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PrefaceFor some time, we have been interested in the development and application of asymptoticmethods for the numerical solution of boundary value problems with critical parameters|that is, parameters that determine the nature of the solution in some critical way. We arethinking, for example, of 
uid 
ow (viscosity), combustion (Lewis number), and supercon-ductivity (Ginzburg-Landau parameter) problems. Their solution may remain smooth overa wide range of parameter values, but as the parameters approach critical values, compli-cated patterns may emerge. Boundary layers may develop, or the region over which thesolution extends may take on the appearance of a patchwork of subregions; on each sub-region, the solution is smooth, but between subregions the solution undergoes dramaticchanges over very short distances. Shock layers in 
uid 
ow are a visible manifestation ofthis type of behavior.Boundary value problems with critical parameters pose some of the most challengingproblems in computational science, and much e�ort is being spent on developing new tech-niques for their numerical solution. Some of the most useful techniques, in particular onparallel computing architectures, are based on domain decomposition. In a domain decom-position method, one partitions the domain into subdomains, approximates the solutionon each subdomain, and assembles these solutions to obtain an approximate solution onthe entire domain. Many criteria, involving considerations from linear algebra to computerarchitecture, go into the design of a useful domain decomposition method. Our aim is toexplore the use of asymptotic methods.Asymptotic analysis, in particular singular perturbation theory, is the study of boundaryvalue problems involving critical parameters. It provides a methodology to identify andcharacterize boundary layers, transition layers, and initial layers; hence, our idea to useasymptotic methods in the design of domain decomposition algorithms.We have organized two workshops on the subject of asymptotic analysis and domaindecomposition: a workshop at Argonne, jointly sponsored by the Department of Energy andthe National Science Foundation (February 1990), and a NATO Advanced Research Work-shop in Beaune, France (May 1992). Proceedings of these workshops have been published(Asymptotic analysis and the numerical solution of partial di�erential equations, edited byH. G. Kaper and M. Garbey, Lecture Notes in Pure and Applied Mathematics { Vol. 130,Marcel Dekker, Inc., New York, 1991; Asymptotic and numerical methods for partial di�er-ential equations, edited by H. G. Kaper and M. Garbey, NATO ASI Series C: Mathematicaland Physical Sciences { Vol. 384, Kluwer Academic Publishers, Dordrecht, Neth., 1993).We currently have plans to develop a full-length book on the subject. To formulateour thoughts before �nal publication, we intend to produce a series of Working Notes onvarious relevant topics. Some of the notes will contain new material; others may o�er newpresentations of existing material. We certainly expect the notes to evolve in time; theii



notes may or may not appear eventually as chapters of the book. The notes are intendedfor our own use, but we will be happy to supply copies to interested colleagues.Marc Garbey, Lyon, FranceHans G. Kaper, Argonne, Illinois, USAWorking Note #1:Asymptotic Analysis|Basic Concepts and De�nitions, ANL/MCS-TM-179 (July 1993)Working Note #2:Asymptotic Analysis|Approximation of Integrals, ANL/MCS-TM-180 (July 1993)
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ASYMPTOTIC ANALYSISWorking Note #3BOUNDARY LAYERSbyMarc Garbey and Hans G. KaperAbstractIn this chapter we discuss the asymptotic approximation of functions that displayboundary-layer behavior. Our purpose here is to introduce the basic concepts underlyingthe phenomenon, to illustrate its importance, and to describe some of the fundamentaltools available for its analysis. To achieve our purpose in the clearest way possible,we shall work with functions that are assumed to be given explicitly|that is, functionsf : (0; �0)! X whose expressions are known, at least in principle. Only in the followingchapter shall we begin the study of functions that are given implicitly as solutions ofboundary value problems|the real stu� of which singular perturbation theory is made.Boundary-layer behavior is associated with asymptotic expansions that are regular\almost everywhere"|that is, expansions that are regular on every compact subsetof the domain of de�nition, but not near the boundary (Section 1). These regularasymptotic expansions can be continued in a certain sense all the way up to the bound-ary (Section 2), but a separate analysis is still necessary in the boundary layer. Theboundary-layer analysis is purely local and aims at constructing local approximationsin the neighborhood of each point of the singular part of the boundary (Section 3).The problem of �nding an asymptotic approximation is thus reduced to matching thevarious local approximations to the existing regular expansion valid in the interior ofthe domain (Section 4).1 Boundary-Layer BehaviorWe now continue the discussion of the asymptotic approximation of functions begun inChapter 2 and turn our attention to vector-valued functions that do not have regular asymp-totic expansions on their entire domain of de�nition. We assume throughout this chapterthat we are working with functions whose expressions are known, at least in principle,to better explain the phenomenon of boundary-layer behavior; the discussion of boundary-layer behavior for functions that are only known implicitly as solutions of singular boundaryvalue problems will begin in the following chapter.1



We �rst recall some relevant points of Chapter 2. Suppose that we are given a functionf , which is de�ned on (0; �0) �D, where D is a �xed (�-independent) domain in RN . Weconsider f as a vector-valued function, f : (0; �0) ! X , where X is a normed space offunctions de�ned on D, by making the identi�cation f(�)(x) = f(�; x) for all x 2 D. Thefunction f has a regular asymptotic expansion on D if there exist an asymptotic sequencef�n : n = 0; 1; : : :g of order functions �n and a nontrivial sequence ffn : n = 0; 1; : : :g ofelements fn 2 X , which do not depend on �, such that the function Ef : (0; �0) ! Xde�ned by the expression Ef(�) = Pn �n(�)fn is an asymptotic approximation of f on D.The (regular) asymptotic expansion may be de�ned up to a speci�ed number of terms orup to a speci�ed order of accuracy. The expansion coe�cients fn are uniquely determined,fn = lim�#0 f (n)(�)=�n(�); n = 0; 1; : : : ;where f (0)(�) = f(�) and f (n)(�) = f(�) �Pn�1p=0 �p(�)fp for n = 1; 2; : : : . The limits aretaken in X .Observe that the asymptotic sequence f�n : n = 0; 1; : : :g depends on f ; indeed, di�erentapplications may require di�erent asymptotic sequences.It is sometimes advantageous to weaken the condition that the coe�cients fn be totallyindependent of � and require instead that they are of the order O](1) as � # 0. This weakercondition leads to the theory of generalized asymptotic expansions. The coe�cients fn insuch expansions are not unique. Much of what we will say about regular asymptotic ex-pansions extends to generalized asymptotic expansions, but we prefer to avoid the technicalcomplications and will not consider generalized expansions.If the asymptotic expansion of f fails to be regular on the entire domain D, it is stillpossible that it is regular on a subdomain.De�nition 1 The function f : (0; �0) ! X has a regular asymptotic expansion on a sub-domain D0 of D if there exist an asymptotic sequence f�n : n = 0; 1; : : :g of order functionsand a nontrivial sequence ffn : n = 0; 1; : : :g of elements fn 2 X, which do not depend on�, such that the function E0f : (0; �0)! X, de�ned by the expression E0f(�) =Pn �n(�)fnis an asymptotic approximation of f on D0.Again, if f has a regular expansion on some subdomain D0 ofD, its expansion coe�cientsfn are unique and they are found by taking limits. The limits must be taken in the topologyinduced on D0 by the norm of X , but only the restrictions of the functions f (n)(�)=�n(�) toD0 need to be considered.Lemma 1 Let f have regular asymptotic expansions E0f and E1f on the subdomains D0and D1 of D, respectively. If D0 � D1, then E0f extends E1f to an asymptotic approxi-mation of f on D0. 2



