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PrefaceFor some time, we have been interested in the development and application of asymptoticmethods for the numerical solution of boundary value problems with critical parameters|that is, parameters that determine the nature of the solution in some critical way. We arethinking, for example, of uid ow (viscosity), combustion (Lewis number), and supercon-ductivity (Ginzburg-Landau parameter) problems. Their solution may remain smooth overa wide range of parameter values, but as the parameters approach critical values, compli-cated patterns may emerge. Boundary layers may develop, or the region over which thesolution extends may take on the appearance of a patchwork of subregions; on each sub-region, the solution is smooth, but between subregions the solution undergoes dramaticchanges over very short distances. Shock layers in uid ow are a visible manifestation ofthis type of behavior.Boundary value problems with critical parameters pose some of the most challengingproblems in computational science, and much e�ort is being spent on developing new tech-niques for their numerical solution. Some of the most useful techniques, in particular onparallel computing architectures, are based on domain decomposition. In a domain decom-position method, one partitions the domain into subdomains, approximates the solutionon each subdomain, and assembles these solutions to obtain an approximate solution onthe entire domain. Many criteria, involving considerations from linear algebra to computerarchitecture, go into the design of a useful domain decomposition method. Our aim is toexplore the use of asymptotic methods.Asymptotic analysis, in particular singular perturbation theory, is the study of boundaryvalue problems involving critical parameters. It provides a methodology to identify andcharacterize boundary layers, transition layers, and initial layers; hence, our idea to useasymptotic methods in the design of domain decomposition algorithms.We have organized two workshops on the subject of asymptotic analysis and domaindecomposition: a workshop at Argonne, jointly sponsored by the Department of Energy andthe National Science Foundation (February 1990), and a NATO Advanced Research Work-shop in Beaune, France (May 1992). Proceedings of these workshops have been published(Asymptotic analysis and the numerical solution of partial di�erential equations, edited byH. G. Kaper and M. Garbey, Lecture Notes in Pure and Applied Mathematics { Vol. 130,Marcel Dekker, Inc., New York, 1991; Asymptotic and numerical methods for partial di�er-ential equations, edited by H. G. Kaper and M. Garbey, NATO ASI Series C: Mathematicaland Physical Sciences { Vol. 384, Kluwer Academic Publishers, Dordrecht, Neth., 1993).We currently have plans to develop a full-length book on the subject. To formulateour thoughts before �nal publication, we intend to produce a series of Working Notes onvarious relevant topics. Some of the notes will contain new material; others may o�er newpresentations of existing material. We certainly expect the notes to evolve in time; theii



notes may or may not appear eventually as chapters of the book. The notes are intendedfor our own use, but we will be happy to supply copies to interested colleagues.Marc Garbey, Lyon, FranceHans G. Kaper, Argonne, Illinois, USA
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ASYMPTOTIC ANALYSISWorking Note #1BASIC CONCEPTS AND DEFINITIONSbyMarc Garbey and Hans G. KaperAbstractIn this note we introduce the basic concepts of asymptotic analysis. After somecomments of historical interest (Section 1), we begin by de�ning the order relations O,o, and O], which enable us to compare the asymptotic behavior of functions of a smallpositive parameter � as � # 0 (Section 2). Next, we introduce order functions (Section 3),asymptotic sequences of order functions (Section 4), and more general gauge sets oforder functions (Section 5) and de�ne the concepts of an asymptotic approximationand an asymptotic expansion with respect to a given gauge set (Section 6). This stringof de�nitions culminates in the introduction of the concept of a regular asymptoticexpansion, also known as a Poincar�e expansion, of