
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-164ADIFOR Working Note #9Getting Started with ADIFORbyChristian Bischof, Alan Carle,� George Corliss,Andreas Griewank, and Paul HovlandMathematics and Computer Science DivisionTechnical Memorandum No. 164June 1993This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38, through NSF Cooperative Agreement No. CCR-8809615, by the W. M. Keck Foundation, and by NASAPurchase Order L25935D.�Address: Center for Research on Parallel Computation, Rice University, P.O. Box 1892, Houston, TX 77251

ContentsAbstract 11 Introduction 12 A Simple Example 13 Restrictions 84 Mathematical Pitfalls 155 Workarounds and Shortcuts 165.1 Input and Output : 165.2 ADPRE : 235.3 A Generic Make�le : 246 Advanced Topics 246.1 E�cient Common Block Organization : 246.2 ADMake�le : 257 An Advanced Example 257.1 Preliminaries : 277.2 Creating the ADIFOR script �le : 277.3 Running ADIFOR : 277.4 Seed Matrix Initialization : 277.5 Incorporating the ADIFOR-generated subroutine : 298 Using ADIFOR at Argonne 308.1 Organization : 308.2 Support : 318.3 NAG Tools : 319 Common Problems 32Acknowledgments 32References 33A Appendix: A Generic Make�le 34
ii

ABSTRACTADIFOR is a source translator that, given a collection of subroutines to compute a function f , generates Fortran77 code for computing the derivatives of this function. This paper describes step by step how to use ADIFOR togenerate derivative code. It also describes common misunderstandings as well as workarounds for current shortcom-ings. Familiarity with UNIXTM and Fortran 77 is assumed. Also desirable is a basic understanding of automaticdi�erentiation (see [3, 7, 9] for an introduction). ADIFOR is a research project, and thus likely to be subject to manychanges. This document will change to reect the ADIFOR changes. New users are advised to make sure that themanual version in hand is the current up-to-date one (see Section 8).1 IntroductionMany problems in computational science require the evaluation of a mathematical function, as well as the derivativesof that function with respect to certain independent variables. ADIFOR provides a mechanism for the automaticgeneration of Fortran code for the computation of derivatives, using the Fortran code for the evaluation of the functionas input. More information on ADIFOR can be found in [2, 3, 4, 5].The organization of this paper is as follows. The next section is devoted to a step-by-step description of howto process a code using ADIFOR, and an explanation of how ADIFOR-generated code may be incorporated into aprogram. This example is intentionally simple, and ignores many subtle issues. Section 3 is devoted to describing thecriteria that must be satis�ed prior to processing; i.e., the restrictions imposed by ADIFOR on the user code. Section4 covers some of the mathematical pitfalls associated with automatic di�erentiation. Section 5 describes some of theshortcuts and workarounds in using ADIFOR, while Section 6 covers a few advanced topics. Section 7 gives a moreadvanced example of processing a program with ADIFOR. Section 8 deals with running ADIFOR at Argonne. The�nal section presents some common problems encountered when using ADIFOR.2 A Simple ExampleWe demonstrate the use of ADIFOR using the simple program shown in Figures 1 and 2. It shows a simple Newtoniteration being used to minimize Rosenbrock's function. The routines DLANGE and DGESV from the LAPACK package [1]are used to compute the norm of y and to solve the linear system dydxs = �y. This program and all of the auxillary�les mentioned in this section can be found in /usr/local/adifor/examples/rosenbrock at Argonne. For detailson using ADIFOR at Argonne, see section 8. Rosenbrock's function is used only for illustrative purposes. It is notindicative of the power of ADIFOR, which has processed programs over 12,000 lines in length. Our goal will be toreplace the subroutine fprime which approximates dydx using central divided di�erences, with an ADIFOR-generatedderivative code.Step 1: Create an ADIFOR Script FileIn order to create the ADIFOR script �le, the user must �rst identify the function to be di�erentiated. In mostcases, the function to be di�erentiated corresponds to a subroutine, like func in the example program. This subroutineis referred to as the top-level routine. The user must also identify the variables that correspond to the independentand dependent variables of the function with respect to di�erentiation. In the example, y is a dependent variable,and x is the independent variable. 1

PROGRAM NEWTONC .. Local Scalars ..DOUBLE PRECISION DUMMY,TOLINTEGER INFOC ..C .. Local Arrays ..DOUBLE PRECISION X(2),Y(2),YPRIME(2,2)INTEGER IPIV(2)C ..C .. External Subroutines ..EXTERNAL DGESV,FPRIME,FUNCC ..C .. External Functions ..DOUBLE PRECISION DLANGEEXTERNAL DLANGEC ..TOL = 1.0E-12WRITE (*,FMT=*) 'Input 2-element starting vector 'READ (*,FMT=*) X(1),X(2)CALL FUNC(X,Y)cc check for convergencec (very simplistic, based only on norm of Y)c 10 IF (DLANGE('1',2,1,Y,2,DUMMY).LT.TOL) GO TO 20cc compute function and Jacobian at current iteratec CALL FPRIME(X,Y,YPRIME)cc solve J * s = - fc and update x = x + sc Y(1) = -Y(1)Y(2) = -Y(2)CALL DGESV(2,1,YPRIME,2,IPIV,Y,2,INFO)X(1) = X(1) + Y(1)X(2) = X(2) + Y(2)cc compute new function valuec CALL FUNC(X,Y)WRITE (*,FMT=1000) 'Current Function Value:',Y(1),Y(2)GO TO 1020 CONTINUEWRITE (*,FMT=1000) 'Minimum is approximately:',X(1),X(2)1000 FORMAT (a,1x,2 (d15.8,2x))END Figure 1. A Simple Implementation of Newton's Method2

SUBROUTINE FUNC(X,Y)DOUBLE PRECISION X(2),Y(2)Y(1) = 10.0* (X(2)-X(1)*X(1))Y(2) = 1.0 - X(1)RETURNENDSUBROUTINE FPRIME(X,Y,YPRIME)cc approximates derivatives of Func by central differences.c .. Array Arguments ..DOUBLE PRECISION X(2),Y(2),YPRIME(2,2)C .. Local Scalars ..DOUBLE PRECISION HC .. Local Arrays ..DOUBLE PRECISION XH(2),YM(2),YP(2)C .. External Subroutines ..EXTERNAL FUNCC ..IF (X(1).EQ.0.0) THENH = 1.0e-7ELSEH = X(1)*1.0e-7END IFXH(1) = X(1) - HXH(2) = X(2)CALL FUNC(XH,YM)XH(1) = X(1) + HXH(2) = X(2)CALL FUNC(XH,YP)YPRIME(1,1) = (YP(1)-YM(1))/ (2.0*H)YPRIME(2,1) = (YP(2)-YM(2))/ (2.0*H)IF (X(2).EQ.0.0) THENH = 1.0e-7ELSEH = X(2)*1.0e-7END IFXH(1) = X(1)XH(2) = X(2) - HCALL FUNC(XH,YM)XH(1) = X(1)XH(2) = X(2) + HCALL FUNC(XH,YP)YPRIME(1,2) = (YP(1)-YM(1))/ (2.0*H)YPRIME(2,2) = (YP(2)-YM(2))/ (2.0*H)RETURNENDFigure 2. Rosenbrock's Function and Divided-Di�erence Approximations of the Jacobian3