Proof. An immediate consequence of the uniqueness of the coe�cients in a regular asymp-totic expansion with respect to the asymptotic sequence.Functions that display \boundary-layer behavior" are functions that are approximatedby a regular asymptotic expansion \almost everywhere" on D.De�nition 2 The function f : (0; �0)! X exhibits boundary-layer behavior on D if thereexists a regular asymptotic expansion Ef approximating f on every �-independent compactsubset of D, but there is no regular asymptotic expansion approximating f on D.The terminology \boundary layer" has its origin in 
uid dynamics. In the motion of aviscous 
uid near a boundary, the viscosity causes rapid variations of the 
uid velocity ina thin layer near the boundary, a phenomenon �rst studied by Prandtl in 1904 [1]. Laterdevelopments in continuum mechanics revealed that the phenomenon of boundary layerbehavior was not con�ned to 
uid dynamics, but that it is indeed a widespread phenomenoncaused by \singular perturbations" in the mathematical model. The terminology has beengenerally adopted to loosely describe the breakdown of regularity near boundaries.Boundary layers can occur anywhere along the boundary and don't have to happeneverywhere along the boundary. Thus, the boundary is the union of two disjoint sets, the\regular part" and the \singular part."De�nition 3 A point P 2 @D belongs to the regular part of the boundary, @rD, if theregular asymptotic expansion Ef extends to an asymptotic approximation of f on every�-independent compact subset of D [ P . Every point P 2 @D that does not belong to theregular part of the boundary belongs to the singular part of the boundary, @sD.The set of all points in D whose distance to a component of @sD is o(1), is usuallydesignated as a boundary layer. The terminology is vague and somewhat qualitative.A simple example of a function that exhibits boundary-layer behavior is given byf(�; x) = 1 � e�x=� for 0 � x < 1. If X = (C[0;1); k � k1) and f(�) 2 X is de-�ned by the identity f(�)(x) = f(�; x), then f has a boundary layer near 0. The elementf0 2 X , given by f0(x) = 1 for all x � 0, de�nes a regular approximation as � # 0 on everycompact interval [a; b] with 0 < a < b < 1, even on every interval [a;1) with a > 0, butthere is no regular approximation on the entire interval [0;1).Despite all physical evidence to the contrary, one could argue|and some mathematicianshave argued|that boundary-layer behavior illustrates a shortcoming of the mathematicalmodel, which could be easily \�xed." Boundary-layer behavior occurs because the topologyin X is too strong to handle signi�cant local variations that increase dramatically as the3



small parameter decreases to 0|for example, when X is a space of continuous functionsand the topology is de�ned in terms of uniform convergence, as in the example. So, all onehas to do is weaken the topology and admit generalized functions to the club of potentialexpansion coe�cients. Of course, the argument is correct|from the theoretical point ofview. But from the practical point of view it makes sense to consider functions that canbe evaluated pointwise and are de�ned continuously everywhere. The notion of a classicalsolution is essential in the context of applications, and uniform error estimates do makesense in numerical computations. Furthermore, the fact that � is a small parameter doesnot necessarily imply that it is in�nitesimally small. For all these good reasons we will stickwith the topology that causes the boundary-layer behavior and, if all goes well, we willshow not only how one can live with it, but even how one take advantage of it.A few more remarks about boundary layers.If a boundary layer occurs along a manifold that is described in terms of a timelikevariable t (usually t = 0), we may refer to it as an initial layer.If D is the union of a �nite number of disjoint subdomains, D = [iDi with Di \Dj =; if i 6= j, we may �nd a boundary layer along the common boundary of two adjacentsubdomains. In such cases, we may refer to the boundary layer as a transition layer.(Sometimes, the term internal layer is used.)For an elementary example of a transition layer, consider the boundary value problem�uxx + 2uux = 0; x 2 (�1;1); limx!�1 u(x) = �1:This nonlinear problem is a prototype of many other problems in the theory of nonlinearwaves; it is a special case of Burgers equation [2] or [3, Chapter 4]. Its solution is known,u(�; x) = tanh(x=�) for �1 < x < 1. To put this problem in the functional framework,de�ne D1 = (�1; 0) and D2 = (0;1) and put D = D1 [ D2. Let X be the normedvector space (C(D); k � k1), and consider u as a map from (0; �0) into X by making theusual identi�cation, u(�)(x) = u(�; x) for all x 2 D. The function u0 2 X with valuesu0(x) = �1 if x 2 D1 and u0(x) = 1 if x 2 D2, de�nes an asymptotic approximation onevery compact subset of D, even on every subset fx 2 D : jxj � ag with a > 0, but thereis no �-independent element in X that provides an asymptotic approximation of u on all ofD. The origin makes up the singular part of the boundary, and a transition layer is locatedon either side of it.Boundary layers may have very complicated structures. For example, boundary layersmay be nested within each other when changes occur on several length scales simultane-ously. Or transition layers may move and interfere with each other|a situation that arisesfrequently in the context of 
uid dynamics, where shock waves present the most visibleevidence of transition layers. Clearly, all this makes for a very complicated theory, whosedevelopment becomes cumbersome or even impossible unless one makes drastic simplifyingassumptions. Singular perturbation theory, the study of boundary layers, initial layers, and4



