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Introduction

The first Theory Institute on Combinatorial Challenges in Computational Differentia-
tion was held at Argonne National Laboratory, May 24-26. Computational differentiation
(CD) is concerned with tools, techniques, and mathematics for generating, with little hu-
man effort, efficient and accurate derivative codes from programs written in such computer
languages as C and Fortran.

Organized by Christian Bischof and Andreas Griewank of Argonne’s Mathematics and
Computer Science Division, the institute brought together many leading developers of CD
theory and implementations, along with the following prominent representatives of related
areas:

Bruce Char (Drexel University)

Harley Flanders (University of Michigan)

John Gilbert (Xerox PARC)

Robert Grossman (University of Illinois, Chicago)

Kieran Herley (University College, Cork, Ireland)

Erich Kaltofen (Rensselaer Polytech Institute)

Jacques Morgenstern (INRIA Sophia-Antipolis and the University of Nice, France)
Joel Saltz (University of Maryland)

Stephen Watt (IBM Thomas J. Watson Research Center)

This diversity provided for a stimulating meeting and ensured a certain element of
suspense. The primary purposes of the meeting were to explore the deep complexity issues
that lie at the heart of the computation of derivatives from computer programs and to
provide a forum for brainstorming on future research directions, including the applications
of automatic differentiation (AD) in scientific computing and the development of AD tools.

What Is Automatic Differentiation?

So-called AD techniques are the basis for all efforts related to computational differentiation;
with these techniques, it is possible to determine the sensitivities of certain output variables
with respect to certain input variables for any mapping that is described by a computer
program. Automatic differentiation relies on the fact that every function is evaluated on a
computer as a sequence of elementary operations, such as +, -, and intrinsics such as sin
and log. By successively applying the chain rule to the composition of those elementary op-
erations, derivatives can be computed exactly (up to machine roundoff) and in a completely
mechanical fashion. These successive chain rule applications traditionally proceed in one
of two modes: the forward mode, which propagates derivatives of intermediate values with
respect to the inputs, and the reverse mode—a discrete analog of the adjoint equations used
in optimal control—which propagates derivatives of outputs with respect to the intermedi-
ates. A broad introduction to the field was given by Andreas Griewank (“The Chain Rule
Revisited in Scientific Computing,” SIAM News, May and July 1991).

Tools for AD produce code for derivative computations either by operator overloading or
by explicit augmentation of the original code with statements for derivative computations.



More traditional methods for differentiation, such as divided differences, hand-derivation,
and symbolic approaches, are less efficient, more error-prone, or not generally applicable
to large codes. AD software packages—some of which are briefly discussed later in this
article—are already competitive with the other differentiation methods in terms of efficiency
of derivative computation, with many approaches to speedup as yet unexplored.

Speakers Document a Growing Research Area

The talks presented at the institute touched on computer algebra, numerical linear algebra,
complexity theory, graph theory, symbolic computing, parallel processing, and compiler de-
sign. The diversity of the participants’ backgrounds provided a fertile ground for extensive
interdisciplinary discussions both during and outside the framework of the formal talks. It
emerged in the course of the institute that the research area of computational differentia-
tion had grown from a series of isolated rediscoveries into a cohesive body of basic tenets
and that the scope of application areas had been extended. Important characteristics of the
field discussed at the meeting included theoretical results confirming the combinatorial com-
plexity of the underlying problems, and the development of general-purpose differentiation
tools.

Automatic differentiation can be posed as a graph elimination problem, where the se-
quence of operations can be represented as the nodes of a computational directed acyclic
graph (CDAG) and derivatives are propagated along the edges of the graph. Kieran Herley
presented a proof at this workshop that the problem of minimizing “fill-in” of the CDAG
during Jacobian accumulation is NP-complete. This is an important result not only because
it opens the door to the invention of ingenious heuristics for the implementation of AD, but
also because it shows that the efficient computation of derivatives is a hard problem.

Transpositionality, another interesting theoretical result, was discussed by Erich Kaltofen.
Some computational targets, such as the solutions of linear systems, can be conveniently
characterized as gradients of functionals. Using the fact that the reverse mode allows the
computation of the gradient of a function at a cost that is at most five times that of eval-
uating the function, independent of the number of independent variables, Kaltofen showed
that the application of AD to such functionals in some cases results in asymptotic com-
plexity lower than that of direct methods. An example would be parallel matrix inversion
performed by differentiating a parallel method for computing the determinant.

Andreas Griewank addressed the basic challenge of the reverse mode of AD, namely, the
potentially extremely large memory requirement that results from the need to record each
individual transformation that nonlinearly impacts the final result. The memory require-
ments can be dramatically reduced by the related techniques of multilevel differentiation
and recursive checkpointing, at the expense of the moderate increase in the operations count
that results from repeated recalculation of intermediates.

John Gilbert presented a survey of combinatorial sparse matrix theory as it relates to
AD. He also illustrated Griewank’s checkpointing algorithm in terms of a two-color pebble
game on a CDAG. Bruce Christianson of Hatfield Polytechnic, England, introduced a novel
approach to nested differentiation whereby the reverse accumulation mode is extended to
compute successively higher-order derivatives.

Stephen Watt prefaced his theoretical presentation with a look at the potential ad-

vi



vantages of analytic derivatives over finite differencing in real-world applications, where
the computational efficiency of AD has translated into substantial resource savings. He
cited the experience at IBM Burlington, where the use of analytic derivatives in circuit
simulations led to an estimated $1,000,000 in monthly savings in terms of CPU time. In
his talk on algebraic methods, he showed how, through the specification of canonical and
rule-based simplifications, expressions appearing in automatically differentiated code can
be re-expressed in ways that lead to more parsimonious computation. Finally, he showed
how dataflow analysis techniques can enhance the effectiveness of algebraic methods.

Jacques Morgenstern presented results and methods in algebraic complexity, including
ensembles computation, linear forms, and rational functions. Robert Grossman presented an
algebra of rooted trees, which allows the symbolic translation of algorithms for manipulating
differential operators into assertions about labeled trees, leading to exponential speedup over
naive algorithms.