a function f : (0; �0)! X, where Xis a normed vector space of functions de�ned on a domain D 2 RN . We conclude thenote with the asymptotic analysis of an initial value problem whose solution is obtainedin the form of a regular asymptotic expansion (Section 7).1 From Euler to Poincar�eAsymptotic analysis is the art of comparing functions whose graphs \do not meet" (Gr.;�-���-��������); the graphs may get close, even arbitrarily close, but they may not haveany point in common. In particular, it is the art of expressing the asymptotic behavior offunctions that are de�ned implicitly|for example, as solutions of boundary value problemsor initial value problems|in terms of functions whose asymptotic behavior as parametersor variables approach critical values is known.Asymptotic analysis as a scienti�c method for comparing functions and their graphsgoes back to the French mathematician Henri Poincar�e, who, in the �rst volume of hismonograph Les m�ethodes nouvelles de la m�ecanique c�eleste (1892), established a theoreticalframework for the asymptotic approximation by series that are divergent in the customarysense [1, Chapter 7]. Divergent series had received the attention of various mathematiciansin the eighteenth and nineteenth century; in fact, it is still instructive to consider Euler's1



publication [2] of 1754 on the subject. Euler discussed the seriesS(x) = 1Xn=0(�1)nn! xn;which diverges for all x 2 R except x = 0. Euler observed that, for small jxj, succes-sive terms of the series decrease quite rapidly; he asked what function might possibly berepresented by the sum of the �rst few terms. Because n! = R10 e�ttn dt, we haveS(x) = 1Xn=0(�1)n Z 10 e�t(xt)n dt;so if we could interchange the order of the summation and the integration, it would followthat S(x) = f(x), where f(x) = Z 10 e�t1 + xt dt:Of course, the order of the summation and integration cannot be interchanged, so we haveno right to conclude that S(x) = f(x). On the other hand, f is well de�ned, even analyticin the complex plane cut along the negative x axis. Hence, it is not unreasonable to askwhether the sum S(x), taken to a �nite number of terms, represents some approximationto f(x). Indeed, as Euler showed,f(x) = Sm(x) + Rm(x);where Sm is the partial sum, Sm(x) = m�1Xn=0 (�1)nn! xn;and the remainder Rm satis�es the estimatesjRm(x)j � ( m! jxjm if Re(x) � 0,m! jxjm cosec(arg(x)) if Re(x) < 0.In either case, Rm is of the order of the �rst \neglected" term in Sm, and Rm(x) tends to0 as x tends to 0. Thus, Euler identi�ed precisely those properties that Poincar�e used overa century later to formalize the concept of an \asymptotic approximation."We also mention the work by Pierre Du Bois{Reymond, who published a series of articlesin 1870{71 on the foundation of a calculus with in�nitesimally large quantities. Du Bois{Reymond singled out the crucial notion of \asymptotic scales," which was eventually givenits rigorous and de�nitive form by Hardy [3]. References to Du Bois{Reymond's articlesare given in [3, Appendix 1].Thus, although the development of asymptotic analysis cannot be traced back to theBabylonians, there existed at least a considerable body of knowledge related to the subject2



prior to Poincar�e. But the honors certainly go to Poincar�e, who introduced the conceptof an asymptotic expansion. This concept, which is broader than that of an asymptoticseries, made it possible to give a rigorous meaning to approximations like Euler's and toexploit asymptotic methods for practical purposes. Today, the concept covers, in particular,many topics related to di�erential equations and perturbations involving a small (or large)parameter.2 Order RelationsThroughout most of this book we will be comparing functions that are parameterized bya \small positive parameter," �. That is, � is con�ned to an interval (0; �0), where �0 is anarbitrarily small �xed positive number. \Generic constants" do not depend on � (but maydepend on �0).We begin by considering continuous positive-valued functions that depend only on �.De�nition 1 Let f and g be continuous positive-valued functions on the interval (0; �0) forsome �0 > 0. (i) f = O(g) as � # 0 if there exist an �0 > 0 and a positive constant C,which may depend