
ADIFOR Working Note #10:ADIFOR Case Study:VODE + ADIFORbyGeorge CorlissAbstract. ADIFOR can be used to generate the Jacobians required by VODE in a manner thatis easy to use. We provide a template to interface the ADIFOR-generated code with VODE andshow how the template is used in a sample system of sti� ordinary di�erential equations. TheADIFOR-generated code is about 10% faster than the hand-coded Jacobian for this example.1 VODEVODE (Variable-coe�cient Ordinary Di�erential Equation solver) [4] is a popular solver for sti�ordinary di�erential equations. The code is available from netlib, is well documented, and is widelyused.We were interested in exploring VODE applications to see how ADIFOR (Automatic DI�erenti-ation in FORtran) [2] would perform in this context.The user of VODE must provide a subroutine of the form shown in Listing 1.SUBROUTINE FEX (NEQ, T, Y, YDOT, RPAR, IPAR)DOUBLE PRECISION T, Y, YDOT, RPARDIMENSION Y(NEQ), YDOT(NEQ), RPAR(*), IPAR(*)Listing 1. Template for subroutine FEXwhich supplies the vector function f by loading YDOT(i) with f(i). The user of VODE must alsoprovide a subroutine for the Jacobian in the form shown in Listing 2.SUBROUTINE JAC (NEQ, T, Y, ML, MU, PD, NROWPD, RPAR, IPAR)DOUBLE PRECISION T, Y, PD, RPARDIMENSION Y(NEQ), PD(NROWPD,NEQ), RPAR(*), IPAR(*)Listing 2. Template for subroutine JAC2 Using ADIFOR with VODEIn this section, we go through the steps required to use ADIFOR to generate the Jacobiansrequired by VODE. We assume that the reader is familiar with other reports showing how to useADIFOR [1,2,3], so we give only the VODE-speci�c information.The lesson here is that ADIFOR is a very useful tool which can relieve a user of VODE from thetask of hand-coding a routine for computing the Jacobian. The user of VODE + ADIFOR can usethe make�le and the template for VODJAC given here. The following steps are necessary:1. Write subroutine FEX as always.2. Make adifor. 1

3. Edit subroutine VODJAC to change NEQMAX, if necessary.4. Make driver program as usual.ADIFOR can generate a subroutine for computing the Jacobian using a dummy main programshown in Listing 3integer NEQ, IPARparameter (NEQ = 3)DOUBLE PRECISION RPAR, T, Y(NEQ), YDOT(NEQ)call FEX (NEQ, T, Y, YDOT, RPAR, IPAR)STOPEND Listing 3. Dummy main program required by ADIFORand a �le.adf of the form shown in Listing 4.TOP fexPMAX 3 (whatever is the maximum value of NEQ)IVARS YOVARS YDOT Listing 4. File.adf required by ADIFORADIFOR generates a subroutinesubroutine gfexc(gp, neq, t, y, gy, ldgy, ydot, g$ydot, ldg$*ydot, rpar, ipar)whose full text appears in Section 5. Subroutine gfexc is called from the template subroutineVODJAC. The subroutine VODJAC calls the ADIFOR-generated routine gfexc and returns the Ja-cobian in the format expected by VODE.The user of VODE might have to make two changes in VODJAC.1. Replace the value of NEQMAX by the maximum value of NEQ.2. Replace the call gfexc by one of the user-supplied subroutines de�ning the right-hand sideof the ODE.The locations where these changes should be made are clearly marked in VODJAC, which appears inSection 5.Then VODE is called, as is shown in Listing 5.EXTERNAL FEX, VODJAC. . .CALL VODE(FEX,NEQ,Y,T,TOUT,ITOL,RTOL,ATOL,ITASK,ISTATE,1 IOPT,RWORK,LRW,IWORK,LIW,VODJAC,MF,RPAR,IPAR)======Listing 5. Calling VODE from the main programIn the next section, we give the results. Subsequent sections describe what we did and includethe relevant code. 2

