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Preface

For some time, we have been interested in the development and application of asymptotic
methods for the numerical solution of boundary value problems with critical parameters—
that is, parameters that determine the nature of the solution in some critical way. We are
thinking, for example, of fluid flow (viscosity), combustion (Lewis number), and supercon-
ductivity (Ginzburg-Landau parameter) problems. Their solution may remain smooth over
a wide range of parameter values, but as the parameters approach critical values, compli-
cated patterns may emerge. Boundary layers may develop, or the region over which the
solution extends may take on the appearance of a patchwork of subregions; on each sub-
region, the solution is smooth, but between subregions the solution undergoes dramatic
changes over very short distances. Shock layers in fluid flow are a visible manifestation of
this type of behavior.

Boundary value problems with critical parameters pose some of the most challenging
problems in computational science, and much effort is being spent on developing new tech-
niques for their numerical solution. Some of the most useful techniques, in particular on
parallel computing architectures, are based on domain decomposition. In a domain decom-
position method, one partitions the domain into subdomains, approximates the solution
on each subdomain, and assembles these solutions to obtain an approximate solution on
the entire domain. Many criteria, involving considerations from linear algebra to computer
architecture, go into the design of a useful domain decomposition method. Our aim is to
explore the use of asymptotic methods.

Asymptotic analysis, in particular singular perturbation theory, is the study of boundary
value problems involving critical parameters. It provides a methodology to identify and
characterize boundary layers, transition layers, and initial layers; hence, our idea to use
asymptotic methods in the design of domain decomposition algorithms.

We have organized two workshops on the subject of asymptotic analysis and domain
decomposition: a workshop at Argonne, jointly sponsored by the Department of Energy and
the National Science Foundation (February 1990), and a NATO Advanced Research Work-
shop in Beaune, France (May 1992). Proceedings of these workshops have been published
(Asymptotic analysis and the numerical solution of partial differential equations, edited by
H. G. Kaper and M. Garbey, Lecture Notes in Pure and Applied Mathematics — Vol. 130,
Marcel Dekker, Inc., New York, 1991; Asymptotic and numerical methods for partial differ-
ential equations, edited by H. G. Kaper and M. Garbey, NATO ASI Series C: Mathematical
and Physical Sciences — Vol. 384, Kluwer Academic Publishers, Dordrecht, Neth., 1993).

We currently have plans to develop a full-length book on the subject. To formulate
our thoughts before final publication, we intend to produce a series of Working Notes on
various relevant topics. Some of the notes will contain new material; others may offer new
presentations of existing material. We certainly expect the notes to evolve in time; the

ii



notes may or may not appear eventually as chapters of the book. The notes are intended
for our own use, but we will be happy to supply copies to interested colleagues.

Marc Garbey, Lyon, France
Hans G. Kaper, Argonne, Illinois, USA

Working Note #1:
Asymptotic Analysis—Basic Concepts and Definitions, ANL/MCS-TM-179 (July 1993)
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ASYMPTOTIC ANALYSIS

Working Note #2
APPROXIMATION OF INTEGRALS

by

Marc Garbey and Hans G. Kaper

Abstract

In this note we discuss the approximation of integrals that depend on a parame-
ter. The basic tool is simple, namely, integration by parts (Section 1). Of course, the
power of the tool is evidenced in applications. The applications are many; they in-
clude Laplace integrals (Section 2), generalized Laplace integrals (Section 3), Fourier
integrals (Section 4), and Stokes’ method of stationary phase for generalized Fourier in-
tegrals (Section 5). These results illustrate beautifully Hardy’s concept of applications
of mathematics, that is, “certain regions of mathematical theory in which the notation
and the ideas of the [method of integration by parts] may be used systematically with
a great gain in clearness and simplicity” [G. H. Hardy, Orders of infinity, App. II,
Cambridge University Press, Cambridge, England (1910)].

The notation differs slightly from Working Note #1, for reasons that are mainly
historical. The asymptotic analysis of integrals originated in complex analysis, where
the (real or complex) parameter, usually denoted by z, is usually introduced in such a
way that the interesting behavior of the integrals occurs when & — oo in some sector of
the complex plane. As there is nothing sacred about notation, and historical precedent
is as good a guide as any, we follow convention and denote the parameter by z, focusing
on the behavior of integrals as  — oo along the real axis or, if & is complex, in some
sector of the complex plane. The connection with the notation of Working Note #1 is
readily established by identifying the small parameter ¢ with |z|~1.

