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Preface

For some time, we have been interested in the development and application of asymptotic
methods for the numerical solution of boundary value problems with critical parameters—
that is, parameters that determine the nature of the solution in some critical way. We are
thinking, for example, of fluid flow (viscosity), combustion (Lewis number), and supercon-
ductivity (Ginzburg-Landau parameter) problems. Their solution may remain smooth over
a wide range of parameter values, but as the parameters approach critical values, compli-
cated patterns may emerge. Boundary layers may develop, or the region over which the
solution extends may take on the appearance of a patchwork of subregions; on each sub-
region, the solution is smooth, but between subregions the solution undergoes dramatic
changes over very short distances. Shock layers in fluid flow are a visible manifestation of
this type of behavior.

Boundary value problems with critical parameters pose some of the most challenging
problems in computational science, and much effort is being spent on developing new tech-
niques for their numerical solution. Some of the most useful techniques, in particular on
parallel computing architectures, are based on domain decomposition. In a domain decom-
position method, one partitions the domain into subdomains, approximates the solution
on each subdomain, and assembles these solutions to obtain an approximate solution on
the entire domain. Many criteria, involving considerations from linear algebra to computer
architecture, go into the design of a useful domain decomposition method. Our aim is to
explore the use of asymptotic methods.

Asymptotic analysis, in particular singular perturbation theory, is the study of boundary
value problems involving critical parameters. It provides a methodology to identify and
characterize boundary layers, transition layers, and initial layers; hence, our idea to use
asymptotic methods in the design of domain decomposition algorithms.

We have organized two workshops on the subject of asymptotic analysis and domain
decomposition: a workshop at Argonne, jointly sponsored by the Department of Energy and
the National Science Foundation (February 1990), and a NATO Advanced Research Work-
shop in Beaune, France (May 1992). Proceedings of these workshops have been published
(Asymptotic analysis and the numerical solution of partial differential equations, edited by
H. G. Kaper and M. Garbey, Lecture Notes in Pure and Applied Mathematics — Vol. 130,
Marcel Dekker, Inc., New York, 1991; Asymptotic and numerical methods for partial differ-
ential equations, edited by H. G. Kaper and M. Garbey, NATO ASI Series C: Mathematical
and Physical Sciences — Vol. 384, Kluwer Academic Publishers, Dordrecht, Neth., 1993).

We currently have plans to develop a full-length book on the subject. To formulate
our thoughts before final publication, we intend to produce a series of Working Notes on
various relevant topics. Some of the notes will contain new material; others may offer new
presentations of existing material. We certainly expect the notes to evolve in time; the

ii



notes may or may not appear eventually as chapters of the book. The notes are intended
for our own use, but we will be happy to supply copies to interested colleagues.

Marc Garbey, Lyon, France
Hans G. Kaper, Argonne, Illinois, USA

Working Note #1:
Asymptotic Analysis—Basic Concepts and Definitions, ANL/MCS-TM-179 (July 1993)

Working Note #2:
Asymptotic Analysis—Approximation of Integrals, ANL/MCS-TM-180 (July 1993)
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ASYMPTOTIC ANALYSIS

Working Note #3
BOUNDARY LAYERS

by

Marc Garbey and Hans G. Kaper

Abstract

In this chapter we discuss the asymptotic approximation of functions that display
boundary-layer behavior. Our purpose here is to introduce the basic concepts underlying
the phenomenon, to illustrate its importance, and to describe some of the fundamental
tools available for i1ts analysis. To achieve our purpose in the clearest way possible,
we shall work with functions that are assumed to be given explicitly—that is, functions
f:(0,€e0) — X whose expressions are known, at least in principle. Only in the following
chapter shall we begin the study of functions that are given implicitly as solutions of
boundary value problems—the real stuff of which singular perturbation theory is made.

Boundary-layer behavior is associated with asymptotic expansions that are regular
“almost everywhere” —that is, expansions that are regular on every compact subset
of the domain of definition, but not near the boundary (Section 1). These regular
asymptotic expansions can be continued in a certain sense all the way up to the bound-
ary (Section 2), but a separate analysis is still necessary in the boundary layer. The
boundary-layer analysis is purely local and aims at constructing local approximations
in the neighborhood of each point of the singular part of the boundary (Section 3).
The problem of finding an asymptotic approximation is thus reduced to matching the
various local approximations to the existing regular expansion valid in the interior of
the domain (Section 4).

1 Boundary-Layer Behavior

We now continue the discussion of the asymptotic approximation of functions begun in
Chapter 2 and turn our attention to vector-valued functions that do not have regular asymp-
totic expansions on their entire domain of definition. We assume throughout this chapter
that we are working with functions whose expressions are known, at least in principle,
to better explain the phenomenon of boundary-layer behavior; the discussion of boundary-
layer behavior for functions that are only known implicitly as solutions of singular boundary
value problems will begin in the following chapter.



We first recall some relevant points of Chapter 2. Suppose that we are given a function
f, which is defined on (0, ¢) x D, where D is a fixed (e-independent) domain in RY. We
consider f as a vector-valued function, f : (0,¢) — X, where X is a normed space of
functions defined on D, by making the identification f(e¢)(z) = f(e,2) for all € D. The
function f has a regular asymptotic expansion on D if there exist an asymptotic sequence
{6, :n =0,1,...} of order functions 6, and a nontrivial sequence {f, : n = 0,1,...} of
elements f, € X, which do not depend on €, such that the function Ef : (0,¢) — X
defined by the expression F f(e) =3, 6,(€)f, is an asymptotic approximation of f on D.
The (regular) asymptotic expansion may be defined up to a specified number of terms or
up to a specified order of accuracy. The expansion coefficients f, are uniquely determined,

[ = ﬁ{g F)/6(e), n=0,1,...,

where f(O(e) = f(e) and fM(e) = f(e) — Zg;é 6,(¢)fp for n = 1,2,.... The limits are
taken in X.

Observe that the asymptotic sequence {6, : » = 0,1,...} depends on f; indeed, different
applications may require different asymptotic sequences.

It is sometimes advantageous to weaken the condition that the coefficients f, be totally
independent of € and require instead that they are of the order Oﬁ(l) as € | 0. This weaker
condition leads to the theory of generalized asymptotic expansions. The coefficients f, in
such expansions are not unique. Much of what we will say about regular asymptotic ex-
pansions extends to generalized asymptotic expansions, but we prefer to avoid the technical
complications and will not consider generalized expansions.

