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PrefaceFor some time, we have been interested in the development and application of asymptoticmethods for the numerical solution of boundary value problems with critical parameters|that is, parameters that determine the nature of the solution in some critical way. We arethinking, for example, of uid ow (viscosity), combustion (Lewis number), and supercon-ductivity (Ginzburg-Landau parameter) problems. Their solution may remain smooth overa wide range of parameter values, but as the parameters approach critical values, compli-cated patterns may emerge. Boundary layers may develop, or the region over which thesolution extends may take on the appearance of a patchwork of subregions; on each sub-region, the solution is smooth, but between subregions the solution undergoes dramaticchanges over very short distances. Shock layers in uid ow are a visible manifestation ofthis type of behavior.Boundary value problems with critical parameters pose some of the most challengingproblems in computational science, and much e�ort is being spent on developing new tech-niques for their numerical solution. Some of the most useful techniques, in particular onparallel computing architectures, are based on domain decomposition. In a domain decom-position method, one partitions the domain into subdomains, approximates the solutionon each subdomain, and assembles these solutions to obtain an approximate solution onthe entire domain. Many criteria, involving considerations from linear algebra to computerarchitecture, go into the design of a useful domain decomposition method. Our aim is toexplore the use of asymptotic methods.Asymptotic analysis, in particular singular perturbation theory, is the study of boundaryvalue problems involving critical parameters. It provides a methodology to identify andcharacterize boundary layers, transition layers, and initial layers; hence, our idea to useasymptotic methods in the design of domain decomposition algorithms.We have organized two workshops on the subject of asymptotic analysis and domaindecomposition: a workshop at Argonne, jointly sponsored by the Department of Energy andthe National Science Foundation (February 1990), and a NATO Advanced Research Work-shop in Beaune, France (May 1992). Proceedings of these workshops have been published(Asymptotic analysis and the numerical solution of partial di�erential equations, edited byH. G. Kaper and M. Garbey, Lecture Notes in Pure and Applied Mathematics { Vol. 130,Marcel Dekker, Inc., New York, 1991; Asymptotic and numerical methods for partial di�er-ential equations, edited by H. G. Kaper and M. Garbey, NATO ASI Series C: Mathematicaland Physical Sciences { Vol. 384, Kluwer Academic Publishers, Dordrecht, Neth., 1993).We currently have plans to develop a full-length book on the subject. To formulateour thoughts before �nal publication, we intend to produce a series of Working Notes onvarious relevant topics. Some of the notes will contain new material; others may o�er newpresentations of existing material. We certainly expect the notes to evolve in time; theii



notes may or may not appear eventually as chapters of the book. The notes are intendedfor our own use, but we will be happy to supply copies to interested colleagues.Marc Garbey, Lyon, FranceHans G. Kaper, Argonne, Illinois, USAWorking Note #1:Asymptotic Analysis|Basic Concepts and De�nitions, ANL/MCS-TM-179 (July 1993)
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ASYMPTOTIC ANALYSISWorking Note #2APPROXIMATION OF INTEGRALSbyMarc Garbey and Hans G. KaperAbstractIn this note we discuss the approximation of integrals that depend on a parame-ter. The basic tool is simple, namely, integration by parts (Section 1). Of course, thepower of the tool is evidenced in applications. The applications are many; they in-clude Laplace integrals (Section 2), generalized Laplace integrals (Section 3), Fourierintegrals (Section 4), and Stokes' method of stationary phase for generalized Fourier in-tegrals (Section 5). These results illustrate beautifully Hardy's concept of applicationsof mathematics, that is, \certain regions of mathematical theory in which the notationand the ideas of the [method of integration by parts] may be used systematically witha great gain in clearness and simplicity" [G. H. Hardy, Orders of in�nity, App. II,Cambridge University Press, Cambridge, England (1910)].The notation di�ers slightly from Working Note #1, for reasons that are mainlyhistorical. The asymptotic analysis of integrals originated in complex analysis, wherethe (real or complex) parameter, usually denoted by x, is usually introduced in such away that the interesting behavior of the integrals occurs when x!1 in some sector ofthe complex plane. As there is nothing sacred about notation, and historical precedentis as good a guide as any, we follow convention and denote the parameter by x, focusingon the behavior of integrals as x ! 1 along the real axis or, if x is complex, in somesector of the complex plane. The connection with the notation of Working Note #1 isreadily established by identifying the small parameter � with jxj�1.1 Integration by PartsOne of the simplest ways of �nding the asymptotic expansion of a function de�ned bya de�nite integral is the method of integration by parts. The successive terms of theexpansion are produced by repeated integration by parts, and the asymptotic characterof the series is then proved by examining the remainder, which is in the form of a de�niteintegral. Although the �eld of applications of the method of integration by parts is somewhatlimited, the method is very powerful when it works. Precise theorems of su�cient generalityare di�cult to formulate; examples can be found in [1, Section 2.1] and [2, Chapter 3].1