Christian Bischof discussed issues arising from a comprehensive study of the forward-
mode approach using ADIFOR, a primarily forward-mode AD tool developed jointly at
Argonne and Rice University. He concluded that traditional measures favoring the re-
verse over the forward mode were too simplistic and that the forward mode, if supported
by dynamic data structures and applied in a hierarchical fashion, may be able to deliver
derivatives, and, in particular gradients, much less expensively. He also illustrated the need
to maintain forward-mode quantities (i.e., derivatives with respect to the input) in the
computation of derivatives of iterative processes.

Alan Carle of Rice discussed compile-time analysis in ADIFOR, describing in particu-
lar how ADIFOR automatically identifies active variables, that is, those variables on the
dependency path from the independent to dependent variables, in the presence of scoping,
actual-formal parameter binding, and memory layout. Limiting the number of active vari-
ables at compile time leads directly to reduced time and space requirements for derivative
computations.

Martin Berz of Michigan State University interpreted computational differentiation in
terms of nonstandard arithmetics, by viewing the forward mode of AD in a more general way
as analysis on non-Archimedean structures. The methods discussed allow for the practical
computation of higher-order derivatives needed in Taylor series and have been applied in
the actual design of new accelerators, including the Superconducting SuperCollider in Texas
and the electron—positron collider LEP at CERN in Europe.

Joel Saltz discussed the implications of his group’s ongoing research on runtime compila-
tion techniques as applied to parallel computations. Such runtime techniques could equally
well be applied to efficient sparse derivative computations.

Tools and Applications

The institute also provided a forum for the assessment of the state of the art in AD in terms
of tools and applications. Jim Horwedel of Oak Ridge National Laboratory described the
latest version of GRESS (the GRadient Enhanced Software System). GRESS was designed
to allow the application of AD to large-scale Fortran programs in the nuclear industry
without requiring changes in the coding. GRESS implements both the forward and the
reverse modes. The modular differentiation technique (MD'T') uses both the forward and the
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reverse modes of GRESS to restrict the growth of execution time and storage requirements.

The aforementioned ADIFOR (Automatic DIfferentiation of FORtran) is a general-
purpose tool developed to deal with real-world Fortran 77 codes. ADIFOR, which employs
parts of Rice University’s ParaScope parallel programming infrastructure, has been success-
fully applied to a variety of codes in areas ranging from biomedical modeling to turbulent
fluid flow.

Ralf Giering of the Max-Plank-Institute for Meteorology in Hamburg, Germany, pre-
sented AMC (Adjoint Model Compiler), a reverse-mode Fortran source-to-source translation
tool developed to support adjoint code generation for climate modeling codes. Michael Gle-
icher of Carnegie Mellon University demonstrated his graphical interaction system, which
uses AD to provide dynamic functionality for interactively built mechanical models. Harley
Flanders demonstrated the implementation of his AD tool for the PC Basic environment.

Also discussed at the workshop was ADOL-C, a tool developed for C/C++ by Andreas
Griewank with David Juedes, Duane Yoder, Jean Utke, and other students to compute
derivatives of any order in both the forward and the reverse modes. Other AD tools consid-
ered were PADRE II, a Fortran precompiler developed by Koichi Kubota at Chuo University
in Japan, and the Odyssee tool developed by Nicole Rostaing and Andre Galligo at INRIA
Sophia-Antipolis. As part of an effort to aid in the development of robust AD tools, Chris-
tian Bischof proposed to create a public-domain database of Fortran programs, input, and
derivatives, for use in comparing different AD tools.

The general conclusion from the implementation-focused discussions was that AD soft-
ware developers are committed to the development of AD software that is ever easier to
use and ever more robust. The potential impact of this new technology was apparent at
the meeting as the various tool developers talked about the successful application of their
tools to promising pilot projects. It is hoped that the expansion of application areas will
lead to widening awareness in the scientific and technology circles that AD is the approach
of choice for computing derivatives.

A consequence of this synergetic relation between tools, applications, and the mathe-
matics of AD will be to bring research issues into sharper focus. Questions being consid-
ered include: Is AD something that should eventually be native to compilers as an option,
bringing to bear the full weight of dataflow and dependence analysis for better AD imple-
mentations? What happens to a fluid flow or ODE solver that is differentiated by means
of AD, and how do the automatically derived derivatives correlate with the solution of the
adjoint equation, for example? What is the meaning of the code generated by differentiating
through iterative methods?

While previous research concentrated mainly on the “automatic” aspects of computa-
tional differentiation, these questions provide an indication of the emerging issues in this
field, namely, the exploitation of user insight into the structure or mathematical properties
of a particular application so that AD tools can be used more efficiently, and the math-
ematical interpretation of the results of AD for computational paradigms approximating
limit processes. These as yet mostly unresolved issues and the apparent potential for im-
provements in tools supporting computational differentiation promise to make this field an
exciting one in the years to come.
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Infinitely Small Numbers and Almost Infinitely
Large Accelerators, or: Automatic Differentiation
as Non-Archimedean Analysis

Martin Berz

(berz@vixen.nscl.msu.edu)

Physics Department
Michigan State University
Fast Lansing, MI 48842

The method of the forward mode of automatic differentiation is viewed in a more general
way as analysis on non-Archimedean structures. If one views the tuples of derivative vectors
encountered in automatic differentiation as a ring, a total ordering can be introduced that
is compatible with the algebraic structure. In this view, the components of the higher
derivatives appear as the coefficients of a representation in infinitely small basis vectors or
infinitesimals.

Starting from this simple observation, one can generalize the structures to form a real-
closed field. In this case, one also obtains infinitely large numbers, and all customary algebra
can be performed in this extension of the real numbers. Based on the ordering, it is possible
to study questions of convergence; it turns out that the structures are Cauchy-complete.
There is another natural type of convergence that lends itself to the introduction of power
series, which can be shown to converge within their conventional radius of convergence.

In a similar way, questions of continuity and differentiability can be studied, and in most
cases, there are analogs to the standard theorems of analysis, including intermediate and
mean value theorems. As a bonus, one obtains the theorem that “differential quotients are
derivatives” or more specifically, the value of a derivative can be obtained up to an infinitely
small error by “numerically” evaluating the difference quotient using an infinitely small Az.
While providing a nice justification to the concept of differential quotients in a similar way
as nonstandard analysis [1, 2], it puts the methods of forward automatic differentiation in a
more philosophical and less technical light and even allows the computation of derivatives
in cases where conventional automatic differentiation fails [3].