If the asymptotic expansion of f fails to be regular on the entire domain D, it is still
possible that it is regular on a subdomain.

Definition 1 The function f : (0,e0) — X has a regular asymptotic expansion on a sub-
domain Dy of D if there exist an asymptotic sequence {6, : n = 0,1,...} of order functions
and a nontrivial sequence {f, : n = 0,1,...} of elements f, € X, which do not depend on
€, such that the function Eof : (0,€e0) — X, defined by the expression FEqof(e) =3, 6,.(¢)fn
is an asymptotic approzimation of f on Dy.

Again, if f has a regular expansion on some subdomain Dg of D, its expansion coefficients
fn are unique and they are found by taking limits. The limits must be taken in the topology
induced on Dy by the norm of X, but only the restrictions of the functions f(")(¢)/6,(¢) to
Dg need to be considered.

Lemma 1 Let f have regular asymptotic expansions Eof and E1f on the subdomains Dy
and Dy of D, respectively. If Dy D D1, then Eyf extends Fyf to an asymptotic approxi-
mation of f on Dy.



Proof. An immediate consequence of the uniqueness of the coeflicients in a regular asymp-
totic expansion with respect to the asymptotic sequence. 1

Functions that display “boundary-layer behavior” are functions that are approximated
by a regular asymptotic expansion “almost everywhere” on D.

Definition 2 The function f:(0,ey) — X exhibits boundary-layer behavior on D if there
exists a reqular asymptotic expansion E f approzimating f on every e-independent compact
subset of D, but there is no reqular asymptotic expansion approrimating f on D.

The terminology “boundary layer” has its origin in fluid dynamics. In the motion of a
viscous fluid near a boundary, the viscosity causes rapid variations of the fluid velocity in
a thin layer near the boundary, a phenomenon first studied by Prandtl in 1904 [1]. Later
developments in continuum mechanics revealed that the phenomenon of boundary layer
behavior was not confined to fluid dynamics, but that it is indeed a widespread phenomenon
caused by “singular perturbations” in the mathematical model. The terminology has been
generally adopted to loosely describe the breakdown of regularity near boundaries.

Boundary layers can occur anywhere along the boundary and don’t have to happen
everywhere along the boundary. Thus, the boundary is the union of two disjoint sets, the
“regular part” and the “singular part.”

Definition 3 A point P € 0D belongs to the regular part of the boundary, 9,D, if the
reqgular asymptotic expansion F [ extends to an asymptotic approximation of f on every
e-independent compact subset of D U P. FEvery point P € 0D that does not belong to the
reqular part of the boundary belongs to the singular part of the boundary, dsD.

The set of all points in D whose distance to a component of d,D is o(1), is usually
designated as a boundary layer. The terminology is vague and somewhat qualitative.

A simple example of a function that exhibits boundary-layer behavior is given by
fle,z) =1 —e®/for 0 < 2 < co. If X = (C[0,00),|| - |loo) and f(e) € X is de-
fined by the identity f(e)(z) = f(e,2), then f has a boundary layer near 0. The element
fo € X, given by fo(x) =1 for all z > 0, defines a regular approximation as € | 0 on every
compact interval [a,b] with 0 < a < b < 00, even on every interval [a,o0) with ¢ > 0, but
there is no regular approximation on the entire interval [0, 00).

Despite all physical evidence to the contrary, one could argue—and some mathematicians
have argued—that boundary-layer behavior illustrates a shortcoming of the mathematical
model, which could be easily “fixed.” Boundary-layer behavior occurs because the topology
in X is too strong to handle significant local variations that increase dramatically as the



small parameter decreases to 0—for example, when X is a space of continuous functions
and the topology is defined in terms of uniform convergence, as in the example. So, all one
has to do is weaken the topology and admit generalized functions to the club of potential
expansion coefficients. Of course, the argument is correct—from the theoretical point of
view. But from the practical point of view it makes sense to consider functions that can
be evaluated pointwise and are defined continuously everywhere. The notion of a classical
solution is essential in the context of applications, and uniform error estimates do make
sense in numerical computations. Furthermore, the fact that ¢ is a small parameter does
not necessarily imply that it is infinitesimally small. For all these good reasons we will stick
with the topology that causes the boundary-layer behavior and, if all goes well, we will
show not only how one can live with it, but even how one take advantage of it.

A few more remarks about boundary layers.

If a boundary layer occurs along a manifold that is described in terms of a timelike
variable ¢ (usually ¢ = 0), we may refer to it as an initial layer.

If D is the union of a finite number of disjoint subdomains, D = U;D; with D; N D; =
0 if i # j, we may find a boundary layer along the common boundary of two adjacent
subdomains. In such cases, we may refer to the boundary layer as a transition layer.
(Sometimes, the term internal layer is used.)

For an elementary example of a transition layer, consider the boundary value problem

€lUpy + 2uu, =0, 2 € (—00,00); lirin u(z) = £1.

This nonlinear problem is a prototype of many other problems in the theory of nonlinear
waves; it is a special case of Burgers equation [2] or [3, Chapter 4]. Its solution is known,

u(e, ) = tanh(z/¢) for —oo < 2 < oo. To put this problem in the functional framework,
define Dy = (—00,0) and Dy = (0,00) and put D = Dy U Dy. Let X be the normed

vector space (C(D),]| - ||le), and consider u as a map from (0, ) into X by making the
usual identification, u(¢)(z) = u(e, ) for all € D. The function ug € X with values
up(xz) = —1if ¢ € Dy and wo(z) = 1 if & € Dy, defines an asymptotic approximation on

every compact subset of D, even on every subset {# € D : || > a} with a > 0, but there
is no e-independent element in X that provides an asymptotic approximation of u on all of
D. The origin makes up the singular part of the boundary, and a transition layer is located
on either side of it.

Boundary layers may have very complicated structures. For example, boundary layers
may be nested within each other when changes occur on several length scales simultane-
ously. Or transition layers may move and interfere with each other—a situation that arises
frequently in the context of fluid dynamics, where shock waves present the most visible
evidence of transition layers. Clearly, all this makes for a very complicated theory, whose
development becomes cumbersome or even impossible unless one makes drastic simplifying
assumptions. Singular perturbation theory, the study of boundary layers, initial layers, and



transition layers, has made much progress, but remains the domain of a few. In particular,
its application to the numerical solution of boundary value problems—the main objective
of this book—is largely undeveloped.