The ADIFOR script �le communicates this information to ADIFOR; it identi�es the top-level routine, the in-dependent variables, the dependent variables, the upper bound on the size of gradient objects, and (optionally) theseparation parameter ADIFOR uses for generating derivative names. There is no formal requirement for the nameof the script �le, but our informal convention is to use the name of the subroutine to be di�erentiated (the top-levelsubroutine) with a adf extension. For our example, we might create the �le func.adf:TOP funcIVARS xOVARS yPMAX 2SEP $The meaning of the various entries is as follows:TOP:The directive TOP denotes the name of the top-level subroutine in the program composition.IVARS and OVARS:The comma-separated lists IVARS (Input variables) and OVARS (Output variables) denote which variables areindependent or dependent with respect to di�erentiation. All variables in these lists must be of type real ordouble precision, since complex, integer and character variables are not eligible for di�erentiation in ADIFOR.A variable may be designated as independent, dependent, or both. The current ADIFOR version does notallow spaces around commas separating the names of dependent or independent variables. Multiple IVARS (orOVARS) lines may appear in the script �le. Any variable appearing in an IVARS (or OVARS) statement istreated as an input (or output) variable. For our example, we wish to compute the derivatives of y with respectto x. Thus, the list of OVARS has only one item, y. Similarly, the list of IVARS is simple x.PMAX:Because Fortran 77 does not allow dynamic memory allocation and because of complex issues surround storageassociation in Fortran, ADIFOR requires that the user specify an upper bound on the size of the gradientobjects, PMAX. The value PMAX must be greater than zero. PMAX is an upper bound on the number of indepen-dent variables in an invocation of the ADIFOR-generated code. As an example, one might want to computederivatives with respect to an array x(1:1000), but, because of storage limitations, the ADIFOR-generatedcode will be used to compute only 10 Jacobian columns at a time. Then a value of 10 for PMAX is suitablechoice. Also for sparse Jacobians, PMAX need not be the total number of independent variables. These issuesare discussed in detail in [5], which is available on-line (see Section 8). For our example program, we choose avalue of 2 for PMAX, because x is the only independent variable, and it has 2 elements.SEP:ADIFOR uses the character speci�ed by SEP for generating names for Fortran variables used in derivativecomputations. The default for the separator character is `$' and this character will be chosen if there is noSEP directive in the script �le. Users can override this choice by specifying a di�erent character with the SEPdirective. If the dollar-sign $ was chosen as the separator, the compiler on your target system must acceptvariable names containing a dollar-sign (e.g. Sun systems). You must speci�y an alternative value for SEP ifthe compiler on your system does not accept dollar-signs (e.g. Cray systems).Step 2: Create a Composition File 4

The next step in processing a program using ADIFOR is to create a \composition �le," i.e. a �le listing the �lesto be processed by ADIFOR. These �les must make up an entire program, which we refer to as a composition. Aswith the ADIFOR script �le, there is no formal requirement for the name of the composition �le, but our informalconvention is to use the name of the subroutine to be di�erentiated (the top-level subroutine) with a comp extension.If source code for the entire program is available and does not violate any of the restrictions enumerated inSection 3, it is best to submit the entire program to ADIFOR (i.e., specify every �le in the program as part of thecomposition), so that a complete analysis is possible. However, it is often the case that parts of the program whichare not part of the function evaluation (such as the LAPACK routines in our example) are not available as sourcecode or contain constructs which violate the restrictions on code to be processed by ADIFOR. In this situation, wecan trick ADIFOR into believing it has a complete program and process only the top-level subroutine and thosesubroutines below it in the call-tree. By creating a �le called dummy.f consisting of the linesprogram dummyendand including dummy.f in the list of �les in the composition, we can convince ADIFOR that it is working with acomplete program. In addition to dummy.f, the composition �le should list the �le or �les containing the top-levelsubroutine and all subroutines called by it. If the program in our example is split into func.f, newton.f, andfprime.f, then func.f should be included in the composition �le, since it contains subroutine func, the top-levelsubroutine. Thus, the composition �le for our example (which we will call func.comp) would look like:func.fdummy.fADIFOR expects one name per line, with no leading or trailing blanks. If a composition �le does include trailingblanks, ADIFOR will interpret those blanks as part of the �lename, and report that the speci�ed �le can not befound. The composition �le must also not contain any blank lines.Step 3: Invoke ADIFORTwo parameters must be speci�ed when running ADIFOR: the �rst parameter is the name of the script �le, andthe second parameter is the name of the composition �le. So we would invoke ADIFOR by issuing the commandadifor <script file> <composition file>In our example, if we call our composition �le func.comp and our script �le func.adf, the commandadifor func.adf func.compshould be used to invoke ADIFOR. Consequently, ADIFOR creates� two subdirectories ADDIR and adtmp, which contain internal information to be used during the translation phase,and� a �le called ADMakefile, to be used with the UNIX make utility. This �le allows the user to specify certainparameters to the translator program (see Section 6.2 for details) and is used to invoke the translator (calledADTRANS).The ADMakefile generated for our example program is: 5

ADMISC = # SAXPYADFLAVORS = UNOPT OPTWHICH :sh = adwhich adtransall: $(ADFLAVORS)UNOPT: func.3.unopt.fOPT: func.3.ffunc.3.unopt.f func.3.f: adtmp/func.0 $(WHICH) /home/bischof/newton/ADDIR/func/sourceadtrans adtmp/func.0 $(ADFLAVORS) $(ADMISC)Next, we issue the command make -f ADMakefileto invoke the ADIFOR translator ADTRANS. ADTRANS generates derivative code for the top-level subroutine andthe subroutines called (directly or indirectly) by it. In our example, it only generates new code for func, namelyfunc.3.unopt.f and func.3.f. The 3 in the names of these �les and in the name of the generated subroutine is ahexidecimal encoding of the active variables in the subroutine (see Section 4 for an explanation of active variables).Both are versions of the ADIFOR-generated subroutine, g$func$3, but the latter has been \cleaned up" to eliminateunnecessary computations, such as multiplications by 1.0 and additions of 0.0. The \optimized" version of g$func$3is shown in Figure 3.We mention, that, in general, ADTRANS generates variable names that are longer than six characters. We alsomention that it is a good idea to make sure that the �les speci�ed in the program composition �le compile correctlyand adhere to the Fortran 77 standard (see 8.3) before submitting them to ADIFOR. ADIFOR will complain aboutsyntax errors, but its error messages are likely to be less re�ned (more cryptic).Step 4: Incorporate ADIFOR-generated SubroutineNow we wish to incorporate the ADIFOR-generated subroutine into our program. In order to do this, we needto perform three steps.1. Allocate the gradients in the calling module.The user should carefully check the ADIFOR-generated top-level subroutine to determine which gradient objectsmust be passed to the top-level routine through parameters or common blocks. The user must then declareand allocate each of these gradient objects. For our small example, the declarations are:double precision g$x(pmax,2), g$y(pmax,2)where pmax is an integer constant (Fortran PARAMETER) whose value is at least the length of the gradient objects(2, in this case).2. Initialize the seed matrix.ADIFOR produces code to compute the original function, as well as the matrix-matrix product J*S, where Jis the Jacobian of the \function" with respect to the user-de�ned independent variables, and the seed matrix Sis the composition of derivative objects corresponding to the independent variables. This interface is exible;by setting S=x, one can compute the matrix-vector product Jx, or by setting S=I, with I the identity matrix,one can compute the whole Jacobian J. The former functionality if of particular importance, because the costof computing derivatives using the forward mode of automatic di�erentiation is directly proportional to thenumber of columns in the seed matrix (and consequently in the product J*S). Thus, the cost of computingJx, where x is an n-element column vector, by computing J then multiplying by x is n times as expensive6

subroutine g$func$3(gp, x, gx, ldgx, y, gy, ldgy)CC Formal y is active.C Formal x is active.C integer gpinteger g$pmax$parameter (g$pmax$ = 2)integer gidouble precision d$3double precision d$3bardouble precision d$2double precision d$2barCC .. Array Arguments ..double precision x(2), y(2)double precision g$x(ldg$x, 2), g$y(ldg$y, 2)integer ldg$xinteger ldg$yC ..if (gp .gt. g$pmax$) thenprint *, 'Parameter g$p is greater than g$pmax.'stopendifC y(1) = 10.0 * (x(2) - x(1) * x(1))d$2 = x(1)d$3 = x(1)d$2bar = -10.0 * d$3d$3bar = -10.0 * d$2do 99997 gi = 1, gpg$y(g$i$, 1) = 10.0 * g$x(gi, 2) + d$2bar * g$x(gi, 1) + d*$3bar * g$x(gi, 1)99997 continuey(1) = 10.0 * (x(2) - d$2 * d$3)C y(2) = 1.0 - x(1)do 99996 gi = 1, gpg$y(g$i$, 2) = -g$x(gi, 1)99996 continuey(2) = 1.0 - x(1)returnend Figure 3. The ADIFOR-generated Code for Subroutine func7