Because of the limited usefulness of those theorems, we prefer to illustrate the method witha very simple example to get the idea across. The example concerns the incomplete gammafunction, (a; x) = Z x0 e�tta�1 dt:We will assume that a and x are both real and positive, in which case the integral is certainlywell de�ned. We are interested in its behavior for large positive values of x.The asymptotic behavior of (a; x) as x!1 is most conveniently studied by means ofthe related function �(a; x) = �(a)� (a; x) = Z 1x e�tta�1 dt:Integrating by parts once, we get �(a; x) = e�xxa�1 + (a � 1)�(a � 1; x). Repeating thisprocess m� 1 more times, we �nd�(a; x) = e�xxa�1m�1Xn=0 �(a)�(a� n)x�n + �(a)�(a�m) Z 1x e�tta�m�1 dt:Now, Z 1x e�tta�m�1 dt � xa�m�1 Z 1x e�t dt = e�xxa�m�1;provided m > a� 1. Thus we obtain the asymptotic expansion of the �-function,�(a; x) = e�xxa�1 1Xn=0 �(a)�(a� n)x�n as x!1:The in�nite sum actually converges in the usual sense, so in this case there is no need todistinguish between the asymptotic approximation and the function itself.Exercises1. Verify that the asymptotic expansion of (a; x) remains valid as x!1 in the complex plane in anysector S� = fx 2 C : j arg(x)j � �g with � < 3�=2.2. The function �(a; x) = x�a(a; x)=�(a) is a single-valued analytic function of a and x, possessing no�nite singularities. Use Mathematica to draw the graph of � on the rectangle f(a; x) : jaj � 5; jxj �4g. Compare the result with [3, Figure 6.3].3. Use the asymptotic expansion of the �-function obtained above to derive the asymptotic expansionof the complementary error function,erfc(x) = 2p� Z 1x e�t2 dt = e�x2� 1Xn=0 �(n+ 12 ) (�1)nx2n+1 as x! 1:4. Prove that Z 1x eitt�a dt = ieixxa 1Xn=0 �(a + n)�(a)(ix)n as x!1;for any complex a with Re a > 0. Deduce from this result the asymptotic expansions of the Fresnelintegrals C(x) = R x0 cos( 12�t2) dt and S(x) = R x0 sin( 12�t2) dt as x!1.2



5. Use the method of integration by parts to derive Euler's asymptotic expansion Pn(�1)nn!xn fromthe integral R10 e�t(1 + xt)�1dt.2 Laplace IntegralsIn the example of the preceding section, it was possible to obtain a complete asymptoticexpansion by integrating by parts an inde�nite number of times. Often, it is possible tointegrate only a �nite number of times, and the process then leads to a �nite expansion.The simplest such case occurs for Laplace-type integrals, R ba e�xtf(t) dt, where the interval(a; b) is a �nite segment of the real axis. We investigate the asymptotic behavior of theseintegrals as x!1.Theorem 1 If f 2 Cm([a; b]), then the integral La;b(f)(x) = R ba e�xtf(t) dt has an m-termasymptotic expansion in powers of x�1,ELa;b(f)(x) = e�ax m�1Xn=0 f (n)(a)x�n�1 as x!1:The result remains true if b!1, provided f(t) = O(e�t) as t!1 for some constant �.Proof. Let h0(t) = e�xt, and de�ne h�1; : : : ; h�m recursively,h�n�1(t) = � Z 1t h�n(s) ds = (�1)n+1e�xtx�n�1; n = 0; : : : ; m� 1:After m partial integrations, we haveLa;b(f)(x) =Pm�1n=0 (�1)n[h�n�1(b)f (n)(b)� h�n�1(a)f (n)(a)] + Rm(x)= e�axPm�1n=0 f (n)(a)x�n�1 + Bm(x) +Rm(x);where Bm(x) = �e�bxPm�1n=1 f (n)(b)x�n�1 and Rm(x) = (�1)m R ba h�m(t)f (m)(t) dt.Now, eaxBm(x) = e�(b�a)xO(x�m) = o(x�m) as x ! 1, for any positive integer m.Furthermore, f (m) is bounded, and jh�m(t)j � e�xtx�m on [a; b], so eaxRm(x) = O(x�m�1)as x!1. The theorem follows.If a = 0 and the limit of R b0 exists as b ! 1, then La;b(f)(x) is actually the Laplacetransform of f , L0;1(f)(x) = Z 10 e�xtf(t) dt:3