Exercises

1. Consider the boundary value problem
U = €Uze, (t,x) € (0,00) X (—00,00),
| llim uw(t,z) =0, t € (0,00); u(0,2)=¢(z), z € (—o0, 00),

where ¢ is a given function. This linear boundary value problem is a simple model for all sorts of
diffusion phenomena; the coefficient ¢ measures the rate of diffusion.

(i) Verify that the solution of this boundary value problem is given by the integral

u(e,t,x) = m‘/_oo ¢(y) exp [_%] dy

(ii) Discuss the asymptotic behavior of u as € | 0.

2 Extension Theorems

Suppose that f has boundary-layer behavior in D. Then there exist e-independent elements
fo, f1,...in X such that the function £ f =3, 6, f,, is an asymptotic approximation of f
on any compact subset K of D. If the boundary of D has a regular part 0.D, then Ff
extends to an asymptotic approximation of f on every e-independent compact subset of
DU, D. However, E f does not extend to an asymptotic approximation of f on D, because
of the presence of the singular part of the boundary, d;D. On the other hand, it is possible
to extend F f up to 0;D in a well defined sense. The extension theorems that we establish
in this section generalize a result of Kaplun [4, 5] and are a consequence of the following
simple lemma.

Lemma 2 Let the function g be positive on (0,¢€) X (0,dy) for some ¢g > 0 and dy > 0,
and let g satisfy the properties (i) g(¢,-) is monotone nonincreasing for each ¢ € (0, ¢€y), and
(ii) lim¢jp g(e,d) = 0 for each d € (0,dy). Then there exists an order function § satisfying
6 = o(1), such that lim o g(¢,6(¢)) = 0.

Proof. It follows from (ii) that, for any p > 0 and any fixed d € (0, dy), we have g(e,d) < p
for all sufficiently small positive e. Let ¢(d,p) = sup{q : g(e,d) < p,e € (0,q)}. Because
of (i), ¢(-,p) is nondecreasing; furthermore, limg|¢(d,p) = 0. We now form a sequence
of triples, {(d,pn,q.) : n = 1,2,...}, starting from two sequences {d, : n = 1,2,...}
and {p, : n = 1,2,...}, both monotonically decreasing toward 0, and using the definition



¢, = min{q(pr,di) : k = 1,2,...,n;1/n} to determine the third element of each triple.
Then g(¢,d) < p, for all € € (0,¢,) and d > d,,. We claim that any monotone continuous
function 6 that satisfies the relation 6(q,) = d,,—1 for n = 2,3,... satisfies the conditions of
the lemma.

Let p be any positive number. Then p,, < p for some integer m. Any € € (0,¢y)
satisfies ¢,41 < € < g, for some n > m; hence, d,, < §(¢) < d,,_1, and therefore g(€,(¢)) <
g(6,dn) < pu < pm < p. 1

We will prove an extension theorem for the case that d;D is bounded, leaving the
unbounded case to the exercises.

Theorem 1 Suppose 05D is compact and the regular expansion Ef = %", 6, f, is an asymp-
totic approzimation of f on every e-independent compact subset of D U 0,D. Then there
exist an order function & satisfying 6 = o(1) and a nested family {Ks) : ¢ € (0,60)} of
compact subsets of D U 0, D satisfying dist(Ks(), dsD) = 6(¢€), such that E f extends to an
asymplotic approzimation of [ on Kg().

Proof. If 0,D is compact, we can associate with any compact subset K of DU 0,.D a
finite number dist( K, 9,D) = sup{inf{||z — y|| : y € K}, 2 € 0,D}, where || - || denotes the
Euclidean distance in RY. Furthermore, for any number d € (0,dp) we can find a compact
subset Ky of D for which dist(K4,0sD) = d. Without loss of generality, we may assume
that the family of subsets { Ky :d € (0,dp)} is nested, in the sense that Ky C Ky if d > d'.

Let || - ||¢ denote the X-norm of the restriction of an element of X to K;. We are given
that there exist functions f, € X such that limcjo || f7(€)/6, (€)= fulla = 0, where f(O)(¢) =
f(e) and () = f(e) — Z;;é 6,(¢)fp for n =1,2,..., for each d € (0,dy). The assertion
of the theorem follows from Lemma 2, where we take g(e,d) = || f"(€)/6,(€) — fulla.

We may summarize the statement of Theorem 1 by saying that F f extends to an asymp-
totic approximation of f on D U 9,D “from within D.” We denote the extension by Ef
and refer it as the interior expansion of f on D. The subscript I serves to distinguish Fjf
from a regular expansion F f, which does not require an approximation of the underlying
domain. Of course, if f has a regular asymptotic expansion on D, then F;f = F f.

To illustrate the effect of Theorem 1, we recall the example f(e,2)=1— e~/ on [0, )
from the previous section. As we have seen, the element fy € X, given by fy(z) = 1 for
all > 0, defines a regular asymptotic approximation on every interval [a, c0) with a > 0.
According to Theorem 1, there exists an order function ¢ satisfying 6 = o(1), such that fy
extends to an asymptotic approximation on [6(€),00). However, Theorem 1 does not give
us any more information about ¢, other than that it is o(1) as € | 0. So, although we know



that f has a regular asymptotic approximation on (0, 00) in the sense of the theorem, what
actually happens near 0 remains undisclosed.

Another interesting application of Lemma 2 is given in the following extension theo-
rem. It shows that one can sometimes sacrifice some of the accuracy of an asymptotic
approximation to gain an extension of its domain of validity.

Theorem 2 Suppose 05D is compact and E f is an asymptotic approzimation of the order
of 6o (i.e., Ef is a regular expansion to m terms) of f on any e-independent compact
subset of DU 0, D. Then there exist, for each p € {0,...,m — 1}, an order function 61’7
satisfying 6, = o(1) and a nested family {I(%(E) 1€ €(0,€e0)} of compact subsets of DU O, D
satisfying dist([x’%(e), 9sD) = é,(¢€), such that E f extends to an asymptotic approximation of
the order of 6p—1-p of f on K (.. The order functions b, satisfy the relation 6, = O(6,_,)
forp=1,...,m—1.