1 Integration by Parts

One of the simplest ways of finding the asymptotic expansion of a function defined by
a definite integral is the method of integration by parts. The successive terms of the
expansion are produced by repeated integration by parts, and the asymptotic character
of the series is then proved by examining the remainder, which is in the form of a definite
integral. Although the field of applications of the method of integration by parts is somewhat
limited, the method is very powerful when it works. Precise theorems of sufficient generality
are difficult to formulate; examples can be found in [1, Section 2.1] and [2, Chapter 3].



Because of the limited usefulness of those theorems, we prefer to illustrate the method with
a very simple example to get the idea across. The example concerns the incomplete gamma
function,

’y(a,x):/ et dt.
0

We will assume that a and z are both real and positive, in which case the integral is certainly
well defined. We are interested in its behavior for large positive values of «.

The asymptotic behavior of v(a,z) as # — oo is most conveniently studied by means of
the related function

I'(a,z) =T'(a) — y(a,z) = /;O ettt dt.

Integrating by parts once, we get I'(a,z) = e %2~ + (a — 1)T'(a — 1,2). Repeating this
process m — 1 more times, we find

F(a,x): —T 0= 1 Z n_l_ F(a) / e—tta—m—l dt.

(a—n) I'(a—m)

Now,
[e%s) [e%s)
/ e—tta—m—l dt S xa—m—l/ e—t dt = e—avxa—m—l7
z z

provided m > a — 1. Thus we obtain the asymptotic expansion of the I'-function,

I(a,z) = e "zt ™" as x — 0.

o S s
The infinite sum actually converges in the usual sense, so in this case there is no need to
distinguish between the asymptotic approximation and the function itself.

Exercises

1. Verify that the asymptotic expansion of v(a, z) remains valid as £ — oo in the complex plane in any
sector Sp = {z € C: |arg(z)| < A} with A < 37/2.

2. The function v*(a,z) = £~ %y(a,z)/T'(a) is a single-valued analytic function of ¢ and z, possessing no
finite singularities. Use Mathematica to draw the graph of v* on the rectangle {(a, ) : |a| < 5,|z| <
4}. Compare the result with [3, Figure 6.3].

3. Use the asymptotic expansion of the I'-function obtained above to derive the asymptotic expansion
of the complementary error function,

erfe(x) = %/:O e~

e a —|— n
/ et dt = e Z Ta as & — 00,
xT

for any complex a with Re @ > 0. Deduce from thls result the asymptotic expansions of the Fresnel
integrals C(z) = fom cos(smt®) dt and S(z) = fom sin(27t’) dt as © — oo.

2n+1 as ¥ — O0.

4. Prove that



5. Use the method of integration by parts to derive Euler’s asymptotic expansion Zn(—l)"n!x" from
the integral fooo e_t(l + xt)_ldt.

2 Laplace Integrals

In the example of the preceding section, it was possible to obtain a complete asymptotic
expansion by integrating by parts an indefinite number of times. Often, it is possible to
integrate only a finite number of times, and the process then leads to a finite expansion.
The simplest such case occurs for Laplace-type integrals, ff e~"t f(t) dt, where the interval
(a,b) is a finite segment of the real axis. We investigate the asymptotic behavior of these
integrals as & — oc.

Theorem 1 If f € C"([a,b]), then the integral L, p(f)(z) = ff e~ f(t) dt has an m-term
asymptotic expansion in powers of v,

The result remains true if b — oo, provided f(t) = O(e*) as t — oo for some constant .

Proof. Let ho(t) = e=*', and define h_q,..., h_,, recursively,
h_n_1(t) = —/ h_n(s)ds = (=1)"Tle =zt =0,... m— 1.
t

After m partial integrations, we have

Lap()(x) =20 (= 1) [henet (b)) FO (D) = hoyei (a) fU ()] + Rp()
= e Y0 P (a)e™" " 4 By(e) + Ro(),

where B,,(z) = —e=b* S0 f0 ()1 and R,,(z) = (=1)" ff h_m (1) fU)(2) dt.

Now, e B, (z) = e~ t=920(2=") = o(z™™) as & — oo, for any positive integer m.
Furthermore, f(™) is bounded, and |h_,,(t)| < e=*'z=™ on [a,b], s0 €** R, () = O(z~"")
as * — o0. The theorem follows. 1

If a = 0 and the limit of fg exists as b — oo, then Ly p(f)(2) is actually the Laplace
transform of f,

Looo(f)(x) = /0 T et () dt.