On the practical side, the methods can be applied for the study of weakly nonlinear
systems in which the equations of motions as well as their flows can be represented by very
quickly converging Taylor series. In the field of optics, one of the subfields of this area, these
coefficients have been traditionally known as aberrations and, until the advent of automatic
differentiation methods, in particular in the connection with differential algebraic methods,
have been next to impossible to compute for higher orders [4].

In the case of repetitive structures studied in accelerator physics, the coefficients manifest
themselves in the form of tune shifts and resonances and potentially limit the stability of
the motion. Using methods of normal form theory that allow a rigorous analysis of the
repetitive properties of weakly nonlinear systems [5], many important questions regarding
the long-term behavior can be analyzed in a very clean way. The methods are applied



for the actual design for new accelerators, including the Superconducting SuperCollider in
Texas.

References

[1] A. Robinson. Non-standard analysis. In Proceedings Royal Academy Amsterdam, Series
A, volume 64, page 432, 1961.

[2] C. Schmieden and D. Laugwitz. Eine Erweiterung der Infinitesimalrechnung. Mathe-
matische Zeitschrift, 69:1-39, 1958.

[3] M. Berz. Automatic differentiation as nonarchimedean analysis. In Computer Arithmetic
and Enclosure Methods, Amsterdam, 1992. Flsevier Science Publishers.

[4] M. Berz. Arbitrary order description of arbitrary particle optical systems. Nuclear
Instruments and Methods, A298:426, 1990.

[5] M. Berz. Differential algebraic formulation of normal form theory. In M. Berz, S. Martin
and K. Ziegler (Eds.), Proc. Nonlinear Effects in Accelerators. IOP Publishing, 1993.



Going Forward

Christian H. Bischof
(bischof@mcs.anl.gov)

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439

For a given function f : 2z € R® — y € R™ the forward mode propagates ill—h € R”

xT
and the reverse (or adjoint) mode propagates 3—% € R™, where L denotes an intermediary
value in the program. Hence, an often-used complexity figure (see, e.g., [8]) for the flop
and storage complexity of an automatic differentiation program is O(r) times the flop and
storage complexity of evaluating f, where r is the maximal number of nonzeros in any row
of the Jacobian j—z.

We show that this measure is too simplistic and that the forward mode, if supported
by dynamic data structures and applied in a hierarchical fashion, may be able to deliver
derivatives, and in particular gradients, much less expensively. We also illustrate the need
for maintaining derivatives with respect to x, that is, forward-mode quantities, in the com-

putation of derivatives of iterative processes.

Dynamic Data Structures: Coloring techniques can be applied advantageously in the
computation of “compressed” sparse Jacobians by using automatic differentiation [1, 5]
much as with divided-difference approximations. However, the rows of the Jacobian
are, in general, the densest derivative objects ever propagated in the forward mode.
Hence, by employing sparse dynamic data structures for the vector operations exe-
cuted in the forward mode, we can take advantage of hidden structure in the program.
An example is given in [3], where on a 190 x 190 Jacobian the dynamic sparse version
required only 4% of the additions and 17% of the multiplications compared with the
computation of the 190 x 28 “compressed” Jacobian. Another class of functions for
which this approach can be very favorably applied is so-called “partially separable
functions” [11, 12], which, in particular, include functions that have sparse Hessians.

Hierarchical Derivative Schemes: The ADIFOR tool [1], for example, employs a hybrid
mode for propagating derivatives. For an assignment statement w = <some expression
involving a, b, ¢ >, say, we employ the reverse mode to compute %—ZU, 88—7})”, 88—7“5, and then
employ the forward mode to form

dw Jdwda Jwdb 8wdc],
de " Jade T ovde T cd™

Note, however, that code of similar complexity would have been created if one had
used the forward mode to compute 88—7;’, 88—7})”, 88—7“5, since the decrease in complexity does
not hinge on the choice of mode applied to the right-hand side of the assignment
statement, but rather on the fact that & contains in general more than three entries.

Studies exploiting this “contraction” in a larger context are described in [6].



Derivatives of Iteratively Defined Functions: Most CFD codes in aeronautical engi-

neering, for example, compute flow and displacements fields by iterative procedures,
which may converge very slowly and often involve discontinuous adjustments of grids
or free boundaries. That is, for given z, we are solving a nonlinear system

F(z,2,) =0 (1)

to find the value z. = z(z.) of the function implicitly defined by F. What we wish to
compute are the derivatives z/ = j—fgb:x*. Recently, we have been able to show that
applying automatic differentiation to the iteration for z will generate a convergent
iteration for 2z’ for a wide class of iterative schemes [9]. We have also shown that
the convergence of 2’ may lag behind the convergence of z and that one needs to
monitor the convergence of the derivative iteration by computing ||% |Gy 1 IE
x is k-vector, this quantity can be computed with an effort that is no more than
k evaluations of F. Experiments with the differentiation of iterative procedures are
reported in [3, 2, 7]. Note, however, that % |(Zk7l,*) is a forward-mode quantity and
that, as a result, application of the reverse mode in a fashion crossing the iteration
boundaries seems problematic from a numerical point of view.

In summary, we believe that the forward mode is more powerful than ordinarily assumed

and that forward-mode-based tools will be competitive with reverse-mode-based tools for a

wider class of problems than traditionally assumed. However, we also admit that there are

problems for which there is no alternative to the classical reverse mode and that, in general,
hybrid forward/reverse mode schemes will be the most efficient (see, for example, [10, 4]).
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Compile-Time Activity Analysis in ADIFOR

Alan Carle

(carle@cs.rice.edu)

Center for Research on Parallel Computation
Rice University
Houston, TX 77251

Efficient computation of derivatives by automatic differentiation requires good compile-
time analysis of the programs to be differentiated, good derivative code generation based on
the results of compile-time analysis, and good run-time support. This talk will examine the
current use of compile-time analysis in ADIFOR (Automatic DIfferentiation of FORtran).

The cost of computing derivatives by the forward or reverse modes of automatic differen-
tiation can be reduced by computing derivatives or adjoints only of “active” variables, those
variables that are on a dependence path from the independent to the dependent variables.
Compile-time analysis to solve this problem should result in large computational savings
when applied to “multipurpose” codes, codes that have been designed to compute a set of
functions simultaneously, but that are often used to compute only a single function.

