
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-175A Summary of Block Schemes for Reducing aGeneral Matrix to Hessenberg FormbyChristian BischofMathematics and Computer Science DivisionTechnical Memorandum No. 175February 1993This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, under ContractW-31-109-Eng-38.

ContentsAbstract 11 Introduction 12 Block Representations for Representing Products of Householder Matrices 13 Block Schemes for Reducing a General Matrix to Hessenberg Form 24 Discussion of the Various Update Schemes 4References 6

ii

A Summary of Block Schemes for Reducing aGeneral Matrix to Hessenberg FormbyChristian H. BischofAbstract. Various strategies have been proposed for arriving at block algorithms for reducing a general matrix toHessenberg form by means of orthogonal similarity transformations. This paper reviews and systematically categorizesthe various strategies and discusses their computational characteristics.1 IntroductionLet A be an n�n symmetric matrix. Our goal is to compute an orthogonal matrix Q, QTQ = Isuch that QTAQ = H where H is of upper Hessenberg form. The standard algorithm [10] reducesA one column at a time through Householder transformation at a cost of O(4=3n3) ops. It mainlyemploys matrix-vector multiplications and symmetric rank-one updates, which require more memoryreferences than matrix-matrix operations [5,4,7].On the other hand, so-called block reduction methods allow the formulation of most of thecomputation in terms of matrix-matrix operations [8], which, at a small increase in the number ofoating-point operations, dramatically reduce the number of memory accesses. As a result, the blockapproach is preferable for machines employing a memory hierarchy, as do (in one form or another)most high-performance computers, from workstations to massively parallel machines. Thus, blockalgorithms play a prominent role in the LAPACK library of portable linear algebra codes for high-performance architectures [1].The orthogonal reduction of a matrix to Hessenberg form involves a sequence ofm�2 Householderreductions Pi = I � 2uiuTi ; uTi ui = 2:The key to �nding a block formulation is the expression ofB = Pp � � �P1AP1 � � �Ppin a form that is easy to compute and requires as little access to A as possible. Dongarra,Hammarling, and Sorensen [8] suggested B = A � UV T � WUT . Dubrulle [9], on the otherhand, uses a block formulation of Qp = P1 � � �Pp based on the WY representation [6] to expressB = (I � UY T)T (A� ZY T). U; V;W; Y , and Z are all n� p matrices.The paper is structured as follows: In x 2 we review the possibilities for expressing a seriesP1 � � �Pp of Householder transformations in block form. In x 3 we then discuss the various schemesthat has been proposed and suggest some new ones. The relative merits of the various approachesare discussed in x 4.2 Block Representations for Representing Products of Householder MatricesThere are several ways for representing a productQi = P1 � � �Piof Householder transformations. 1

WY1: [6] Qi = I � UiY Ti (1)WY2: [6] Qi = I �WiUTi (2)compactWY: [12] Qi = I � UiSiUTi (3)In all those schemes, Ui is the matrix of Householder vectors, and extra storage is required for theother matrices. In the above formulas, Ui, Yi, and Wi are m � i matrices. Ui and Yi are lowertrapezoidal and Si is an upper triangular i� i matrix. Since typically n� i, the \compact" schemerequires less work space, at the expense of slightly more work in applying Qi. These matrices areaccumulated as follows (k = 1; : : : ; i� 1). For all schemes, we haveUk+1 = [Uk ; uk+1]; (4)that is, U just collects the Householder vectors used in the transformation. The other matrices getupdated as follows: Yk+1 = [PkYk ; uk+1] (5)Wk+1 = [Wk ; Qkuk+1] (6)Sk+1 = � Sk �SkUTk uk+10 1 � (7)With these block formulations, the one-sided application of Qi to a matrix now involves twoor three matrix-matrix multiplications instead of a series of i rank-one updates and matrix-vectormultiplications. The resulting decrease in memory tra�c usually more than makes up for theadditionalO(i2n) oating-point operations. Examples of the use of block orthogonal transformationsin the computation of the QR factorization A = QR, where Q is orthogonal and R upper triangular,can be found in [6,5,3].We also mention that Walker [13] and Puglisi [11] suggested a variant of the compact WYrepresentation which represents Qi = I � Ui(Ti)�1UTi : (8)Computationally, the formulation (8) behaves very much like (3) and can be easily substituted informulae based on (3). Hence, for the sake of brevity, we will not consider it further.3 Block Schemes for Reducing a General Matrix to Hessenberg FormThe two main steps in the block algorithm are the generation of a block transformation and itsapplication to the remaining part of the matrix. As a shorthand, let HH(x) be the Householdervector that reduces x to a multiple of e1. LetAi = Pi � � �P1AP1 � � �Pibe the matrix obtained after the ith symmetric Householder update. Further, let A(i:n;j:n) be the(n � i + 1) � (n � j + 1) submatrix beginning at location (i; j) of A with analogous notation forvectors.Having partitioned A into M block columns ~Aj of width p, m = Mp; j = 1; : : : ;M , the\blueprint" for a block algorithm is shown in Figure 1. In the \rightlooking" variant we imme-diately apply Qj to all remaining block columns, whereas in the \leftlooking" algorithm we apply2