For L0;1(f)(x) to exist for x su�ciently large, we must require that f(t) = O(e�t) as t! 1for some constant �. The asymptotic expansion of L0;1(f)(x) is obtained by setting a = 0in Theorem 1, EL0;1(f)(x) = m�1Xn=1 f (n)(0)x�n�1 as x!1:A signi�cant extension of Theorem 1 may be based on the following lemma.Lemma 1 Let f and g be two given functions, and let La;b(f)(x) = R ba e�xtf(t) dt andLa;b(g)(x) = R ba e�xtg(t) dt. Suppose that g(t) > 0 for all t 2 (a; b). If e�xLa;b(g)(x)! 1as x ! 1 for all � > 0 and if f(t) = o(g(t)) as t # a, then La;b(f)(x) = o(La;b(g)(x)) asx!1.Proof. For any � > 0, there exists a � > 0 such that jf(t)j � �g(t) for all t 2 [a; a + �].With this �, we write La;b(f)(x) = A(x)+B(x), where A(x) = R a+�a e�xtf(t) dt and B(x) =R ba+� e�xtf(t) dt. Then jA(x)j � � R a+�a e�xtg(t) dt � �La;b(g)(x) and jB(x)j � Ce��x asx!1, so jLa;b(f)(x)jLa;b(g)(x) � �+ Ce�xLa;b(g)(x):The second term becomes vanishingly small as x! 1, so the upper bound is less than 2�for all su�ciently large x.The lemma enables us to analyze the behavior of asymptotic sequences and asymptoticexpansions under Laplace-type transforms.Theorem 2 Let fn (n = 0; 1; : : :) be given positive-valued functions on the interval (a; b),and let La;b(fn)(x) = R ba e�xtfn(t) dt. (i) If ffn(t) : n = 0; 1; : : :g is an asymptotic sequencefor t # a and e�xLa;b(fn)(x)!1 as x!1 for all � > 0 and for each n, then fLa;b(fn)(x) :n = 0; 1; : : :g is an asymptotic sequence for x!1. (ii) Furthermore, if a function f has anasymptotic expansion of the form Ef(t) =Pn anfn(t) as t # a, then the integral La;b(f) =R ba e�xtf(t) dt has an asymptotic expansion of the form ELa;b(f)(x) =Pn anLa;b(fn)(x) asx!1.Proof. The assertion (i) is an immediate consequence of Lemma 1; (ii) follows likewise fromLemma 1 if one replaces f by f (m) = f �Pm�1n=0 anfn and g by fm�1. Here, m can be anyinteger. 4



The most important application of this theorem is for the Laplace transform (a = 0 andb =1) and fn(t) = t�n�1, where 0 < �0 < �1 < � � �. If f has an asymptotic approximationEf(t) = m�1Xn=0 ant�n�1 as t # 0;then the asymptotic approximation of its Laplace transform L0;1(f) = R10 e�xtf(t) dt isEL0;1(f)(x) = m�1Xn=0 an�(�n)x��n as x!1:The results of this section can be generalized in many ways. For example, results similarto those of Theorems 1 and 2 hold if x is a complex parameter and x!1 in the complexplane within any sector S� = fx 2 C : j arg(x)j � �g with � < 12�. We refer the reader to[1, Section 2.2] for details.3 Laplace's MethodThe essence of Theorem 2 is that, under certain circumstances, the asymptotic behavior ofa Laplace-type integral as x!1 is determined by the asymptotic behavior of its integrandas t # a. This result extends to more general situations. For example, consider the integralR ba g(t)exh(t) dt, where (a; b) is a �nite segment of the real axis, x is a large positive parameter,and h is real-valued. (The function g may be complex-valued.) If h(t) has a maximum att = � and h(t) < h(�) for all t 6= � , then the modulus of the integrand will have a maximumat a point near � , and most of the contribution to the integral will arise from the immediatevicinity of this maximum. The integral can then be evaluated approximately by expandingboth g(t) and h(t) in the neighborhood of t = � . This idea is central in Laplace's method.Without loss of generality, we may assume that h(t) reaches its maximum at one of theendpoints and at no other point of the interval; if necessary, we break up the interval ofintegration in a �nite number of subintervals. Accordingly, we assume that h(t) reaches itsmaximum at a and that h(t) < h(a) for all t 2 (a; b].Theorem 3 Let h be real-valued and continuous at a, and let g and h be such that theintegral R ba exh(t)g(t) dt is well de�ned for all su�ciently large positive x. Suppose that thereexist � > 0 and � > 0, such that (i) g(t) = (t � a)��1g1(t) for some � > 0, where g1 is mtimes continuously di�erentiable on [a; a+ �]; (ii) h0(t) = �(t� a)��1h1(t) for some � > 0,where h1 ism times continuously di�erentiable on [a; a+�] and h1(t) > 0 for all t 2 [a; a+�];and (iii) h(t) < h(a)�� for all t 2 (a+�; b). Then R ba exh(t)g(t) dt has an m-term asymptotic5