transition layers, has made much progress, but remains the domain of a few. In particular,its application to the numerical solution of boundary value problems|the main objectiveof this book|is largely undeveloped.Exercises1. Consider the boundary value problemut = �uxx; (t; x) 2 (0;1)� (�1;1);limjxj!1 u(t; x) = 0; t 2 (0;1); u(0; x) = �(x); x 2 (�1;1);where � is a given function. This linear boundary value problem is a simple model for all sorts ofdi�usion phenomena; the coe�cient � measures the rate of di�usion.(i) Verify that the solution of this boundary value problem is given by the integralu(�; t; x) = 1(4��t)1=2 Z 1�1 �(y) exp �� (x� y)24�t � dy:(ii) Discuss the asymptotic behavior of u as � # 0.2 Extension TheoremsSuppose that f has boundary-layer behavior in D. Then there exist �-independent elementsf0; f1; : : : in X such that the function Ef = Pn �nfn is an asymptotic approximation of fon any compact subset K of D. If the boundary of D has a regular part @rD, then Efextends to an asymptotic approximation of f on every �-independent compact subset ofD[@rD. However, Ef does not extend to an asymptotic approximation of f on D, becauseof the presence of the singular part of the boundary, @sD. On the other hand, it is possibleto extend Ef up to @sD in a well de�ned sense. The extension theorems that we establishin this section generalize a result of Kaplun [4, 5] and are a consequence of the followingsimple lemma.Lemma 2 Let the function g be positive on (0; �0) � (0; d0) for some �0 > 0 and d0 > 0,and let g satisfy the properties (i) g(�; �) is monotone nonincreasing for each � 2 (0; �0), and(ii) lim�#0 g(�; d) = 0 for each d 2 (0; d0). Then there exists an order function � satisfying� = o(1), such that lim�#0 g(�; �(�)) = 0.Proof. It follows from (ii) that, for any p > 0 and any �xed d 2 (0; d0), we have g(�; d)< pfor all su�ciently small positive �. Let q(d; p) = supfq : g(�; d) < p; � 2 (0; q)g. Becauseof (i), q(�; p) is nondecreasing; furthermore, limd#0 q(d; p) = 0. We now form a sequenceof triples, f(dn; pn; qn) : n = 1; 2; : : :g, starting from two sequences fdn : n = 1; 2; : : :gand fpn : n = 1; 2; : : :g, both monotonically decreasing toward 0, and using the de�nition5



qn = minfq(pk; dk) : k = 1; 2; : : : ; n; 1=ng to determine the third element of each triple.Then g(�; d) < pn for all � 2 (0; qn) and d � dn. We claim that any monotone continuousfunction � that satis�es the relation �(qn) = dn�1 for n = 2; 3; : : : satis�es the conditions ofthe lemma.Let p be any positive number. Then pm < p for some integer m. Any � 2 (0; qm)satis�es qn+1 � � < qn for some n � m; hence, dn � �(�) < dn�1, and therefore g(�; �(�)) �g(�; dn) < pn � pm < p.We will prove an extension theorem for the case that @sD is bounded, leaving theunbounded case to the exercises.Theorem 1 Suppose @sD is compact and the regular expansionEf =Pn �nfn is an asymp-totic approximation of f on every �-independent compact subset of D [ @rD. Then thereexist an order function � satisfying � = o(1) and a nested family fK�(�) : � 2 (0; �0)g ofcompact subsets of D [ @rD satisfying dist(K�(�); @sD) = �(�), such that Ef extends to anasymptotic approximation of f on K�(�).Proof. If @sD is compact, we can associate with any compact subset K of D [ @rD a�nite number dist(K; @sD) = supfinffkx� yk : y 2 Kg; x 2 @sDg, where k � k denotes theEuclidean distance in RN . Furthermore, for any number d 2 (0; d0) we can �nd a compactsubset Kd of D for which dist(Kd; @sD) = d. Without loss of generality, we may assumethat the family of subsets fKd : d 2 (0; d0)g is nested, in the sense that Kd � Kd0 if d > d0.Let k � kd denote the X-norm of the restriction of an element of X to Kd. We are giventhat there exist functions fn 2 X such that lim�#0 kf (n)(�)=�n(�)�fnkd = 0, where f (0)(�) =f(�) and f (n)(�) = f(�) �Pn�1p=0 �p(�)fp for n = 1; 2; : : :, for each d 2 (0; d0). The assertionof the theorem follows from Lemma 2, where we take g(�; d) = kf (n)(�)=�n(�)� fnkd.We may summarize the statement of Theorem 1 by saying that Ef extends to an asymp-totic approximation of f on D [ @rD \from within D." We denote the extension by EIfand refer it as the interior expansion of f on D. The subscript I serves to distinguish EIffrom a regular expansion Ef , which does not require an approximation of the underlyingdomain. Of course, if f has a regular asymptotic expansion on D, then EIf = Ef .To illustrate the e�ect of Theorem 1, we recall the example f(�; x) = 1�e�x=� on [0;1)from the previous section. As we have seen, the element f0 2 X , given by f0(x) = 1 forall x � 0, de�nes a regular asymptotic approximation on every interval [a;1) with a > 0.According to Theorem 1, there exists an order function � satisfying � = o(1), such that f0extends to an asymptotic approximation on [�(�);1). However, Theorem 1 does not giveus any more information about �, other than that it is o(1) as � # 0. So, although we know6