~Q I;for j = 1 to M doFind an orthogonal matrix ~Qp such that(~QTpA(p(j � 1) + 1 : pM; p(j � 1) + 1 : pM) ~Qp)(p(j � 1) + 1 : pM; p(j � 1) + 1 : pj)is upper Hessenberg.Either rightlooking algorithm:Update block columns j + 1; : : : ;M with ~Qp.or leftlooking algorithm:Update block column j + 1 with ~Q1; : : : ; ~Qj.end for Figure 1:all previous block orthogonal transformations to the next block column only. In particular, the left-looking algorithm requires storage of the block transformations Q1; : : : ; Qj. Hence the rightlookingalgorithm is usually preferred (see [2] for a thorough discussion of the leftlooking vs. rightlookingissue). In order to develop an e�cient block algorithm, we must be to �nd ~Qj and update ~Aj ina fashion that requires as little as possible access to block columns j + 1; : : : ;M . We consider thefollowing alternatives:implicit Q1: ([8]) Ap = A � UpV Tp �WpUTp (9)implicit Q2: ([9]) Ap = (I � UpY Tp)TA(I � UpY Tp) = A� Up ~V Tp � ~WpUTp (10)Q WY: (see [9]) Ap = (I � UpSpUTp)TA(I � UpSpUTp) = (I � UpY Tp)T (A � ZpY Tp) (11)Q compactWY: Ap = (I � UpSpUTp)T (A� ZpSpUTp) (12)These matrices are accumulated as shown below for i = 1; : : : ; p� 1. For all cases we haveUi+1 = [Ui ; ui+1] :implicit Q1: ui+1 = HH(a(i:m)i � (UiV Ti +WiUTi)e(i:m)i)v = (AT � ViUTi � UiWTi)ui+1 ; x = (A � UiV Ti �WiUTi)ui+1 (13)Vi+1 = [Vi ; v � xTui+12 ui+1] ; Wi+1 = [Wi ; x� vTui+12 ui+1]implicit Q2: ui+1 = HH(a(i:m)i � Ui ~V Ti � ~WiUTi)e(i:m)i)x = (AT � Ui ~ViT � ~WiUTi � ui+1uTi+1(AT � Ui ~V Ti � ~WiUTi))ui+1 (14)~Vi+1 = [~Vi ; x] ; ~Wi+1 = [~Wi ; Aui+1]3