approximation with respect to the asymptotic sequence fx�(n+�)=� : n = 0; 1; : : :g,E Z ba exh(t)g(t) dt= exh(a)m�1Xn=0 1n! " dndtn g(t)(h(a)� h(t))1��=��h0(t) #t=a ��n + �� �x�(n+�)=� as x!1:Proof. We write the integral as a sum of two terms, R ba exh(t)g(t) dt = A(x) + B(x), whereA(x) = R a+�a exh(t)g(t) dt and B(x) = R ba+� exh(t)g(t) dt. On the interval [a; a + �], weintroduce a new variable of integration,u = (h(a)� h(t))1=�; t 2 [a; a+ �]:Thenu� = � Z ta h0(s) ds = Z ta (s� a)��1h1(s) ds = (t� a)� Z 10 y��1h1(a+ y(t� a)) dy:The last integral is m + 1 times continuously di�erentiable, positive, and increasing as afunction of t. With U = (h(a)� h(a + �))1=�, we have thus an m + 1 times continuouslydi�erentiable mapping from the interval [a; a+ �] to the interval [0; U ], whose inverse existsand is also m+ 1 times continuously di�erentiable. Then,A(x) = exh(a) Z U0 e�xu�u��1k(u) du;where k(u) = g(t)u1��dt=du; k is m times continuously di�erentiable on [0; U ].Let l0(u) = e�xu�u��1, and let l�1; : : : ; l�m be de�ned recursively,l�n�1(u) = � Z 1u l�n(v) dv; n = 0; : : : ; m� 1:The general expression for l�n�1(u) isl�n�1(u) = (�1)n+1n! Z 1u e�xv�(v � u)nv��1 dv; n = 0; : : : ; m� 1:After m partial integrations, we haveA(x) = exh(a)m�1Xn=0(�1)n[l�n�1(U)k(n)(U)� l�n�1(0)k(n)(0)] + Rm(x);where the remainder is Rm(x) = exh(a)(�1)m R U0 l�m(u)k(m)(u) du. Now,l�n�1(0) = (�1)n+1n! Z 10 e�xv�vn+��1 dv = (�1)n+1�n! ��n + �� �x�(n+�)=�;6



while l�n�1(U) = O(e�xU�) for n = 0; : : : ; m� 1. Furthermore,jRm(x)j � Cexh(a)(m� 1)! Z U0 Z 1u e�xv�(v � u)m�1v��1 dv du� Cexh(a)m! Z 10 e�xv�vm+��1 dv = Cexh(a)�m! ��m+ �� �x�(m+�)=�;so Rm(x) = exh(a)O(x�(m+�)=�). Since O(e�xU�) = o(x�(m�1+�)=�) as x ! 1, for anypositive integer m, it follows that A has the m-term asymptotic expansionEA(x) = exh(a)m�1Xn=0 k(n)(0)�n! ��n+ �� �x�(n+�)=�:We complete the proof by observing that B(x) = exh(a)O(e��x) and e��x = o(x�(m�1+�)=�)as x!1, for any positive integer m.It follows from Theorem 3 that, ifg(t) � �(t � a)��1; h0(t) � ��(t� a)��1 as t # a;then Z ba exh(t)g(t) dt � �������� ��x��=� exh(a) as x!1:The integral studied by Laplace corresponds to the special case � = 1, � = 2.The results of this section remain true if x is a complex variable and x ! 1 in anysector S� with � < 12�.Exercises1. The logarithmic derivative of the � function is given by (x) = �0(x)�(x) = log x+ Z 10 e�xt h1t � 11� e�t i dt:Obtain an asymptotic expansion of  (x) as x ! 1. Justify that this expansion may be integratedterm by term and obtain an asymptotic expansion of log �(x) (modulo an arbitrary constant) asx!1. Use the duplication formula for the �-function, �(2x) = (2�)�1=222x�1=2�(x)�(x+ 12 ), to �xthe arbitrary constant and establish the asymptotic expansionlog �(x) = (x� 12 ) log x� x+ 12 log(2�) + 1Xn=1 B2n2n(2n � 1)x1�2n as x!1:Here, Bn is the nth Bernoulli number; cf. [3, Section 23.1].7