on �0, such that f(�) < Cg(�) for all � 2 (0; �0). (ii) f = o(g) as � # 0if, for every positive constant c, there exists an �0 > 0, which may depend on c, such thatf(�) < cg(�) for all � 2 (0; �0). (iii) f = O](g) as � # 0 if f = O(g) and f 6= o(g) as � # 0.The symbols O, o, and O] are pronounced \big-oh," \little-oh," and \big-oh-sharp,"respectively. The notation O and o goes back to Pfei�er [4, p. 1{21], Bachmann [5, p. 401],and Landau [6, p. 61]; O and o are known as the Landau symbols. Sometimes, we shalluse a notation due to Hardy [3], writing f � g instead of f = O(g) and f � g instead off = o(g). The symbol O] is denoted Os in Eckhaus [7]. If f = O](g), then there existpositive constants C1 and C2 such that C1g(�) < f(�) < C2g(�) for all � 2 (0; �0). We oftenomit the quanti�er \as � # 0."Exercises1. Prove that the symbol O provides a partial ordering (that is, O is reexive and transitive) on the setof all continuous positive-valued functions on (0; �0). Is the same true for the symbols o and O]?2. Show by giving a counterexample that the partial ordering introduced by the symbol O on the set ofall continuous positive-valued functions on (0; �0) is not a total ordering. (That is, there are elementsf and g in the set for which neither f = O(g) nor g = O(f).)3. The symbol O de�nes an equivalence relation, f � g, if f = O(g) and g = O(f). Prove that (a) f � gimplies that f 6= o(g) and g 6= o(f); (b) f � g is su�cient, but not necessary for f = O](g).4. Show by giving a counterexample that the two relations f � g and f 6� g do not imply that f � g.3



5. Compare, if possible, the functions f(�) = �2 and g(�) = � sin2(1=�) + �3.The symbols O and o obey certain algebraic rules. Here are a few examples: (1) Iff = O(h) and g = O(h), then f + g = O(h) and f � g = O(h). (2) If f1 = O(g1) andf2 = O(g2), then f1f2 = O(g1g2). (3) If f = O(g) and � is a positive constant, thenf� = O(g�); other rules are found in the exercises. Similar rules hold for the symbol o.Exercises1. Show that, if f = o(g) and both f and g tend to in�nity as � # 0, then g�1 = o(f�1).2. Show that, if f = O(g), then F = O(G), where F (�) = R �0 f(�) d� and G(�) = R �0 g(�) d�. (That is,order relations can be integrated with respect to parameters.)3. Show by giving a counterexample that, if f and g are di�erentiable and f = O(g), then it is notnecessarily true that f 0 = O(g0). (That is, order relations cannot be di�erentiated with respect toparameters.)Next, we consider variable functions whose values depend not only on �, but also onadditional variables, which we denote collectively by x = (x1; x2; : : : ; xN). The variable xranges over a domain D � RN .1 We consider these functions as maps from the interval(0; �0) into normed vector spaces of functions de�ned on D. That is, we associate a variablefunction f on (0; �0)�D with a vector f(�) 2 X by making the identi�cationf(�)(x) = f(�; x); x 2 D:Here, X is a normed vector space with the norm k � kX . We always assume that the map� 7! kf(�)kX is continuous.De�nition 2 Let f : (0; �0)! X and g : (0; �0)! Y be continuous maps from the interval(0; �0) into the normed vector spaces X and Y , respectively. (i) f = O(g) as � # 0 ifkf(�)kX = O(kg(�)kY ) as � # 0. (ii) f = o(g) as � # 0 if kf(�)kX = o(kg(�)kY ) as � # 0.(iii) f = O](g) as � # 0 if kf(�)kX = O](kg(�)kY ) as � # 0.The order relations for variable functions depend intimately on the choice of the normedvector spaces. One usually takes X = Y when comparing variable functions f and g de�nedon the same domain D, but this choice is certainly not necessary. (Recall that nonequivalentnorms de�ne di�erent topologies and therefore di�erent function spaces.) In many situationswe will be comparing a variable function de�ned on (0; �0)�D with a positive-valued functionde�ned on (0; �0). In such cases, we can take X to be any normed space of functions onD and Y = R+ with the ususal topology. Thus, the distinction between \variable" and\nonvariable" functions becomes irrelevant. We will usually indicate the normed vectorspaces X and Y explicitly, unless the choice is clear from the context.1A domain is an open set, which may be bounded or unbounded. The set of boundary points of D is@D, and D = D [ @D. Sometimes, we shall refer to functions de�ned on a set D that contains some or allof its boundary points; in that case, we assume that the function is de�ned on an open set that contains Dor that one-sided limits are considered at the included boundary points.4