3 ResultsWe used the example supplied in the VODE internal documentation. It is a simple chemicalkinetics model due to Robinson of a polymerization process in a continuously stirred tank reactoror C-star reactor. It consists of the following three rate equations:dy1/dt = -.04*y1 + 1.e4*y2*y3dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2dy3/dt = 3.e7*y2**2on the interval from t = 0:0 to t = 4 � 1010, with initial conditions y1 = 1:0, y2 = y3 = 0. Theproblem is sti�.Computing the Jacobian by ADIFOR-generated code gave the same answers as the hand-codedJacobian routine supplied in the example, and it ran 10% faster.The following is the output from the original sample program, augmented with timing.At t = 0.4000E+00 y = 0.985164E+00 0.338624E-04 0.148020E-01At t = 0.4000E+01 y = 0.905510E+00 0.224034E-04 0.944679E-01At t = 0.4000E+02 y = 0.715801E+00 0.918506E-05 0.284189E+00At t = 0.4000E+03 y = 0.450542E+00 0.322311E-05 0.549455E+00At t = 0.4000E+04 y = 0.183206E+00 0.894285E-06 0.816793E+00At t = 0.4000E+05 y = 0.389815E-01 0.162174E-06 0.961018E+00At t = 0.4000E+06 y = 0.493610E-02 0.198411E-07 0.995064E+00At t = 0.4000E+07 y = 0.516592E-03 0.206742E-08 0.999483E+00At t = 0.4000E+08 y = 0.520168E-04 0.208078E-09 0.999948E+00At t = 0.4000E+09 y = 0.518902E-05 0.207562E-10 0.999995E+00At t = 0.4000E+10 y = 0.507970E-06 0.203188E-11 0.999999E+00At t = 0.4000E+11 y = 0.625102E-07 0.250041E-12 0.100000E+01No. steps = 562 No. f-s = 809 No. J-s = 11 No. LU-s = 109No. nonlinear iterations = 806No. nonlinear convergence failures = 0No. error test failures = 262.60E-01 Elapsed CPU seconds for solutionThe following is the output from the same program, except that the Jacobian was computed byusing ADIFOR-generated code.At t = 0.4000E+00 y = 0.985164E+00 0.338624E-04 0.148020E-01At t = 0.4000E+01 y = 0.905510E+00 0.224034E-04 0.944679E-01At t = 0.4000E+02 y = 0.715801E+00 0.918506E-05 0.284189E+00At t = 0.4000E+03 y = 0.450542E+00 0.322311E-05 0.549455E+00At t = 0.4000E+04 y = 0.183206E+00 0.894285E-06 0.816793E+00At t = 0.4000E+05 y = 0.389815E-01 0.162174E-06 0.961018E+00At t = 0.4000E+06 y = 0.493610E-02 0.198411E-07 0.995064E+00At t = 0.4000E+07 y = 0.516592E-03 0.206742E-08 0.999483E+00At t = 0.4000E+08 y = 0.520168E-04 0.208078E-09 0.999948E+00At t = 0.4000E+09 y = 0.518902E-05 0.207562E-10 0.999995E+00At t = 0.4000E+10 y = 0.507970E-06 0.203188E-11 0.999999E+00At t = 0.4000E+11 y = 0.625102E-07 0.250041E-12 0.100000E+01No. steps = 562 No. f-s = 809 No. J-s = 11 No. LU-s = 109No. nonlinear iterations = 806No. nonlinear convergence failures = 0No. error test failures = 262.50E-01 Elapsed CPU seconds for solution 3