Proof. If f — Ef = 0(8,,—1) on any compact subset of D U d, D, then certainly f— Ff =
0(bm—1-p) for p=10,...,m — 1 on the same subset. The proof of the theorem is similar to
the proof of Theorem 1, where in the final step we take g(¢,d) = [|(1/6m-1-p)(f — Ef)]]. It
suffices to take 62’7 = 62’7_1 to prove the last assertion of the theorem. 1

Although the statement of the theorem is impressively complicated, its proof is disap-
pointingly simple; in fact, the bottom line is that by taking ¢, = 62’7_1 we do not achieve
any extension at all. The point is, however, that it may just be possible to sharpen the
estimate 6, = O(6,_,) to 6, = 0(4,_,) and thus obtain a real extension of I f, albeit at the
price of a reduction in the order of accuracy.

Here is a simple example, where all the details can be worked out. Consider the function
fle,z) = (e+ 2)~! on [0,00) as a mapping from (0,¢p) into X = (C[0,00),|| - [leo). The
m-term expansion Ef(e,z) = " (=1)"c"2~"~1 defines an asymptotic approximation
of the order of €™~ of f, f — Ef = o(¢™™1), on any interval [a,00) with @ > 0. The
remainder can be calculated explicitly, (f — Ef)(e,z) = (=1)"€™a~™(e + )71, and one
readily verifies that, for each p € {0,...,m—1}, f— Ef = o(¢™~177) on any interval of the
form [agp/(m"'l), o0). The left endpoint of this interval actually gets closer to 0 as p increases,
while € is being kept fixed. Thus, a real extension of E f is obtained. In the notation of

Theorem 2, we have é,(¢) = e?/(m+1) and, indeed, b, =0(6,_y)forp=1,...,m— 1.

Exercises

1. Prove the following counterpart of Lemma 2.

Lemma 3 Let the function g be positive on (0, e0) X (do,o0) for some eq > 0 and some real number
do, and let g satisfy the properties (i) g(e,-) is monotone nondecreasing for each ¢ € (0,¢p), and (ii)



3

. Let X = C([0,00),|| - ||o), and let ¢ € X have a convergent Taylor series expansion ¢(z) = .

limeo g(€,d) = 0 for each d € (do,00). Then there exists an order function § satisfyingd = o(1), such
thatlimejo g(e,1/8(e)) = 0.

. Prove the following counterpart of Theorem 1.

Theorem 3 Let Br denote the (open) ball of radius R centered at the origin in RY. Suppose D is
unbounded and f has a regular asymptotic expansion Ef = Zn bn fn on every e-independent compact
subset Kr = DN Br of D. Then there exist an order function § satisfying 6§ = o(1) and a nested
family {B1ysce) = € € (0,¢0)} of balls of radius 1/6(¢) centered at the origin in RY, such that Ef
extends to an asymptotic approximation of f on Kiscc) = D N Bys(e)-

. Prove the following counterpart of Theorem 2.

Theorem 4 Let Br denote the (open) ball of radius R centered at the origin in RY. Suppose D
is unbounded and Ef is an asymptotic approzimation of the order of é,m,—1 (ice., Ef is a regular
expansion to m terms) of f on every e-independent compact subset of Kr = DN Br of D. Then
there exist, for each p € {0, ..., m —1}, an order function &, satisfying &, = o(1) and a nested family
{B1/5;(e) : € €(0,e0)} of balls of radius 1/8,,(¢) centered at the origin in RY, such that Ef extends
to an asymptotic approzimation of the order of éy—1-p of f on [(1/5;(5) =D ﬁﬁl/%(e). The order
functions &, satisfy the relation 6, = O(8,_,) forp=1,...,m — 1.

. Prove the following extension of Lemma 3.

Lemma 4 Let p be a real-valued function on (0,¢eq), which grows beyond bounds as € | 0. Let the
function g be positive on the set {(e,d) : € € (0,€0),d € (do, p(€))} for some e¢ > 0 and some real
number do, and let g satisfy the properties (1) g(e,-) is monotone nondecreasing for each € € (0, €g),
and (ii) limejo g(e,d) = 0 for each d € (do,00). Then there exists an order function § satlisfying
6 =o0(1), such thatlim¢ o g(e,1/6(¢)) = 0.

. Prove the following extension of Theorem 3.

Theorem 5 Let p be a real-valued function on (0, €0) which grows beyond bounds as € | 0, and let
B, denote the (open) ball of radius p(¢) centered at the origin in RY . Suppose D is unbounded and f
has a regular asymptotic expansion Ef on every compact subset D, = DN B, of D. Then there exist
an order function 6 satisfying &6 = o(1) and a nested family {Bys(c) : € € (0,¢0)} of balls of radius
1/6(€) centered at the origin in RY, such that Ef extends to an asymptotic approzimation of f on
[(1/5(5) =Dn B1/5(5)~

im0 @izt
for all z € [0,00). Consider the function f(e,2) = ¢(ex) as a map from (0, €o) into X. Find the m-

term asymptotic expansion E'f of f and verify that it can be extended to an asymptotic approxiation
of the order of €™ 7P (p=10,...,m — 1) on any interval [0, be_p/m], where b > 0. (Cf. Theorem 4.)

Regularization

The extension theorems are important for the development of singular perturbation theory,
but of limited practical use. First, they are typical existence theorems; they do not say
anything about the order function ¢, except that it is o(1). Second, they do not give any
insight as to what actually happens inside the boundary layer. This information can only
come from a local analysis.



The idea behind the local analysis that we are about to present is fairly simple. Boundary
layers occur because the function under discussion undergoes rapid variations near the
singular part of the boundary, and these variations happen on ever smaller scales as ¢ | 0.
So, if we want to find out what actually happens inside the boundary layer, we must look
on a different scale—that is, introduce a new independent variable—, where things are
stretched out in the transverse direction across the boundary layer. In fact, the amount of
stretching must increase as € decreases, to counteract the “thinning” of the boundary layer.