Activity analysis is an interprocedural problem; its solution depends on the actions
performed by each of the routines in a program. Complex issues of scoping, actual-formal
parameter binding, and memory layout must all be addressed. A series of examples will be
presented demonstrating the effect of each of these issues on precise activity analysis. The
algorithm currently being used by ADIFOR will then be outlined and critiqued.



Reverse Accumulation
of Functions Containing Gradients

Bruce Christianson
(comgbc@herts.ac.uk)

School of Information Sciences, Hatfield Campus
University of Hertfordshire
AL10 9AB England

We extend the technique of reverse accumulation so as to allow efficient extraction
of gradients of scalar-valued functions, which are themselves constructed by composing
operations that include taking derivatives of subfunctions. The first technique described
here relies upon augmenting the computational graph and performs well when the highest
order of derivative information required is fourth or fifth order. When higher order is
required, an approach based upon interpolation of Taylor series is likely to give better
performance, and as a first step in this direction we introduce a transformation mapping
reverse passes through an augmented graph onto Taylor-valued accumulations through a
forward pass.

It is well known (see, for example, [2]) that reverse accumulation can be used to extract
all components of the gradient vector V f of any scalar-valued function f for about 3 times
the floating-point computational cost of a single evaluation of f, where the constant 3 is
independent both of the form of f and of the number of parameters (independent variables).
We develop these techniques to derive a simple and elegant way of extracting gradients
(and higher derivatives) of functions such as y = ¢(u, V f(u)) which are constructed by
composing operations that include taking gradients of subfunctions. We show how to obtain
such information to the same level of accuracy as the function value for f, and at a small
constant multiple of the computational cost.

We assume for ease of exposition that reverse accumulation is implemented in the style
of [2], by operator overloading but without overloading assignment. Floating-point program
variables are redeclared as of type vary, where

type vary = record (refnode : pointer to node)
type node = record (opcode : integer; argl : vary; arg2 : vary;
forward _value : real; adjoint_value : real)

Evaluation of the function f produces as a side effect a computational graph for f. The
reverse accumulation sweep to evaluate V f begins by placing the value 1.0 in the adjoint
value field of the end node. The reverse sweep then moves backwards through the graph
incrementing the adjoint values by appropriate multiples of the operation derivatives, as
required by the chain rule. For example, the adjoint accumulation step corresponding to the
forward step v = sinw is 4 = @ + v cos u, and the adjoint accumulation steps corresponding
to the forward step w = w*v are u = u + w*v; v = v+ w * u. At the end of the reverse
sweep, the adjoint value in each node is the partial derivative of the function value in the



end node with respect to the forward value in the given node. In particular, adjoint values
in the nodes pointed at by the independent variables correspond to the components of V f.

Suppose now that we have some function ¢(V f(u)) and we wish to evaluate V. This
can be done by the very same code that we have just described, by making one crucial
change. We redeclare the adjoint value field as

adjoint_value : vary

The reverse accumulation step @ = @ + b * ¢, where ¢ and b are now varys, is implemented
by overloading in such a way that null + ¢ returns @ and null * b returns a null pointer.

The effect of this redeclaration is that the reverse sweep now creates an additional
segment of the computational graph, recording the calculation of the various operation
derivatives and adjoint values. At the end of the reverse sweep,
x.ref _node.adjoint value.ref_node. forward_value contains the floating-point adjoint value
(derivative component) corresponding to the independent variable z.

Part or all of the computational graph can be swept in this way, and similarly adjoint
values, once calculated, can be used in subsequent constructions which can then themselves
be reverse-swept. In this case, it is important to reset (to null pointers) the adjoint fields in
the part of the graph to be reswept before resweeping. This can be done as a side effect in
the course of the previous reverse sweep. Note that this reset operation does not affect the
node previously pointed at by the reinitialized field. This approach has been implemented
by Kubota [4].

The repeated use of reverse accumulation on a problem of the form

f(z,Vg(y, Vh(x)))

where y, z also depend partially on x, will produce duplicate structures with the same form
form as G/(h), the graph of h. The number of copies of G/(h) is exponential in the depth of
gradient nesting. The question therefore arises whether it might be more efficient to store
the various coefficients in a single (enlarged) copy of the graph for h. We have shown in [2,
§5],[3, §6] that reversal through the reversed graph is equivalent to developing a first-order
Taylor series in a single variable forward through the original graph.

It turns out (using similar arguments) that nested reverse traversals amount to main-
taining precisely the completely heterogeneous terms of a multivariate Taylor series (i.e.,
no variable appearing in power two or higher).

For example, if p = V, h(x),q = V. g(¥,p), then we can evaluate q as follows: build
the graph G/(h), reverse through G/(h) to obtain the values X = p, copy these into the base of
the graph for ¢, build G(g), reverse through G/(g¢) to obtain p = V,, g, set x; = x+p.t where
t is the (first) Taylor variable, then make a second pass forward and backward through G(h)
computing the linear Taylor terms in ¢. The first-order terms in ¢ for Xy give the value for q.
These in turn are built into the base of the graph for f, and the reverse pass through G(f)
requires a second pass forward and back through G/(g) in a direction @ corresponding to the
second Taylor variable s. This in turn requires a further pass forward and back through
G/(h) evaluating the coefficients of the terms of order s and st. The next level of nesting
would require passes for terms r,rt,rs, rst, and so on (hence the exponential growth with
nesting level).



We have already considered representing a reversal through a previously built graph
segment as an explicit computational step (corresponding to a graph node). This could be
extended so as to define operations representing the addition of another Taylor variable to
the (forward or reverse portion of the) graph. Combining this with the interpolated Taylor
series approach [1] holds out the prospect of some time and space savings if the total order
of differentiation is high, and this is identified as a promising avenue for future research.
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Program ODE
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ODE is a program under development to show the power of automatic computation
of Taylor polynomials (AD) in various applications. It uses the MS-DOS platform, uses
protected mode, and requires VGA graphics. The program is menu-driven and quite user
friendly. It will be distributed commercially in time.

ODE accepts user input of any function expressible in terms of the usual algebraic
operations and the usual transcendental functions used in computer languages.

Its current modules:

1. Computation of a Taylor approximation to any function up to degree 100. Plot of the
function and the Taylor polynomial. Comparison of computed values.