Times are on a SPARC 2. The timer resolution is 1/60 sec, so these results are a draw. Next, weinserted a loop in the driving program to perform the solution 50 times, deleted writing the solution,and divided the total elapsed times by 50 to obtain an average solution time.Analytic Jacobian:No. steps = 562 No. f-s = 809 No. J-s = 11 No. LU-s = 109No. nonlinear iterations = 806No. nonlinear convergence failures = 0No. error test failures = 262.33E-01 Elapsed CPU seconds for solutionADIFOR-generated Jacobian:No. steps = 562 No. f-s = 809 No. J-s = 11 No. LU-s = 109No. nonlinear iterations = 806No. nonlinear convergence failures = 0No. error test failures = 262.01E-01 Elapsed CPU seconds for solutionVODE uses an internally generated Jacobian (MF = 22):No. steps = 543 No. f-s = 796 No. J-s = 11 No. LU-s = 107No. nonlinear iterations = 760No. nonlinear convergence failures = 0No. error test failures = 241.94E-01 Elapsed CPU seconds for solutionIn short, the VODE solution using ADIFOR-generated derivatives gave exactly the same resultsand executed about 10% faster than the solution using the hand-coded analytic derivatives.Of course, this is only one example, and a simple one at that. No one should be impresseduntil we can report similar results on real problems. Nevertheless, this does show that ADIFOR iscompetitive.The next section outlines what we did to obtain these results.4 Example Main ProgramThe main program run to produce both of these timings was taken from the internal VODEdocumentation shown in Listing 6. As noted above, we modi�ed the program by1. inserting timing calls,2. looping to solve the problem 50 times, and3. commenting out writing of solution values.program byrnec Purpose: Driver to call VODE with ADIFOR-generated Jacobian.c Author: George Corliss, 13-JUL-1992, after VODE documentation.cC EXAMPLE PROBLEM 4

CC The following is a simple example problem, with the codingC needed for its solution by VODE. The problem is from chemicalC kinetics, and consists of the following three rate equations..C dy1/dt = -.04*y1 + 1.e4*y2*y3C dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*y2**2C dy3/dt = 3.e7*y2**2C on the interval from t = 0.0 to t = 4.e10, with initial conditionsC y1 = 1.0, y2 = y3 = 0. The problem is stiff.CC The following coding solves this problem with VODE, using MF = 21C and printing results at t = .4, 4., ..., 4.e10. It usesC ITOL = 2 and ATOL much smaller for y2 than y1 or y3 becauseC y2 has much smaller values.C At the end of the run, statistical quantities of interest areC printed. (See optional output in the full description below.)C To generate Fortran source code, replace C in column 1 with a blankC in the coding below.C EXTERNAL FEX, VODJACDOUBLE PRECISION ATOL, RPAR, RTOL, RWORK, T, TOUT, YDIMENSION Y(3), ATOL(3), RWORK(67), IWORK(33)c GFC modification for timing:real timer, StartTime, ElapsedTimeStartTime = timer ()do 990 iiiiii = 1, 50NEQ = 3Y(1) = 1.0D0Y(2) = 0.0D0Y(3) = 0.0D0T = 0.0D0TOUT = 0.4D0ITOL = 2RTOL = 1.D-4ATOL(1) = 1.D-8ATOL(2) = 1.D-14ATOL(3) = 1.D-6ITASK = 1ISTATE = 1IOPT = 0LRW = 67LIW = 33MF = 21DO 40 IOUT = 1,12CALL