Exercises1. Consider the function f(x; �) = e�x=� on (0; 1) � (0; �0) as a map from (0; �0) into X. Show that(a) f = O](1) if X = L1(0; 1); (b) f = O](��1) if X =W 1;1(0; 1); (c) f = O](�1=2) if X = L2(0; 1);(d) f = O](��1=2) if X =W 1;2(0; 1). Here, Lp and W p;q are the usual Lebesgue and Sobolev spaces.3 Order FunctionsThe fundamental idea in asymptotic analysis is to compare the behavior of one function as� # 0 with that of another whose behavior as � # 0 is known or at least simpler than that ofthe original function. For this purpose it is useful to de�ne a set of comparison functionsthat is in some sense dense in the set of continuous functions.De�nition 3 An order function is a monotone continuous positive-valued function on(0; �0). The set of all order functions is denoted by O.The set O is su�cient for the asymptotic study of all continuous positive-valued func-tions, as the following theorem shows. The theorem was �rst formulated by Eckhaus [7].Theorem 1 For every continuous positive-valued function f on (0; �0) there exists an ele-ment � 2 O such that f = O](�).Proof. If lim�#0 f(�) exists and is (�nite and) positive, it su�ces to take �(�) = 1. Iflim�#0 f(�) exists and is 0, we take �(�) = supff(�) : � 2 (0; �)g. If lim�#0 f(�) does not exist(as a �nite number), we take �(�) = supff(�) : � 2 (�; �0)g.Examples of order functions are 1, �, e�1=�, and log(1=�).Exercises1. Which of the following are order functions: (a) �1=5, (b) e1=�, (c) 1+ sin(1=�), (d) e�1=�(1+ sin(1=�)),(e) log(sin(�)), (f) log(sin(1=�)).2. Show that, if f = O(�), then f=� = O(1). Does the same property hold for the symbols o and O]?4 Asymptotic Sequences and Asymptotic SeriesAs can be seen from the examples, some order functions have a �nite limit, others anin�nite limit as � # 0. In fact, it is not di�cult to show that every order function has a5



(�nite or in�nite) limit as � # 0. This observation motivates us to view O as the union oftwo sets, O = O1[O2, where the elements of O1 have a �nite limit and those of O2 have anin�nite limit as � # 0. Each of these subsets is closed under the operations of addition andmultiplication. Thus, we can form sequences of order functions by taking successive powers,for example, f�n : n = 0; 1; : : :g, fe�n=� : n = 0; 1; : : :g, and f(log(1=�))n : n = 0; 1; : : :g.Sequences of this type, which are linearly ordered, play an important role in asymptoticanalysis.De�nition 4 (i) A linearly ordered sequence f�n : n = 0; 1; : : :g of order functions �n 2 Ois an asymptotic sequence if �n+1 = o(�n) for all n. (ii) A linearly ordered sequence ffn :n = 0; 1; : : :g of functions fn on (0; �0) � D is an asymptotic sequence if there exists anasymptotic sequence of order functions f�n : n = 0; 1; : : :g such that fn = O](�n) for all n.Here, the sequences can be �nite or in�nite.Asymptotic sequences generate asymptotic series by the usual linear operations.De�nition 5 A sumPn anfn is an asymptotic series if ffn : n = 0; 1; : : :g is an asymptoticsequence and the coe�cients an are all O](1). An asymptotic series can have a �nite orin�nite number of terms.The concept of an in�nite asymptotic series is purely formal; nothing is said about theconvergence or divergence of the series. In fact, the question of convergence of an asymptoticseries plays no role in asymptotic analysis.A relation of the type �n+1 = o(�n) is usually interpreted to mean that \�n+1 is asymp-totically smaller than �n." One might ask whether, in the set O, there exist sequencesof order functions that become \arbitrarily small" in the asymptotic sense. The followingtheorem, essentially due to Du Bois{Reymond, shows that this is not the case [3].Theorem 2 For every asymptotic sequence f�n : n = 0; 1; : : :g there exists an order func-tion � 2 O such that � = o(�n) for all n.Proof. If lim�#0 �n(�) is positive for all su�ciently large n, it su�ces to take �(�) = 1.Suppose �n = o(1) for all su�ciently large n. Then there certainly exists a monotonicallydecreasing sequence f�n : n = 1; 2; : : :g of positive numbers �n 2 (0; �0) converging to zero,such that, for each n, �n+1(�) < �n(�) for all � 2 (0; �n). Applying a diagonal procedure,we de�ne � as a monotone continuous function on (0; �0) such that �(�n) = �n+1(�n). Then�(�)=�n(�) < �n+1(�)=�n(�) for all � 2 (0; �n), where the upper bound tends to 0 as � # 0.As an example, consider the asymptotic sequence f�n : n = 0; 1; : : :g with �n(�) = �n.Here � = o(�n) for n = 0; 1; : : : for �(�) = e�1=�. Functions of the order of magnitude of �are often called \transcendentally small." 6