as computing Jx directly (by setting S=x). Other initializations of S allow one to exploit a known sparsitystructure of J (see [5]). For our example, all we wish to compute is the Jacobian, so we should letg$x = 1 00 1 ! :More details on the initialization of seed matrices are described in Section 7.4 and in [5] (this document canbe found in /usr/local/adifor/doc { see Section 8).3. Call the ADIFOR-generated top-level subroutineThe ADIFOR-generated subroutine computes both the function value and the value of the derivatives. So, inour example, we can replace both the call to func and fprime by a call to g$func$3. In other applications, itmay still be necessary to call both the original and ADIFOR-generated routine. In the call to the ADIFOR-generated top-level subroutine, the parameter gp should be set equal to the number of rows in the gradientobjects, all of the g$ variables for independent variables should be initialized to the appropriate seed, and all ofthe ldg$ variables should be set equal to the leading dimension with which the corresponding gradient objects(g$ variables) were declared. Thus, for our simple example, the call would look like:call g$func$3(2, x, g$x, pmax, y, g$y, pmax)For our example, the new driver is shown in Figure 4�. Note that ADIFOR computes the transpose of the Jacobian(see [5] for details). Hence, we must re-transpose g$y before passing it to dgesv. Together with the subroutine funcand the subroutine shown in Figure 3, the new program replaces the program shown in Figure 1.Again, the compiler on your system must be able to deal with variable names longer than six characters and mustaccept the SEP character chosen.Step 5: Compile and LinkAfter a suitable driver has been developed, the ADIFOR-generated code, the driver, and any other modulesnecessary to form a complete program should be compiled. The compiled modules should then be linked, togetherwith the exception handling routines for the Fortran intrinsic functions. These routines can be found in source andcompiled form in the directory /usr/local/adifor/lib under the name intrinsic.ext, where ext is any of f (Fortransource code), sparc.o (object code for SPARCs and other Sun 4 compatibles), or rs6000.o (object code for IBMRS6000s). When possible, instruct the compiler to use as much space for internal tables as possible, because the codegenerated by ADIFOR may be much longer than the original code. The extra space may enable the compiler to doa much better job of optimizing. For example, the appropriate ag for the Cray compiler is -wf "-o aggress".3 RestrictionsBefore ADIFOR may be applied to a composition, there are certain criteria which must be satis�ed. Some restrictionsarise as a direct result of incompatibilities between the various dialects of Fortran and the goal of using automaticdi�erentiation of standard Fortran to compute the derivatives of a function. Others are more temporary in nature,and may be removed in future versions of ADIFOR.�Some comments were removed to �t the program on one page.8

PROGRAM ADNEWTONC .. Parameters ..INTEGER PMAXPARAMETER (PMAX=2)C .. Local Scalars ..DOUBLE PRECISION DUMMY,TEMP,TOLINTEGER INFOC .. Local Arrays ..DOUBLE PRECISION G$X(PMAX,2),G$Y(PMAX,2),X(2),Y(2)INTEGER IPIV(2)C .. External Functions ..DOUBLE PRECISION DLANGEEXTERNAL DLANGEC ..TOL = 1.0E-12WRITE (*,FMT=*) 'Input 2-element starting vector 'READ (*,FMT=*) X(1),X(2)CALL FUNC(X,Y)c 10 IF (DLANGE('1',2,1,Y,2,DUMMY).LT.TOL) GO TO 20cc compute function and Jacobian at current iteratec G$X(1,1) = 1.0G$X(1,2) = 0.0G$X(2,1) = 0.0G$X(2,2) = 1.0CALL G$FUNC$3(2,X,G$X,PMAX,Y,G$Y,PMAX)cc transpose g$yc TEMP = G$Y(2,1)G$Y(2,1) = G$Y(1,2)G$Y(1,2) = TEMPcc solve J * s = - f and update x = x + sc Y(1) = -Y(1)Y(2) = -Y(2)CALL DGESV(2,1,G$Y,PMAX,IPIV,Y,2,INFO)X(1) = X(1) + Y(1)X(2) = X(2) + Y(2)cc compute new function valuec CALL FUNC(X,Y)WRITE (*,FMT=1000) 'Current Function Value:',Y(1),Y(2)GO TO 1020 CONTINUEWRITE (*,FMT=1000) 'Root is approximately:',X(1),X(2)1000 FORMAT (a,1x,2 (d15.8,2x))END Figure 4. The Driver for the Newton Program Using ADIFOR-generated Code9

� Composition must conform to the Fortran 77 standardADIFOR recognizes standard Fortran 77 syntax. If a program uses non-standard extensions, ADIFOR willprobably not accept them. For portability reasons, it is probably a good idea anyway to make sure that allcode is standard-conforming. In particular, ADIFOR will not correctly deal with nonstandard intrinsic ortype conversion functions, such as arsin(), arcos(), and dfloat(). These should be replaced with standardfunctions like asin(), acos(), and dble(). Also not supported are system calls such as etime(). In mostcases, such calls do not have an e�ect on function evaluation, and may be removed or commented out priorto processing by ADIFOR. Another nonstandard feature which most compilers support but ADIFOR does notis the NAMELIST command. One nonstandard feature which ADIFOR does support is identi�er names longerthan 6 characters. Many compilers support variable names up to 32 characters in length.� A top-level subroutine must be presentThere must exist some subroutine such that all independent and dependent variables are passed as parametersor in common blocks to and from this subroutine. Often, the computation to be di�erentiated is embedded ina main program, and must �rst be encapsulated in a subroutine to be suitable for processing with ADIFOR.For example, take the following example:program main...read(*,*) x(1)t= result of some computation involving x(1)...read(*,*) x(2)...y= result of some computation involving x(1) and x(2)...y= result of some other computations involving x(1) and x(2)...endTo extract a subroutine suitable for using ADIFOR to generate code for @y@x(1) and @y@x(2) , we must:� Rearrange the computation such that x(1) and x(2) are initialized before any computations involvingx(1) and x(2) are performed.� Depending on whether we include the second assignment statement y to encapsulate the desired function,the ADIFOR-generated code will return the derivatives of the �rst or second value assigned to y, butnever both. If we want both, one solution is to expand y to an array y(1) and y(2) .� Encapsulate the computations in a subroutine. Thus, our original program becomes:program main...read(*,*) x(1)...read(*,*) x(2)...call subr(x,y)...endsubroutine subr(x,y)...t= result of some computation involving x(1)10

...y(1)= result of some computation involving x(1) and x(2)...y(2)= result of some other computations involving x(1) and x(2)returnend� Functions in the active subtreeThe active subtree consists of all the modules needed to execute the top-level subroutine. Currently, ADIFORdoes not support FUNCTION calls. The user must change all of the functions in the program composition toSUBROUTINEs. For example the following code will not be accepted by ADIFOR,program main...result = add(x,y)...endfunction add(a,b)...r = a+breturn rendand should be changed to,program main...call add(x,y,result)...endsubroutine add(a,b,r)...r = a+bendAn alternative is to use the ADPRE preprocessor described in section 5.2.� I/O functionsSometimes the values of independent variables are read or computed within the active subtree (that is, withinthe subtree of procedures below the top-level subroutine). This does not pose a problem, so long as theindependent variables are declared in the top-level subroutine and in the procedure that calls it, and I/Ofunctions are handled properly.READ and WRITE statements in the active subtree are echoed into the ADIFOR-generated code with no changes. Ifan active subtree contains I/O statements, the user should think carefully. READing the value of an independentvariable inside the active subtree or READing a \constant" whose value has been computed elsewhere dependingon one or more independent variables may produce incorrect derivative results. However, this situation oftenoccurs in codes which write out states for possible restarts of computations. Workarounds are discussed inSection 5.1.� Variables not visible at the top-levelConsider the program: 11

program main...call foo(x,y)...endsubroutine foo(x,y)a = x+1y = x*xb = x/2...endIf we want the derivative of y with respect to variable to x, the code is appropriate as is. But, if we want thederivatives of� y with respect to variable a,� b with respect to variable x, or� b with respect to variable a,we run into a problem. Speci�cally, we cannot nominate a local variable of subroutine foo as dependent orindependent, since it is not visible outside of foo. In order to avoid this problem, we make all `interesting'variables in subroutine foo visible through parameter passing or common blocks. For example, program maincould be rearranged to:program main...foo(x,y,a,b)...endsubroutine foo(x,y,a,b)a = x+1y = x*xb = x/2...endAn alternative to this workaround is the buddy system discussed in Section 5.1.� SAVEing dataFor the purpose of automatic di�erentiation, it is somewhat di�cult to de�ne the proper semantics and handlingof SAVE statements or data initialized by DATA statements. ADIFOR's handling of these constructs may bereasonable for your problem, but it is probably wise at this stage to avoid these constructs. Be vary wary ofroutines that contain SAVE statements that ADIFOR decides to "clone" into multiple copies for use in di�erentderivative calling contexts.� Multiple entry pointsADIFOR does not support multiple entry points. For example, the following program will not work in ADIFOR,program nogood...call foo1(a,b) 12