2. When x is positive, the logarithmic integral li(x) is de�ned byli(x) = Z x0 dtlog t ;the integral being a Cauchy principal value (P ) when x > 1. If we put x = ea and t = ea�v, thede�nition becomes li(x) = eaP Z 10 e�v dva � v ;when a > 0. Apply the method of integration by parts to establish the asymptotic expansione�ali(ea) = 1Xn=0 n! a�n+1 as a!1:Verify that the smallest term in the asymptotic expansion is the mth term, where m is the largestinteger less than or equal to a. Verify that the di�erence between e�ali(ea) and the �rst m termsof the asymptotic expansion (i.e., the remainder after m partial integrations, Rm(a)) is given bye�a(�� 1=3)(2�=m)1=2 as a!1, where � = a �m (0 � � < 1). Show that Rm�1(a) and Rm+1(a)have opposite signs as a!1.3. The modi�ed Bessel function of order � has the integral representationI�(x) = ( 12x)��(� + 12 )�( 12 ) Z 1�1 e�xt(1� t2)��1=2 dt; � > � 12 :Apply the divide-and-conquer technique to separate the e�ects of the endpoints and establish theasymptotic expansion I�(x) = ex(2�x)1=2 1Xn=0 (�1)n�(� + 12 + n)2nn! �(� + 12 � n) x�n as x!1:Cf. [4, Section 7.23].4 Fourier IntegralsNext, we consider Fourier-type integrals, R ba eixtf(t) dt, where (a; b) is a �nite segment ofthe real axis. If f is integrable, these integrals exist for all real x. We are interested in theirasymptotic behavior as x!1.Theorem 4 If f 2 Cm([a; b]), then the integral Fa;b(f)(x) = R ba eixtf(t) dt has an m-termasymptotic expansion in powers of x�1,EFa;b(f)(x) = m�1Xn=0 in�1x�(n+1) heibxf (n)(b)� eiaxf (n)(a)i as x!1:The result remains true if a ! �1 (b ! 1), provided that f (n)(t) ! 0 as t ! �1(t!1) for n = 0; : : : ; m� 1, and provided that f (m) is integrable over (a; b).8



Proof. The remainder after m partial integrations is Rm(x) = �(ix)�m R ba eixtf (m)(t) dt.Because f (m) is of bounded variation, it follows from the Riemann{Lebesgue lemma [5,Section 9.41] that the integral vanishes as x!1. Therefore, Rm(x) = o(x�m).Typically for the method of integration by parts, the result of Theorem 4 relies heavilyon the di�erentiability properties of f . Suppose that f(t) = (t � a)��1(b � t)��1f1(t),where f1 2 C1([a; b]) and � and � are not integers. Then Theorem 4 gives us at bestthat Fa;b(f)(x) = O(x�n), where n is the largest integer less than or equal to min(�; �); inparticular, if � < 1 and � < 1, we �nd that Fa;b(f)(x) = O(1) as x ! 1. This result isnot very good, as Fa;b(f)(x) = o(1) in this case. Fortunately, we can do better, thanks toa method developed by Erd�elyi for functions f that are weakly singular near the endpointsa and b; see [1, Section 2.8].Theorem 5 If f(t) = (t � a)��1(b � t)��1f1(t), where 0 < �; � � 1 and f1 2 Cm([a; b]),then the asymptotic expansion of the integral Fa;b(f)(x) = R ba eixtf(t) dt is given byEFa;b(f)(x) = m�1Xn=0 �(n+ �)n! e�i(n��)=2x�(n+�)eibx � dndtn (t� a)��1f1(t)�t=b�m�1Xn=0 �(n+ �)n! e�i(n+��2)=2x�(n+�)eiax � dndtn (b� t)��1f1(t)�t=a as x!1:Proof. Divide and conquer. Let � be an in�nitely smooth function satisfying the conditions�(t) = 1 for all t 2 [a; a+ �] and �(t) = 0 for all t 2 [b� �; b], where � < 12(b� a). Writethe integral as a sum of two integrals, Fa;b(f)(x) = A(x) + B(x), whereA(x) = Z b��a eixt(t� a)��1 h�(t)(b� t)��1f1(t)i dt;B(x) = Z ba+� eixt(b� t)��1 h(1� �(t))(t� a)��1f1(t)i dt:Thus, the singularities at the endpoints have been separated; the integrand of A has inher-ited the singularity at a, but goes to zero smoothly at b��; the integrand of B has inheritedthe singularity at b, but goes to zero smoothly at a+ �.We discuss the asymptotic behavior of A(x) as x!1. The integral is of the formA(x) = Z b��a eixt(t� a)��1f2(t) dt;where f2 2 Cm([a; b� �]), f (n)2 (a) = [(dn=dtn)(b � t)��1f1(t)]t=a and f (n)2 (b � �) = 0 forn = 0; : : : ; m� 1. 9