VODE(FEX,NEQ,Y,T,TOUT,ITOL,RTOL,ATOL,ITASK,ISTATE,1 IOPT,RWORK,LRW,IWORK,LIW,VODJAC,MF,RPAR,IPAR)c WRITE(6,20)T,Y(1),Y(2),Y(3)20 FORMAT(7H At t =,E12.4,6H y =,3E14.6)IF (ISTATE .LT. 0) GO TO 8040 TOUT = TOUT*10.c GFC modification for timing:990 continueElapsedTime = timer () - StartTimeWRITE(6,60) IWORK(11),IWORK(12),IWORK(13),IWORK(19),1 IWORK(20),IWORK(21),IWORK(22)60 FORMAT(/12H No. steps =,I4,12H No. f-s =,I4,1 12H No. J-s =,I4,13H No. LU-s =,I4/2 28H No. nonlinear iterations =,I4/3 38H No. nonlinear convergence failures =,I4/4 27H No. error test failures =,I4/)c GFC modification for timing:write (6, 1050) ElapsedTime / 50.0 5

1050 format (12X, 1pE10.2,+ ' Elapsed CPU seconds for solution' /)STOP80 WRITE(6,90)ISTATE90 FORMAT(///22H Error halt.. ISTATE =,I3)STOPEND Listing 6. Example main program5 ADIFOR-Generated DerivativesWe took the subroutine that de�nes the RHS of the ODE given in the VODE documentationSUBROUTINE FEX (NEQ, T, Y, YDOT, RPAR, IPAR)DOUBLE PRECISION RPAR, T, Y, YDOTDIMENSION Y(NEQ), YDOT(NEQ)YDOT(1) = -.04D0*Y(1) + 1.D4*Y(2)*Y(3)YDOT(3) = 3.D7*Y(2)*Y(2)YDOT(2) = -YDOT(1) - YDOT(3)RETURNENDand applied ADIFOR (see the make�le below). Y is independent, and YDOT is dependent. ADIFORgenerated the following code:subroutine gfexc(gp, neq, t, y, gy, ldgy, ydot, g$ydot, ldg$*ydot, rpar, ipar)CC Formal ydot is active.C Formal y is active.C integer gpinteger g$pmax$parameter (g$pmax$ = 3)integer gidouble precision d$5double precision d$4double precision d$3double precision d$3bardouble precision d$2double precision d$1barC integer iparinteger neqdouble precision rpar, t, y, ydotdouble precision g$y(ldg$y, neq), g$ydot(ldg$ydot, neq)dimension y(neq), ydot(neq)integer ldg$yinteger ldg$ydotif (gp .gt. g$pmax$) thenprint *, 'Parameter g$p is greater than g$pmax.'stopendifC ydot(1) = -.04d0 * y(1) + 1.d4 * y(2) * y(3)d$4 = 1.d4 * y(2)d$5 = y(3)d$3bar = d$5 * 1.d4do 99999 gi = 1, gp 6

g$ydot(g$i$, 1) = -.04d0 * g$y(gi, 1) + d$3bar * g$y(gi, 2*) + d$4 * g$y(gi, 3)99999 continueydot(1) = -.04d0 * y(1) + d$4 * d$5C ydot(3) = 3.d7 * y(2) * y(2)d$2 = 3.d7 * y(2)d$3 = y(2)d$1bar = d$3 * 3.d7do 99998 gi = 1, gpg$ydot(g$i$, 3) = d$1bar * g$y(g$i$, 2) + d$2 * g$y(g$i$, 2)99998 continueydot(3) = d$2 * d$3C ydot(2) = -ydot(1) - ydot(3)do 99997 gi = 1, gpg$ydot(g$i$, 2) = -g$ydot(gi, 1) + (-g$ydot(g$i$, 3))99997 continueydot(2) = -ydot(1) - ydot(3)returnend Listing 7. ADIFOR-generated gfexcThis subroutine gfexc does not have the interface expected by VODE (see subroutine JEX inListing 8).SUBROUTINE JEX (NEQ, T, Y, ML, MU, PD, NRPD, RPAR, IPAR)DOUBLE PRECISION PD, RPAR, T, YDIMENSION Y(NEQ), PD(NRPD,NEQ)PD(1,1) = -.04D0PD(1,2) = 1.D4*Y(3)PD(1,3) = 1.D4*Y(2)PD(2,1) = .04D0PD(2,3) = -PD(1,3)PD(3,2) = 6.E7*Y(2)PD(2,2) = -PD(1,2) - PD(3,2)RETURNEND Listing 8. Subroutine JEX supplied with VODESurprisingly, the ADIFOR-generated code in Listing 7 executes about 10% faster than the code inListing 8.We could modify VODE so that it does expect the interface of gfexc, but it is much easierand safer to use the subroutine JEX provided and modify it to call the ADIFOR-generated routine.We provide a template subroutine VODJAC to serve that function (see Listing 9). Inside VODJAC, weneed to1. declare variables,2. initialize gy, the Jacobian of Y with respect to itself,3. call gfexc, and4. transform the Jacobian into the format expected by VODE.7