For Lo o (f)(2) to exist for z sufficiently large, we must require that f(¢) = O(e*) ast — oo
for some constant a. The asymptotic expansion of Lo~ (f)(z) is obtained by setting a = 0
in Theorem 1,

ELoco(f)(z) = Z 0y~  as 2 — oo.
A significant extension of Theorem 1 may be based on the following lemma.

Lemma 1 Let f and g be two given functions, and let L, (f)(z) = fb e~ f(t) dt and
Lap(g)(z) = [Pemtg(t) dt. Suppose that g(t) > 0 for all t € (a,b). If "L, 4(g)(x) — oo
as x — oo for all 6 > 0 and if f(t) = o(g(t)) ast | a, then Lyp(f)(z) = o(Lap(g)(z)) as

r — Q.

Proof. For any € > 0, there exists a 6 > 0 such that |f(?)| < eg(¢) for all t € [a,a + §].
With this 6, we write Ly 3(f)(2) = A(z)+ B(2), where A(z) = faa+5 e~ f(t) dt and B(z) =
J2ose " f(t) dt. Then |A(z)] < e [fTe=g(t) dt < eLay(g)(x) and |B(z)| < Ce™® as
T — 00, SO

Lus()(2) c
Tuslo)@) =T L))

The second term becomes vanishingly small as @ — oo, so the upper bound is less than 2¢
for all sufficiently large z. 1

The lemma enables us to analyze the behavior of asymptotic sequences and asymptotic
expansions under Laplace-type transforms.

Theorem 2 Let f, (n = 0,1,...) be given positive-valued functions on the interval (a,b),
and let Lyp(fo)(z) = ff e~ () dt. (1) If {fu(t) :mn = 0,1,...} is an asymplotic sequence
fort | a and € Lo y( fo)(z) — 00 asx — oo for all § > 0 and for each n, then {L,p(fa)() :
n=0,1,...} is an asymptotic sequence for x — oco. (ii) Furthermore, if a function f has an
asymptotic expansion of the form Ef(t) =%, a,fo(t) ast | a, then the integral L, p(f) =
ff e~"t f(t) dt has an asymptotic expansion of the form E L,y (f) (@)=, anLlap(fn)(2) as

r — Q.

Proof. The assertion (i) is an immediate consequence of Lemma 1; (ii) follows likewise from
Lemma 1 if one replaces f by f(m) = f — ZZZ_OI a, fn and g by f,,_1. Here, m can be any
integer. 1



The most important application of this theorem is for the Laplace transform (@ = 0 and
b=o0)and f,(t) = t*!, where 0 < \g < Ay < ---. If f has an asymptotic approximation

m—1
1) = Z ant™Vast |0,

n=0

then the asymptotic approximation of its Laplace transform Lo (f) = [;~ e "' f(1) dt is

ELyo(f)(z)= Z ap,D(A)z ™ as z — oo,

The results of this section can be generalized in many ways. For example, results similar
to those of Theorems 1 and 2 hold if x is a complex parameter and # — oo in the complex
plane within any sector Sp = {z € C :|arg(z)| < A} with A < %ﬂ'. We refer the reader to
[1, Section 2.2] for details.

3 Laplace’s Method

The essence of Theorem 2 is that, under certain circumstances, the asymptotic behavior of
a Laplace-type integral as  — oo is determined by the asymptotic behavior of its integrand
as t | a. This result extends to more general situations. For example, consider the integral
f g(1)e*™Y) dt, where (a,b) is a finite segment of the real axis, z is a large positive parameter,
and h is real valued. (The function ¢ may be complex- Valued.) If A(t) has a maximum at
t =7 and h(t) < h(7) for all t # 7, then the modulus of the integrand will have a maximum
at a point near 7, and most of the contribution to the integral will arise from the immediate
vicinity of this maximum. The integral can then be evaluated approximately by expanding
both g(t) and h(t) in the neighborhood of t = 7. This idea is central in Laplace’s method.

Without loss of generality, we may assume that h(¢) reaches its maximum at one of the
endpoints and at no other point of the interval; if necessary, we break up the interval of
integration in a finite number of subintervals. Accordingly, we assume that h(¢) reaches its
maximum at ¢ and that h(t) < h(a) for all ¢t € (a,b].