Let h0(t) = eixt(t� a)��1, and let h�1; : : : ; h�m be de�ned recursively,h�n�1(t) = � Zt h�n(z) dz; n = 0; : : : ; m� 1;where the integral connects the point t 2 [a; b] with the point at in�nity in the complexplane along the directed path fz 2 C : z = t + i�; 0 � � <1g. The general expression forh�n�1(t) ish�n�1(t) = (�1)n+1n! Zt eixz(z � t)n(z � a)��1 dz; n = 0; : : : ; m� 1:The integral converges absolutely.After m partial integrations, we haveA(x) = �m�1Xn=0(�1)nh�n�1(a)f (n)2 (a) + Rm(x);where the remainder is Rm(x) = (�1)m R ba h�m(t)f (m)2 (t) dt. Now,h�n�1(a) = (�1)n+1n! Z a+i1a eixz(z � a)n+��1 dz = (�1)n�(n+ �)n! e�i(n+��2)=2xn+� eiax;for n = 0; : : : ; m�1. To estimate Rm, we need an estimate of h�m(t) for t 2 [a; b]. It is mostreadily obtained from the general expression given above. Along the path of integration wehave jz � aj��1 � (t� a)��1 for all � 2 (0; 1], sojh�m(t)j � (t� a)��1(m� 1)! Zt jeixz j jz � tjm�1 jdzj � (t� a)��1x�m:Hence, Rm = O(x�m) as x ! 1. If � = 1, we can replace this estimate by Rm = o(x�m),by virtue of the Riemann{Lebesgue lemma; cf. the proof of Theorem 4. Thus, for all� 2 (0; 1] we �nd that the asymptotic expansion of A is given byEA(x) = �m�1Xn=0 �(n + �)n! e�i(n+��2)=2xn+� eiaxf (n)2 (a) as x!1:Similarly, EB(x) = m�1Xn=0 �(n + �)n! e�i(n��)=2xn+� eibxf (n)3 (b) as x!1;where f (n)3 (b) = [(dn=dtn)(t� a)��1f1(t)]t=b.The essence of Theorems 4 and 5 is that, under certain circumstances, the asymptoticbehavior of a Fourier integral as x!1 is determined by the behavior of its integrand nearthe endpoints of the interval of integration. As x increases, the integrand oscillates moreand more rapidly, and the contribution from each oscillation tends to zero, except near theendpoints. 10



5 Stokes' Method of Stationary PhaseWe now consider the integral R ba eixh(t)g(t) dt, where (a; b) is a �nite segment of the realaxis, x is a large positive parameter, and h is real-valued. (The function g may be complex-valued.) In general, the rapid oscillations of eixh(t) tend to cancel large contributions to theintegral, but this cancellation does not occur near the endpoints and near the stationarypoints of h|that is, those points where h0 vanishes. Moreover, if there are any stationarypoints, their contributions tend to be more important than the contributions from theendpoints. Stokes' method of stationary phase appraises the contribution of the stationarypoints to the integral.Assuming that h has only a �nite number of stationary points, we may break up theintegral in a �nite number of integrals, in each of which h is monotonic, and we may assumeh(t) to be increasing. Thus, we shall consider integrals in which h0(t) > 0 for all t 2 (a; b)and where a and b are either ordinary points (where h0(t) is positive) or stationary points(where h0(t) vanishes to some positive, possibly fractional, order).Theorem 6 Let g and h be such that the integral R ba eixh(t)g(t) dt is well de�ned for allsu�ciently large positive x. Let h be real-valued and di�erentiable, such that h0(t) = (t �a)��1(b � t)��1h1(t), where �; � � 1, h1 2 Cm([a; b]), and h1(t) > 0 for all t 2 [a; b]. Ifg(t) = (t�a)��1(b� t)��1g1(t), where 0 < �; � � 1 and g1 2 Cm([a; b]), then the asymptoticexpansion of R ba eixh(t)g(t) dt is given by the expressionE Z ba eixh(t)g(t) dt = m�1Xn=0 �nn! ��n+ �� � e��i(n+�)=(2�)x�(n+�)=�eixh(b)+m�1Xn=0 �nn! ��n+ �� � e�i(n+�)=(2�)x�(n+�)=�eixh(a) as x!1;where �n = �n " (h(t)� h(a))1�1=�h0(t) ddt!n g(t)(h(t)� h(a))1��=�h0(t) #t=a ;�n = (��)n " (h(b)� h(t))1�1=�h0(t) ddt!n g(t)(h(b)� h(t))1��=�h0(t) #t=b :Proof. Divide and conquer. Separate the e�ects of the endpoints of the integral as in theproof of Theorem 5: R ba eixh(t)g(t) dt = A(x) +B(x), whereA(x) = Z b��a eixh(t)(t� a)��1 h�(t)(b� t)��1g1(t)i dt;11