...call foo2(x,y)...endwhere the subroutine foo1 is de�ned as follows:subroutine foo1(a,b)...entry foo2(k,l)...end� Complex variablesCurrently, ADIFOR does not support complex variables or functions.� Procedure parametersADIFOR does not support procedure parameters. This restriction can often be circumvented by replacingthe procedure parameter with an integer parameter, and modifying the code to call the appropriate procedurebased on the value of this integer.� Reserved variable namesADIFOR uses the variables gp, g$pmax$, and gi in the generated code. While it is acceptable to use thesevariable names in a subroutine calling the ADIFOR-generated code, they should not be used in a program tobe processed by ADIFOR.� Externals that are not referencedExternal declarations present in the original code, which are no longer referenced in the code generated byADIFOR, might create an error of `unsatis�ed external references' in some compilers. For example, the SiliconGraphics compiler produces an error message about an unde�ned entry \ second " on the following code.program fooreal f,g$f(5)integer iexternal funccall g$func(5,f,g$f,5)write(*,*) f, (g$f(i), i=1,5)endsubroutine g$func(g$p$,f,g$f,ldg$f)real f,g$f(ldg$f)integer g$i$,g$p$f = 5.0do g$i$ = 1, gpg$f(g$i$) = 0.0d0enddoreturnendTo �x this problem, the user should take out external declarations for variables no longer used. This may bedone automatically using the NAG declaration tool nag decs described in Section 8.3.� Dprod()The current version of ADIFOR does not support the Fortran intrinsic function, dprod(). This is the result ofan oversight, and it is anticipated that future versions of ADIFOR will support dprod().13

� Hollerith constantsADIFOR does not currently understand Hollerith constants as part of format declarations. The NAG Fortranpolisher can be used to convert Hollerith constants to normal strings and move all FORMAT statements to theend of the �le. To invoke the polisher, use the command:nag polish -po /usr/local/adifor/misc/polish.opt <fortran file>Information on the NAG polisher can be found using man nag polish and man nag polopt.� Columns beyond 72ADIFOR does not ignore columns beyond number 72. If a �le contains line numbers or other unnecessaryinformation in columns 73 and above, this text should be removed using the commandcat <filename> | colrm 73.� Statement functionsCurrently, ADIFOR does not support this Fortran 77 feature. For example, the following code is not acceptedby ADIFOR:REAL A,B,Cc the following statement function computes the discriminant of a quadratic equationDISCR(A,B,C) = B ** 2 - 4 * A * C...The user should use a subroutine call instead, as follows,REAL A,B,C,V... CALL DISCR(A,B,C,V)...where the subroutine DISC(A,B,C,V) is de�ned as follows:c the following subroutine computes the descriminant of a quadratic equationSUBROUTINE DISC(A,B,C,V)REAL A,B,C,VV = B ** 2 - 4 * A * Cend� Multiple returns featureThe current version of ADIFOR does not support the multiple returns feature of Fortran. For example, thefollowing program will not work in ADIFOR.program nogood...30 ... codeCALL foo(X,Y,*30,*50)50 ... code ...endsubroutine foo(A,B,*,*)...if(This) return 1if(That) return 2...returnend 14

� No expressions in argument listCurrently, ADIFOR does not support the use of expressions as arguments of a procedure call. As a workaround,these expressions should be assigned to a temporary variable, which is used as the argument. Thus,call foo(active+5.0)should be rewritten astemp = active+5.0call foo(temp)which is processed correctly.Constants or expressions passed as arguments, which correspond to parameters that may be modi�ed, areunsafe references (see [8]) and agged by nag pfort as such. They are not reliably portable and hence, theremay be some compilers where their use leads to unexpected results. So replacing the constants by temporariesas shown above (hence making the code suitable for ADIFOR), also increases the portability of the originalcode.� Include FilesCurrently, ADIFOR does not support include �les. The user is advised to �rst use the C preprocessor/usr/lib/cpp to generate Fortran-77 �les from �les containing include statements. See the man pages forcpp for more details.4 Mathematical PitfallsThere are some operations which do not have any (or, at least not the expected) mathematical meaning with respectto di�erentiation. Among these are:� Derivatives of integers and charactersThe derivative of an integer or character is meaningless. As a consequence, if an integer is assigned a value froman active variable (that is, a variable that either is a dependent or independent variable, or a variable whosevalue depends on that of an independent variable and whose value is used to compute a dependent variable),the integer does not become active. Thus, the gradient objects of any variables that depend on these integersmay not have the expected values. The same holds true for characters.� Reals equivalenced to double precisionsThe process of converting an array of real variables into an array of double precision variables using theequivalence statement has no real mathematical meaning. Thus, if a program performs this operation, thedouble precision gradient objects, and any gradient objects which depend on them, will be meaningless.The same holds true if an array of double precision variables is equivalenced to an array of real variables.Note that this is a very unportable programming practice anyway, since its results depend heavily on theoating-point representation.� Introducing points of nondi�erentiabilityIt is sometimes the case that, for the sake of improving e�ciency, a program tests the value of a variable to seeif a function is being evaluated at a special point in space, then computes the value of the function based onthat knowledge. For example, the following piece of code computes y = x4.15

if ((x .eq. 0.0d0) .or. (x .eq. 1.0d0)) theny = xelset = x*xy = t*tendifIf automatic di�erentiation is used to compute dydx , then the value of dydx jx=0 will be 1 (because the statementy = x implies that dydx = dxdx = 1) rather than the expected 0. Similarly, the value of dydx jx=1 will be 1 rather than4. This \anomaly" stems from the fact that automatic di�erentiation di�erentiates the statements executed inthe course of program execution. This issue, as well as other subtle pitfalls, are discussed in [6], which can befound in /usr/local/adifor/doc (see Section 8).� Nondi�erentiable functionsSome Fortran intrinsic functions, such as sqrt(), abs(), and max(), are not di�erentiable at all points. Spe-cial subroutines have been implemented to handle these exceptions. The subroutines are located in the �leintrinsic.f (which can be found in /usr/local/adifor/lib| see Section 8) and this �le should be includedin the compilation of ADIFOR-generated code. For more details on exception handling and the supportingsubroutines, see [4], which can be found in /usr/local/adifor/doc (see Section 8).5 Workarounds and Shortcuts5.1 Input and OutputADIFOR currently just echoes I/O statements like READ and WRITE. This creates problems, in particular with READs,if the variable read is a so-called active variable, that is, a variable that either is a dependent or independent variable,or a variable whose value depends on that of an independent variable and whose value is used to compute a dependentvariable.Normally, ADIFOR assumes that� independent variables are passed into the top-level routine and dependent variables are passed out, and� independent variables are initialized outside of the top-level routine and their values used after the top-levelroutine has completed.\Passing" is either via subroutine parameters or common blocks. So, the normal ADIFOR interface cannot computederivatives� with respect to variables that are initialized by a READ statement,� for the various values of a variable whose intermediate values are written out, and� for a variable that is declared locally in the top-level routine, i.e. is not visible outside the top-level routine.This section describes some workarounds for these situations.� READ :Suppose we would like to compute the derivatives with respect to a variable x that is read in as in the followingsubroutine 16

subroutine readlcl(y)real y, x(10)integer iy = 1.0read(*,*) (x(i),i=1,10)do 10 i = 1,10y = y * x(i)10 continuereturnendThe normal ADIFOR interface does not allow this, and processing this subroutine with ADIFOR produces theerror messageERROR: INDEPENDENT variable x is not in COMMON andis not a formal parameter of readlcl.A workaround is to allocate a variable of the same dimensions as x, the so-called \buddy" that is initial-ized to 0, is passed into readlcl, and whose corresponding derivative object is seeded properly for thecomputation of the derivatives of x. So we could modify readlcl to breadlcl (xbuddy is x's buddy):subroutine breadlcl(xbuddy,y)real y, x(10), xbuddy(10)integer iy = 1.0cc zero out x to achieve g$x = 0c do 30 i = 1,10x(i) = 0.030 continueread(*,*) (x(I),I=1,10)cc adding of buddy here will result in correct seedingc of g$xc do 20 i = 1,10x(i) = x(i) + xbuddy(i)20 continuedo 10 i = 1,10y = y * x(i)10 continuereturnendHaving speci�ed xbuddy as an independent variable, ADIFOR then producesysubroutine g$breadlcl$3(gp, xbuddy, g$xbuddy, ldg$xbuddy, y, g$y*, ldg$y)CC Formal y is active.C Formal xbuddy is active.C integer gpySome declaration lines were merged and some unused continue statements removed to reduce the length of the listing.17