The choice of the new independent variable depends of course on the function under
consideration and may vary from one component of the singular part of the boundary to
another. In general, the new variable, y, will be a function of € and the old variable z,
y = 7(€,2) say. If P € 05D is a representative point on the particular component of
the singular part of the boundary near which we wish to perform a local boundary-layer
analysis, then 7 must be sufficiently regular (for example, a homeomorphism), at least on
some subset Dp = D N Br(P) of D with R > 0. (Bp(R) is the open ball of radius R
centered at P in RN.) Usually, one defines 7 in such a way that P is sent to the origin, so
7(e,x") = 0, and 7 is a linear function of . For example, y = (z — ) /é(¢) with 6§ = o(1)
maps a one-dimensional boundary layer near = = ¥ onto an interval whose length grows
beyond bounds as € | 0. If 7(Dp) is the image of the set Dp under the change of variables,
7(Dp) ={7r(e,z): 2 € Dp,c € (0,¢)}, then 7(Dp) looks like a semi-infinite cylinder based
at the origin.

Now, consider the effect of such a transformation on f, which is a function of ¢ and x.
The change of variables y = 7(¢, ) transforms f into another function, T'f say, of € and y
through the formula T'f(e,y) = T f(e,7(€,2)) = f(e,2). This function can be interpreted
as a mapping T'f : (0,¢0) — Y, where Y is an appropriately defined normed vector space of
functions on 7(Dp), whose asymptotic behavior as € | 0 can be analyzed in the framework
of Y. Since the dependence of T f upon ¢ differs from the dependence of f upon ¢, there
is a chance that 7'f has a regular asymptotic expansion on 7(Dp) and that the origin
belongs to the regular part of the boundary. (Recall that the origin is the image of P under
the change of variables; it is a boundary point of 7(Dp).) If this is the case, we have
achieved a regularization of f at P. We can construct the regular expansion in Y and then
transform everything back to Dp by means of the inverse transformation 7=1'. The result
is an expansion of f, which is a local asymptotic approximation of f near P.

Of course, there is no guarantee that a regularization exists, and if it exists it may not
be unique, but this all depends on the function f.

Before moving on to the details, we discuss a simple example, where everything can
be worked out. The example is again provided by the function f(e,z) = 1 — e~/ on
[0, 00), which, considered as a map from (0, ¢y) into X = (C[0,00), ] - ||« ), has a boundary
layer near 0. The transformation y = 7(€,2) = x/e maps the interval [0,00) onto itself,
and we can take Y = X. The transformations 7 induce a regularization of f near 0,
Tfle,y) =1—eY for y € [0,00). The function 7' f is independent of € and is therefore



identical with its (regular) asymptotic expansion on its entire domain of definition. The
inverse transformation x = 771(¢,y) = ey yields the expansion Egf(e,2) = 1— e~*/¢, which
is a local asymptotic approximation of f on every compact subinterval of [0, c0).

We now turn to the details of a local boundary-layer analysis.

Suppose f :(0,¢) — X has boundary-layer behavior on D. The singular part d;D of
the boundary of D may consist of several components, each of which needs to be analyzed
separately, but throughout the following discussion we focus on one single component.
To avoid extraneous technical complications, we assume that this component is a smooth
(N —1)-dimensional manifold, where the normal direction is well defined at each point. Let
P be a representative point on this manifold. The position vector of P is ¥ = (21, .. .,xﬁ),
the tangent space at the point P is spanned by the unit vectors ¢1, .. .,tﬁ_l, and the unit
normal vector at P is n”. For definiteness, we assume that n” points into D; if P is

identified with a transition layer, we treat each side of the boundary separately.

Let Ef(e) = 3", 6n(€)f, be the regular asymptotic expansion of f on every e-independent
compact subset of D U d.D. As we have seen in the previous section, F f extends to an
asymptotic approximation of f on e-dependent compact subsets, possibly with some loss
of the order of accuracy. We assume that this extension has been done and that F f is an
asymptotic approximation of f on the compact subset 1(51/3 of DUJ,D for some ¢, satisfying

&, = o(1). The distance from P to Ky is 0'(8)).

As a first step, we change variables to magnify the boundary layer in the “thin” (normal)
direction. The change is accomplished by an e-dependent transformation,

T(€) i x —y=T7(e, ).

In most cases, 7(€) can be an affine transformation—that is, a shift to put P at the origin,
followed by an e-dependent linear transformation; in exceptional cases, it may be necessary
to generalize to a general homeomorphism. In either case, one must assume that 7(e) is
defined on some subset Dp = D N Br(P) of D and continuously extended to P. (Br(P) is
the open ball of radius R centered at P in RN.) To keep things simple, we will take

T(e,x) = 7(e)(z — xp), x € Dp,

where 7 : (0,€6) — R]IXN is a nonsingular matrix-valued function, which is asymptot-
ically equal to the direct sum of the identity matrix on the tangent space and a scalar
multiplication by 1/6 in the direction of the normal vector at P, for some é € &£,

Ir(e)tf (| = O%(1), i=1,...N = 1; |lr(e)n”|| = OF(1/8(e)).

Here, || - || is the Euclidian length in RY. We require that § satisfy the order relation
6 = 0(8,,), to provide 7(¢) with sufficient magnification in the boundary layer as ¢ | 0.
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The transformations 7(¢) form a family,

T={r(e): €€ (0,€)},

which we assume to be ordered, 7(¢;)(Dp) C 7(€2)(Dp) whenever ¢; > ¢;. We put 7(Dp) =
Ucr(€)(Dp), say that 7 is of the order of 1/¢, and write 7 = O%1/§).

A first observation is that 7(Dp) is an unbounded subset of RY. In fact, 7(¢)(Dp)
looks like an open cylinder, whose cross section remains asymptotically the same, but whose
dimension in the axial direction is stretched more and more as € | 0.

Second, the origin belongs to the boundary of 7(€)(Dp) for every € € (0, ¢) and so, by
induction, to the boundary d7(Dp) of 7(Dp). In the image of the previous paragraph, the
origin is at the center of the base of every cylinder.

Third, because we have given 7 suflicient magnification, all points beyond the boundary
layer (that is, all points belonging to the domain of validity of the interior approximation
Ef of f) are sent to infinity. Consequently, the pre-image of any e-independent compact
subset of 7(Dp U P) = 7(Dp) U0 is a subset of the boundary layer near P.

Now, we consider the effect of the transformation 7 on elements of X, or rather, their
restrictions to Dp.

Let Xp denote the normed vector space of functions defined on Dp with the topology
induced by the norm of X. Elements of Xp are functions defined on the domain Dp, which
is e-independent. But by applying the coordinate transformation 7(¢), we transform them
into functions defined on 7(¢)(Dp), which is e-dependent. The purpose of the following ar-
guments is to construct a normed vector space Yp of functions defined on the e-independent
domain 7(Dp). The tool we use is that of the inductive limit; a discussion of inductive
limits and their properties can be found, for example, in [6, Section XI.5].