Theorem 3 Let h be real-valued and continuous at a, and let g and h be such that the
integral fb wht (t) dt is well defined for all sufficiently large positive x. Suppose that there
exist € > 0 and 7 > 0, such that (i) g(t) = (t — a)*~'g1(t) for some A > 0, where g1 is m
times continuously differentiable on [a,a+ n]; (ii) R'(t) = —(t — a)?"Lhy(t) for some p > 0,
where hy is m times continuously differentiable on [a, a—|—77] and hi(t) > 0 for allt € [a,a+n);
and (iii) h(t) < h(a)—¢ for allt € (a+mn,b). Then fb MO g(t) dt has an m-term asymptotic



approzimation with respect to the asymptotic sequence {x_(”‘M)/p :n=0,1,...},

m—1 n —
S S [ U Ol YRS I
t=a P

Proof. We write the integral as a sum of two terms, ff "Wy (t) dt = A(z) + B(z), where
Az) = [0 e MW g(1) dt and B(z) = fzf-l-n e"MOg(t) dt. On the interval [a,a + 7], we
introduce a new variable of integration,
w = (@)~ h(ENY?, 1€ aat )

Then

t t 1

wh = —/ B(s) ds = / (s — )" hi(s) ds = (1 — a)p/ Yy (a + y(t — a)) dy.
a a 0

The last integral is m + 1 times continuously differentiable, positive, and increasing as a
function of t. With U = (h(a) — h(a + n))"/?, we have thus an m + 1 times continuously
differentiable mapping from the interval [a, a + 1] to the interval [0, U], whose inverse exists
and is also m + 1 times continuously differentiable. Then,

U
Alz) = e*h(@) / e~ e(u) du,
0

where k(u) = g(t)u'~*dt/du; k is m times continuously differentiable on [0, U].

Let lop(u) = e 4 and let [_y,...,I_,, be defined recursively,
I_p—q(u) = —/ I_p(v)dv, n=0,....,m—1.

The general expression for [_,,_1(u) is

(_1)n—l—1 < _zve n, A—1
l_pa(u) = —F— e (v—u)"v"" dv, n=0,...,m—1.
n! u

After m partial integrations, we have

A(z) = e ﬂil(—l)”[l—n—l(U)k(”)(U) — 1 (0E(O)] + Rin(2),

n=0

where the remainder is R,,(z) = e*M®)(—1)™ fOU I (w)k"™) (1) du. Now,

-1 n+1 0 -1 n+1 A
l—n—l(o) — ( )' / e—xupvn-l—/\—l dv = ( )' I (n + ) x—(n-l—/\)/p
n! 0 pn! p




while [_,_41(U) = O(e‘xUp) forn =0,...,m — 1. Furthermore,

|Rn(z) < / / e (v — u)™ oM do du

zh(a zh(a
C '( / e—acvp m+A—1 dv = Ce f )F (m + A) x—(m-I-A)/p
m!  Jo pm! p

b

50 Ry (2) = e*MIO(x=m+N/2) Since O(e=*U") = o(a=(m=14N/P) as & — oo, for any
positive integer m, it follows that A has the m-term asymptotic expansion

L EMO) L+ A
EA(z) = et Z T ( ) 2= (N /o
A p

We complete the proof by observing that B(z) = e*M)0(e=) and e~ = o(z~(m=1+N)/r)
as ¥ — oo, for any positive integer m. 1

It follows from Theorem 3 that, if

g(t) ~ alt — )™, W(1)~ Bt —a)’™ ast | a,

b A A p
=) dt ~ —F ( ) ( p ) M) a5 2 — 0.
/a 9(0) p pa

The integral studied by Laplace corresponds to the special case A = 1, p = 2.

then

The results of this section remain true if z is a complex variable and * — oo in any
sector S with A < %ﬂ'.

Exercises

1. The logarithmic derivative of the I' function is given by

P(z) = ['(z) =logz + /OO e ™t [l — #] dt.

I'(z) t 1—et

Obtain an asymptotic expansion of ¥(z) as © — oo. Justify that this expansion may be integrated
term by term and obtain an asymptotic expansion of log I'(z) (modulo an arbitrary constant) as
& — oo. Use the duplication formula for the I'-function, I'(2z) = (277)_1/222$_1/2I‘(x)F(x + %), to fix
the arbitrary constant and establish the asymptotic expansion

B
logI(z) = (z — 1) log z — = + 3 log(27) —I—Z:m 1727 as & — oo.

Here, By, is the nth Bernoulli number; cf. [3, Section 23.1].



2. When ¢ is positive, the logarithmic integral li(z) is defined by

Codt
li(x):/ ,
o logt

the integral being a Cauchy principal value (P) when ¢ > 1. If we put © = e* and ¢ = e*7°, the

definition becomes -
li(z) = eaP/ e’ dv
0

’
a—v

when a > 0. Apply the method of integration by parts to establish the asymptotic expansion

o0
—an- —n41
e li(e”) = E n! a1 as 4 — .

n=0

Verify that the smallest term in the asymptotic expansion is the mth term, where m is the largest
integer less than or equal to a. Verify that the difference between e~ “li(e®) and the first m terms
of the asymptotic expansion (i.e., the remainder after m partial integrations, R.,(a)) is given by
e a— 1/3)(271'/171)1/2 as @ — 0o, where « =a —m (0 < a < 1). Show that R,,_1(a) and Rpq1(a)
have opposite signs as a — oo.