that f has a regular asymptotic approximation on (0;1) in the sense of the theorem, whatactually happens near 0 remains undisclosed.Another interesting application of Lemma 2 is given in the following extension theo-rem. It shows that one can sometimes sacri�ce some of the accuracy of an asymptoticapproximation to gain an extension of its domain of validity.Theorem 2 Suppose @sD is compact and Ef is an asymptotic approximation of the orderof �m�1 (i.e., Ef is a regular expansion to m terms) of f on any �-independent compactsubset of D [ @rD. Then there exist, for each p 2 f0; : : : ; m � 1g, an order function �0psatisfying �0p = o(1) and a nested family fK�0p(�) : � 2 (0; �0)g of compact subsets of D [ @rDsatisfying dist(K�0p(�); @sD) = �0p(�), such that Ef extends to an asymptotic approximation ofthe order of �m�1�p of f on K�0p(�). The order functions �0p satisfy the relation �0p = O(�0p�1)for p = 1; : : : ; m� 1.Proof. If f �Ef = o(�m�1) on any compact subset of D [ @rD, then certainly f � Ef =o(�m�1�p) for p = 0; : : : ; m� 1 on the same subset. The proof of the theorem is similar tothe proof of Theorem 1, where in the �nal step we take g(�; d) = k(1=�m�1�p)(f �Ef)k. Itsu�ces to take �0p = �0p�1 to prove the last assertion of the theorem.Although the statement of the theorem is impressively complicated, its proof is disap-pointingly simple; in fact, the bottom line is that by taking �0p = �0p�1 we do not achieveany extension at all. The point is, however, that it may just be possible to sharpen theestimate �0p = O(�0p�1) to �0p = o(�0p�1) and thus obtain a real extension of Ef , albeit at theprice of a reduction in the order of accuracy.Here is a simple example, where all the details can be worked out. Consider the functionf(�; x) = (� + x)�1 on [0;1) as a mapping from (0; �0) into X = (C[0;1); k � k1). Them-term expansion Ef(�; x) = Pm�1n=0 (�1)n�nx�n�1 de�nes an asymptotic approximationof the order of �m�1 of f , f � Ef = o(�m�1), on any interval [a;1) with a > 0. Theremainder can be calculated explicitly, (f � Ef)(�; x) = (�1)m�mx�m(� + x)�1, and onereadily veri�es that, for each p 2 f0; : : : ; m� 1g, f �Ef = o(�m�1�p) on any interval of theform [a�p=(m+1);1). The left endpoint of this interval actually gets closer to 0 as p increases,while � is being kept �xed. Thus, a real extension of Ef is obtained. In the notation ofTheorem 2, we have �0p(�) = �p=(m+1) and, indeed, �0p = o(�0p�1) for p = 1; : : : ; m� 1.Exercises1. Prove the following counterpart of Lemma 2.Lemma 3 Let the function g be positive on (0; �0) � (d0;1) for some �0 > 0 and some real numberd0, and let g satisfy the properties (i) g(�; �) is monotone nondecreasing for each � 2 (0; �0), and (ii)7



lim�#0 g(�; d) = 0 for each d 2 (d0;1). Then there exists an order function � satisfying � = o(1), suchthat lim�#0 g(�; 1=�(�)) = 0.2. Prove the following counterpart of Theorem 1.Theorem 3 Let BR denote the (open) ball of radius R centered at the origin in RN . Suppose D isunbounded and f has a regular asymptotic expansion Ef =Pn �nfn on every �-independent compactsubset KR = D \ BR of D. Then there exist an order function � satisfying � = o(1) and a nestedfamily fB1=�(�) : � 2 (0; �0)g of balls of radius 1=�(�) centered at the origin in RN , such that Efextends to an asymptotic approximation of f on K1=�(�) = D \B1=�(�).3. Prove the following counterpart of Theorem 2.Theorem 4 Let BR denote the (open) ball of radius R centered at the origin in RN . Suppose Dis unbounded and Ef is an asymptotic approximation of the order of �m�1 (i.e., Ef is a regularexpansion to m terms) of f on every �-independent compact subset of KR = D \ BR of D. Thenthere exist, for each p 2 f0; : : : ;m� 1g, an order function �0p satisfying �0p = o(1) and a nested familyfB1=�0p(�) : � 2 (0; �0)g of balls of radius 1=�0p(�) centered at the origin in RN , such that Ef extendsto an asymptotic approximation of the order of �m�1�p of f on K1=�0p(�) = D \ B1=�0p(�). The orderfunctions �0p satisfy the relation �0p = O(�0p�1) for p = 1; : : : ;m� 1.4. Prove the following extension of Lemma 3.Lemma 4 Let � be a real-valued function on (0; �0), which grows beyond bounds as � # 0. Let thefunction g be positive on the set f(�; d) : � 2 (0; �0); d 2 (d0; �(�))g for some �0 > 0 and some realnumber d0, and let g satisfy the properties (i) g(�; �) is monotone nondecreasing for each � 2 (0; �0),and (ii) lim�#0 g(�; d) = 0 for each d 2 (d0;1). Then there exists an order function � satisfying� = o(1), such that lim�#0 g(�; 1=�(�)) = 0.5. Prove the following extension of Theorem 3.Theorem 5 Let � be a real-valued function on (0; �0) which grows beyond bounds as � # 0, and letB� denote the (open) ball of radius �(�) centered at the origin in RN . Suppose D is unbounded and fhas a regular asymptotic expansion Ef on every compact subset D� = D \B� of D. Then there existan order function � satisfying � = o(1) and a nested family fB1=�(�) : � 2 (0; �0)g of balls of radius1=�(�) centered at the origin in RN , such that Ef extends to an asymptotic approximation of f onK1=�(�) = D \B1=�(�).6. Let X = C([0;1); k � k1), and let � 2 X have a convergent Taylor series expansion �(x) =P1i=0 aixifor all x 2 [0;1). Consider the function f(�; x) = �(�x) as a map from (0; �0) into X. Find the m-term asymptotic expansion Ef of f and verify that it can be extended to an asymptotic approxiationof the order of �m�1�p (p = 0; : : : ;m� 1) on any interval [0; b��p=m], where b > 0. (Cf. Theorem 4.)3 RegularizationThe extension theorems are important for the development of singular perturbation theory,but of limited practical use. First, they are typical existence theorems; they do not sayanything about the order function �, except that it is o(1). Second, they do not give anyinsight as to what actually happens inside the boundary layer. This information can onlycome from a local analysis. 8