SUBROUTINE VODJAC (NEQ, T, Y, ML, MU, PD, NRPD, RPAR, IPAR)c Purpose: Template to supply ADIFOR-generated Jacobian to VODEc Author: George Corliss, 13-JUL-1992c Usage:c VODE is a Variable-coefficient Ordinary Differential Equationc solver, with fixed-leading coefficient implementation.c The use of VODE must provide a subroutine of the form..cc SUBROUTINE FEX (NEQ, T, Y, YDOT, RPAR, IPAR)c DOUBLE PRECISION T, Y, YDOT, RPARc DIMENSION Y(NEQ), YDOT(NEQ), RPAR(*), IPAR(*)cc which supplies the vector function f by loading YDOT(i) with f(i).c The use of VODE must also provide a subroutine for the Jacobian inc the form of the current subroutine.cc ADIFOR can generate a subroutine for computing the Jacobian usingc a dummy main program of the form..cc integer NEQ, IPARc parameter (NEQ = 3)c DOUBLE PRECISION RPAR, T, Y(NEQ), YDOT(NEQ)c call FEX (NEQ, T, Y, YDOT, RPAR, IPAR)c STOPc ENDcc and a file.adf of the form..cc TOP fexc PMAX 3 (whatever is the maximum value of NEQ)c IVARS Yc OVARS YDOTcc The subroutine VODJAC calls the ADIFOR-generated routinec gfecc and returns the Jacobian in the format expected by VODE.cc The user of VODE might have to make two changes in VODJAC..c 1. Replace the value of NEQMAX by the maximum value of NEQ.c 2. Replace the call gfexc by the one of the user-suppliedc subroutine defining the right-hand side of the ODE.cc Then VODE is called:cc EXTERNAL FEX, VODJACc . . .c CALL VODE(FEX,NEQ,Y,T,TOUT,ITOL,RTOL,ATOL,ITASK,ISTATE,c 1 IOPT,RWORK,LRW,IWORK,LIW,VODJAC,MF,RPAR,IPAR)c ======cc References:c 1. P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, "VODE: A Variablec Coefficient ODE Solver," SIAM J. Sci. Stat. Comput., 10 (1989),c pp. 1038-1051. Also, LLNL Report UCRL-98412, June 1988.c 2. C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland,c "Generating Derivative Codes from Fortran Programs," Scientificc Computing, to appear. Also Argonne NL Preprint MCS-P263-0991,c September 1991, and as CRCP Technical Report 91185.c 3. G. Corliss, "VODE + ADIFOR," Argonne NL Technical Memorandumc ANL/MCS-TM-168, July 1992.cc---DOUBLE PRECISION PD, RPAR, T, Y 8

DIMENSION Y(NEQ), PD(NRPD,NEQ)integer NEQMAX, i, jC===CC USER MODIFICATION MAY BE NEEDED HERECC Replace NEQMAX by the maximum value of NEQ desired.CC VVparameter (NEQMAX = 10)double precision gy(NEQMAX,NEQMAX), ydot(NEQMAX), tempif (NEQ .gt. NEQMAX) thenprint *, 'The system dimension NEQ is larger than NEQMAX.'stopend ifdo 20 j = 1, NEQdo 10 i = 1, NEQgy(i,j) = 0.010 continuegy(j,j) = 1.020 continueC===CC USER MODIFICATION MAY BE NEEDED HERECC Replace "fex" by the name of the user-supplied subroutineC that defines the right-hand side of the differential equation.CC VVVcall gfexc(NEQ, neq, t, y, gy, NEQMAX, ydot, PD, NRPD,+ rpar, ipar)do 30 i = 1, NEQdo 