Let Yp(€) be the set of all functions 1 defined on 7(€)(Dp) by the identity
(y) = P(r(e, ) = ¢(z), y e ()(Dp),

for some ¢ € Xp. We make Yp(¢) into a normed vector space by introducing a norm || - ||y
that is commensurate with the norm in X,

19lly = lI¢llx, &€ Xp.

The spaces {Yp(¢€) : € € (0,¢)} form a nested family of normed vector spaces, because of
the ordering within the family 7. Their inductive limit defines the space Yp,

Yp = lim ind.|oYp(¢).

Again, the precise details of this construction are less important; what is important is the
intuitive idea that we end up with a normed vector space Yp of functions defined on an

11



e-independent domain and that we have a framework to relate elements of Xp (functions
defined on Dp) to elements of Yp (functions defined on 7(Dp)). The relation above between
the functions ¢ € Xp and @ € Yp defines a transformation T, : Xp — Yp,

(T.9)(y) = d(z), y=r7(e,2), x € Dp; ¢€ Xp.

Let us see what this transformation does to the restriction of f(¢) to Dp. For each € € (0, ¢),
we obtain the element T, f(¢) € Yp, so if we do this for every € € (0, ¢p), we obtain a new
vector-valued function, Tpf : (0,€6) — Yp,

(Tpf)(e) =T f(e), €€ (0,¢0).

The pointwise expression is

(TPf)(€7y):f(€vx)v y:T(va)v re€Dp; €€ (0760)-

The function Tpf gives us indirect access to f, and our goal is to use Tp f to investigate
the asymptotic behavior of f near P. (Recall that P is mapped into the origin, so we will
pay particular attention to the behavior of Tp f near the origin.)

Definition 4 The transformation 7 is a regularizing transformation for f at P if the origin
belongs to the regular part 0,7(Dp) of the boundary of T(Dp) for the function Tpf : (0,€) —
Yp. The function Tp [ defined by a regularizing transformation 7 is called a regularization

of f at P.

Thus, if Tp f is a regularization of f at P, then Tpf has a regular asymptotic expansion
ETpf(e) = X, 6,(e)(Tpf), on every eindependent compact subset of 7(Dp) U 0, where
(Tpf)n € Yp forn =0,1,... The tilde " indicates that the expansion defines an asymptotic
approximation in Yp.

A regularization may or may not exist. For example, there is no transformation that
regularizes the function (1 — e~%/¢)sin(1/z) at 0. Also, if a regularization exists, it is not
necessarily unique. Again, we illustrate with an example,

fle.w) = —(e/e) +J(afe)? + 2/ + 1,

on [0,00). This function, considered as a mapping from (0, ¢y) into X = C([0,00), || - ||co),
has a boundary layer at 0 (P = 0). Each transformation 7,(¢)(2) = /€’ with v > 0 maps
the interval [0, 00) onto itself and Yp = Xp = X. We have

Thf(e,y) = —¢ "ty + \/62”—23/2 + 2¢ 1+ 1.

fo<v< %, then Th f(€) ~ ¢V fo,, with fo,(y) = 1/y on any interval [a,c0) with ¢ > 0;
if v > 1 then T§f(e) ~ 2 fo, with fo,(y) = —y+V2+ 2 if v = Tand fo,(y) = 2if

12



v > % on any compact interval [0,b] with b > 0. Thus, every transformation 7, with v > %
defines a regularization 7% f of f at 0.

As can be seen from the example, some regularizing transformations look more promis-
ing than others: one has the feeling that the transformation 7, with v = % is somehow
more significant, because it gives more information at less magnifying power than the same

transformation with v > %

We can compare the magnification of different transformations and thus their ability to
induce a regularization.

Lemma 5 Suppose T induces a reqularization of f at P, and 7 = Oﬁ(l/é). Then every
transformation ' which is O%(1/6") with §' = o(8) induces another regularization of f at P.

Proof. The assertion of the lemma is an immediate consequence of the ordering within the
families 7 and 7" and the order relation ¢’ = o(4). 1

Definition 5 A significant regularization of f is induced by any transformation T with
minimal order—that is, if T = O¥1/6) and 7' is another regularizing transformation for
[ at the same point, which satisfies the order relation ™" = O%1/8'), then §' = o(6). A
variable {T(e,x): @ € D} that defines a significant regularization is called a boundary-layer
variable.

In the example above, the significant regularization is induced by the transformation 7,
with v = %; less magnification does not yield a regularization, more magnification does not
yield enough detail. The boundary layer variable is y = ze /2,

Significant regularizations are obviously more significant than ordinary regularizations
and will usually be the ones of interest. We shall therefore ignore the latter in favor of the
? We repeat, however, that the
existence of a regularization is in no way guaranteed; in fact, the characterization of the

former and simply refer to the former as “regularizations.

class of functions f for which a regularization exists is an open and interesting problem of
asymptotic analysis.

The (significant) regularization will generally be the same at points on the same com-
ponent of d;D, but vary from one component to another if 9, consists of more than one
component. It then becomes a matter of piecing the various regularizations together to
arrive at a global regularization.

Now suppose that we have found a regularization Tp f of f at P through a regularizing
transformation 7 of the order Of(é,), and let ETpf(€) = 3, 6,(€)(Tpf), be the regular
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asymptotic expansion of Tpf on every e-independent compact subset of 7(Dp) U 0. (We
recall that 6, satisfies the order relation é, = o(é,), where ¢, is a measure of the thickness of
the boundary layer.) As we have seen in the previous section, the asymptotic approximation
defined by ETpf extends to e-dependent compact subsets, possibly with some loss of the
order of accuracy if one goes for the largest possible domain. (In the present case, the
extension process must be based on Theorem 3, or its generalization Theorem 4, because
the set 7(Dp) is unbounded.)

Let us formulate the result of the extension in precise terms. Suppose ETpf is an
asymptotic approximation of the order of 8,1 of Tpf (i.e., ETpf is an n-term asymptotic
expansion). Then there exist, for each ¢ € {0,...,n — 1}, an order function ¢ satisfying
67 = o(1) and a nested family {B) s () : € € (0,€0)} of balls of radius 1/67(¢) centered at

the origin in RY, such that ETpf extends to an asymptotic approximation of the order
of bp—1-g of Tpf on Ky/sn = (r(Dp)u0)N Fl/%/(e). The order functions &, satisfy the
relation 6; = O(é,_,) for ¢ = 1,...,n — 1; possibly, this order relation can be sharpened to
a o-relation.