Exercises1. Show that, for any nontrivial function f on (0; �0)�D, there exists an order function � 2 O such thatf = O](�).5 Gauge SetsIn an asymptotic sequence, there is a linear ordering of the elements as indicated by theindex n. Such an ordering does not always exist in the more general concept of a gauge set,which we now de�ne. (A \gauge" is an instrument for or a means of measuring. Hint fornonnative English speakers: \gauge" rhymes with \cage.")De�nition 6 (i) A gauge set is a subset of O that is totally ordered with respect to therelation \� or =." A gauge set is denoted by E. (ii) A function f : (0; �0) ! X ismeasurable with respect to E if there exists an element � 2 E such that f = O](�) as � # 0.Observe that the element � in part (ii) of the de�nition is uniquely determined once thegauge set E is given.An example of a nontrivial gauge set is E = f�m(log(1=�))�n :m;n = 0; 1; : : :g. AlthoughE is countable, its elements cannot be ordered as in an asymptotic sequence; here, thenatural ordering is lexicographical|that is, if �m;n(�) = �m(log(1=�))�n, then �p;q = o(�m;n)if p > m or if p = m and q > n.If an operation like multiplication or inversion maps the elements of a given gauge setinto elements that are measurable with respect to the same gauge set, we say that the gaugeset is stable under the given operation.Exercises1. Verify that the gauge set f�m(log(1=�))�n :m;n = 0; 1; : : :g is stable under multiplication, di�erenti-ation, and integration.2. Show that the set fe�p=�(log(1=�))q : p; q 2 Qg is a gauge set. (Q is the set of all rational numbers.)Is this set stable under integration?6 Asymptotic Approximations and Asymptotic ExpansionsGiven a gauge set E , we can de�ne the concept of an asymptotic approximation.7



De�nition 7 The function g : (0; �)! X is an asymptotic approximation of the order of� of the function f : (0; �0) ! X if there exists a gauge � 2 E such that g = O](�) andf � g = o(�).If the function f in De�nition 7 is itself also O](�), and the order function � is clearfrom the context, we may use the special notation f � g to denote that g is asymptoticllysimilar to f . Thus, f � g implies both f � g = o(f) and f � g = o(g).If the gauge set E is an asymptotic sequence with the natural ordering, we can repeatedlyapply the de�nition to �nd asymptotic approximations of successively higher order,g = f � (((f � g0)� g1)� � � �);where g0 = O](�0), g1 = O](�1), : : : . The approximation obtained after m steps is g =Pm�1n=0 gn; by rescaling, we obtain what is called an asymptotic expansion.De�nition 8 An asymptotic expansion of the function f : (0; �0) ! X is an asymptoticapproximation g : (0; �0)! X of the form g(�; x) =Pn �n(�)fn(�; x), where each coe�cientfn : (0; �0) ! X satis�es the order relation fn = O](1). The asymptotic expansion is saidto be to m terms if the sum contains m terms (n = 0; : : : ; m� 1); here, m can be �nite orin�nite.The case where the functions fn in the asymptic expansion are independent of � is specialand merits discussion.Suppose f : (0; �0) ! X has an asymptotic approximation g : (0; �0) ! X of the formg(�; x) =Pn �n(�)fn(x), where each fn 2 X is independent of �. Then,lim�#0 kf (n)(�)=�n(�)� fnkX = 0; n = 0; 1; : : : ;where f (0)(�) = f(�) and f (n)(�) = f(�) �Pn�1p=0 �p(�)fp for n = 1; 2; : : : . Hence, the factthat f has an asymptotic expansion with �-independent coe�cients implies that there existnontrivial functions f0; f1; : : : in X such that each fn is the limit as � # 0 of an expressioninvolving f and the previous coe�cients f0; : : : ; fn�1. In other words, the coe�cients areuniquely determined (with respect to the given gauge set) and can be calculated explicitlyby taking limits in X . This property is very special and motivates the �nal de�nition ofthis chapter.De�nition 9 The function f : (0; �) ! X has a regular asymptotic expansion on D ifthere exist an asymptotic sequence f�n : n = 0; 1; : : :g of order functions �n and a nontrivialsequence ffn : n = 0; 1; : : :g of elements fn 2 X, which do not depend on �, such that thefunction Ef : (0; �0) ! X de�ned by the expression Ef(�) = Pn �n(�)fn is an asymptoticapproximation of f on D. 8