integer g$pmax$parameter (g$pmax$ = 10)integer gireal r$1integer ldg$yC integer ireal y, g$y(ldg$y)real x(10), xbuddy(10),g$x(g$pmax$, 10), g$xbuddy(ldg$xbuddy, 10)integer ldg$xbuddyif (gp .gt. g$pmax$) thenprint *, 'Parameter g$p is greater than g$pmax.'stopendify = 1.0do 99992 gi = 1, gpg$y(g$i$) = 0.099992 continueCC zero out x to achieve g$x = 0C do 99999, i = 1, 10x(i) = 0.0do 99991 gi = 1, gpg$x(g$i$, i) = 0.099991 continue99999 continueread (*, *) (x(i), i = 1, 10)CC adding of buddy here will result in correct seedingC of g$xC do 99998, i = 1, 10C x(i) = x(i) + xbuddy(i)do 99990 gi = 1, gpg$x(g$i$, i) = g$x(gi, i) + g$xbuddy(g$i$, i)99990 continuex(i) = x(i) + xbuddy(i)99998 continuedo 99997, i = 1, 10C y = y * x(i)r$1 = x(i)do 99989 g$i$ = 1, gpg$y(g$i$) = r$1 * g$y(g$i$) + y * g$x(gi, i)99989 continuey = y * r$199997 continuereturnendAssuming that we wanted to compute the gradient of y with respect to x, we would initialize xbuddy to allzeros in the main program, and g$xbuddy to the identity matrix. Zeroing out x and adding xbuddy to x has thee�ect that x gets the desired value, and g$x is assigned the correct seed matrix value. We note that, instead ofpassing xbuddy as an argument, we could have allocated it in a common block.When the desired independent variable x is in a common block instead of a local variable, we have an-18

other possibility in addition to the buddy system. Suppose we have the subroutine readcmn de�ned assubroutine readcmn(y)real yinteger ireal x(10)common /cx/ xy = 1.0read(*,*) (x(I),I=1,10)do 10 i = 1,10y = y * x(i)10 continuereturnendand we would like to compute the derivatives of y with respect to x at the value of x that is read in. When wespecify x as an independent and y as a dependent variable, ADIFOR producessubroutine g$readcmn$3(gp, y, gy, ldgy)CC Common block /cx/ contains active variables.C Variable x in Common block /cx/ is active.C Formal y is active.C integer gpinteger g$pmax$parameter (g$pmax$ = 10)integer gireal r$1integer ldg$yC integer ireal yreal g$y(ldg$y)real x(10)real g$x(g$pmax$, 10)common /cx/ xcommon /gcx/ gxif (gp .gt. g$pmax$) thenprint *, 'Parameter g$p is greater than g$pmax.'stopendify = 1.0do 99996 gi = 1, gpg$y(g$i$) = 0.099996 continueread (*, *) (x(i), i = 1, 10)do 99999, i = 1, 10C y = y * x(i)r$1 = x(i)do 99995 g$i$ = 1, gpg$y(g$i$) = r$1 * g$y(g$i$) + y * g$x(gi, i)99995 continuey = y * r$110 continue99999 continuereturn 19

endAs the READ statement is simply echoed, the seed matrix g$x is not initialized when x is read in. To achievethis, we can either use the buddy system described above, or perform the initialization� in the program calling g$readcmn$3 (assuming that x was not used before the READ statement as is thecase in our example), or� by adding the initialization of the seed matrix after the READ statement in the ADIFOR-generated code.The latter approach of course requires performing this modi�cation whenever ADIFOR is rerun.� WRITE :Suppose we would like to compute derivative with respect to several values that are assigned to the samevariable. The normal ADIFOR interface only retrieves the derivatives with respect to the last value. Thesolution is to nominate some buddies as dependent variables, and have them preserve the derivatives of thevalues of interest. For example, if we havesubroutine writelcl(x)real y, x(10)integer iy = 1.0do 10 i = 1,10y = y * x(i)10 continuewrite(*,*) yy = 0.0do 20 i = 1,10y = y + x(i)20 continuewrite(*,*) yreturnendwe allocate two buddies ybuddy1 and ybuddy2 to which we assign the two values of y that are computed inthe course of execution of the subroutine. The resulting subroutine is (assuming we allocate the buddies in acommon block)
20

subroutine bwritelcl(x)real y, x(10)integer ireal ybuddy1, ybuddy2common /YB/ ybuddy1, ybuddy2y = 1.0do 10 i = 1,10y = y * x(i)10 continuewrite(*,*) ycc save value of y and its derivsc ybuddy1 = yy = 0.0do 20 i = 1,10y = y + x(i)20 continuecc save value of y and its derivsc ybuddy2 = ywrite(*,*) yreturnendand, having speci�ed x as an independent variable and ybuddy1 and ybuddy2 as dependent variables, ADIFORproduces subroutine g$bwritelcl$3(gp, x, gx, ldgx)CC Common block /yb/ contains active variables.C Variable ybuddy2 in Common block /yb/ is active.C Variable ybuddy1 in Common block /yb/ is active.C Formal x is active.C integer gpinteger g$pmax$parameter (g$pmax$ = 10)integer gireal r$1real g$ybuddy2(g$pmax$)real g$ybuddy1(g$pmax$)C integer ireal yreal g$y(g$pmax$)real x(10)real g$x(ldg$x, 10)integer ldg$xreal ybuddy1, ybuddy2common /yb/ ybuddy1, ybuddy2 21

common /gyb/ gybuddy1, g$ybuddy2if (g$p$.gt. g$pmax$) thenprint *, 'Parameter g$p is greater than g$pmax.'stopendify = 1.0do 99991 gi = 1, gpg$y(g$i$) = 0.099991 continuedo 99999, i = 1, 10C y = y * x(i)r$1 = x(i)do 99990 g$i$ = 1, gpg$y(g$i$) = r$1 * g$y(g$i$) + y * g$x(gi, i)99990 continuey = y * r$110 continue99999 continuewrite (*, *) yCC save value of y and its derivsC ybuddy1 = ydo 99989 gi = 1, gpg$ybuddy1(g$i$) = g$y(gi)99989 continuey = 0.0do 99988 gi = 1, gpg$y(g$i$) = 0.099988 continuedo 99998, i = 1, 10C y = y + x(i)do 99987 gi = 1, gpg$y(g$i$) = g$y(gi) + g$x(g$i$, i)99987 continuey = y + x(i)20 continue99998 continueCC save value of y and its derivsC ybuddy2 = ydo 99986 gi = 1, gpg$ybuddy2(g$i$) = g$y(gi)99986 continuewrite (*, *) yreturnendOn exit from g$bwritelcl$3, g$ybuddy1 contains the derivative of the value of y at the assignment ybuddy1= y, and g$buddy2 contains the derivative of the value of y at the assignment ybuddy2 = y.� Variables not visible:Occasionally, we would like to treat variables local to a particular subroutine as independent or dependent22

variables. As was discussed in Section 3, one solution is to change the variables so that they are parameterspassed into the subroutine, rather than local to the subroutine. However, this is not always an ideal solution.In such cases, using the \buddy system" may be more appropriate. Suppose, for example, that we have somelocal variable h with respect to which we would like to determine sensitivities in the following section of code:subroutine planck(e,lambda)real e,lambdareal hh=6.625e-27e = h * lambdareturnendThen, we can use the buddy system to �nd sensitivities with respect to h. At the level of the call to the top-levelsubroutine, we add:common /BUDDES/ HBUDDYcommon /g$BUDDES/ g$HBUDDY(pmax)HBUDDY = 0.0g$h = all zeroesg$HBUDDY = whatever seed you needIn the top-level subroutine planck, we add an allocation and assignment to yield:subroutine planck(e,lambda)real e,lambdareal hcommon /BUDDES/ HBUDDYreal hbuddyh=6.625e-27h = h + hbuddye = h * lambdareturnendTherefore, in the augmented code we will have g$h=g$h+g$hbuddy. The local variable h becomes active, andthe initial value of its gradient object g$h is equal to the seed with which the buddy gradient object g$hbuddyis initialized. Note that the value of h is not a�ected, since hbuddy has a value of zero.5.2 ADPREA preprocessor, called ADPRE, is available for rewriting functions and statement functions in a form that ADIFORrecognizes and extracting expressions used as arguments to subroutine calls, saving the results in temporary variableswhich are passed instead. ADPRE can be used by setting the RN HOME environment variable using the commandsetenv RN HOME /anythingand running the preprocessor by issuing the commandadpre -P <composition file>,23