If we transfer these results to the space Xp by means of the transformation TISI, we
obtain the following theorem.

Theorem 6 Suppose Tpf is a reqularization of f at P and ETpf is its asymptotic ap-
prozimation of the order of 6,1 (i.e., ETpf is an n-term asymptotic expansion) on any
e-independent compact subset of T(Dp) U 0. Then there exist, for each g € {0,...,n — 1},
an order function 6, satisfying 6, = o(1) and a nested family {B((gr/%/)(e)(P) ce€(0,6)}
of balls of radius 6,(€)/6,(€) centered at P in RY, such that TISIENTpf is an asymplotic
approzimation of f on K, smy ) = (DpuUP)N F((gr/%/)(e)(P). The expansions ETpf and
TISIENTpf have the same number of terms and define asymptotic approximations to the
same order of accuracy.

Proof. If we apply TISI to the regular asymptotic expansion ETpf, we obtain the function
TISIETpf in Xp, which is an expansion of f, although not necessarily a regular asymptotic
expansion. If ETpf is an asymptotic approximation of Tp f of a certain order of accuracy
or of a certain number of terms on some compact subset of 7(Dp) U 0, then TISIETpf is
an asymptotic approximation of f of the same order of accuracy or the same number of
terms on the pre-image of the set under the transformation 7. The fact that the order of
accuracy does not change is an immediate consequence of the fact that the norms in Xp
and Yp are commensurate. The pre-image of a compact subset of 7(Dp)U 0 is a compact
subset of Dp U P, and the pre-image of a ball of radius 1/6,(¢) centered at the origin in
RY is a “flattened ball” centered at P in R, whose dimensions are asymptotically of the
order O%(1/6!) in the tangential directions and O%(6,/68)) in the normal direction. I
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By imposing the condition é, = o(6;/), we achieve that the subsets K((gr/%/)(ﬁ) are located
entirely within the boundary layer near P; they fill the boundary layer in the normal
direction as € | 0.

We may summarize the statement of the theorem by saying that TISIENTpf extends to
an asymptotic approximation of f in the boundary layer near P. We denote the extension
by Epf and refer to the function Epf thus defined as a local expansion of f near P. The
expansion can be to a specified number of terms or to a specified order of accuracy. If 7 is
the regularizing transformation that defines Tpf, then we have the pointwise expression

EPf(€)( ) EPf €, $ Zé TPf )7 Y= T(€7$)7 v € Dp.

The functions (Tpf), are uniquely determined; they are obtained by taking limits in Y,

(Tp )™ (e)
dnle)

where (Tpf)O(e) = (Tpf)(e) and (Tp/)(e) = (Tpf)(e) — Yzt 8N (Tp )y for n =

1,2,... Pointwise,

(Tpf)nzlifg n=0,1,...,

(Trf)e)y)=Trf)e,y) = fle,z), y=r7(e,x), x€ DpUP.
We conclude with a simple example to illustrate Theorem 6.

Consider the function f(e,z) = e~ /e 4 ¢(z) on [0,00), where ¢ has a convergent Taylor
series expansion for all z, ¢(z) = S22, a;x'. As usual, we consider this function as a
mapping from (0, ¢) into X = (C[0,00),|| - ||eo). The transformation y = z /¢ regularizes f
at the origin, Tp f(e,y) = e7¥ + ¢(€y) and the asymptotic approximation to the accuracy of
s ETpf(€ y)=e Y435, La;e'y’. The remainder satisfies the estimate Tp f— ETp f =
Oﬁ( ") = o(€""!) on any interval [0,b] with b > 0. But, in agreement with Theorem 6, we
also have, for each ¢ € {0,...,n — 1}, Tpf — ETpf = o(¢"~'9) on any interval of the
form [0,be~%/"]. When we translate these results back to the original variable, we obtain
the local expansion Epf(e,z) = e~rle 4 ZZ o a;x" for f, which satisfies the asymptotic
estimate f — Epf = o(€""177) on any interval [0, b¢'=9/"]. Notice that the length of this
interval always goes to zero as € | 0, but the rate decreases as ¢ increases. In the notation
of Theorem 6, we have 6,;/(¢) = e/,

Exercises

1. Consider the function f(e,z) = €*(x + 62)_16_$/€ for 0 < z < oo as a map into X = (C[0,00), || - ||)-
Verify that f has boundary-layer behavior near 0, find a significant regularization of f at 0, and
discuss the local expansion of f near 0.
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4 Matching Asymptotic Approximations

We now come to the important problem of matching local expansions valid in the boundary
layer to the interior expansion valid in D.

Suppose f has boundary-layer behavior on D and P is a point on d,D, the singular
part of the boundary of D. Let E;f be the asymptotic approximation of f obtained by
approximating D from within, as described in Theorem 1 or its generalization, Theorem 2,
and let Ep f be the local asymptotic approximation obtained through a regularization of f
near P, as described by Theorem 6. Then two things are needed to match Epf to E;f: (i)
Erf and Epf need to share a common domain of validity, and (ii) F;f and Epf need to
have commensurate orders of approximation. Let us consider the situation in more detail.

First, we look at F;f. Arguing from within D and starting from an m-term regular

asymptotic expansion F f of f, we have proven the existence of order functions 8}, ..., 8, _,,

all o(1) as ¢ | 0, and of nested sets of compact subsets ](5(/)(6), e, Ko (0 satisfying
diSt([(g}/g, d,D) = Oﬁ(éz’y), such that f— Ef = 0(6,,-1—-,) on K%(E) forp=0,...,m—1. The
order functions satisfy the relation 62’7 =0( 2’7_1) forp=1,...,m—1, but it is not ruled out

that the symbol O may be strengthened to o, in which case the compact subsets actually
expand as p increases while € is being kept fixed.