B(x) = Z ba+� eixh(t)(b� t)��1 h(1� �(t))(t� a)��1g(t)i dt:We discuss the asymptotic behavior of A(x) as x!1. The integral is of the formA(x) = Z b��a eixh(t)(t� a)��1g2(t) dt;where g2 2 Cm([a; b � �]), g(n)2 (a) = �(d=dt)n(b� t)��1g1(t)�t=a and g(n)2 (b � �) = 0 forn = 0; : : : ; m� 1. We introduce a new variable of integration,u = (h(t)� h(a))1=�; t 2 [a; b� �]:Then, u� = Z ta h0(s) ds = Z ta (s� a)��1(b� s)��1h1(s) ds= (t� a)� Z 10 y��1(b� a� y(t � a))��1h1(a+ y(t� a)) dy:The last integral is m + 1 times continuously di�erentiable, positive, and increasing as afunction of t. With U = (h(b� �) � h(a))1=�, we have thus an m + 1 times continuouslydi�erentiable mapping from the interval [a; b� �] to the interval [0; U ], whose inverse existsand is also m+ 1 times continuously di�erentiable. Then,A(x) = eixh(a) Z U0 eixu�u��1k(u) du;where k(u) = (t� a)��1u1��g2(t)dt=du; k is m times continuously di�erentiable on [0; U ].Let l0(t) = eixu�u��1, and let l�1; : : : ; l�m be de�ned recursively,l�n�1(u) = � Zu l�n(z) dz; n = 0; : : : ; m� 1;where the integral connects the point u 2 [0; U ] with the point at in�nity in the complexplane along the directed path fz 2 C : z = u+ �e�i=(2�); 0 � � <1g. Thus,l�n�1(u) = (�1)n+1n! Zu eixz�(z � u)nz��1 dz; n = 0; : : : ; m� 1:After m partial integrations, we haveA(x) = �eixh(a)m�1Xn=0(�1)nl�n�1(0)k(n)(0) + Rm(x);where the remainder is Rm(x) = eixh(a)(�1)m R U0 l�m(u)k(m)(u) du. Now,l�n�1(0) = (�1)n+1n! Zu eixz�zn+��1 dz = (�1)n+1�n! e�i(n+�)=(2�)��n + �� �x�(n+�)=�;12



for n = 0; : : : ; m� 1.Estimating the remainder Rm is a bit more involved. First, consider the case 0 < � < 1.Then jzj��1 � u��1 along the path of integration, sojl�m(u)j � u��1(m� 1)! Zu jeixz� j jz � ujm�1 jdzj:Also, from the identityixz� + xjz � uj� = i�x Z u0 (s+ jz � uje�i=(2�))��1 ds;together with the fact that the imaginary part of the integral is positive, we deduce thatRe(ixz�) � �xjz � uj�, so jl�m(u)j � u��1�(m� 1)!��m� �x�m=�:Hence, Rm(x) = O(x�m=�) as x!1.If � = 1 and � > 1, we proceed in two steps. First, given � > 0 arbitrarily small, wechoose � > 0 such that 1�m!��m� �Z �0 jk(n)(u)j du < 12�:Then,l�m(u) = (�1)m(m� 1)! Zu eixz�(z � u)m�1 dz = (�ue�i=(2�))m(m� 1)! Z 10 eixu�(1+�e�i=(2�))��m�1 d�;so l�m(u) = umO((xu�)�m) as xu� ! 1. Consequently, l�m(u) = O(x�m) as x ! 1,uniformly in u when u � �. Hence,xm=� Z U� jl�m(u)j jk(m)(u)j du < 12�;for all su�ciently large x, and therefore Rm(x) = o(x�m=�) as x!1.The only remaining case is � = 1, � = 1. But this case is already covered by Theorem 5.So we �nd that, for all � � 1 and 0 < � � 1, the asymptotic expansion of A is given byEA(x) = eixh(a)m�1Xn=0 �nn! ��n + �� � e�i(n+�)=(2�)x�(n+�)=� as x!1;where �n = k(n)(0)=�. The coe�cient �n can be expressed in terms of the values of g andh and their derivatives at a; the result is given in the statement of the theorem.13