where <composition file> is the composition �le used for invoking ADIFOR. ADPRE is an experimental piece ofsoftware and thus is not robust nor can it be expected to always behave as desired. One aw in the preprocessor is thatthe variable names generated may not be unique. Duplicated variable names can be detected automatically usingthe NAG declaration tool nag decs described in Section 8.3.5.3 A Generic Make�leA generic make�le, called make.adifor, is available to make the process of generating code with ADIFOR and usingthat code simpler. This make�le can invoke the NAG portability veri�er, create the composition �le, run ADIFOR,and more. It is included in Appendix A for reference and can be found in the /usr/local/adifor/utils directory(see Section 8). The �le may be copied to the same directory as the code to be processed and modi�ed to �t thatcode. Only three variables in the �le need to be changed:AD TOPLEVEL: The name of the top-level subroutine. There should be a script �le with the name$(AD TOPLEVEL).adf, as described in Step 2 of Section 2.ADIFOR INPUT: The names of all of the �les that make up the program composition, except the main program.ADIFOR MAIN: The name of the �le containing the main program.Once the make�le has been modi�ed appropriately, the user can invoke the make facility using make -fmake.adifor <argument>, where <argument> is one of:help: To get a list of available options.portability: To run the NAG portability veri�er.calltree: To generate a calltree using the NAG utility.declare: To run the NAG declarations tool.adifor: To process the code using ADIFOR.compile: To compile each of the �les created by ADIFOR.clean: To remove all of the temporary �les introduced by ADIFOR.6 Advanced Topics6.1 E�cient Common Block OrganizationFortran allows common blocks to be accessed di�erently in di�erent modules. For example, a common block declaredas common /block/ A(10,10),B(100)in one subroutine might be declared as common /block/ X(4,5,10)in another. We call this feature \common block reshaping." In order to have reshaping work for common blockscontaining active variables, a derivative object is created for every entry in a common block, even if only one member24

of the common block really needs derivative objects. Using the above example, if only B was active, we would stilldeclare common /g$block/ g$A(g$pmax$,10,10),g$B(g$pmax$,100)and g$A would not be used. In this fashion, derivative objects of B would be correctly identi�ed with derivativeobjects for X, as implied by the original reshaping. Note that reshaping breaks down when common blocks containentries of mixed type (in particular integer and character), but in these circumstances reshaping is a dangerouslynonportable practice anyway, and ADIFOR issues a warning.To eliminate the unnecessary storage allocation, the user is advised to organize the program's global variablesso that active and non-active variables are put in separate common blocks. It is bene�cial to separate variables oftype integer and character because these variables cannot be active. ADIFOR-generated code lists which variablesare truly active. Hence, after the �rst ADIFOR run, detailed activity information is available.As an example, the following code:...double Xactive,Wactive,Zactive,Ynotactiveinteger I,Jcommon /blockAll/ Xnotactive,Wactive,Zactive,Ynotactive,I,J...could be rearranged to:...double Xactive,Wactive,Zactive,Ynotactiveinteger I,Jcommon /blockActive/ Wactive,Zactivecommon /blocknotActive/ Xnotactive,Ynotactivecommon /blockNeverActive/ I,J...so that storage for gradient objects is allocated only for active variables.6.2 ADMake�leThe make�le generated by ADIFOR, ADMakefile, contains two variables whose values may be set to control theoperation of the translator, ADMISC and ADFLAVORS. ADFLAVORS may be set to OPT, UNOPT, or both. The UNOPT agindicates that ADTRANS should create unoptimized versions of the ADIFOR-generated code, which may be useful fordebugging purposes. This code may contain multiplications by 1.0 and other superuous operations, and will bestored in �les with the extension .unopt.f. The OPT ag indicates that ADTRANS should create optimized versionsof the code, where arithmetic operations involving the identity have been removed. At present, the only availableoptions for ADMISC is SAXPY, an experimental device for supporting sparse derivative objects. For now, this variableshould be left blank.7 An Advanced ExampleAs a more complex example of the process of generating derivative code using ADIFOR, consider again the subroutinein Figure 5. We may use the make�le in Appendix A to simplify our task.25

SUBROUTINE SSINC(NELEM,NNOD,NTOTAL,NCLASS,NKIND,X,NPART,CPART,+ THICK,TNSDTA,MATL,ASTRPY,FLIMIT,IRATE,XMUP,XMUD,+ BF,NP,TMAX,YMAX,ISYM,IBEAD,BEADUF,NSTOP,EPSDEV,+ ZPCHDP,FAILDP,IFAIL,ZSTRAN,ZSHAPE,T,KIND,S,ECUM,+ ZSTRSS,KNDNOD,ISUCC,IELPEK,ZPKSTR,ZDRAW,NREJCT,+ HOLRAD,ZCRCST,XMOVE,IFLSTP)C .. Scalar Arguments ..DOUBLE PRECISION BEADUF,EPSDEV,FAILDP,HOLRAD,T,THICK,TMAX,XMOVE,+ XMUD,XMUP,YMAXINTEGER IBEAD,IFAIL,IFLSTP,IRATE,ISYM,MATL,NCLASS,NELEM,NNOD,NP,+ NPART,NREJCT,NSTOP,NTOTALC ..C .. Array Arguments ..DOUBLE PRECISION ASTRPY(5),BF(2),CPART(8,1000),ECUM(1000,2),+ FLIMIT(5),S(1000,2,2),TNSDTA(10),X(1000,2)REAL ZCRCST(0:30),ZDRAW(0:30,2),ZPCHDP(0:30),ZPKSTR(0:30),+ ZSHAPE(0:30,1000,2),ZSTRAN(0:30,1000,4),ZSTRSS(0:30,1000,2)INTEGER IELPEK(0:30),ISUCC(0:30),KIND(1000),KNDNOD(0:30,1000),+ NKIND(2)C ..C .. Arrays in Common ..DOUBLE PRECISION ENGST(1000,4)C ..C .. Common blocks ..COMMON /CENGST/ENGSTC ..C ... code for the function evaluationRETURNEND Figure 5. Sample Top-level Subroutine
26

7.1 PreliminariesThe use of the make�le in Appendix A still requires that we create a dummy main program, make sure the activesubtree conforms to the Fortran standard and other restrictions, and create a script �le, called ssinc.adf.The dummy main programprogram dummyendexplained in Section 2, Step 2 will be used. We shall assume that the dummy main program is in the �le dummy.f.Next, a thorough analysis of the active subtree should be performed to insure that it does not violate any of therestrictions described in Section 3.7.2 Creating the ADIFOR script �leTo proceed, we create an ADIFOR script �le. Suppose we wish to have ADIFOR generate code for the derivativesof the variable engst(i,1), i=1, nelem with respect to the variables tnsdta(3), astrpy(1), xmup, xmud, andbf(1:2). Then, we generate the script �le:TOP ssincPMAX 19IVARS tnsdta,astrpy,xmud,xmup,bfOVARS engstSEP $Recall that the value PMAX corresponds to the maximum length of gradient objects, which may be as much as10+5+1+1+2 = 19. Since we are only concerned with certain elements of the variables nominated as independent,we could use a value as small as 1 + 1 + 1 + 1 + 2 = 6 for PMAX. If we are certain that we will never consider thederivatives with respect to the other elements, then this value (6) should be used for PMAX. Otherwise, the conservativevalue of 19 should be used. We have chosen the conservative approach for this example.7.3 Running ADIFORTo proceed, we run ADIFOR using the command make -f make.adifor adifor. If the script �le has been createdproperly, all restrictions have been met, and the variables in the make�le have been properly de�ned, ADIFOR willgenerate several new subroutines. Only the top-level subroutine, g$ssinc$4001ca00, needs to be called from theuser's code. All other subroutines generated by ADIFOR are called, directly or indirectly, by this subroutine.7.4 Seed Matrix InitializationThe subject of seed matrix initialization was already addressed in Step 4 of Section 1. However, it may not be clearwhat should be done in the case where we have multiple independent variables. As an example of this situation, referto the top-level subroutine in Figure 5. We have run ADIFOR, declaring tnsdata, astrpy, xmup, xmud, and bf asindependent variables and engst as the dependent variable, so the generated code is capable of computingJ = Jengst = � @ engst@ tnsdata(1 : 10) ; @ engst@ astrpy(1 : 5) ; @ engst@ xmup ; @ engst@ xmud; @ engst@ bf(1 : 2)� ;which is a 4000 � 19 matrix. 27