The idea behind the local analysis that we are about to present is fairly simple. Boundarylayers occur because the function under discussion undergoes rapid variations near thesingular part of the boundary, and these variations happen on ever smaller scales as � # 0.So, if we want to �nd out what actually happens inside the boundary layer, we must lookon a di�erent scale|that is, introduce a new independent variable|, where things arestretched out in the transverse direction across the boundary layer. In fact, the amount ofstretching must increase as � decreases, to counteract the \thinning" of the boundary layer.The choice of the new independent variable depends of course on the function underconsideration and may vary from one component of the singular part of the boundary toanother. In general, the new variable, y, will be a function of � and the old variable x,y = �(�; x) say. If P 2 @sD is a representative point on the particular component ofthe singular part of the boundary near which we wish to perform a local boundary-layeranalysis, then � must be su�ciently regular (for example, a homeomorphism), at least onsome subset DP = D \ BR(P ) of D with R > 0. (BP (R) is the open ball of radius Rcentered at P in RN .) Usually, one de�nes � in such a way that P is sent to the origin, so�(�; xP ) = 0, and � is a linear function of x. For example, y = (x� xP )=�(�) with � = o(1)maps a one-dimensional boundary layer near x = xP onto an interval whose length growsbeyond bounds as � # 0. If �(DP ) is the image of the set DP under the change of variables,�(DP ) = f�(�; x) : x 2 DP ; � 2 (0; �0)g, then �(DP ) looks like a semi-in�nite cylinder basedat the origin.Now, consider the e�ect of such a transformation on f , which is a function of � and x.The change of variables y = �(�; x) transforms f into another function, Tf say, of � and ythrough the formula Tf(�; y) = Tf(�; �(�; x)) = f(�; x). This function can be interpretedas a mapping Tf : (0; �0)! Y , where Y is an appropriately de�ned normed vector space offunctions on �(DP ), whose asymptotic behavior as � # 0 can be analyzed in the frameworkof Y . Since the dependence of Tf upon � di�ers from the dependence of f upon �, thereis a chance that Tf has a regular asymptotic expansion on �(DP ) and that the originbelongs to the regular part of the boundary. (Recall that the origin is the image of P underthe change of variables; it is a boundary point of �(DP ).) If this is the case, we haveachieved a regularization of f at P . We can construct the regular expansion in Y and thentransform everything back to DP by means of the inverse transformation ��1. The resultis an expansion of f , which is a local asymptotic approximation of f near P .Of course, there is no guarantee that a regularization exists, and if it exists it may notbe unique, but this all depends on the function f .Before moving on to the details, we discuss a simple example, where everything canbe worked out. The example is again provided by the function f(�; x) = 1 � e�x=� on[0;1), which, considered as a map from (0; �0) into X = (C[0;1); k � k1), has a boundarylayer near 0. The transformation y = �(�; x) = x=� maps the interval [0;1) onto itself,and we can take Y = X . The transformations � induce a regularization of f near 0,Tf(�; y) = 1 � e�y for y 2 [0;1). The function Tf is independent of � and is therefore9



identical with its (regular) asymptotic expansion on its entire domain of de�nition. Theinverse transformation x = ��1(�; y) = �y yields the expansion E0f(�; x) = 1� e�x=�, whichis a local asymptotic approximation of f on every compact subinterval of [0;1).We now turn to the details of a local boundary-layer analysis.Suppose f : (0; �0) ! X has boundary-layer behavior on D. The singular part @sD ofthe boundary of D may consist of several components, each of which needs to be analyzedseparately, but throughout the following discussion we focus on one single component.To avoid extraneous technical complications, we assume that this component is a smooth(N�1)-dimensional manifold, where the normal direction is well de�ned at each point. LetP be a representative point on this manifold. The position vector of P is xP = (xP1 ; : : : ; xPN),the tangent space at the point P is spanned by the unit vectors tP1 ; : : : ; tPN�1, and the unitnormal vector at P is nP . For de�niteness, we assume that nP points into D; if P isidenti�ed with a transition layer, we treat each side of the boundary separately.LetEf(�) =Pn �n(�)fn be the regular asymptotic expansion of f on every �-independentcompact subset of D [ @rD. As we have seen in the previous section, Ef extends to anasymptotic approximation of f on �-dependent compact subsets, possibly with some lossof the order of accuracy. We assume that this extension has been done and that Ef is anasymptotic approximation of f on the compact subset K�0p of D[@rD for some �0p satisfying�0p = o(1). The distance from P to K�0p is O](�0p).As a �rst step, we change variables to magnify the boundary layer in the \thin" (normal)direction. The change is accomplished by an �-dependent transformation,�(�) : x 7! y = �(�; x):In most cases, �(�) can be an a�ne transformation|that is, a shift to put P at the origin,followed by an �-dependent linear transformation; in exceptional cases, it may be necessaryto generalize to a general homeomorphism. In either case, one must assume that �(�) isde�ned on some subset DP = D \BR(P ) of D and continuously extended to P . (BR(P ) isthe open ball of radius R centered at P in RN .) To keep things simple, we will take�(�; x) = �(�)(x� xP ); x 2 DP ;where � : (0; �0) 7! RN�N+ is a nonsingular matrix-valued function, which is asymptot-ically equal to the direct sum of the identity matrix on the tangent space and a scalarmultiplication by 1=� in the direction of the normal vector at P , for some � 2 E ,k�(�)tPi k = O](1); i = 1; : : :N � 1; k�(�)nP k = O](1=�(�)):Here, k � k is the Euclidian length in RN . We require that � satisfy the order relation� = o(�0p), to provide �(�) with su�cient magni�cation in the boundary layer as � # 0.10



The transformations �(�) form a family,� = f�(�) : � 2 (0; �0)g;which we assume to be ordered, �(�1)(DP ) � �(�2)(DP ) whenever �1 � �2. We put �(DP ) =[��(�)(DP ), say that � is of the order of 1=�, and write � = O](1=�).A �rst observation is that �(DP ) is an unbounded subset of RN . In fact, �(�)(DP )looks like an open cylinder, whose cross section remains asymptotically the same, but whosedimension in the axial direction is stretched more and more as � # 0.Second, the origin belongs to the boundary of �(�)(DP ) for every � 2 (0; �0) and so, byinduction, to the boundary @�(DP ) of �(DP ). In the image of the previous paragraph, theorigin is at the center of the base of every cylinder.Third, because we have given � su�cient magni�cation, all points beyond the boundarylayer (that is, all points belonging to the domain of validity of the interior approximationEf of f) are sent to in�nity. Consequently, the pre-image of any �-independent compactsubset of �(DP [ P ) = �(DP ) [ 0 is a subset of the boundary layer near P .Now, we consider the e�ect of the transformation � on elements of X , or rather, theirrestrictions to DP .Let XP denote the normed vector space of functions de�ned on DP with the topologyinduced by the norm of X . Elements of XP are functions de�ned on the domain DP , whichis �-independent. But by applying the coordinate transformation �(�), we transform theminto functions de�ned on �(�)(DP ), which is �-dependent. The purpose of the following ar-guments is to construct a normed vector space YP of functions de�ned on the �-independentdomain �(DP ). The tool we use is that of the inductive limit; a discussion of inductivelimits and their properties can be found, for example, in [6, Section XI.5].Let YP (�) be the set of all functions  de�ned on �(�)(DP ) by the identity (y) =  (�(�; x)) = �(x); y 2 �(�)(DP );for some � 2 XP . We make YP (�) into a normed vector space by introducing a norm k � kYthat is commensurate with the norm in X ,k kY = k�kX ; � 2 XP :The spaces fYP (�) : � 2 (0; �0)g form a nested family of normed vector spaces, because ofthe ordering within the family � . Their inductive limit de�nes the space YP ,YP = lim ind�#0YP (�):Again, the precise details of this construction are less important; what is important is theintuitive idea that we end up with a normed vector space YP of functions de�ned on an11