Next, consider Epf. The fact that we talk about Epf presupposes that there exists
a regularization Tpf of f near P. Let us assume that it has been obtained through a
regularizing transformation (i.e., a change of coordinates) of the order of 1/é,. By imposing
the condition 6, = o(é,) for p = 0,...,m — 1, we have achieved that the entire domain of
validity of the inner expansion is sent to infinity by the regularizing transformation. Then,
starting from an n-term regular asymptotic expansion ETpf of Tpf, we have proven the
existence of order functions 6fj,...,6/_ 1, all o(1) as € | 0, and of nested sets of compact
subsets I(((gr/(g(l)/)(ﬁ), ooy W(s,/5,_1)1(c)> €ach containing P and all filling the boundary layer
near P in the normal direction as ¢ | 0, such that f— TISIETpf = 0(6,—1—4) On K((gr/%/)(ﬁ)
for ¢ = 0,....n — 1. The dimensions of the set K((gr/%/)(ﬁ) are Oﬁ(l/é(’]’) in the tangential
directions and O(6,/6!) in the normal direction. We assume that &, = o(6) for ¢ =
0,...,n—1. The order functions satisfy the order relation 6,/ = O(¢,_,) forqg=1,...,n—1,
but, again, it is not ruled out that the symbol O may be strengthened to o, in which case
the compact subsets actually expand as ¢ increases while € is being kept fixed.

Given these details, let us first consider the most straight-forward case, where m = n

and p=¢=0.

Definition 6 The function f and its reqularization Tpf at P satisfy the strong overlap
condition if the intersection of the extended domain of validity of the m-term interior ex-
pansion E;f and the extended domain of validity of the m-term local expansion Epf has a
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nonempty interior for every m = 1,2,...

Theorem 7 The function [ and its regularization Tpf at P satisfy the strong overlap
condition if, for every m = 1,2,..., there exist order functions &, and 8 such that 6} =

o(6,/811).

Proof. According to Theorem 2, the m-term expansion Fjf extends to an asymptotic
approximation of f on Kg.). The distance from this set to d;D is O¥(8}(€)). According
to Theorem 6, the m-term expansion Epf extends to an asymptotic approximation of f
on K, /s1)(c)- The latter set extends over a distance O%(é,/64)(€)) from P into D in the
normal direction. If 6 = 0(é,/6(]), the two sets certainly overlap as € | 0. 1

In the case of strong overlap, there is no need to extend the domains of validity of Ejf
and Ep f at the expense of accuracy. Obviously, thisis the best of all possible worlds. If there
is no strong overlap, it becomes a matter of balancing the accuracy of each approximation
(i.e., the number of terms in the expansion) against the domain of validity, and we may
have to increase the number of terms in either or both of the expansions to achieve the
desired order of accuracy in the region of overlap.

Definition 7 The function f and its reqularization Tp f at P satisfy the overlap condition
if, for every k = 1,2, ..., there exist integers m,n € {k,k+1,...} such that the intersection
of the extended domain of validity of the m-term interior expansion Erf and the extended
domain of validity of the n-term local expansion Epf has a nonempty interior, where f —

Erf =o0(0r—1) and f — Epf = o(6p_1).

Theorem 8 The function f and its reqularization Tpf at P satisfy the overlap condition
if, for every k = 1,2,..., there exist integers m,n € {k,k+ 1,...} such that the order
functions ¢! _, and §'_, satisfy the relation ¢! _, = o(6,/6!_,).

Proof. According to Theorem 2, the m-term expansion Fjf extends to an asymptotic
approximation of f of the order of é;_1 on K () The distance from this set to d,D is

O¥(8! _,(€)). According to Theorem 6, the n-term expansion Ep f extends to an asymptotic
approximation of f of the order of é;_1 on K(ér/éu_k)(ﬁ). This set extends over a distance

O4(6,/6"_,)(¢)) from P into D in the normal direction. If &' _, = o(6,/8”_,), the two sets
certainly overlap as ¢ | 0. 1

If there is no strong overlap, one will generally try to keep m and n as close to k as
possible, so as to minimize the number of extra terms one has to carry to achieve the desired
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order of accuracy on the region of overlap. The following examples illustrate the matching
mechanism.

First, an example where the strong overlap condition is met.

Consider again the function f(e,z) = e=%/¢ + ¢(z) on [0,00) from the previous section.
The m-term interior expansion is Erf(e,z) = (/5( ) for any positive integer m, and the
n-term local expansion is Ep f(e,z) = e=%/¢ + Y"1 a;2". The former satisfies the estimate
f = Erf =o(e™!) on any interval [ae#, 00) with g > 0 and a > 0, the latter the estimate
f—Epf = 0%c™) on any interval [0,be”] with v > 0 and b > 0. Because of the conditions
6, = o(6}) and 6, = o(8()), p and v are further restricted to the interval (0,1). We claim
that we can take m = n and choose p and v so Theorem 7 applies.

We have é)(€) = ¢* and 6,/6((¢) = €. Overlap is achieved whenever p > v. For
matching, it suffices to choose v such that €™ = o(¢™™!), or v > 1 — 1/m. For example,
by choosing v = 1 — 1/(2m) and g = 1 — 1/(4m), we achieve that the interior and local
approximations overlap on the interval [61_1/(27”), 61_1/(4m)], and that they match there to
the order of é,,_1, for m=1,2,...

Next, an example where the strong overlap condition is not met, but where we still have
overlap.

Consider the function f(e,z) = ¢/(¢+ z) + ( ) n [0,00), with ¢ as before. The
m-term interior expansion is Ejf(e,z) = (96) v ( 1)t 2=+ and the n-term
local expansion is Epf(e,z) = ¢/(e +2) + >0, ale. The former satisfies the estimate
f—FEif = Oﬁ(gm(l_“)) on any interval [ae”,00) with g > 0 and @ > 0, the latter the
estimate f — Epf = O%(e™) on any interval [0,be”] with v > 0 and b > 0. Because the
regularizing transformation is of the order of 1/¢, we restrict p and v further to the interval

(0,1). We have ¢/ _,(¢) = ¢ and (6,/6!_,)(¢) = €.

For a given k, we must determine m, n, u, and v so the domains of validity overlap and
the matching condition is satisfied. The two approximations Fjf and Epf match to the
order of é5_q (i.e., to k terms)if (k—1)/n <v < p <1—(k—1)/m. The choice m =n =k
works only for & = 1; any g and v with 0 < v < p < 1 will do in this case. For larger values
of k,wecan take m=k+1,n=Fkand 1 - 1/k<v<pu<l—-(k—-1)/(k+1).
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