However, we are only concerned with the derivatives of engst(i,1), i = 1,1000 with respect to tnsdata(3),astrpy(1), xmup, xmud, and bf(1:2). The total number of independent variables is therefore 1+1+ 1+1+2 = 6.Each gradient object corresponds to the derivatives of some variable with respect to the independent variables underconsideration. As a consequence, each gradient object should have 6 rows. So, since tnsdata is of dimension 10,g$tnsdata is of dimension 6� 10. Similarly, g$astrpy is of dimension 6� 5, g$xmup is of dimension 6� 1, g$xmud isof dimension 6� 1, and g$bf is of dimension 6� 2. Based on the independent variables with which we are concerned,these gradient objects should be initialized as follows:g$tnsdata= 0BBBBBBBBB@ 0 0 1 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 1CCCCCCCCCA , g$astrpy =0BBBBBBBBB@ 0 0 0 0 01 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 00 0 0 0 0 1CCCCCCCCCA ,g$xmup =0BBBBBBBBB@ 001000 1CCCCCCCCCA , g$xmud = 0BBBBBBBBB@ 000100 1CCCCCCCCCA , and g$bf =0BBBBBBBBB@ 0 00 00 00 01 00 1 1CCCCCCCCCA :The rows of g$<IndVar> represent the �rst, second, ..., and sixth independent variables considered in the problem.The columns of g$<IndVar> entries represent the elements in the original data object. For example, in g$tnsdata,we initialized to 1.0 the derivative of the third entry (3rd col.) of tnsdata with respect to the �rst independentvariable (1st row), that is with respect to itself. Together, the �ve matrices constitute the seed matrix. Thus,g$engst= 0BBBBBB@J �0BBBBBB@ g$tnsdataTg$astrpyTg$xmupTg$xmudTg$bfT 1CCCCCCA1CCCCCCAT ;a 6� 1000 element matrix. In particular,� g$engst(1;�; 1) contains the derivatives of engst(*,1) with respect to tnsdata(3),� g$engst(2;�; 1) contains the derivatives of engst(*,1) with respect to astrpy(1),� g$engst(3;�; 1) contains the derivatives of engst(*,1) with respect to xmup,� g$engst(4;�; 1) contains the derivatives of engst(*,1) with respect to xmud, and� g$engst(5 : 6; �; 1) contains the derivatives of engst(*,1) with respect to bf(1:2) .Other examples of seed matrix initialization can be found in [5].28

7.5 Incorporating the ADIFOR-generated subroutineFollowing the procedure outlined in Section 2, the gradient objects g$engst, g$tnsdta, g$astrpy, g$xmup, g$xmud,and g$bf should be declared and initialized, and a call to g$ssinc$4001ca00 added at the point where the derivativevalues are required. So, the calling program should look something like:PROGRAM MAIN...cc subroutine dzero2(m,n,a,lda) initializes a matrix to 0.0 .c subroutine dzero1(m,a) intializes a matrix to 0.0 .cc allocate storage for derivative objectsc ***************************************cc number of independent variables is 6c integer gppar, gpcommonparameter (gppar = 6, gpcommon = 19)c allocate derivative objectsdouble precision g$t(g$p$par), g$xmud(gppar), g$xmup(g$p$par),+ g$astrpy(gppar,5), g$bf(g$p$par,2),+ g$ecum(gppar,1000,2), g$s(g$p$par,1000,2,2),+ g$tnsdta(gppar,10)double precision g$engst(g$p$common, 1000, 4)common /g$cengst/ g$engst....cc initialize seed matrixc **********************c***c*** Each of the independent variables corresponds to a different ****c*** column of the seed matrix. ****c***cc for tnsdata(3) for column 1c call dzero2(gp,10,g$tnsdta,g$p$)g$tnsdta(1,3) = 1.0cc for astrpy(1) for column 2c call dzero2(gp,5,g$astrpy,g$p$)g$astrpy(2,1) = 1.0cc for xmup for column 3c call dzero1(gp,g$xmup)g$xmup(3) = 1.0cc for xmud for column 4c call dzero1(gp,g$xmud)g$xmud(4) = 1.0 29

cc for bf for column 5 and 6c call dzero2(gp,2,gbf,gp$)g$bf(5,1) = 1.0g$bf(6,2) = 1.0c call ADIFORed version of ssincc *****************************c CALL g$ssinc$4001ca00(gp,+ NELEM,NNOD,NTOTAL,NCLASS,NKIND,X,NPART,CPART,THICK,+ TNSDTA,g$tnsdta,g$p$,+ MATL,+ ASTRPY,g$astrpy,gp,+ FLIMIT,IRATE,+ XMUP,g$xmup,g$p$,XMUD,g$xmud,gp,BF,gbf,gp$,+ NOUT,TMAX,YMAX,ISYM,IBEAD,BEADUF,NSTOP,EPSDEV,ZPCHDP,FAILDP,+ IFAIL,ZSTRAN,ZSHAPE,+ T,gt,gp$,+ KIND,+ S,g$s,gp,ECUM,g$ecum,g$p$,+ ZSTRSS,KNDNOD,ISUCC,+ IELPEK,ZPKSTR,ZDRAW,NREJCT,HOLRAD,ZCRCST,XMOVE,IFLSTP)cc Rows 1,6 of g$engst(:.:,1) correspond to the derivative of the variablec engst(i,1), i=1, nelem with respect to the variables tnsdata(3), astrpy(1),c xmup, xmud, bf(1:2), respectively.c ...STOPENDNote that the allocations di�er for derivative objects in common blocks and those that get passed intog$ssinc$4001ca00 as subroutine parameters. For variables in comon blocks, it is necessary to use thesame leading dimension as was speci�ed as PMAX to ADIFOR (19, in this case), since otherwise the callingprogram and the ADIFOR-generated routine use inconsistent declarations. For variables that are passed in as pa-rameters, we may allocate more space than is required, since the leading dimensions of these gradient objects arepassed to the ADIFOR-generated derivative code.8 Using ADIFOR at ArgonneAt present, we do not encourage ADIFOR distribution, since the system is likely to undergo many changes. Instead,we suggest the following procedure:1. Assemble the program composition on your system and ftp the Fortran source to Argonne.2. Run ADIFOR at Argonne to generate derivative code.3. Ftp ADIFOR-generated code back to your system, and incorporate it into your application.8.1 OrganizationTo use ADIFOR, you need to get an account on our Suns (if you do not have one, send mail toadifor-request@mcs.anl.gov). 30