2. Ditto for functions implicitly defined by F(x,y) = c.
3. Ditto for inverse functions.

4. Solution of systems of ODE, numerical and graphical, by Taylor polynomials and
analytic continuation. Up to 3 dependent variables. Various plane and space plots.

5. Ditto for ODE systems defined implicitly, up to 20 dependent variables.

6. Solution of F(x) = 0 by Newton, Halley, another third-order method, three fourth-
order methods, and one fifth-order method, with comparison of convergence.

7. Integration of F(x) over [a, b] by Taylor expansion with adaptive step size.
8. Graph of F(x, y, z) = c¢. This uses gradient computations.
Projected modules:
9. Two-body problem
10. Three-body problem
11. Singular systems of ODE
12. System of DAEs (differential algebraic equations)

13. Initial value Cauchy problem
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Adjoint Code Generation
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Adjoint models are increasingly in development for use in meteorology and oceanogra-
phy for data assimilation, model tuning, sensitivity analysis, and determination of singular
vectors. The adjoint model computes the gradient of a cost function with respect to control
variables. Direct coding of the adjoint of a complex CFD model is extremely time consum-
ing and subject to errors. Automatic generation of adjoint models would greatly help. For
this purpose a tool has been developed.

The automatic generation of adjoint code is a special case of automatic differentiation of
algorithms in backward mode, where the dependent function is a scalar. Out of a Fortran
subroutine calculating a cost function f

f:RYN = R
r = ¥y

a Fortran subroutine is generated computing

f':R= RN, fl =

The method used is based on a few principles:
e Every active variable (inside dependency tree) has a corresponding adjoint variable.

o For every common block containing active variables, an adjoint common block is
created.

e Lor every subroutine (function) that calculates active variables, an adjoint structure
is generated.

e The active output variables of a structure are the adjoint input variables of the corre-
sponding adjoint structure and vice versa. In addition to this, input variables of the
structure needed for the adjoint calculations are also input variables of the adjoint
structure. This checkpointing ensures that each adjoint structure could be generated
separately, by knowing only the active variables.

The body of each structure is analyzed, and for every statement the input and output
variables are determined. After constructing the corresponding adjoint statements according
to specified rules, the variables of the original code needed for the adjoint calculations are
determined. These may be indices, passive variables, or active variables. Code is included,
where necessary, to calculate these values as they are calculated in the original code. The
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user may use directives to create code to store the values during the calculation of the cost
function and to restore them during the adjoint calculations.

A Fortran program consists mainly of four kinds of statements. The generation of the
adjoint statements is shortly described:

assignment
X — g(X,A,B,...)

The expression on the right hand-side of an assignment is symbolically differentiated
with respect to every active variable that occurs in the assignment. For each of them
an adjoint assignment is generated (adA = adjoint of A)
dg
dA dA dxX « —
a — a + a 7A
The last assignment contains the assignment to the adjoint variable of the left-hand
side variable of the original code.
dg

adX — adX % 8—X

conditional statement For a conditional statement
IF condition THEN statement A ELSE statement B
the adjoint statement is

IF condition THEN adjoint statement A ELSE adjoint statement B

loop In case there is any recursive assignment inside a loop, the adjoint loop has to take
the reverse order. The number of passes has to be provided.

sequence of statements The adjoint of the statements are arranged in reverse order.
Code is included in front to provide variables, which are needed.

subroutine call The corresponding adjoint subroutine is called.

A peculiar problem may arise from multiple assignment to a variable within a structure
if the same variable is needed for the adjoint calculations. In this case a warning is given
to the user.

For the iterative calculation of a nonlinear implicit function, a special adjoint code can be
generated assuming that the iteration converged. This code avoids the storing of variables
at each iteration.

In general the user has to choose between recalculating or storing of variables. The
former takes additional computer time; the later requires memory or disk space. This
decision cannot be made automatically.
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A Tour of Combinatorial
Sparse Matrix Technology

John R. Gilbert
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Graph theory has been ubiquitous as a tool for sparse matrix computation since Sey-
mour Parter described fill during Cholesky factorization as a transformation on graphs in
1961 [26]. Graphs conveniently capture the path structure that is important in Gaussian
elimination; they expose the issues of locality that affect efficiency on machines with hi-
erarchical or distributed memory; and they bring to bear a well-developed set of efficient
algorithms and data structures.

This talk surveys some combinatorial sparse matrix theory that relates (sometimes tan-
gentially!) to automatic differentiation. We consider four topics: directed graphs and sparse
matrix algorithms; the minimum fill problem; graph partitioning; and a game that models
the space/time tradeoff in reverse mode.

Directed Graphs and Sparse Matrix Algorithms

If Ais an n by n nonsingular matrix with nonzero diagonal elements, its directed graph
has n vertices and an edge (7, j) for each off-diagonal nonzero a;;. Permuting the rows
and columns of A to block triangular form (so that a system of linear equations can be
solved by block back-substitution, factoring only the irreducible diagonal blocks) is the
same as finding the strongly connected components of the graph. Tarjan’s linear-time strong
components algorithm [30] was one of the first applications of depth-first search to numerical
computation. The irreducible diagonal blocks of an arbitrary matrix are independent of the
choice of nonzero diagonal in the matrix [6].

If in addition A has an LU factorization without pivoting, Rose and Tarjan [28] give
a simple characterization of the nonzero structure of the factors in terms of paths in the
graph of A. Several people have studied this so-called “directed filled graph” [7, 14, 21].

Consider a linear system Az = b in which both the matrix A and the vector b are sparse.
The nonzero positions of b can be thought of as a set of vertices of the graph of A. The
nonzero positions of x correspond to exactly those vertices from which there exist paths in
the graph to vertices of b [11]. This makes possible an efficient algorithm to solve triangular
systems with sparse right-hand sides, which in turn permits LU factorization with partial
pivoting of an arbitrary nonsingular matrix in time proportional to the number of nonzero
arithmetic operations [15].