A similar result holds for B(x). The integral is of the formB(x) = Z ba+� eixh(t)(b� t)��1g3(t) dt;where g3 2 Cm([a + �; b]), g(n)3 (a + �) = 0 and g(n)3 (b) = h(d=dt)n(t� a)��1g1(t)it=b forn = 0; : : : ; m� 1. We introduce the new variable of integration,v = (h(b)� h(t))1=�; t 2 [a+ �; b];and put l(v) = (b� t)��1v1��g3(t)dt=dv. In the repeated integrals of eixv�v��1 we integratealong the directed path fz 2 C : z = v+ �e��i=(2�)g and obtain by a process similar to thatused in the case of A(x) that, for all � � 1 and 0 < � � 1, the asymptotioc expansion of Bis given byEB(x) = eixh(b) m�1Xn=0 �nn! ��n+ �� � e��i(n+�)=(2�)x�(n+�)=� as x!1;where �n = �l(n)(0)=�. The coe�cient �n can be expressed in terms of the values of g andh and their derivatives at b; the result is given in the statement of the theorem.Let us consider in more detail the case where g is regular at both endpoints a and b(i.e., � = � = 1). If a is a stationary point of order one and b an ordinary point (i.e.,h0(t) = (t � a)h1(t) with h1(t) > 0 for all t 2 [a; b], so h has a minimum at a), then theleading term in the asymptotic expansion given in Theorem 6 comes from the point a andis O(x1=2), while the next term comes from the point b and is O(x�1). From the theoremwe obtain �0 = "g(t)(h(t)� h(a))1=2h0(t) #t=a = g(a)p2h00(a) :Hence, Z ba eixh(t)g(t) dt � s �2xh00(a) g(a)eixh(a)+�i=4 as x! 1:Similarly, if a is an ordinary point and b a stationary point of order one (i.e., h0(t) =(b� t)h1(t) with h1(t) > 0 for all t 2 [a; b], so h has a maximum at b), then�0 = "g(t)(h(b)� h(t))1=2h0(t) #t=b = g(b)p�2h00(b)and Z ba eixh(t)g(t) dt � s �2xjh00(b)j g(b)eixh(b)+�i=4 as x!1:In general, if both endpoints a and b are ordinary points, where h0 does not vanish, but hhas an extremum (either a minimum or a maximum) at some point � in the interior of the14



interval (a; b), then we �nd, by combining the leading terms in the asymptotic expansionsof the integrals over [a; � ] and [�; b], that the leading term in the asymptotic expansion ofR ba eixh(t)g(t) dt is given byZ ba eixh(t)g(t) dt � s 2�xjh00(�)j g(�)eixh(�)+�i=4 as x!1:In this case, the contributions from the endpoints are O(x�1) or smaller as x ! 1. Thisobservation con�rms our earlier remark that the contributions from stationary points aregenerally more important than those from regular endpoints.Exercises1. The Bessel function of order � has the integral representationJ�(x) = ( 12x)��(� + 12 )�( 12 ) Z 1�1 eixt(1� t2)��1=2 dt; � > � 12 :Apply the divide-and-conquer technique to separate the e�ects of the endpoints and establish theasymptotic expansionJ� (x) = � 2�x�1=2 "cos�x� �4 � ��2 � 1Xn=0 (�1)n�(� + 12 + 2n)22n(2n)!�(� + 12 � 2n)x�2n� sin�x� �4 � ��2 � 1Xn=0 (�1)n�(� + 32 + 2n)22n+1(2n + 1)!�(� � 12 � 2n)x�2n�1# as x!1:Cf. [4, Section 7.21].2. Prove that Z 10 eixt3 dt = ��43� e�i=6x�1=3 � 1Xn=0 �(n+ 2=3)�(�1=3) (ix)�n�1eix as x!1:3. Prove that Z 10 eix(t3=3+t) dt = i 1Xn=0 (3n)!3nn! x�2n�1 as x!1:4. Airy's integral is de�ned by Ai(x) = 1� Z 10 cos(s3=3 + xs) ds:With s = x1=2t and y = x3=2, we obtainAi(y2=3) = y1=32� Z 1�1 eiy(t3=3+t) dt:Prove that Ai(x) = e�(2=3)x3=22�x1=4 1Xn=0 (�1)n�(3n + 12 )9n(2n)! x�3n=2 as x!1:15
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