Q WY; ui+1 = HH((I � UpY Tp)T (a(i:m)i � ZiY Ti e(i:m)i))Zi+1 = [Zi ; Aui+1] (15)Yi+1 is updated as in (5).Q compactWY; ui+1 = HH((I � UiSiUTi)T (a(i:m)i � ZiSiUTi e(i:m)i))Zi+1 = [Zi ; Aui+1] (16)Si+1 is updated as in (7).While the latter two schemes are reformulations of similarity transformations of Q in block form,the �rst two schemes do not explicitly involve a block orthogonal transformation. Thus, for the`Q WY' and `Q compactWY' schemes, the orthogonal transformations ~Qj are readily available ina convenient block form, whereas there is no block form of ~Qj readily accessible in the \implicit"schemes. Hence, the \implicit" schemes allow only for a rightlooking algorithm, whereas the otherschemes allow for both a leftlooking and rightlooking formulation.4 Discussion of the Various Update SchemesTo assess the work required for a block update, let us assume that A is m�m and that we choosea block size of p. Then at step i = 1; : : : ; p the length of ui is m � i + 1 and the work required toperform an update step can be expressed in the following units:Tmv: Work required to multiply an m� (i�1) matrix with an (i�1) vector or an (i�1)�m matrixby an m-vector. This requires 2m(i � 1) ops.Tsv: Work required to multiply an (i � 1) � (i � 1) upper triangular matrix by an (i � 1)-vector.This requires (i� 1)2 ops.TAu: Work required to multiply an (m� i+ 1)� (m� i+ 1) matrix by an (m� i+ 1)-vector. Thisrequires 2(m� i)2 ops.After a block update of width p is computed, this update will have to be applied to an m � ksubmatrix of A, where k is determined primarily by our choice of a left- or rightlooking algorithm.If we choose a leftlooking algorithm, then k = p (assuming �xed block sizes), whereas for therightlooking algorithm k = m � p. This work can be expressed in terms ofTrk p: Work required to apply a rank-p update to an m � k matrix. This requires 2mkp ops.Tmm1: Work required to multiply a p�m by an m � k matrix. This requires 2mkp ops.Tmm2: Work required to multiply a p� p upper triangular matrix by a p� k matrix. This requireskp2 ops.Another point to consider is whether the block formulation of A also produces a block formulationfor Q. The latter may be important if Q has to be applied to the eigenvectors of the Hessenbergmatrix in a back-transform step. Using the above criteria, we summarize the di�erences betweenthe di�erent blocking schemes in Table 1. The �rst row (labeled \Gen. Step i") shows the workto be performed at the ith step of generating the block transformation, the second row (labeled\Application") shows the work required in applying the block update, and the last row (labeled\Block Q?") indicates whether this formulation also results in a block formulation for Q.4

Table 1: Work required at Step iimplicit Q1 implicit Q2 Q WY Q compactWYGen. Step i 10Tmv + 2TAu 6Tmv + 2TAu 4Tmv + TAu 4Tmv + 3Tsv + TAuApplication 2Trk p 2Trk p 2Trk p + Tmm1 2Trk p + Tmm1 + 2Tmm2Block Q ? no no yes yesTable 2: Storage Requirementsimplicit Q1 implicit Q2 Q WY Q compactWYRepresenting blocks 2mp 2mp 2mp mp + p22Extra storage discarding blocks none none none kpExtra storage preserving blocks none none kp kpWe compare in Table 2 the amount of storage required for the di�erent schemes in a rightlookingalgorithm. Assuming that U is stored in the lower triangular part of A, we consider the amountof storage required to represent the blocking factors, and the extra amount of storage required toapply an m � p block update to an m � k matrix with and without discarding of block orthogonaltransformations.Dubrulle [9] compared a rightlooking algorithm using formulations \implicit Q2" and \Q WY"on the IBM 3090/VF using straight Fortran. In these experiments he found the \Q WY" formulationto be superior to the \implicit Q2" formulation.These numbers suggest that the \Q WY" scheme is superior to the \implicit Q2" scheme even ifwe do not need the block factors de�ning Q later on. The reason seems to be that in the \implicit Q2"scheme we have to compute Au and ATu at every step of accumulating a block transform, whereas\Q WY" gets by with only computing Au and with two less matrix-vector multiplications. On theother hand \Q WY" requires an extra matrix-matrix product (the work needed is denoted by Tmm1in Table 1) when the block transformation is applied. Thus it seems as if \Q WY" pro�ts from theusual BLAS 3 to BLAS 2 tradeo� in that matrix-matrix operations execute more e�ciently than aseries of matrix-vector operations. Furthermore the \Q WY" scheme requires less data tra�c sincewe touch A only once at every update step, whereas \implicit Q2" touches A twice.�The scheme \implicit Q2" scheme is similar to \implicit Q1" which was implemented in thesecond test release of LAPACK, and it is reasonable to assume that it would perform similarly. The\Q compactWY" scheme is similar to scheme \Q WY" but requires less storage, in particular if aleft-looking scheme is used (i.e., k � m in Table 2) or when block transformations are stored forsuccessive back transformations. Since the \implicit" schemes do not require less storage, do not giveus any block formulation for Q, and do not seem to perform any better, it seems advantageous touse one of the WY-based schemes. In particular, the one based on the compact WY representationseems to be appropriate, since it allows economical storage of the block transforms for subsequentback transformations of the eigenvectors of the Hessenberg matrix. Hence, the \Q compactWY"scheme was chosen for the �nal release of LAPACK [1].�We assume here that Au and AT u are computed separately using BLAS 2 calls. We can get by with touching Aonly once, but then we cannot use a BLAS 2 call. 5