When you log into Argonne to use ADIFOR, you should log intocosmo.mcs.anl.gov (Internet no. 140.221.10.10).Cosmo is a multi-processor Sparc-compatible Solbourne workstation with 256 MBytes of real memory and plenty ofswapspace. It is well suited for running memory-intensive jobs such as ADIFOR. As an alternative, you can usecanopus.mcs.anl.gov (Internet no. 140.221.3.131)dude.mcs.anl.gov (Internet no. 140.221.1.12)Please use canopus and dude only when cosmo is unavailable, as those are personal workstations, not general com-puting resources. Since disk space is tight, we ask you to keep your account at Argonne as cleaned up as possible.The ADIFOR binaries as well as library �les, documentation, and other useful information can be found insubdirectories of the /usr/local/adifor directory, according to the following organization:� bin: Contains the ADIFOR executables. Make sure that /usr/local/adifor/bin is in your Unix search path.� doc: Contains a README �le plus postscript versions of ADIFOR working notes and other relevant papers.In particular, this directory will contain the up-to-date version of this manual.� examples: Contains some examples of programs processed with ADIFOR. The examples may require �les inthe lib and utils subdirectories in order to compile properly.� lib: Contains �les that in general are necessary for the compilation of ADIFOR-generated code. In particular,the �le intrinsic.f used for exception handling can be found here. Any programs which uses any of theFortran intrinsic functions should have intrinsic.f compiled with the ADIFOR version.� man: Contains the man page for ADIFOR.� utils: Contains subroutines that may prove useful in incorporating ADIFOR-generated code in a program.8.2 SupportLimited support is available via email. Any potential bugs should be reported to adifor-bugs@mcs.anl.gov. Anyquestions or comments on the functionality of ADIFOR should be directed to adifor@mcs.anl.gov. Requests foraccounts or other administrative issues should be addressed to adifor-request@mcs.anl.gov.8.3 NAG ToolsThe NagTools Fortran utilities are available at Argonne for help in satisfying the requirement that compositionsprocessed by ADIFOR adhere to the Fortran standard. These tools can check whether a program conforms to theANSI standard, make sure that every variable is declared explicitly, and generate a calling tree. To run these utilities,the user needs to add /usr/local/NAGWare f77 tools/scripts in the Unix search path. Here is a short descriptionof some of the NAGWare utilities:� nag pfort : is the Fortran 77 NAGWare portability veri�er. Nag pfort checks for� conformance with the ANSI Fortran 77 standard,� conformance with a portable subset of the ANSI Fortran 77 standard, and� correct inter-program-unit communication.� nag fcalls : prints the call graph of a Fortran 77 program.31

� nag decs : is the NAGWare Fortran 77 declaration standardiser. This tool rebuilds the declarative part of aFortran 77 program unit declaring all names and also pretty prints.More details can be found in [8] and in the man pages for the individual tools (the manual pages are located in/usr/local/NAGWare f77 tools/manl).Your site may provide similar tools, such as forchek. Check with your system administrator.9 Common ProblemsThere are several problems which users have encountered while trying to process programs with ADIFOR. We providea brief explanation of each and possible solutions.� ADIFOR reports that a �le can not be foundAssuming the �le in question is in fact present, the most probable reason for this error message is trailingblanks in the composition �le. ADIFOR interprets trailing blanks as part of the �lename, and therefore isunable to �nd the �le. See Section 2, Step 1 for more details on the composition �le.� Unneeded labels and CONTINUE statements appear in the ADIFOR-generated subroutinesIn addition to creating new labels and CONTINUE statements, ADIFOR preserves those present in the originalprograms. There are two reasons for this functionality. The �rst reason is to insure that any references tothese labels (by a computed GOTO, for example) in the original program remain properly de�ned. Labels arealso preserved to facilitate cross-referencing between the original and ADIFOR-generated code. If a certainalgorithm is present near a particular label in the original program, it will be at the same location in theADIFOR-generated code.� ADIFOR runs out of string spaceThis may be due to source �les being too large. ADIFOR typically cannot handle individual �les that are morethan a few thousand lines long. If feasible, try breaking the �le into several smaller �les, by hand or using thefsplit utility.� Compiler complains about presence of $ characterIf a program contains functions which have points of nondi�erentiability, ADIFOR will insert calls to theexception handling library (see Section 4 and [4] for more details). At present, the subroutines in this libraryhave names containing the $ character. This will change in future versions of ADIFOR. Presently, the simplestsolution is to globally replace the $ character with some symbol which the compiler will accept.AcknowledgmentsWe thank Moe El-Khadiri for his contributions to a preliminary version of this report. We also thank Jane Dudley,Larry Green, Laura Hall, Kara Haigler, Joe Manke, Janet Rogers and Karen Williamson for their perseverance inusing early versions of ADIFOR and for sharing their insights with us. Lastly, we thank Mike Wenner for makingthe \advanced example" available to us. 32

References[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. McKen-ney, S. Ostrouchov, and D. Sorensen. LAPACK User's Guide. SIAM, Philadelphia, 1992.[2] Christian Bischof, Alan Carle, George Corliss, and Andreas Griewank. ADIFOR: Automatic di�erentiation ina source translator environment. In Paul Wang, editor, International Symposium on Symbolic and AlgebraicComputing 92, pages 294{302, Washington, D.C., 1992. ACM.[3] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. ADIFOR: Generatingderivative codes from Fortran programs. Scienti�c Programming, 1(1):11{29, 1992.[4] Christian Bischof, George Corliss, and Andreas Griewank. ADIFOR exception handling. Technical ReportANL/MCS{TM{159 (also ADIFOR Working Note #3), Mathematics and Computer Science Division, ArgonneNational Laboratory, 1991.[5] Christian Bischof and Paul Hovland. Using ADIFOR to compute dense and sparse Jacobians. Technical ReportANL/MCS{TM{158 (also ADIFOR Working Note #2), Mathematics and Computer Science Division, ArgonneNational Laboratory, 1991.[6] Herbert Fischer. Special problems in automatic di�erentiation. In Andreas Griewank and George F. Corliss,editors, Automatic Di�erentiation of Algorithms: Theory, Implementation, and Application, pages 43 { 50. SIAM,Philadelphia, Penn., 1991.[7] Andreas Griewank. On automatic di�erentiation. In Mathematical Programming: Recent Developments andApplications, pages 83{108, Amsterdam, 1989. Kluwer Academic Publishers.[8] NAG. NAGWare f77 Tools (Unix). The Numerical Algorithms Group Limited, London, 1991.[9] Louis B. Rall. Automatic Di�erentiation: Techniques and Applications, volume 120 of Lecture Notes in ComputerScience. Springer Verlag, Berlin, 1981.

33

Appendix A: A Generic Make�leSHELL = /bin/csh## name of this makefile#ADIFOR_MAKE = make.adifor## name of top-level subroutine#AD_TOPLEVEL = ssinc## files containing top-level subroutine as# well as all files that are called below top-level# subroutine#ADIFOR_INPUT = wkhd.f toolcn.f timstp.f stif.f ssinc.f \smrgin.f rates.f outpt2.f noncon.f nodpsr.f \mgb1.f loadsm.f crvtur.f crvevl.f contpr.f \bndcnd.f bend.f## main program for top-level subroutine#ADIFOR_MAIN = admain.fhelp: @echo "available targets:"@echo "portability -- run original program through NAG verifier"@echo "calltree -- generate calling tree"@echo "declare -- declare all variables explicitly"@echo "adifor -- run adifor"@echo "compile -- compile the adifor-generated subroutines"@echo "cleanup -- delete adifor temporary files"portability: $(ADIFOR_INPUT) $(ADIFOR_MAIN)nag_pfort -keepatr $(ADIFOR_INPUT) $(ADIFOR_MAIN)calltree: $(ADIFOR_INPUT) $(ADIFOR_MAIN)nag_fcalls $(ADIFOR_INPUT) $(ADIFOR_MAIN)declare: $(ADIFOR_INPUT) $(ADIFOR_MAIN)nag_decs $(ADIFOR_INPUT) $(ADIFOR_MAIN)adifor: $(AD_TOPLEVEL).adf $(AD_TOPLEVEL).compadifor $(AD_TOPLEVEL).adf $(AD_TOPLEVEL).compmake -f ADMakefile$(AD_TOPLEVEL).comp: $(ADIFOR_INPUT) $(ADIFOR_MAIN)ls -1 $(ADIFOR_INPUT) $(ADIFOR_MAIN) > $@# Concerning the ``compile'' target:# The mechanism using 'ls' to determine the files generated by# adifor is not perfect. It might detect some files not generated# by adifor. However, since all it does with these files is# recompile them, this should not pose a threat to the user's code.34

compile:set src = `/bin/ls *\.[0-9a-f]*\.f | egrep -v 'unopt\.f$$'`; \set obj = `echo $$src | sed -e 's/\.f/\.o/g'`; \$(MAKE) -f $(ADIFOR_MAKE) compile2 ADIFOR_OBJECTS="$$obj" \ADIFOR_SOURCES="$$src"compile2: $(ADIFOR_OBJECTS)$(F77) $(FFLAGS) $(ADIFOR_SOURCES)## The following entry removes all the temporary files created by ADIFOR.#clean :rm -rf $(AD_TOPLEVEL).dir adtmp ADDIRrm -f *.unopt.f $(AD_TOPLEVEL).comp

35