We emphasize that \regularity" is an attribute of the asymptotic expansion of a function,not of the function itself. In fact, it is easy to think of examples of functions that havea regular asymptotic expansion, yet are singular in the sense of the classical theory offunctions.The discussion preceding De�nition 9 is summarized in the following theorem.Theorem 3 The coe�cients fn 2 X in a regular asymptotic expansion Ef = Pn �nfn off : (0; �0)! X are uniquely determined and found by taking limits in X,fn = lim�#0 f (n)(�)�n(�) ; n = 0; 1; : : : ;where f (0)(�) = f(�) and f (n)(�) = f(�)�Pn�1p=0 �p(�)fp for n = 1; 2; : : : .A regular asymptotic approximation is sometimes called a Poincar�e expansion althoughthe expansions considered by Poincar�e were of the general type, with coe�cients that couldbe �-dependent.An asymptotic expansion may be de�ned up to a speci�ed number of terms or up to aspeci�ed order of accuracy, depending on the particular application. The number of terms inthe expansion may be �nite or in�nte; if it is in�nite, nothing is said about the convergenceor divergence of the expansion.Roughly speaking, an asymptotic expansion can fail to be regular in either of two ways.It can be regular \almost everywhere" on D, that is, regular except on a subset of Dof (N -dimensional) measure 0; or it can be \strictly singular" on D, that is, nowhereregular or regular outside some subset of D of positive measure. The latter situation occurs,for example, when f is oscillatory and the limits that de�ne the expansion coe�cientsdo not exist on D; the former situation is characteristic for problems with \boundary-layer behavior." The asymptotic methods that have been developed for these two typesof problem are quite di�erent and do not lend themselves to a comprehensive treatment.In this book, the focus will be entirely on functions that show boundary-layer behavior.Readers who are interested in oscillatory functions are referred to the literature on thesubject; we mention the monographs of Nayfeh [8] and Roseau [9, 10].Exercises1. Find the asymptotic expansion of f , de�ned by f(�; x) = (1� �x=(1 + �))�1 for x 2 [0; 1], with respectto the asymptotic sequence (a) f(�=(1 + �))n : n = 0; 1; : : :g, and (b) f�n : n = 0; 1; : : :g.9



7 Regular Initial Value ProblemsWe conclude this chapter with an example to illustrate the concept of regular approxi-mations and regular expansions. The example is concerned with a family of initial valueproblems, parameterized by a small parameter �. The gauge set is E = f�n : n = 0; 1; : : :g.Let ff(�) : � 2 (0; �0)g be a family of vector �elds mapping a domain U in an (N + 1)-dimensional Euclidean vector space with coordinates (t; x), where x = (x1; : : : ; xN), (the\extended phase space") into an N -dimensional Euclidean vector space with coordinates(f1; : : : ; fN ). The vector �elds de�ne a family of initial value problems,_x = f(�; t; x); t > 0; x(0) = �; (7:1)where � is �xed. (The symbol _ denotes di�erentiation with respect to t.)Using the identi�cation x(�)(t) = x(�; t), we interpret (7.1) as an abstract initial valueproblem for the vector-valued function x 2 C((0; �0);X), where X = (C([0; T ]); k � k1) forsome T > 0. The values of x(�) are vectors that belong to some bounded set V � RN , andif T is su�ciently small, then the cylinder VT = [0; T ]� V is entirely contained in U . Weprove the following theorem.Theorem 4 If f(�) has a regular asymptotic expansion Pm�1n=0 �nfn on U , where fn is con-tinuous with respect to t and (m + 1 � n) times continuously Fr�echet di�erentiable withrespect to x for n = 0; : : : ; m � 1, then the solution x(�) of (7.1) has a regular asymptoticexpansionPm�1n=0 �nxn as � # 0. The leading coe�cient x0 is found by solving the di�erentialequation _x0 = f0(t; x0) for t > 0, subject to the initial condition x0(0) = �; the higher-ordercoe�cients xn (n = 1; : : : ; m� 1) are found by solving a linear inhomogeneous di�erentialequation of the form _xn = f 00(t; x0(t))xn + bn(t) for t > 0, subject to the initial conditionxn(0) = 0. Here, f 00(t; x0(t)) is the Fr�echet derivative of f0 with respect to x at x0(t).Proof. We prove the theorem successively for m = 1; 2; : : : .