AcknowledgmentsI thank Jeremy Du Croz and Sven Hammarling for the many stimulating discussions that even-tually prompted me to methodologically evaluate the various possibilities.References[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Ham-marling, A. McKenney, and D. Sorensen. LAPACK User's Guide. SIAM, Philadelphia, Penna.,1992.[2] E. Anderson and J. Dongarra. Evaluating block algorithm variants in LAPACK. TechnicalReport CS{90{103, Computer Science Department, The University of Tennessee, April 1990.[3] C. H. Bischof. A block QR factorization algorithm using restricted pivoting. In ProceedingsSUPERCOMPUTING '89, pages 248{256, Baltimore, Md., 1989. ACM Press.[4] C. H. Bischof. Fundamental linear algebra computations on high-performance computers, involume 250 of Informatik Fachberichte, pages 167{182. Springer-Verlag, Berlin, 1990.[5] C. H. Bischof and J. J. Dongarra. A project for developing a linear algebra library for high-performance computers. In Graham Carey, editor, Parallel and Vector Supercomputing: Meth-ods and Algorithms, pages 45{56. John Wiley & Sons, Somerset, N.J., 1989.[6] C. H. Bischof and C. F. Van Loan. The WY representation for products of Householder matrices.SIAM Journal on Scienti�c and Statistical Computing, 8:s2{s13, 1987.[7] J. Dongarra and S. Hammarling. Evolution of Numerical Software for Dense Linear Algebra,pages 297{327. Oxford University Press, Oxford, U.K., 1989.[8] J. J. Dongarra, S. J. Hammarling, and D. C. Sorensen. Block reduction of matrices to condensedform for eigenvalue computations. Technical Report MCS{TM{99, Mathematics and ComputerScience Division, Argonne National Laboratory, September 1987.[9] A. A. Dubrulle. On block Householder algorithms for the reduction of a marix to Hessenbergform. In Joanne L. Martin and Stephen F. Lundstrom, editors, Supercomputing '88: VolumeII, Science and Applications, Washington, DC, 1989. IEEE Computer Society Press.[10] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press,Baltimore, 1983.[11] C. Puglisi. Modi�cation of the Householder method based on the compact WY representation.CERFACS Report TR/PA/90/29, 1990.[12] R. Schreiber and C. Van Loan. A storage e�cient WY representation for products of House-holder transformations. SIAM Journal on Scienti�c and Statistical Computing, 10(1):53{57,1989.[13] H. F. Walker. Implementation of the GMRES method using Householder transformations.SIAM Journal on Scienti�c and Statistical Computing, 9(1):152{163, 1988.6