30 j = i+1, NEQtemp = PD(i,j)PD(i,j) = PD(j,i)PD(j,i) = temp30 continueRETURNEND Listing 9. Template to interface ADIFOR-generated Jacobian with VODEHere is the make�le to control the entire process:# File: Adifor/Examples/Vode/MakefileFFLAGS = -OAD_TOPLEVEL = fexADbyrne : byrne.o vodjac.o fex.c.o fex.o timer.o \vode.o dgefa.o dgesl.o dgbfa.o dgbsl.o daxpy.o \dcopy.o ddot.o idamax.o dscal.of77 $(FFLAGS) -o ADbyrne byrne.o vodjac.o fex.c.o fex.o timer.o \vode.o dgefa.o dgesl.o dgbfa.o dgbsl.o daxpy.o \dcopy.o ddot.o idamax.o dscal.oadifor : $(AD_TOPLEVEL).adf $(AD_TOPLEVEL).comp 9

adifor.new $(AD_TOPLEVEL).adf $(AD_TOPLEVEL).compmake -f ADMakefilevodedemo: vodedemo.o vode.o jac1.o jac2.o dgefa.o dgesl.o dgbfa.o \dgbsl.o daxpy.o dcopy.o ddot.o idamax.o dscal.of77 -o vodedemo vodedemo.o vode.o jac1.o jac2.o dgefa.o \dgesl.o dgbfa.o dgbsl.o daxpy.o dcopy.o ddot.o idamax.o dscal.obyrne : byrne.o jacb.o timer.o\fex.o vode.o dgefa.o dgesl.o dgbfa.o dgbsl.o daxpy.o \dcopy.o ddot.o idamax.o dscal.of77 $(FFLAGS) -o byrne byrne.o jacb.o timer.o\fex.o vode.o dgefa.o dgesl.o dgbfa.o dgbsl.o daxpy.o \dcopy.o ddot.o idamax.o dscal.o6 ConclusionsThe lesson here is that ADIFOR is a very useful tool which can relieve a user of VODE from thetask of hand-coding a routine for computing the Jacobian. This simple test shows that the correctvalues can sometimes be computed faster than hand-written code. The ADIFOR-generated codealmost always beats di�erence quotient approximations, although it did not do so in this example.Further, the ADIFOR-generated code can take advantage of sparsity in the Jacobian, although wehave not illustrated that here.AcknowledgmentsWe thank George Byrne for suggestions and the explanation of the example system of ODEs. TheADIFOR project team includes Christian Bischof, Alan Carle, George Corliss, Andreas Griewank,Paul Hovland, and Moe El-Khadiri.References[1] Christian Bischof, Alan Carle, George Corliss, Moe El-Khadiri, Paul Hovland, and AndreasGriewank. Getting started with ADIFOR. Technical Memorandum ANL/MCS{TM{164, Math-ematics and Computer Science Division, Argonne National Laboratory, Argonne, Ill., 1992. AD-IFOR Working Note # 9.[2] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. Generatingderivative codes from Fortran programs. Scienti�c Computing, to appear. ADIFOR WorkingNote # 1. Also appeared as Preprint MCS{P263{0991, Mathematics and Computer ScienceDivision, Argonne National Laboratory, Argonne, Ill., September 1991, and as Technical Report91185, Center for Research in Parallel Computation, Rice University, Houston, Tex., 1991.[3] Christian Bischof and Paul Hovland. Using ADIFOR to compute dense and sparse Jacobians.Technical MemorandumANL/MCS{TM{158, Mathematics and Computer Science Division, Ar-gonne National Laboratory, Argonne, Ill., October 1991. ADIFOR Working Note # 2.[4] P. N. Brown, George D. Byrne, and Alan C. Hindmarsh. VODE: A variable coe�cient ODEsolver. SIAM J. Sci. Stat. Comput., 10:1038{1051, 1989. Also appeared as Lawrence LivermoreNational Laboratory Report UCL-98412, June 1988.10

