
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-171
A Toolkit for Building Earth System ModelsbyIan FosterMathematics and Computer Science DivisionTechnical Memorandum No. 171

March 1993This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy,under Contract W-31-109-Eng-38.

ContentsAbstract 11 Motivation 12 Programming Concepts 22.1 Processes : 22.2 Ports : 22.3 Channels : 32.4 Mapping : 33 Implementation 43.1 Fortran M : 43.2 Compatability Libraries : 53.3 Performance Issues : 74 Status 7Reference 7

iii

A Toolkit for Building Earth System ModelsIan FosterAbstractAn earth system model is a computer code designed to simulate the interrelatedprocesses that determine the earth's weather and climate, such as atmosphericcirculation, atmospheric physics, atmospheric chemistry, oceanic circulation, andbiosphere. I propose a toolkit which would support a modular approach to theimplementation of such models.1 MotivationAn earth system model is a computer code designed to simulate the interrelated pro-cesses that determine the earth's weather and climate, such as atmospheric circulation,atmospheric physics, atmospheric chemistry, oceanic circulation, and biosphere. A sci-entist might use a diagram similar to Figure 1 to explain an earth system model. Inthis �gure, boxes represent processes and arrows represent linkages between processes.This description is easy to follow. It hides unnecessary detail and makes the interfacesbetween components clear. These desirable characteristics, which have obvious value tothe scientist, are also of value to the software engineer. In fact, they constitute the centralattributes of modular or object-oriented design. Unfortunately, this natural modularity isnormally lost when an earth system model is implemented as a computer program. Theresult is that it is di�cult both to implement these models and to adapt them to changingrequirements.In this document, we propose an object-oriented approach to the implementation ofearth system models and a toolkit that supports the use of this approach on sequentialand parallel computers. These have the following features:1. Process models written in sequential languages such as Fortran and C, or in par-allel languages such as Fortran+NX, Fortran+PICL, C+p4, High PerformanceFortran, and PCN, can be combined with little modi�cation.2. Code that performs generic functions such as I/O or the conversion of data betweendi�erent grid systems can be encapsulated in reusable modules.3. On a parallel computer, the mapping of computation to processors can be modi�edwithin a component without changing other parts of a program.4. Programs produced using the toolkit are portable across many parallel and sequen-tial computers. 1

∆q

T
surf

∆s

T∆q∆T

T q

T∆?

Figure 1: Simpli�ed Schematic Description of Earth System ModelThe �rst feature allows existing atmosphere, ocean models, etc., to be integrated,even if written in di�erent programming languages. The second feature facilitates reuseand exchange of model components. The third feature simpli�es the development of loadbalancing strategies.2 Programming ConceptsOur modular or object-oriented approach to model development is based on four ideas:processes, ports, channels, and mappings. The process is the building block from withmodels are constructed. A process's interface with its environment is de�ned in terms ofports. An application is constructed by creating processes and connecting ports in theseprocesses with channels. The programmer can also specify a mapping of processes tophysical processors.2.1 ProcessesA process encapsulates data structures and the code that operates on those data struc-tures. The code can be written in any programming language supported by the toolkit. Ifthis is a parallel language, then the process may create subprocesses that perform inter-nal communication. This internal communication is only visible within the process andcannot interfere with other communications.An implementation of an earth system model will de�ne one process for each box ina speci�cation such as Figure 1, plus additional processes for I/O and data conversionfunctions.2.2 PortsA process's interface to its environment is de�ned in terms of ports. These come intwo avors: out-ports and in-ports; a process can send data on an out-port and receiveinformation on an in-port. A port is similar in some respects to a I/O unit or �le in2

SEQUENTIAL OR
 PARALLEL PROGRAMFigure 2: A Process and its InterfaceFortran or C; send and receive analogous to write and read operations. If a process is aparallel program, then its interface is likely to consist of an array of ports, with one portfor each subprocess.A process and its ports together de�ne a reusable module. Figure 2 shows the pro-grammer's view of a process. Four in-ports and two out-ports (represented as arrows)de�ne the interface, while internal implementation details are hidden.2.3 ChannelsThe programmer constructs a model by plugging together processes and creating channelsto specify how these processes are to interact. A channel is a one-to-one communicationlink that connects an out-port and an in-port. It can be thought of as a �rst-in, �rst-outmessage queue, with send operations on the out-port adding messages to the queue, andreceive operations on the in-port removing messages from the queue. A receive operationblocks if the queue is empty and resumes execution if and when a send operation adds tothe queue.The use of channels to connect processes is illustrated in Figure 3. At the top ofthe �gure, an atmosphere model process, an ocean model process, and an interpolatorprocess are shown, together with the ports that de�ne their interfaces. At the bottomof the �gure, the same processes are shown coupled together. As the interfaces betweenthe processes consist of multiple channels, we can infer that the processes are probablyparallel programs.Because model components are represented as distinct processes and all inter-modelinteraction is constrained to occur via channels, it is easy to substitute components. Forexample, the ocean model in Figure 3 can be replaced with a program that reads seasurface temperature from a �le: no changes to the interpolator or the atmosphere modelare required. Similarly, an alternative interpolation algorithm can be substituted withoutchanging the other two components.2.4 MappingThe programmer can provide a third piece of information when plugging processes to-gether: where processes are to execute in a parallel computer or network. As a processcan itself be a parallel program, the programmer can allocate a set of processors to a3