3. The modified Bessel function of order v has the integral representation

1

T (CE) _ (%x)l’ / e_mt(l _ t2)l/—1/2 dt V> _1
v - 3 .

Lv+3)0(5) J ’

Apply the divide-and-conquer technique to separate the effects of the endpoints and establish the
asymptotic expansion

o]

e (-)"T(v+35+n) _
I(x) = 2 " as 7 — oo,
(o) (2mz)1/2 Z 27n! T(v + 1 —n) v

n=0

Cf. [4, Section 7.23].

4 Fourier Integrals

Next, we consider Fourier-type integrals, ff e f(t) dt, where (a,b) is a finite segment of
the real axis. If f is integrable, these integrals exist for all real . We are interested in their
asymptotic behavior as ¢ — oo.

Theorem 4 If f € C™([a,b]), then the integral F, ,(f)(z) = ff et f(t) dt has an m-term
asymptotic expansion in powers of v,

m—1
EF,,(f)(z)= Z il ) [eibggf(n)(b) - emxf(”)(a)] as x — 0.

n=0

The result remains true if a — —oo (b — o0), provided that f()(t) — 0 as t — —o0
(t = o0) forn=0,...,m—1, and provided that ™) s integrable over (a,b).



Proof. The remainder after m partial integrations is R,,(z) = —(wz)™" ff et Fm)() dt.
Because f(™) is of bounded variation, it follows from the Riemann-Lebesgue lemma [5,
Section 9.41] that the integral vanishes as # — oo. Therefore, R,,,(z) = o(27™). 1

Typically for the method of integration by parts, the result of Theorem 4 relies heavily
on the differentiability properties of f. Suppose that f(t) = (t — a)* (b — t)*~1 fi(t),
where f1 € C*([a,b]) and A and g are not integers. Then Theorem 4 gives us at best
that F, ,(f)(z) = O(2™"), where n is the largest integer less than or equal to min(A, p); in
particular, if A < 1 and p < 1, we find that F,;(f)(z) = O(1) as 2 — oo. This result is
not very good, as Fy, (f)(2) = o(1) in this case. Fortunately, we can do better, thanks to
a method developed by Erdélyi for functions f that are weakly singular near the endpoints
a and b; see [1, Section 2.8].

Theorem 5 If f(t) = (t — a)*~Y(b— )"~ 1 fi(1), where 0 < A\, < 1 and f € C"([a,b]),
then the asymptotic expansion of the integral F, ;( f)(z) = ff et f(t) dt is given by

m—1 n

r + mi(n— —(n ibx d -
EF,(f)(z)= Z 7(71”' 'u)e (n=u)/2 = (ntn) gid [dtn (t— a)/\ lfl(t)]t ,
n=0 ) =

m—1
F(n+A) citntr—2)/2,—(nt)\) iaw [d_n n-1 ]
— Z e x e dt”(b_t) fi(t) as x — 00.

t=a

Proof. Divide and conquer. Let x be an infinitely smooth function satisfying the conditions
x(t) = 1for all t € [a,a+ 7] and x(t) = 0 for all t € [b — n,b], where < 3(b— a). Write
the integral as a sum of two integrals, F, ,(f)(z) = A(z) + B(x), where

A= [t ) W - o )]
B(x):/ab et b — 1) 7t (1= x(0)(t — ) A (1)] dt.

+n

Thus, the singularities at the endpoints have been separated; the integrand of A has inher-
ited the singularity at a, but goes to zero smoothly at b—n; the integrand of B has inherited
the singularity at b, but goes to zero smoothly at a + 7.

We discuss the asymptotic behavior of A(z) as # — oo. The integral is of the form
b=n .
Awy= [ e =y () d,

where fy € C"([a,b— 7)), £ (a) = [(d"/dt")(b — £)*~ L f1(t)]i=a and fS(b—75) = 0 for

n=0,....,m-—1.



Let ho(t) = e*(t — a)*~!, and let h_y,...,h_,, be defined recursively,
h_n_1(t /h n=20,...,m—1,

where the integral connects the point ¢ € [a,b] with the point at infinity in the complex
plane along the directed path {z € C:z =1t +i7,0 <7 < oo}. The general expression for

h—n—l (t) 18
(_ 1)n—l—1
n!

hen-1(t) = /tei“(z —t)"(z—a)*dz, n=0,....,m—1.