Jacobian accumulation by automatic differentiation is related to computing a Schur
complement in a sparse triangular matrix by Gaussian elimination [18]. Consider the graph
of the computation of outputs v, ..., ¥, from inputs zq, ..., ¥, by way of intermediate
values z1, ..., z,. Let (' be the matrix of that graph, with diagonal elements equal to —1
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and off-diagonal elements equal to the local partial derivatives. Then C'is triangular, and
the Jacobian is the m by n Schur complement J = ny—CZyCz_Zl (. obtained by eliminating
all the intermediate vertices z;. In this setting, the forward, reverse, and Markowitz modes
of automatic differentiation correspond to different elimination orders. Schur complements
in sparse matrices have been studied in a graph-theoretic setting [8].

Approximately Minimum Fill

Kieran Herley showed at this workshop that minimizing the fill in the computational graph
during Jacobian accumulation is NP-complete. Fill and other cost measures for sparse
Gaussian elimination have been studied extensively, especially in the setting of undirected
graphs and Cholesky factorization of symmetric, positive definite matrices [10]. Minimum
degree (the symmetric version of the Markowitz heuristic) is very effective in practice in
reducing fill and operation count, though there are simple examples where it performs
arbitrarily badly [3].

Nested dissection, a divide-and-conquer heuristic based on separators in the graph,
usually does not perform quite as well as minimum degree in practice. However, nested
dissection is the only method known that can produce provable guarantees on the various
cost measures. For example, the Leighton-Rao algorithm [22] produces separators within
O(log n) of optimal for any bounded-degree graph in polynomial time; using these separators
in nested dissection guarantees that fill, operation count, frontsize, treewidth, pathwidth,
and elimination tree height are all within a polylogarithmic factor of minimum [1, 4]. Thus,
at least in the undirected case, the quality of a graph’s elimination orders is intimately
connected to the quality of its separators.

Graph Partitioning

Recent interest in separators has been sparked by the desire to partition computational
graphs for distributed-memory parallel machines. Random graphs (in a suitable sense) do
not have good separators [23], but several useful classes do, including trees [19], planar
graphs [23], graphs of bounded genus [12], graphs that forbid a fixed set of minors [2], and
chordal graphs [16]. In practice, many heuristic methods have been used to find separa-
tors [9, 20, 24]; recently suggested methods use ingredients as diverse as the spectrum of
the Laplacian matrix of the graph [27] and the geometry of an underlying finite element
mesh [25].

Modular automatic differentiation and Griewank’s checkpointing algorithm can be viewed
as partitioning the computational graph. However, it is probably not useful in this context
to use a general-purpose partitioner on the computational graph. Rather, the key research
question is likely to be how to use the call graph and/or some version of the dataflow graph
(such as static single-assignment form [5]) to partition the computational graph suitably (at
appropriate subroutine or basic block boundaries, for example) without actually forming it.

Reverse Mode as a Pebble Game

Griewank’s checkpointing algorithm [17] can be described in terms of a one-person game
on a directed acyclic graph. The player has a number of “pebbles” in two colors, black and
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white, which can be placed on the vertices of the graph according to the following rules:

e Black rule: A black pebble may be placed on a vertex if all its immediate predecessor
vertices hold black pebbles. (Thus a black pebble may be placed on a source, or input
variable, at any time).

e White rule: A black pebble on a vertex may be replaced with a white pebble if all its
immediate successor vertices hold white pebbles. (Thus a black pebble on a sink, or
output variable, may be changed to a white pebble at any time.)

Placing a black pebble on a vertex corresponds to computing a value; placing a white pebble
corresponds to computing a derivative. The goal of the game is to place white pebbles on all
the input vertices, while using as few pebbles (that is, as little space) and as few placements
(that is, as little time) as possible.

The conventional noncheckpointing reverse mode corresponds to placing a black pebble
on every node in forward topological order, and then replacing each black pebble with a
white one in reverse topological order. Griewank’s checkpointing algorithm corresponds
to a pebbling strategy that leaves black pebbles on a logarithmic number of cuts in the
graph, repebbling as necessary to move a cut of white pebbles up from the outputs to the
inputs; the time/space analysis says that the total number of pebbles is only O(logn) times
the largest cut, and the total number of placements is only O(logn) times the number of
vertices. It might be possible to design more efficient reverse-mode algorithms for particular
computations by considering pebbling strategies for their graphs.

The black-only pebble game has been studied as a model of register allocation in com-
pilers [29]; a two-color pebble game with a rather different white rule has been studied as a
model of space-time tradeoffs in nondeterministic computation [13].
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Traditional methods for manipulating graphical objects have been limited by simple
controls that can be employed only one at a time. By employing constrained optimization
to couple interactive controls to the parameters of graphical objects, these restrictions can
be removed. Such techniques can allow users to control objects by specifying attributes
that are computed as functions of the parameters, and also allow multiple attributes to be
specified simultaneously, as constraints.

Although the graphics applications require solving very standard numerical problems,
challenges are introduced by the interactive nature of the applications. First, the numerics
must be transparent, since the user is most likely interested in solving a graphical problem,
not in numerical optimization. Second, the system must be dynamic, as the user will
continually be changing the set of constraints. Finally, it is important that the numerics
be fast, not only to achieve a dynamic state, but also to achieve frame rates fast enough to
provide the illusion of continuous motion, which is critical to usability.

Because the applications are dynamic, the functions that represent the constraints and
objective functions are not known at compile time. I have created a C++ toolkit called
Snap-Together Math, which allows the functions to be dynamically defined from smaller
pieces. Classes of objects representing primitive function types are defined at compile
time by using automatic code-generation tools. At run time, these objects are hooked
together to form expression graphs. These graphs are traversed to evaluate the functions
and their derivatives. The derivative evaluations are a form of forward-mode automatic
differentiation.

For the needed performance, four techniques are used. First, caching is used extensively
to avoid recomputing. Second, the sparse nature of the derivatives and matrix calculations is
exploited, yielding not only faster performance, but lower computational complexity. Third,
the system attempts to solve smaller problems by partitioning and freezing subsets of the
constraints. Finally, in an interactive setting we are able to trade accuracy for performance,
for example, using larger tolerances in our iterative solving algorithms.
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Checking the Memory
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Being a discrete analog of the adjoint or costate equations used in optimal control, the
basic reverse, or top-down, mode of computational differentiation [2] yields gradients at very
low operations count. However, it has a potentially extremely large memory requirement.
This effect is particularly noticeable on time-dependent problems, where the memory re-
quirement of the basic reverse mode grows in proportion to the number of time steps. The
proportionality factor achieved by automatic differentiation tools tends to be much larger
than that achieved by the careful hand-coding of adjoints through the judicious selection of
the quantities that need to be saved. Fortunately, by the related techniques of multilevel
differentiation and recursive checkpointing, the memory requirement can be dramatically
reduced at the expense of a moderate increase in the operations count that results from the
repeated recalculation of intermediates.