+

ATMOSPHERE

INTERPOLATOR

O C E A N

ATMOSPHERE
O C E A N INTERPOLATOR+

Figure 3: Process Couplingparticular process. This mapping information can have a profound impact on the per-formance of the program, but does not e�ect the result computed. Hence, mapping canbe changed without changing other parts of a program. For example, Figure 4 shows aprogram comprising two processes (each a parallel program in its own right) mapped toa parallel computer, two parallel computers, and a workstation and a parallel computer.3 ImplementationWhile the concepts outlined in Section 2 can be employed in any programming system,they are easier to use if supported by appropriate tools. In this section, we describe atoolkit that provides direct support for the concepts. This toolkit comprises the followingcomponents:1. Compatability libraries that allow programs developed using standard sequentialand parallel programming systems to be encapsulated as processes. Initially, we planto target message-passing libraries such as NX, PICL, and p4. Support for HighPerformance Fortran (HPF) is to be added as HPF compilers become available.2. A language for plugging together processes to form programs. Initially, we plan touse FortranM for this purpose, as this provides syntax for representing processes,ports, channels, and mapping.3.1 Fortran MFortranM is a small set of extensions to Fortran 77 that provides syntax for represent-ing the programming concepts outlined in Section 2. Figure 5 shows a illustrative codefragment. The process atmosphere implements a simple atmosphere model that obtains4

(a)

(b)

(c)Figure 4: The same code can execute on (a) one parallel computer, (b) two parallelcomputers, and (c) workstation and parallel computer.sea-surface temperature data on in-port sst i and sends momentum data on out-portuv o. The process coupled model couples this process with an ocean model. A completedescription of Fortran M is provided in a separate document [1].3.2 Compatability LibrariesA compatability library allows a program written in a foreign parallel programming lan-guage such as Fortran+NX, Fortran+PICL, C+p4, PCN, or HPF to be invoked asa process in a Fortran M program. On distributed-memory parallel computers, pro-grams written in these languages create one or more processes per physical processor;these processes communicate by calling low-level message-passing routines provided bythe operating system.A compatability library consists of two components: concurrency and interface. Theconcurrency component implements foreign language processes using the mechanisms usedto implement FortranM processes and organizes communication so that messages gen-erated by the foreign computation are distinguishable from those generated by other partsof a computation. The interface component provides a mechanismby which a FortranMprogram can invoke a foreign program, passing ports as arguments. It also provides theforeign language with routines that it can call to send and receive messages on these ports.Hence, a compatability library comprises a component that is invisible to the program-mer (a run-time library) and a component that is visible to the programmer (routines forsending and receiving messages on ports). In general, the modi�cations to a programrequired for it to execute in a coupled model consist primarily of the addition of thecommunication calls needed to send and receive interface data.5

process atmosphere(sst i,uv o)parameter(NLAT=128, NLON=256, TMAX=100)C The ports sst i and uv o are the external interface.inport (real x(NLAT,NLON)) sst ioutport (real x(NLAT,NLON), real y(NLAT,NLON)) uv oC Process common variables.process common /atmo/ sst, u, vreal sst(NLAT,NLON), u(NLAT,NLON), v(NLAT,NLON)C Repeat TMAX times: recv SST, update U & V, send U & V.do 10 i=1,TMAXsend(uv o) u,vreceive(sst i) sstcall atm compute10 continueC Signal end of communication.endchannel(uv o)endprocess coupled modelparameter(NLAT=128, NLON=256)C Local port variables.inport (real x(NLAT,NLON)) sstioutport (real x(NLAT,NLON)) sstoinport (real x(NLAT,NLON), real y(NLAT,NLON)) uvioutport (real x(NLAT,NLON), real y(NLAT,NLON)) uvoC Create channels and de�ne ports.channel(out=ssto,in=ssti)channel(out=uvo,in=uvo)C Call two models with ports as arguments.processescall atmosphere(ssti,uvo)call ocean(uvi,ssto)endprocessesend Figure 5: Fortran M Programming Example6

3.3 Performance IssuesThe use of the toolkit can introduce overhead that would not be incurred if a code wereimplemented as a monolithic program. Primary sources of overhead are additional copyingdue to the use of channels for data transfer between modules and process switching whenmultiple modules execute on the same processor. Although these costs must clearly becarefully evaluated, they must be weighed against the bene�ts of modular design, ease ofmodi�cation, ease of reuse, and portability. We are currently conducting experiments toquantify these costs.4 StatusA prototype FortranM compiler for uniprocessors and shared-memory multiprocessorsis to be available from Argonne National Laboratory in November 1992 and a compilerfor distributed-memory parallel computers is scheduled for release soon after. Thesecompilers use source-to-source transformations to implement the Fortran M extensionsand operating system facilities to implement concurrent threads and message-passing.The success of this toolkit depends to a large extent on the ease with which com-patability libraries can be developed. As a �rst experiment, we propose to develop acompatability library for applications developed using Intel Fortran+NX. This work isto begin in early 1993.References[1] Foster, I., and Chandy, K. M., Fortran M: A language for modular parallel program-ming, Preprint, Argonne National Laboratory, Argonne, IL 60439, 1992.

7