The integral converges absolutely.

After m partial integrations, we have

m—1

= S (1o () 7 (@) 4 Ro(2),

n=0
where the remainder is R,,(z) = (—-1)" f h_p () f5 ( )()dt Now,

(L e L0 ) rle-2)2
T/a € (z —a)" T dz = (-1) n! pES)

forn =0,...,m—1. To estimate R,,, we need an estimate of h_,,(t) for ¢t € [a,b]. It is most

readily obtained from the general expression given above. Along the path of integration we
have |z — a|*™1 < (t — a)*! for all A € (0,1], so

i — A—1 .
( a) ' /|6zxz| |Z— t|m_1 |d2’| < (t _ a)/\—lx—m‘
©Jt

ar
€ ’

h—n—l (a) =

he, (1) <
()] <
Hence, R,, = O(z™™) as ¢ — oo. If A = 1, we can replace this estimate by R,, = o(a™™),
by virtue of the Riemann-Lebesgue lemma; cf. the proof of Theorem 4. Thus, for all
A € (0, 1] we find that the asymptotic expansion of A is given by

m— n—l—/\ mi(n+A—2)/2 I
Z_: )€ o e f2( )(a) as xr — 00.

n=0
Similarly,
m-lp mi(n—p)/2
n —I_ 0T
Z_% ,u) prE e fM(b) as & — oo

where f§7(b) = [(d"/dt")(t — a) " fi(1)]ims

The essence of Theorems 4 and 5 is that, under certain circumstances, the asymptotic
behavior of a Fourier integral as & — oo is determined by the behavior of its integrand near
the endpoints of the interval of integration. As z increases, the integrand oscillates more
and more rapidly, and the contribution from each oscillation tends to zero, except near the
endpoints.

10



5 Stokes’ Method of Stationary Phase

We now consider the integral fab ewhWg(t) dt, where (a,b) is a finite segment of the real
axis, z is a large positive parameter, and h is real-valued. (The function ¢ may be complex-
valued.) In general, the rapid oscillations of ¢ tend to cancel large contributions to the
integral, but this cancellation does not occur near the endpoints and near the stationary
points of h—that is, those points where A’ vanishes. Moreover, if there are any stationary
points, their contributions tend to be more important than the contributions from the
endpoints. Stokes’ method of stationary phase appraises the contribution of the stationary
points to the integral.

Assuming that h has only a finite number of stationary points, we may break up the
integral in a finite number of integrals, in each of which & is monotonic, and we may assume
h(t) to be increasing. Thus, we shall consider integrals in which A’(t) > 0 for all ¢t € (a,b)
and where a and b are either ordinary points (where h'(t) is positive) or stationary points
(where h/(t) vanishes to some positive, possibly fractional, order).

Theorem 6 Let g and h be such that the integral fb wwh(t (t) dt is well defined for all
sufficiently large positive x. Let h be real-valued and differentiable, such that h'(t) = (t —
@)’ b — )" hy(t), where p,o > 1, hy € C™([a,b]), and hi(t) > 0 for all t € [a,b]. If
g(t) = (t—a) N b—t)*"Lgy(t), where 0 < A\, < 1 and g, € C™([a,b]), then the asymptotic
expansion of [, e”’h(t)g(t) dt is given by the expression

b
E / pih(t)

m—1
n Z n ( /\) TN/ (20) = (4N /6 izh(a) o 0 o

m—1

-y ﬁ_:br (n + M) o= mi(nu)/(20) y—(nt ) o izh(b)

n=0 g

n=0 n! P
e (h(t) = ha)! =2 d\" ({1 = hla))
o | (R(1) = h(a)'"1rP d h(t) — h(a))t=e
owmo (MO ) 0
(k) = R Y d T ((b) = (1)1
oo (M) s

Proof. Divide and conquer Separate the effects of the endpoints of the integral as in the
proof of Theorem 5: f ewhg(t) dt = A(z) + B(x), where

Aw) = | T 0~ ot b - 07 ga(0)]

11



Ble) = [ 00—yt [ = o) - P gt

We discuss the asymptotic behavior of A(z) as © — oo. The integral is of the form
b=n
Ae)= [0~ a)ga()

where g5 € C™([a,b — n]). g§”(a) = [(d/d0)"(b— 1y~ g (1)] _, and g{ (b — ) = O for

n=0,...,m— 1. We introduce a new variable of integration,
w=(h(t) = h(a)"?, 1€ la,b—1].
Then,

uf = /at h'(s) ds = /at(s —a)” b — 87" hy(s) ds

= (t—a)f /01 Y0~ a—y(t—a))’ " ha(a+y(t - a)) dy.

