)) theng$anint = g$error (5,+ 'Computed the derivative of ANINT (integer)')elseg$anint = 0.0end ifreturnend 27

real function g$mod (x, y, z)C Purpose: Return the derivative value for MOD.C d (MOD (x, y)) / d x.C d (MOD (x, y)) / d y = 0.C Input parameters:C x, y Arguments to MODC z Result of MOD (x, y)C Instead, we could compute z = MOD (x, y) locally.C Returned value:C MOD (x, y) := x - int (x / y) * yC if x = n * y g$mod = - InfVal from g$errorC otherwise g$mod = 1C Rationale: At the points of nondifferentiability, the limit ofC the derivative is - infinity. Alternate choices would beC NoLmVl = 0 to signal an extreme value, or 1, the limit fromC both sides.C Usage in ADIFOR-generated code:C Z = MOD (X, Y)C r$1 = mod (x, y)C temp = g$mod (x, y, r$1)C do 99990 g$i$ = 1, gpC g$z(g$i$) = temp * g$x(gi) - temp * g$y(g$i$)C 99990 continueC orC temp = g$mod (x, y, r$1)C xbar = xbar + zbar * tempC ybar = ybar - zbar * tempreal x, y, zif (z .eq. 0) theng$mod = - g$error (6,+ 'Computed the derivative of MOD (n*y, y)')elseg$mod = 1.0end ifreturnendreal function g$dim (x, y)C Purpose: Return the derivative value for DIM.C d (DIM (x, y)) / d x.C d (DIM (x, y)) / d y = - d (DIM (x, y)) / d x.C Input parameters:C x, y Arguments to DIMC Returned value:C DIM (x, y) := max (x - y, 0)C = x - y if x ge yC = 0 otherwiseC d. / dx = 1 if x gt y, 0 if x lt y, else NoLmVl from g$error28

C d. / dy = -1 if x gt y, 0 if x lt y, else NoLmVl from g$errorC Rationale: At the points of nondifferentiability, the defaultC for NoLmVl = 0 is a generalized gradient. An alternate choiceC would be 1/2, the average of the limits from both sides.C Usage in ADIFOR-generated code:C Z = DIM (X, Y)C r$1 = dim (x, y)C temp = g$dim (x, y)C do 99990 gi = 1, gpC g$z(g$i$) = temp * g$x(gi) - temp * g$y(g$i$)C 99990 continueC orC temp = g$dim (x, y, r$1)C xbar = xbar + zbar * tempC ybar = ybar - zbar * tempreal x, yif (x .gt. y) theng$dim = 1.0else if (x .lt. y) theng$dim = 0.0elseg$dim = g$error (13,+ 'Computed the derivative of DIM (x, x)')end ifreturnendreal function g$max (x, y)C Purpose: Return the derivative value for MAX.C d (MAX (x, y)) / d x.C d (MAX (x, y)) / d y = 1 - d (MAX (x, y)) / d x.C Input parameters:C x, y Arguments to MAXC Returned value:C g$max = 1 if x gt yC 0 if x lt yC TieVal if x = yC Rationale: At the points of nondifferentiability, the defaultC for TieVal = 1/2 is a generalized gradient.C Usage in ADIFOR-generated code:C Z = MAX (X, Y)C r$1 = max (x, y)C temp = g$max (x, y)C do 99990 gi = 1, gpC g$z(g$i$) = temp * g$x(gi) + (1.0 - temp) * g$y(g$i$)C 99990 continueC orC temp = g$max (x, y, r$1)C xbar = xbar + zbar * tempC ybar = ybar + zbar * (1.0 - temp) 29

real x, yif (x .gt. y) theng$max = 1.0else if (x .lt. y) theng$max = 0.0elseg$max = g$error (15,+ 'Computed the derivative of MAX (x, x)')end ifreturnendreal function g$min (x, y)C Purpose: Return the derivative value for MIN.C d (MIN (x, y)) / d x.C d (MIN (x, y)) / d y = 1 - d (MIN (x, y)) / d x.C Input parameters:C x, y Arguments to MINC Returned value:C g$min = 1 if x lt yC 0 if x gt yC TieVal if x = yC Rationale: At the points of nondifferentiability, the defaultC for TieVal = 1/2 is a generalized gradient.C Usage in ADIFOR-generated code:C Z = MIN (X, Y)C r$1 = min (x, y)C temp = g$min (x, y)C do 99990 gi = 1, gpC g$z(g$i$) = temp * g$x(gi) + (1.0 - temp) * g$y(g$i$)C 99990 continueC orC temp = g$min (x, y, r$1)C xbar = xbar + zbar * tempC ybar = ybar + zbar * (1.0 - temp)real x, yif (x .lt. y) theng$min = 1.0else if (x .gt. y) theng$min = 0.0elseg$min = g$error (15,+ 'Computed the derivative of MIN (x, x)')end ifreturnend 30