Multilevel differentiation, originally proposed by Volin et al. [3], is already employed
in some hand-coded adjoints and some automated adjoint code generators like the ACM
system presented at this institute by Ralph Giering. Each subroutine of the original code is
interpreted as a superelementary function that can be called (repeatedly) in a direct mode
and once in an (adjoint) version. For the repeated direct calls the actual parameters and
certain global variables must be either restored from memory or recalculated by the calling
routine.

A tight identification of these input sets is crucial for the efficacy of the multilevel
differentiation approach. It can be based on user-supplied directives or interprocedural
dependency analysis performed by a (pre)compiler. Consequently, the exact memory re-
quirement is hard to predict. The same observation is true for a related scheme, where
the parameters and global variables altered by the subroutine are saved and restored. In
either case the number of times that the forward version of a particular subroutine is called
equals exactly the number of its predecessors in the calling tree. On time-dependent prob-
lems with a calling tree of bounded depth, multilevel differentiation does not overcome the
proportionality between memory requirement and the number of time steps.

Checkpointing can be applied to any sequence of elementary transformations on a given
core memory. The basic reverse mode involves recording each individual transformation on a
separate disk memory and then playing this tape backward to calculate the gradient. Rather
than recording the whole calculation in one forward sweep on the tape, one can generate
it piece by piece from the end by restarting the calculation repeatedly from appropriately
placed checkpoints. For the binomial checkpointing scheme proposed in [1] one obtains the
following complexity result. Given a bound ¢ on the number of repetitions and a bound s
on the number of snapshots kept on disk at any time, one can reverse a calculation, whose
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full tape would have taken up to

(s—l—t) s+t (s—l—t)
S N sh! N t

times the disk space needed for one snapshot of the core. For time-dependent problems
this observation means that the spatial complexity ratio s and the temporal complexity
ratio ¢ can both be limited to a logarithm of the number of time steps. Here, each ratio
compares the complexity of a gradient calculation with that of the underlying scalar function
evaluation. The binomial scheme can be interpreted as multilevel differentiation with an
artificially created calling tree, whose depth grows with the length of the calculation (i.e.,
the size of its tape). When suitable implementations become available, gradient-based
optimization and parameter estimation methods will be applicable to computer models of
almost arbitrary complexity.
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Let R denote the polynomial algebra k[zq, ..., 2], and consider the formal symbols F}
defined by
N0
F]:Z:aya—%v J=1, , M
n=1

as first-order differential operators with coeflicients a;‘ in R. Elements in the free associative
algebra A = k<Fy, ..., Fyy> on Fy, ..., Fpy may then be interpreted as higher-order
differential operators generated by the F](s.

Let B denote the vector space whose basis is the set of finite, rooted trees labeled with
the symbols {Fy, ..., Fas}. It turns out that B is a Hopf algebra and the map

¢p:A— B

, which takes the generators F to the tree consisting of a root with a single child labeled with
F;, can be extended to a Hopf algebra homomorphism. It also turns out that B, as well
as A, measures R to itself. With this structure, algorithms for manipulating differential
operators symbolically are translated into assertions about labeled trees. The result is
algorithms that can be exponentially faster than naive ones.

The derivation of specialized algorithms for numerically integrating the flow of the non-

linear system
i(t) = F(z(t)), 2(0)=2"e RN

leads to computations in the algebras A and B. In particular, the element

_ Yo
exptl = Z i'F
=0
and its image ¢(expt}') turn out to be grouplike elements in the appropriate power series
algebras constructed from A and B. Finding efficient numerical algorithms is equivalent to
computing other grouplike elements with various desirable properties in these algebras. In
this talk, we survey efficient symbolic algorithms for computations of this type and indicate
some connections to automatic differentiation.
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The computation of f(x1,---2,) = (y1,- -, ym) for some computable function f: R" —
R™ may be modeled in terms of its constituent elementary operations (additions, subtrac-
tions etc.) by means of a suitably labeled directed acyclic graph G'y. In this framework,
the vertices of indegree zero and vertices of outdegree zero in the graph represent the inde-
pendent and dependent quantities of the computation, respectively; the other intermediate
vertices (each labeled with an elementary operation) denote the individual steps and the
intermediate quantities produced thereby; and the edges of the graph capture the compu-
tational dependencies between the various quantities involved in the calculation.

The Jacobian matrix J; = [0y;/0x;] for f may be calculated from Gy by associating
a suitable weight ¢;, with each edge (z,y) and then eliminating the intermediate vertices
of the graph one at a time as follows. To eliminate vertex v, (i) add ¢y, - ¢y to the
existing weight of each edge (u,w) where u is an uneliminated predecessor of v and w is an
uneliminated successor of v (or create a new edge, referred to as a fill edge, with this weight
if no such edge previously existed), and (ii) mark v eliminated.

The order in which the vertices are eliminated does not affect the final result: the
final weight of the edge (z;,y;) is the Jacobian entry dy;/0z;, but strongly influences the
computational resources required for its calculation. Many of the techniques such as forward
mode, backward mode, and Markowitz methods that have been proposed and studied in
the automatic differentiation literature for the efficient calculation of Jacobians can be
interpreted, for a suitable choice of vertex elimination order, as a computation of the above
type. Thus we have the question of whether, for a given function f, it is possible to determine
an optimum elimination order, one that allows the above vertex elimination procedure to
be carried out as efficiently as possible. Adopting the number of fill edges created during
vertex elimination as a cost criterion, we adapt a result due to Rose and Tarjan to establish
the NP-completeness of the following problem: Given a directed acyclic graph G and a
positive integer K, is there an elimination order for the intermediate vertices of G' that
creates at most K fill edges?