The last integral is m + 1 times continuously differentiable, positive, and increasing as a
function of t. With U = (h(b — 1) — h(a))'/?, we have thus an m + 1 times continuously
differentiable mapping from the interval [a,b— 1] to the interval [0, U], whose inverse exists
and is also m + 1 times continuously differentiable. Then,

. u
A(z) = e”h(“)/ e”“puA_lk(u) du,

0

where k(u) = (t — a)*'u'~*go(t)dt/du; k is m times continuously differentiable on [0, U].

Let lo(t) = e u*1, and let I_y,...,I_,, be defined recursively,
l_p—1(u /l_ n=20,...,m—1,

where the integral connects the point u € [0, U] with the point at infinity in the complex
plane along the directed path {z € C:z = u+ 7e™/(20) 0 < 7 < c}. Thus,

(_1)n+1 1wz n_ A—1
lpoi(u)=—— [ e (z—u)"2"" dz, n=0,...,m—1
n! u
After m partial integrations, we have
m—1
Az) = ="M S (1)1 (0)EM™(0) + Ri(),
n=0

where the remainder is R,,(z) = eMa)(—1)" fo I (w)k"™) (1) du. Now,

l—n—l(o) = ﬂ‘/ eixzp2n+/\_1 dz = ﬂeﬂ'i(n-l—/\)/(m))r (n + A) x—(n-l-/\)/p
n! u pn! P

b

12



forn=0,....,m—1.

Estimating the remainder R,, is a bit more involved. First, consider the case 0 < A < 1.
Then |2|*~! < ! along the path of integration, so

u/\_l iwzf m—1
|l_m(u)| < m/ |€ | |Z— u| |d2|,
Also, from the identity
iz’ + x|y —ul’ = ipx/ (54 |z — ule™/Ze)yr=1 g,
0

together with the fact that the imaginary part of the integral is positive, we deduce that
Re(izzf) < —z|z — ul?, so

A1
()| < ———T (ﬂ) emmle.

Hence, R, (z) = O(z™™/?) as & — 0.

If A =1 and p > 1, we proceed in two steps. First, given € > 0 arbitrarily small, we

choose § > 0 such that S
1 m
(X (n) 1
,0m!F (P ) /o )] du < g

Then,

m i /(2p)\m  poo )
((_1)1)' / eixzp(z _ u)m—l ds = (_Eﬁe /(1;)') / eixup(l-l—ﬂ'e”’/(?f?))PTm—l dr,
m— 1) Jy m—=1). 0

50 [_pp(u) = v O((zu?)™™) as zu” — oo. Consequently, [_,,(u) = O(z™™) as ¢ — o0,
uniformly in w when « > ¢. Hence,

l_m(u) =

U
xm/p/6 ()] KO ()] du < Le,

for all sufficiently large z, and therefore R,,(z) = o(z=™/?) as x — oc.

The only remaining case is A = 1, p = 1. But this case is already covered by Theorem 5.
So we find that, for all p > 1 and 0 < A < 1, the asymptotic expansion of A is given by

m—1
EA(x) = ot 3 Snp (" + A) TN/ (20) = (N8 ag 4 oo,

where a,, = k"(0)/p. The coefficient a,, can be expressed in terms of the values of g and
h and their derivatives at a; the result is given in the statement of the theorem.

13



A similar result holds for B(z). The integral is of the form

b .
Bla)= [ 00— 0 gy(n) e
a+n

where g5 € C™([a + 1,8]), g8 (a + ) = 0 and g§"(b) = [(d/dt)"(t = a)*~1gr(t)] _ for
n=0,...,m— 1. We introduce the new variable of integration,

v = (h(b) = ()7, t€latn.b],

and put I(v) = (b—t)*~"w'"Fg3(t)dt/dv. In the repeated integrals of e'™*” v#~1 we integrate
along the directed path {z€ C:z =v+ Te_”/(zg)} and obtain by a process similar to that
used in the case of A(x) that, for all ¢ > 1 and 0 < p < 1, the asymptotioc expansion of B
is given by

m—1
EB(r) = ¢4 3 Dup (" a “) =T/ (2) = (k)7 o

—= n! o ’
where f3,, = —l(”)(O)/U. The coefficient 3,, can be expressed in terms of the values of g and
h and their derivatives at b; the result is given in the statement of the theorem. 1