Appendix B. Error Handling for the ** OperatorC Purpose: Error Handling for the ** operatorC Author: A. Griewank Oct. 24CC Approach:C We try to catch the situations where the functionC value itself is at least mathematically defined but theC derivatives are not. In contrast to the other intrinsics,C we prefer to do everything in-line, except for a call toC g$error in the exceptional cases. In line here means thatC we branch directly to the bar quantity assignments.CC Depending on whether we wish to differentiate x**y with respectC to x or with respect to y, we should consider it as a 'power'C or as an 'exponential', respectively. Correspondingly, the errorC classification number should be 5 or 10, respectively, in theC call to g$error. When both x and y are active reals, we considerC x**y simultaneously as a power and as an exponential.CC We assume that x**y has a well-defined value if x >= 0 or y isC an integer with 0**0 = 0. On particular systems, the values mayC be defined differently if x = 0 or y = 0, and there will beC overflow when y < 1 and x is sufficiently small. We will doC nothing about this because we would otherwise also have toC safeguard simple divisions.CC For fixed y, the derivative of x**y with respect to x isC mathematically defined except when x = 0, and 0 < y < 1. ThisC case is a generalization of the square root situation.C Therefore, we set the derivative to InfVal. When y = 0, we setC the derivative with respect to x to zero and do not call g$error,C even if x = 0.CC For fixed x, the derivative of x**y with respect to y isC mathematically defined except when x <= 0, and the value of yC is an integer. When x is negative, x**y is not defined forC any fractional y. Therefore, we set the value of the derivativeC to NoLmVl at integral values of y. When x = 0, the derivativeC is zero for all y > 0. For y = 0, we may again use NoLmVl.CCC Note that ybar remains unchanged if x = 0 and y > 0.CC When y is not active, there is no ybar, and the second partC of the calculation can be omitted. If y is of type integer, thenC the first part can be reduced to the single statementCC if(x .ne. 0.0d0) xbar = xbar + y * zbar * r$0/xCC If x is passive, there is no xbar, and the first part canC be omitted. Finally, if either a or y are constants that canC be evaluated at compile time, further simplifications areC possible.CC**31

CC Original code segment:CC real x,y,zC x = ..C y = ..C z = x**yCCC**CC Processed code with x, y, and thus z active:program mainreal ycall test(0.1,3.0)call test(-0.1,3.0)call test(-0.1,4.0)call test(-0.1,5.0)call test(-0.1,-1.0)call test(-0.1,-2.0)call test(0.0,0.3)endsubroutine test(x,y)integer g$pmax, g$p$, g$iparameter (g$pmax = 50)real x,y,zreal g$x(g$pmax)real g$y(g$pmax)real g$z(g$pmax)real dummy,xbar,ybar,r$0dummy = 0.1g$p$ = 3do 10 gi = 1, gpg$x(g$i) = dummyg$y(g$i) = dummy10 continueC z = x**yr$0 = x**yzbar = 1.0xbar = 0.0ybar = 0.0CC First, do the derivative with respect to x.C if (x .ne. 0.0) thenxbar = xbar + y * zbar * r$0/xelseif ((y .lt. 1.0) .and. (y .gt. 0.0)) thenxbar = xbar + zbar+ * g$error (5, 'Fractional power of zero')end if 32

end ifC Note that xbar remains unchanged if x = 0 and y >= 1CC Second, do the derivative with respect to y.if (x.gt.0.0) thenybar = ybar + zbar * r$0*log(x)elseif ((x .lt. 0.0) .or. (y .eq. 0.0)) thenybar = ybar + zbar+ * g$error (10, 'Negative basis or 0**0')end ifend ifz = r$0write(6,*) z, xbar, ybardo 20 gi = 1, gpg$z(g$i) = xbar*g$x(g$i) + ybar*g$y(g$i)20 continuereturnend

33

Appendix C. Code to Test ADIFOR Error Handlingc File: WHAT_ERR1.f 16-OCT-1991c Author: George Corlissc Purpose: Look at generated code to consider what error detectionc tests are required.program whatreal x, yx = 0.0call all (x, y)stopendSUBROUTINE ALL (X, Y)REAL X, Y, Z, A, B, C, D(2,2), F(2), R(2)REAL wc, w, gammar, one,gammai, zero, d1, d2REAL tgd1r, tgd1i, tgd2r, tgd2iINTEGER I, J, Kc IT IS NOT INTENDED THAT THIS ROUTINE EXECUTE MEANINGFULLY!A = 3.0B = 10.0**50D(1,1) = XR(1) = Xc Error Class 1: User Function Is not Defined.c ===c Example 1-1. User guards error.IF (X .NE. 0.0) THENY = A / XELSECALL ERROR ('Please do not divide by zero.')END IFc Example 1-2. Error is unguarded.Y = A / XY = asin (A * X)c Example 1-3. Error is overflow.Y = X / Bc Error Class 2: Differentiable Functions -- Overflows.c ==c Example 2-1. Derivative evaluation can overflow.Y = A / X + TAN (X) + LOG (X) + LOG10 (X) + TANH (X)34