(i) m = 1. Since x(�) is a solution of the initial value problem, it satis�es the integralequation x(�; t) = � + Z t0 f0(s; x(�; s)) ds+ Z t0 f (1)(�; s; x(�; s)) ds;where f (1)(�) = f(�)� f0. Let x0 be the solution of the initial value problem_x0 = f0(t; x0); t > 0; x0(0) = �;so x0(t) = � + R t0 f0(s; x0(s)) ds. 10



Consider the function x(1)(�) = x(�)� x0. It is de�ned in such a way that the equationx(1)(�; t) = Z t0 [f0(s; x(�; s))� f0(s; x0(s))] ds+ Z t0 f (1)(�; s; x(�; s)) dsis satis�ed for all t. We estimate each integral in the right member.According to the Mean Value Theorem for multidimensional mappings, we havef0(s; x(�; s))� f0(s; x0(s)) = f 00(s; x0(s) + �x(1)(�; s))x(1)(�; s);where f 00 is the Fr�echet derivative of f0 with respect to x and � = (�1; : : : ; �N) is a vectorwith components between 0 and 1. More precisely,f 00(s; x0(s) + �x(1)(�; s)) = 0BBB@ f 00;1 �s; x0(s) + �1x(1)(�; s)�...f 00;N �s; x0(s) + �Nx(1)(�; s)� 1CCCA ;see, for example, [11, Section 3.2]. The Fr�echet derivative, which is a linear operator fromRN into itself, is uniformly bounded on the convex compact set VT , sojf0(s; x(�; s))� f0(s; x0(s))j � Cjx(1)(�; s)j;for some positive constant C. Thus we obtain the following estimate for the �rst integral:����Z t0 [f0(s; x(�; s))� f0(s; x0(s))] ds���� � C Z t0 jx(1)(�; s)j ds:Next, we observe that f (1)(�) = O(�) as � # 0, so there exists a positive constant c such thatf (1)(�) � c� on VT . Thus we obtain the following estimate for the second integral:����Z t0 f (1)(�; s; x(�; s)) ds���� � �ct:Combining these two estimates, we conclude thatjx(1)(�; t)j � C Z t0 ���x(1)(�; s)��� ds+ �ct:Using Gronwall's inequality, we obtain the estimate���x(1)(�; t)��� � �c0 �eCt � 1� ;hence, taking the supremum over all t 2 [0; T ], we obtainkx(1)(�)k � �c0 �eCT � 1� � �C 0:11



In other words, x(1)(�) = O(�). This proves the claim for m = 1.(ii) m = 2. The proof is similar, but more complicated. We take x0 from step (i) andde�ne x1 as the solution of the initial value problem_x1 = f 00(t; x0(t))x1 + b1(t); t > 0; x1(0) = 0;where b1(t) = f1(t; x0(t)). Thus, x1(t) = R t0 f 00(s; x0(s))x1(s) ds+ R t0 f1(s; x0(s)) ds.With the de�nition x(2)(�) = x(�)� x0 � �x1 we havex(2)(�; t) = Z t0 �f0(s; x(�; s))� f0(s; x0(s))� �f 00(s; x0(s))x1(s)� ds+� Z t0 [f1(s; x(�; s))� f1(s; x0(s))] ds+ Z t0 f (2)(�; s; x(�; s)) ds:Using the Mean Value Theorem, we rewrite the �rst integrand adding and subtractingterms, x(2)(�; t) = Z t0 f 00(s; x0(s) + �x(1)(�; s))x(2)(�; s) ds+� Z t0 [f 00(s; x0(s) + �x(1)(�; s))� f 00(s; x0(s))]x1(s) ds+� Z t0 [f1(s; x(�; s))� f1(s; x0(s))] ds+ Z t0 f (2)(�; s; x(�; s)) ds;and estimate each of the integrals in the right member of this expression.Because the Fr�echet derivative is uniformly bounded on VT , it follows immediately that����Z t0 f 00(s; x0(s) + �x(1)(�; s))x(2)(�; s) ds���� � C Z t0 jx(2)(�; s)j ds:According to the Mean Value Theorem, there exists a vector � = (�1; : : : ; �N), with compo-nents between 0 and 1, such thatf 00(s; x0(s) + �x(1)(�; s))� f 00(s; x0(s)) = 0BBB@ f 000;1 �s; x0(s) + �1x(1)(�; s)�...f 000;N �s; x0(s) + �Nx(1)(�; s)� 1CCCA x(1)(�; s):The operator represented by the matrix is uniformly bounded on the convex compact setVT , so ����Z t0 [f 00(s; x0(s) + �x(1)(�; s))� f 00(s; x0(s))]x1(s) ds���� � ct:The third and fourth integral are estimated as in step (i); the former is bounded by aconstant multiple of t, the latter by a constant multiple of �t.12