�-independent domain and that we have a framework to relate elements of XP (functionsde�ned on DP ) to elements of YP (functions de�ned on �(DP )). The relation above betweenthe functions � 2 XP and  2 YP de�nes a transformation T� : XP ! YP ,(T��)(y) = �(x); y = �(�; x); x 2 DP ; � 2 XP :Let us see what this transformation does to the restriction of f(�) toDP . For each � 2 (0; �0),we obtain the element T�f(�) 2 YP , so if we do this for every � 2 (0; �0), we obtain a newvector-valued function, TP f : (0; �0)! YP ,(TP f)(�) = T�f(�); � 2 (0; �0):The pointwise expression is(TP f)(�; y) = f(�; x); y = �(�; x); x 2 DP ; � 2 (0; �0):The function TP f gives us indirect access to f , and our goal is to use TP f to investigatethe asymptotic behavior of f near P . (Recall that P is mapped into the origin, so we willpay particular attention to the behavior of TP f near the origin.)De�nition 4 The transformation � is a regularizing transformation for f at P if the originbelongs to the regular part @r�(DP ) of the boundary of �(DP ) for the function TPf : (0; �0)!YP . The function TP f de�ned by a regularizing transformation � is called a regularizationof f at P .Thus, if TP f is a regularization of f at P , then TP f has a regular asymptotic expansion~ETP f(�) = Pn �n(�)(TPf)n on every �-independent compact subset of �(DP ) [ 0, where(TP f)n 2 YP for n = 0; 1; : : : The tilde ~ indicates that the expansion de�nes an asymptoticapproximation in YP .A regularization may or may not exist. For example, there is no transformation thatregularizes the function (1� e�x=�) sin(1=x) at 0. Also, if a regularization exists, it is notnecessarily unique. Again, we illustrate with an example,f(�; x) = �(x=�) +q(x=�)2 + 2=�+ 1;on [0;1). This function, considered as a mapping from (0; �0) into X = C([0;1); k � k1),has a boundary layer at 0 (P = 0). Each transformation ��(�)(x) = x=�� with � � 0 mapsthe interval [0;1) onto itself and YP = XP = X . We haveT �P f(�; y) = ����1y +q�2��2y2 + 2��1 + 1:If 0 � � < 12 , then T �P f(�) � ���f0;� with f0;�(y) = 1=y on any interval [a;1) with a > 0;if � � 12 , then T �P f(�) � ��1=2f0;� with f0;�(y) = �y +p2 + y2 if � = 12 and f0;�(y) = p2 if12



� > 12 on any compact interval [0; b] with b > 0. Thus, every transformation �� with � � 12de�nes a regularization T �P f of f at 0.As can be seen from the example, some regularizing transformations look more promis-ing than others: one has the feeling that the transformation �� with � = 12 is somehowmore signi�cant, because it gives more information at less magnifying power than the sametransformation with � > 12 .We can compare the magni�cation of di�erent transformations and thus their ability toinduce a regularization.Lemma 5 Suppose � induces a regularization of f at P , and � = O](1=�). Then everytransformation � 0 which is O](1=�0) with �0 = o(�) induces another regularization of f at P .Proof. The assertion of the lemma is an immediate consequence of the ordering within thefamilies � and � 0 and the order relation �0 = o(�).De�nition 5 A signi�cant regularization of f is induced by any transformation � withminimal order|that is, if � = O](1=�) and � 0 is another regularizing transformation forf at the same point, which satis�es the order relation � 0 = O](1=�0), then �0 = o(�). Avariable f�(�; x) : x 2 Dg that de�nes a signi�cant regularization is called a boundary-layervariable.In the example above, the signi�cant regularization is induced by the transformation ��with � = 12 ; less magni�cation does not yield a regularization, more magni�cation does notyield enough detail. The boundary layer variable is y = x��1=2.Signi�cant regularizations are obviously more signi�cant than ordinary regularizationsand will usually be the ones of interest. We shall therefore ignore the latter in favor of theformer and simply refer to the former as \regularizations." We repeat, however, that theexistence of a regularization is in no way guaranteed; in fact, the characterization of theclass of functions f for which a regularization exists is an open and interesting problem ofasymptotic analysis.The (signi�cant) regularization will generally be the same at points on the same com-ponent of @sD, but vary from one component to another if @sD consists of more than onecomponent. It then becomes a matter of piecing the various regularizations together toarrive at a global regularization.Now suppose that we have found a regularization TP f of f at P through a regularizingtransformation � of the order O](�r), and let ~ETP f(�) = Pn �n(�)(TP f)n be the regular13



asymptotic expansion of TP f on every �-independent compact subset of �(DP ) [ 0. (Werecall that �r satis�es the order relation �r = o(�0p), where �0p is a measure of the thickness ofthe boundary layer.) As we have seen in the previous section, the asymptotic approximationde�ned by ~ETP f extends to �-dependent compact subsets, possibly with some loss of theorder of accuracy if one goes for the largest possible domain. (In the present case, theextension process must be based on Theorem 3, or its generalization Theorem 4, becausethe set �(DP ) is unbounded.)Let us formulate the result of the extension in precise terms. Suppose ~ETP f is anasymptotic approximation of the order of �n�1 of TP f (i.e., ~ETPf is an n-term asymptoticexpansion). Then there exist, for each q 2 f0; : : : ; n � 1g, an order function �00q satisfying�00q = o(1) and a nested family fB1=�00q (�) : � 2 (0; �0)g of balls of radius 1=�00q (�) centered atthe origin in RN , such that ~ETP f extends to an asymptotic approximation of the orderof �n�1�q of TP f on ~K1=�00q = (�(DP ) [ 0) \ B1=�00q (�). The order functions �00q satisfy therelation �00q = O(�00q�1) for q = 1; : : : ; n� 1; possibly, this order relation can be sharpened toa o-relation.If we transfer these results to the space XP by means of the transformation T�1P , weobtain the following theorem.Theorem 6 Suppose TP f is a regularization of f at P and ~ETP f is its asymptotic ap-proximation of the order of �n�1 (i.e., ~ETP f is an n-term asymptotic expansion) on any�-independent compact subset of �(DP ) [ 0. Then there exist, for each q 2 f0; : : : ; n� 1g,an order function �00q satisfying �00q = o(1) and a nested family fB(�r=�00q )(�)(P ) : � 2 (0; �0)gof balls of radius �r(�)=�00q (�) centered at P in RN , such that T�1P ~ETP f is an asymptoticapproximation of f on K(�r=�00q )(�) = (DP [ P ) \ B(�r=�00q )(�)(P ). The expansions ~ETP f andT�1P ~ETP f have the same number of terms and de�ne asymptotic approximations to thesame order of accuracy.Proof. If we apply T�1P to the regular asymptotic expansion ~ETP f , we obtain the functionT�1P ~ETP f in XP , which is an expansion of f , although not necessarily a regular asymptoticexpansion. If ~ETP f is an asymptotic approximation of TP f of a certain order of accuracyor of a certain number of terms on some compact subset of �(DP ) [ 0, then T�1P ~ETP f isan asymptotic approximation of f of the same order of accuracy or the same number ofterms on the pre-image of the set under the transformation � . The fact that the order ofaccuracy does not change is an immediate consequence of the fact that the norms in XPand YP are commensurate. The pre-image of a compact subset of �(DP ) [ 0 is a compactsubset of DP [ P , and the pre-image of a ball of radius 1=�q(�) centered at the origin inRN is a \
attened ball" centered at P in RN , whose dimensions are asymptotically of theorder O](1=�00q ) in the tangential directions and O](�r=�00q ) in the normal direction.14