Z = YY = -X / (Z * Z * Z)c Error Class 3: Nondifferentiable Functions -- lim f' = \pm \infty.c ==c Example 3-1. At points of nondifferentiability.Z = XZ = 1.0Y = SQRT (1.0 - Z) + ASIN (Z) + ACOS (Z) + Z ** Xc Example 3-2. Near points of nondifferentiability.Z = XZ = 0.999999Y = SQRT (1.0 - Z) + ASIN (Z) + ACOS (Z) + Z ** Xc Example 3-3. Fischer's root problem. Function is differentiable,c but intermediate results are not.Y = SQRT (X*X*X*X + Z*Z*Z*Z)c Error Class 4: Nonsmooth Functions -- lim f' does not exist.c ===c Example 4-1. At points of nondifferentiability.Z = 0.0Y = ABS (Z) + SIGN (X, Z) + AINT (Z) + MAX (Z, X) + MIN (Z, X)+ + DIM (X, X)c Example 4-2. Near points of nondifferentiability.c Can we detect how near we are?Z = 10.0**(-30)Y = ABS (Z) + SIGN (X, Z) + AINT (Z) + MAX (Z, X) + MIN (Z, X)+ + DIM (X, X)c Error Class 5: Problems of Domains -- Branchings.c ==c Example 5-1. ABS using if statements.IF (X .GE. 0.0) THENY = XELSEY = - XEND IFIF (X .GT. 0.0) THENY = XELSEY = - XEND IFIF (X .GT. 0.0) THENY = X 35

ELSE IF (X .LT. 0.0) THENY = - XELSEY = 0.0END IFc Example 5-2. Fischer's branchIF (X .EQ. 1.0) THENY = 1ELSEY = X*XEND IFc Example 5-3. Fischer's 2 by 2 Gaussian eliminationIF (D(1,1) .EQ. 0.0) THENF(2) = R(1) / D(1,2)F(1) = (R(2) - D(2,2) * F(2)) / D(2,1)ELSEC = D(2,1) / D(1,1)D(2,2) = D(2,2) - C * D(1,2)R(2) = R(2) - C * R(1)F(2) = R(2) / D(2,2)F(1) = (R(1) - D(1,2) * F(2)) / D(1,1)END IFY = F(1) * F(2)c Example 5-4. Janet Rogers -- Interplay of IF and ABSif (wc.le.w) thengammar = sqrt(abs((one-(wc/w)**2)))*w/cgammai = zerotgd1r = sin(gammar*d1)/cos(gammar*d1)tgd1i = zerotgd2r = sin(gammar*d2)/cos(gammar*d2)tgd2i = zeroelsegammar = zerogammai = sqrt(abs((one-(wc/w)**2)))*w/ctgd1r = zerotgd1i = -(exp(-gammai*d1)-exp(gammai*d1)) /+ (exp(-gammai*d1)+exp(gammai*d1))tgd2r = zerotgd2i = -(exp(-gammai*d2)-exp(gammai*d2)) /+ (exp(-gammai*d2)+exp(gammai*d2))end ifc Error Class 6: Mathematical Pitfalls.c ======================================c List of all elementary functionsc ================================c Example 7-1. As simple assignments.Y = ABS (X) 36

Y = ACOS (X)Y = AINT (X)Y = LOG (X)Y = ALOG (X)Y = LOG10 (X)Y = ALOG10(X)Y = MAX (X, Z)Y = MIN (X, Z)Y = ATAN (X)Y = ATAN2 (X, Z)Y = COS (X)Y = COSH (X)Y = EXP (X)Y = MOD (X, Z)Y = SIGN (X, Z)Y = SIN (X)Y = SINH (X)Y = SQRT (X)Y = TAN (X)Y = TANH (X)c Example 7-2. In complicated assignments.Y = ABS(X) + ACOS(X) + AINT(X) + ALOG(X) + ALOG10(X)Y = ASIN (X) + ATAN (X) + ATAN2 (X, Z)Y = COS (X) + COSH (X) + EXP (X) + MAX (X, Z)Y = MIN (X, Z) + SIGN (X, Z)Y = SIN (X) + SINH (X) + SQRT (X) + TAN (X) + TANH (X)RETURNENDSUBROUTINE ERROR (MSG)CHARACTER*1 MSGRETURNEND
37

References[1] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, Generating derivativecodes from Fortran programs, Preprint MCS{P263{0991, Mathematics and Computer ScienceDivision, Argonne National Laboratory, Argonne, Illinois, 1991. Also appeared as TechnicalReport 91185, Center for Research in Parallel Computation, Rice University, Houston, Texas.[2] C. Bischof and P. Hovland, Using ADIFOR to compute dense and sparse Jacobians, Tech-nical Memorandum MCS{TM{158, Mathematics and Computer Science Division, Argonne Na-tional Laboratory, Argonne, Illinois, October 1991.[3] F. Clark, Optimization and Nonsmooth Analysis, John Wiley and Sons, New York, 1983.[4] H. Fischer, Special problems in automatic di�erentiation, In Automatic Di�erentiation of Al-gorithms: Theory, Implementation, and Application, A. Griewank and G. Corliss (eds.), SIAM,Philadelphia, Pennsylvania, 1991, to appear.[5] G. Kedem, Automatic di�erentiation of computer programs, ACM Transactions on Mathemat-ical Software, 6 (1980), pp. 150{165.

38