Taking all the estimates together, we obtainjx(2)(�; t)j � C Z t0 jx(2)(�; s)j ds+ �ct:Hence, proceeding as in step (i), we �nd that kx(2)(�)k � �2C0, so x(2)(�) = O(�2). Thisproves the claim for m = 2.(iii) The process can be continued for successive values of m. After m steps, one takesthe coe�cients x0; : : : ; xm�1 from all previous steps and introduces a new coe�cient xm bysolving a linear initial value problem of the form_xm = f 00(t; x0(t))xm + bm(t); t > 0; xm(0) = 0:The inhomogeneous term bm is de�ned in terms of x0, : : :, xm�1. Then one considers theequation that is satis�ed by the function x(m)(�; t) = x(�; t)�Pm�1n=0 �nxn(t) and estimatesthe various terms. Using Gronwall's inequality, one shows that x(m)(�) = O(�m) as � # 0.The crucial point in the construction of the asymptotic expansion of x(�) is the de�-nition of the inhomogeneous term bn. It can be obtained formally by the following pro-cess: (1) De�ne y(�; t) = P1n=0 �nxn(t); (2) expand fn(t; y(�; t)) in a Taylor series ex-pansion near (t; x0(t)), for n = 0; 1; : : :; (3) substitute the expansions in the formal sumP1n=0 �nfn(t; y(�; t)); (4) rearrange the terms, grouping them in like powers of �. The co-e�cient of �n then corresponds to the expression in the right-hand side of the di�erentialequation for _xn, i.e., f 00(t; x0(t))xn + bn(t).The general expression for bn becomes increasingly complicated as n increases; for ex-ample, b2(t) = f2(t; x0(t)) + f 01(t; x0(t))x1(t) + 12f 000 (t; x0(t))x1(t)x1(t);b3(t) = f3(t; x0(t)) + f 02(t; x0(t))x1(t) + 12f 001 (t; x0(t))x1(t)x1(t) + f 01(t; x0(t))x2(t)+16f 0000 (t; x0(t))x1(t)x1(t)x1(t) + f 000 (t; x0(t))x1(t)x2(t) + f 00(t; x0(t))x3(t):These coe�cients are best calculated on a case-by-case basis.Note that, if the vector �eld is given as an (in�nite) regular asymptotic expansion, theresult of this procedure is an (in�nite) regular asymptotic expansion of the solution. Nothingis said, however, about the convergence or divergence of the expansion in the classical sense.Another caveat is in order. In the proof of the theorem, we considered the solution ofthe initial value problem only on a �nite interval [0; T ]; in fact, the arguments dependedcritically on the fact that T was �nite. Consequently, nothing is said about the asymptoticbehavior of global solutions|solutions that exist for all t � 0. It is indeed extremely riskyto extend our results to an in�nite time interval, as the limits T ! 1 and � # 0 are not13



interchangeable without further restrictions on the vector �eld. (As it is, the conditions arealready rather restrictive!)In conclusion, we observe that the leading term in the asymptotic expansion, x0, satis�esa nonlinear di�erential equation (the \unperturbed" equation) but that all higher-orderterms satisfy a linear di�erential equation (the \variational" equation). This observation isintimately linked to the fact that the solution of a regularly perturbed di�erential equationdepends continuously on the perturbation parameter �|see, for example, [12, Sections 8.5and 9.5].Exercises1. Construct an asymptotic expansion of the solution of the equation for the damped harmonic oscillator,�x+ 2� _x+ x = 0, t > 0, that starts at x(0) = a with velocity _x(0) = 0. Compare the expansion withthe exact solution.2. Consider the system _x = �f1(x; t) + �2f2(x; t); t > 0; x(0) = �;_y = �f1(y; t) t > 0; y(0) = �;Construct an asymptotic expansion of the solution (x; y) as � # 0.References[1] H. Poincar�e, Les m�ethodes nouvelles de la m�ecanique c�eleste, Vol. 1 (1892). Republishedby Dover Publ. Inc., New York (1957).[2] L. Euler, \De seriebus divergentibus," Novi commentarii ac. sci. Petropolitanae 5(1754/5), 1760, 205{237. In: Opera omnia, Ser. I, 14, 585{617.[3] G. H. Hardy, Orders of in�nity, Cambridge University Press, Cambridge, England(1910).[4] E. Pfei�er, \Ueber die Periodicit�at in der Teibarkeit...," Jahresbericht der Pfei�er'schenLehr- und Erriehungsanstalt zu Jena (1885{6). Cf. L. E. Dickson, History of the Theoryof Numbers, Vol. I, Carnegie Institution (1919); reprinted by Chelsea Publ. Co., NewYork (1952); Chapter X, footnote 90.[5] P. Bachmann, Die analytische Zahlentheorie, (1894).[6] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Vol. I, Teubner,Leipzig-Berlin (1909); 2nd ed., Chelsea Publ. Co., New York (1953).[7] W. Eckhaus, Matched asymptotic exapnsions and singular perturbations, North-Holland/American Elsevier, Amsterdam/New York (1973).14
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