Let us consider in more detail the case where g is regular at both endpoints ¢ and b
(i.e., A = p = 1). If a is a stationary point of order one and b an ordinary point (i.e.,
B'(t) = (t — a)hy(t) with hy(t) > 0 for all ¢ € [a,b], so h has a minimum at @), then the
leading term in the asymptotic expansion given in Theorem 6 comes from the point a and
is O(x'/?), while the next term comes from the point b and is O(z~'). From the theorem

we obtain
X :lg(t)m(t)—h(a))l/?] i)
0 ) T
Hence,

b
iwh(t) N 7T iwh(a)+mi/4 .
/a e g(t) dt ~ /2xh”(a) gla)e as ¥ — 00.

Similarly, if @ is an ordinary point and b a stationary point of order one (i.e., h'(t) =
(b—t)hi(t) with hy(t) > 0 for all ¢ € [a,b], so h has a maximum at b), then

_ (h(b)—h(t))m] __g(b)
ﬁO — [g(t) h/(t) — - /7_2h,,(b)

and

b
iwh(t) N 7T iwh(b)+mi/4
/a e g(t) dt RIS g(b)e as r — 00.

In general, if both endpoints @ and b are ordinary points, where A’ does not vanish, but h
has an extremum (either a minimum or a maximum) at some point 7 in the interior of the

14



interval (a,b), then we find, by combining the leading terms in the asymptotic expansions
of the integrals over [a, 7] and [7,b], that the leading term in the asymptotic expansion of
[P ewh®g(t) dt is given by

’ @ 27 wwh(T)+me
/a et g (1) dt ~ /W g(r)eThIFTIA ag 4 o

In this case, the contributions from the endpoints are O(z~!) or smaller as  — oc. This
observation confirms our earlier remark that the contributions from stationary points are
generally more important than those from regular endpoints.

Exercises

1. The Bessel function of order v has the integral representation

(lx)l' ! izt 2vv—1/2
2 R S o Ll RS

PO =T i )

Apply the divide-and-conquer technique to separate the effects of the endpoints and establish the
asymptotic expansion

Jo(z) = (1)1/2 [COS (x T ,/2_77) 3 (DT +i+2m)

227 (2n)!T (v + % — 2n)

n=0

22741 (2n + 1)IT(v — £ — 2n

—-1)"T 242
—sin(x—g—ﬂ)z ( ) (V+2+ n) )x_2n_1] as ¥ — o0.

n=0
Cf. [4, Section 7.21].
2. Prove that

1 o
/0 ez.rta dt — F (%) 67”/615_1/3 — Z_% %(im)_n_lelm as r — o0,

3. Prove that

= = (3n)! ol
/ ew(tf”/3+t) dt:lz(gnnn)[x M=l o

0 n=0

4. Airy’s integral is defined by
Ai(z) = —/ cos(53/3 + zs) ds.
0

With s = 2'/%t and y = x3/2, we obtain

1/3 &S] .
Ai(?/2/3):—y2ﬂ_/ VIR gy

Prove that -
N E(CTER D) o,
2mwxl/t 97(2n)!

n=0

Ai(z) =

as r — oQ.

15



References

[1] A. Erdélyi, Asymptotic expansions, Dover Publications, Inc., New York (1956).

[2] N. Bleistein and R. A. Handelsman, Asymptotic expansions of integrals, Holt, Rinehart
and Winston, New York (1975).

[3] M. A. Abramowitz and I. A. Stegun (eds.), Handbook of mathematical functions,
National Bureau of Standards (1965).

[4] G. N. Watson, Theory of Bessel functions, 2nd ed., Cambridge University Press, Cam-
bridge, England (1944).

[5] E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed., Cambridge
University Press, Cambridge, England (1927).

16



Index

Airy’s integral, 15
applications of mathematics
according to Hardy, 1

Bernoulli number, 7
Bessel function, 15

Complementary error function, 2
Erdélyi, A., 8

Fourier integrals, 8-10
Fourier-type integrals, 8
Fresnel integral, 2

Gamma function
logarithmic derivative of, 7

Hardy, G. H., 1

Incomplete Gamma function, 2
integration by parts, 1

Laplace integrals, 3-5

Laplace transform, 3, 4
asymptotic approximation, 4

Laplace’s method, 58

Laplace-type integrals, 3

logarithmic integral, 7

Method of stationary phase, 11
modified Bessel function, 8

Riemann—Lebesgue lemma, 8, 10

Stationary points, 11

Stokes’ method of stationary phase, 10-15

17