By imposing the condition �r = o(�00q ), we achieve that the subsets K(�r=�00q )(�) are locatedentirely within the boundary layer near P ; they �ll the boundary layer in the normaldirection as � # 0.We may summarize the statement of the theorem by saying that T�1P ~ETPf extends toan asymptotic approximation of f in the boundary layer near P . We denote the extensionby EP f and refer to the function EP f thus de�ned as a local expansion of f near P . Theexpansion can be to a speci�ed number of terms or to a speci�ed order of accuracy. If � isthe regularizing transformation that de�nes TPf , then we have the pointwise expressionEP f(�)(x) = EP f(�; x) =Xn �n(�)(TP f)n(y); y = �(�; x); x 2 DP :The functions (TP f)n are uniquely determined; they are obtained by taking limits in Y ,(TPf)n = lim�#0 (TPf)(n)(�)�n(�) ; n = 0; 1; : : : ;where (TPf)(0)(�) = (TPf)(�) and (TPf)(n)(�) = (TPf)(�) � Pn�1p=0 �p(�)(TPf)p for n =1; 2; : : : Pointwise,(TP f)(�)(y) = (TPf)(�; y) = f(�; x); y = �(�; x); x 2 DP [ P:We conclude with a simple example to illustrate Theorem 6.Consider the function f(�; x) = e�x=�+�(x) on [0;1), where � has a convergent Taylorseries expansion for all x, �(x) = P1i=0 aixi. As usual, we consider this function as amapping from (0; �0) into X = (C[0;1); k � k1). The transformation y = x=� regularizes fat the origin, TP f(�; y) = e�y+�(�y), and the asymptotic approximation to the accuracy of�n�1 is ~ETP f(�; y) = e�y+Pn�1i=0 ai�iyi. The remainder satis�es the estimate TP f� ~ETP f =O](�n) = o(�n�1) on any interval [0; b] with b > 0. But, in agreement with Theorem 6, wealso have, for each q 2 f0; : : : ; n � 1g, TP f � ~ETP f = o(�n�1�q) on any interval of theform [0; b��q=n]. When we translate these results back to the original variable, we obtainthe local expansion EP f(�; x) = e�x=� + Pn�1i=0 aixi for f , which satis�es the asymptoticestimate f � EP f = o(�n�1�q) on any interval [0; b�1�q=n]. Notice that the length of thisinterval always goes to zero as � # 0, but the rate decreases as q increases. In the notationof Theorem 6, we have �00q (�) = �q=n.Exercises1. Consider the function f(�; x) = �2(x+ �2)�1e�x=� for 0 � x <1 as a map into X = (C[0;1); k � k).Verify that f has boundary-layer behavior near 0, �nd a signi�cant regularization of f at 0, anddiscuss the local expansion of f near 0. 15



4 Matching Asymptotic ApproximationsWe now come to the important problem of matching local expansions valid in the boundarylayer to the interior expansion valid in D.Suppose f has boundary-layer behavior on D and P is a point on @sD, the singularpart of the boundary of D. Let EIf be the asymptotic approximation of f obtained byapproximating D from within, as described in Theorem 1 or its generalization, Theorem 2,and let EP f be the local asymptotic approximation obtained through a regularization of fnear P , as described by Theorem 6. Then two things are needed to match EP f to EIf : (i)EIf and EP f need to share a common domain of validity, and (ii) EIf and EP f need tohave commensurate orders of approximation. Let us consider the situation in more detail.First, we look at EIf . Arguing from within D and starting from an m-term regularasymptotic expansion Ef of f , we have proven the existence of order functions �00; : : : ; �0m�1,all o(1) as � # 0, and of nested sets of compact subsets K�00(�); : : : ; K�0m�1(�) satisfyingdist(K�0p ; @sD) = O](�0p), such that f �Ef = o(�m�1�p) on K�0p(�) for p = 0; : : : ; m� 1. Theorder functions satisfy the relation �0p = O(�0p�1) for p = 1; : : : ; m�1, but it is not ruled outthat the symbol O may be strengthened to o, in which case the compact subsets actuallyexpand as p increases while � is being kept �xed.Next, consider EP f . The fact that we talk about EP f presupposes that there existsa regularization TP f of f near P . Let us assume that it has been obtained through aregularizing transformation (i.e., a change of coordinates) of the order of 1=�r. By imposingthe condition �r = o(�0p) for p = 0; : : : ; m � 1, we have achieved that the entire domain ofvalidity of the inner expansion is sent to in�nity by the regularizing transformation. Then,starting from an n-term regular asymptotic expansion ~ETP f of TP f , we have proven theexistence of order functions �000 ; : : : ; �00n�1, all o(1) as � # 0, and of nested sets of compactsubsets K(�r=�000 )(�); : : : ; K(�r=�n�1)00(�), each containing P and all �lling the boundary layernear P in the normal direction as � # 0, such that f � T�1P ~ETP f = o(�n�1�q) on K(�r=�00q )(�)for q = 0; : : : ; n � 1. The dimensions of the set K(�r=�00q )(�) are O](1=�00q ) in the tangentialdirections and O](�r=�00q ) in the normal direction. We assume that �r = o(�00q ) for q =0; : : : ; n�1. The order functions satisfy the order relation �00q = O(�00q�1) for q = 1; : : : ; n�1,but, again, it is not ruled out that the symbol O may be strengthened to o, in which casethe compact subsets actually expand as q increases while � is being kept �xed.Given these details, let us �rst consider the most straight-forward case, where m = nand p = q = 0.De�nition 6 The function f and its regularization TP f at P satisfy the strong overlapcondition if the intersection of the extended domain of validity of the m-term interior ex-pansion EIf and the extended domain of validity of the m-term local expansion EP f has a16



nonempty interior for every m = 1; 2; : : :Theorem 7 The function f and its regularization TPf at P satisfy the strong overlapcondition if, for every m = 1; 2; : : :, there exist order functions �00 and �000 such that �00 =o(�r=�000).Proof. According to Theorem 2, the m-term expansion EIf extends to an asymptoticapproximation of f on K�00(�). The distance from this set to @sD is O](�00(�)). Accordingto Theorem 6, the m-term expansion EP f extends to an asymptotic approximation of fon K(�r=�000 )(�). The latter set extends over a distance O](�r=�000)(�)) from P into D in thenormal direction. If �00 = o(�r=�000), the two sets certainly overlap as � # 0.In the case of strong overlap, there is no need to extend the domains of validity of EIfandEP f at the expense of accuracy. Obviously, this is the best of all possible worlds. If thereis no strong overlap, it becomes a matter of balancing the accuracy of each approximation(i.e., the number of terms in the expansion) against the domain of validity, and we mayhave to increase the number of terms in either or both of the expansions to achieve thedesired order of accuracy in the region of overlap.De�nition 7 The function f and its regularization TP f at P satisfy the overlap conditionif, for every k = 1; 2; : : :, there exist integers m;n 2 fk; k+1; : : :g such that the intersectionof the extended domain of validity of the m-term interior expansion EIf and the extendeddomain of validity of the n-term local expansion EP f has a nonempty interior, where f �EIf = o(�k�1) and f � EPf = o(�k�1).Theorem 8 The function f and its regularization TP f at P satisfy the overlap conditionif, for every k = 1; 2; : : :, there exist integers m;n 2 fk; k + 1; : : :g such that the orderfunctions �0m�k and �00n�k satisfy the relation �0m�k = o(�r=�00n�k).Proof. According to Theorem 2, the m-term expansion EIf extends to an asymptoticapproximation of f of the order of �k�1 on K�0m�k(�). The distance from this set to @sD isO](�0m�k(�)). According to Theorem 6, the n-term expansion EP f extends to an asymptoticapproximation of f of the order of �k�1 on K(�r=�00n�k)(�). This set extends over a distanceO](�r=�00n�k)(�)) from P into D in the normal direction. If �0m�k = o(�r=�00n�k), the two setscertainly overlap as � # 0.If there is no strong overlap, one will generally try to keep m and n as close to k aspossible, so as to minimize the number of extra terms one has to carry to achieve the desired17



order of accuracy on the region of overlap. The following examples illustrate the matchingmechanism.First, an example where the strong overlap condition is met.Consider again the function f(�; x) = e�x=� + �(x) on [0;1) from the previous section.The m-term interior expansion is EIf(�; x) = �(x) for any positive integer m, and then-term local expansion is EP f(�; x) = e�x=� +Pn�1i=0 aixi. The former satis�es the estimatef � EIf = o(�m�1) on any interval [a��;1) with � > 0 and a > 0, the latter the estimatef �EP f = O](�n�) on any interval [0; b��] with � > 0 and b > 0. Because of the conditions�r = o(�00) and �r = o(�000), � and � are further restricted to the interval (0; 1). We claimthat we can take m = n and choose � and � so Theorem 7 applies.We have �00(�) = �� and �r=�000(�) = �� . Overlap is achieved whenever � > �. Formatching, it su�ces to choose � such that �m� = o(�m�1), or � > 1 � 1=m. For example,by choosing � = 1 � 1=(2m) and � = 1 � 1=(4m), we achieve that the interior and localapproximations overlap on the interval [�1�1=(2m); �1�1=(4m)], and that they match there tothe order of �m�1, for m = 1; 2; : : :Next, an example where the strong overlap condition is not met, but where we still haveoverlap.Consider the function f(�; x) = �=(� + x) + �(x) on [0;1), with � as before. Them-term interior expansion is EIf(�; x) = �(x) + Pm�2i=0 (�1)i�i+1x�(i+1) and the n-termlocal expansion is EP f(�; x) = �=(� + x) + Pn�1i=0 aixi. The former satis�es the estimatef � EIf = O](�m(1��)) on any interval [a��;1) with � > 0 and a > 0, the latter theestimate f � EP f = O](�n�) on any interval [0; b��] with � > 0 and b > 0. Because theregularizing transformation is of the order of 1=�, we restrict � and � further to the interval(0; 1). We have �0m�k(�) = �� and (�r=�00n�k)(�) = �� .For a given k, we must determine m, n, �, and � so the domains of validity overlap andthe matching condition is satis�ed. The two approximations EIf and EPf match to theorder of �k�1 (i.e., to k terms) if (k� 1)=n < � < � < 1� (k� 1)=m. The choice m = n = kworks only for k = 1; any � and � with 0 < � < � < 1 will do in this case. For larger valuesof k, we can take m = k + 1, n = k, and 1� 1=k < � < � < 1� (k � 1)=(k+ 1).References[1] L. Prandtl, \Ueber Fl�ussigkeitsbewegung bei kleiner Reibung," in: Verhandl. III. In-tern. Mathem. Kongre�es, Teubner Verlag, Leipzig (1905), pp.484{491.[2] J. M. Burgers, \Application of a Model System to Illustrate Some Points of the Statis-tical Theory of Free Turbulence," Proc. Roy. Neth. Acad. Sci. (Amsterdam) 43 (1940)18



2{12. See also J. M. Burgers, The Nonlinear Di�usion Equation, Reidel Publ. Co.,Dordrecht (Neth.) (1974).[3] G. B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, Inc., New York(1974).[4] S. Kaplun, \Low Reynolds Number Flow past a Circular Cylinder," J. Math. Mech. 6(1957) 595{603.[5] S. Kaplun, in: Fluid Mechanics and Singular Perturbations, P. A. Lagerstrom, L. N.Howard, and C. S. Lin, eds. Academic Press, New York (1967).[6] L. V. Kantorovich and G. P. Akilov, Functional Analysis in Normed Spaces, PergamonPress, Oxford (1964).
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