This result suggests that the problem of determining the optimum elimination order (at
least with respect to the minimum fill cost criterion) is as hard as a host of other well-studied
computational problems such as the Travelling Salesman problem and Boolean satisfiability,
and hence is unlikely to have an efficient (polynomial time) algorithm.
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The calculation of derivatives necessary for sensitivity analysis or for the optimal so-
lution of systems of nonlinear equations continues to be an important research objective.
Several software systems have been developed for implementing automatic differentiation of
computer programs. The forward mode of automatic differentiation is efficient for calculat-
ing derivatives for a large number of dependent variables with respect to a few independent
variables. As the number of independent variables increases, the computational complexity,
as measured in execution time and memory requirements, renders the forward mode imprac-
tical. The reverse mode or adjoint approach is efficient for derivatives of a few dependent
variables with respect to thousands of independent variables; however, available memory
and disk storage generally limit the application of the reverse mode to problems with less
than a few million floating-point assignments. The fundamental problem with the reverse
mode of automatic differentiation is that the accumulation of derivatives is required. A
code that uses 3 minutes of execution time to perform 50 million floating-point assignments
could easily need more than one gigabyte to store the accumulated derivatives [1, 2, 4].

GRESS (the GRadient Enhanced Software System) was designed to apply automatic
differentiation to large-scale FORTRAN programs in the nuclear industry without requiring
changes to the coding [4, 5, 6]. GRESS provides two methods for calculating and reporting
derivatives. The CHAIN option implements the forward mode of automatic differentiation.
The ADGEN option incorporates the reverse mode or adjoint sensitivity analysis methods
to calculate derivatives.

A modular differentiation technique (MDT) is discussed that uses both forward and
reverse modes to restrict the growth of execution time and storage requirements, thus
extending the size of problems to which automatic differentiation can be applied. MDT
is implemented using GRESS and provides a compromise between the forward mode with
its computational limitations and the reverse mode with its excessive memory or storage
requirements. The effectiveness of the MDT in propagating derivatives through a computer
program rests on the degree of modularity in the program. Most existing large-scale Fortran
programs do not have the degree of modularity necessary to apply MDT in an automated
fashion. The approach described is to provide the basic tools to allow one to implement
MDT on a module-by-module basis in an existing code or in the development phase for a
new code.

A module can be considered to be any sequence of Fortran statements. Any module can
be represented by a computational graph. As an example consider the following formula
for DIST. A computational graph for this formula is shown in Figure 1. The squares in
the computational graph represent arithmetic assignment statements. The reverse mode of
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automatic differentiation requires the accumulation of derivatives for every floating point
assignment that is dependent on a declared parameter. In modular form the DIST formula
could be coded as a Fortran subroutine or function with the Y array as input and DIST as
the calculated result.

A computer program can be represented as a sequence of modules each with its own
computational graph. FEach module is assumed to have input and output. Most large
Fortran programs are modular in design; however, common blocks provide a mechanism by
which modules can share global variables that are not provided on the link to the module.
When processing a module, we have to be concerned only with global variables that are
accessed or stored during the execution of a module. Though a single module may have
thousands of common block variables, only a subset may actually be used as dependent or
independent variables. Variables that are used can be determined during execution of the
module.

Figure 2 shows the computational graph for a computer program with global variables
available to modules. The digits on the links indicate the number of input and output
variables for each module. Module A has four inputs and six outputs, B has seven inputs
and four outputs, and C has seven inputs and three outputs.

MDT is designed to work with each module independently. Once a module is completed,
then either forward or reverse mode is used to calculate the derivatives of the output from
the module with respect to the input. Only the derivatives of the output with respect to
the input need to be stored. The decision to use forward or reverse mode does not have to
be made a priori; it can be determined when the module is finished by the GRESS program.

For MDT to be feasible, the number of variables on the links between modules must
be small compared with the number of variables within the modules. The more modular a
code system, the more effectively one could implement MDT. A module can be as simple as
a subroutine or function; however, the composition of a module is arbitrary. For example,
in a code that does hundreds of iterations, each iteration could be treated as a module.
Though in the long term, completely automating MDT is recommended, the intent in this
paper is to test MDT with existing technology. To demonstrate MDT, we selected a sample
problem with a main program and two subroutines. Each subroutine is called per iteration
in the main program. The number of iterations can be varied. Four parameters and one
dependent variable are retained after each iteration. Three methods were used to process
the sample problem: (1) the GRESS ADGEN option implementing reverse mode on the
entire program; (2) MDT treating each iteration as a module; and (3) MDT treating each
subroutine as a module. The sample problem selected is the test program provided on the
GRESS distribution diskette. Of importance in this paper is that there are two subroutines
and no global variables. Shown in Figure 3 is a plot of the maximum amount of memory
required to store derivatives using each method as a function of the number of iterations.
Method 1 is provided for comparison, since ADGEN requires the accumulation of derivatives
for every arithmetic assignment statement.

The results clearly demonstrate the fundamental problem with the reverse mode of
automatic differentiation; that is, the memory required to store derivatives is proportional
to execution time. Interestingly, Method 3 also shows a linear growth, though not as steep
as Method 1. For this application, as the number of iterations increases, Method 2 would
be the most feasible in terms of memory requirements. Memory requirement using Method
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2 increases by 52 bytes per iteration. With an iterative code using Method 2, the expected
increase per iteration would be the size of the module frame used to link each iteration.

The results shown in Figure 3 demonstrate that MDT is both practical and feasible.
Though the sample problem is very limited in that it does not include common blocks
and does require hand intervention in identifying modules, I am very encouraged by the re-
sults. Automating the procedure so that common block variables and variables on argument
lists can be automatically included as dependent or independent variables is conceptually
straightforward. However, having the flexibility of allowing the user to identify modules is
also desirable.

The conclusion that Method 2 would be best can be made only for this application.
The comparison between two different implementations of MDT raises the question as to
whether it would be viable to automatically process a code to determine which method
would be most appropriate. Much of the information required may not be available until
execution of the model. It may be more feasible to develop tools to enable the user to
implement MDT in a semiautomated fashion.
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The reverse mode of automatic differentiation allows within a constant cost factor the
computation of the gradient of a multivariate, single-valued, function that is given by an
arithmetic circuit. Indeed, a circuit can be constructed whose number of nodes does not
exceed 4 times the number of nodes in the original circuit. Furthermore, it can be arranged
that the depth of the circuit is within a constant of the original circuit as well [8], [6].
Griewank [4] has also shown that the sequential space complexity can be kept within a
logarithmic factor while increasing the time complexity by only a logarithmic factor. This
result has been used for several algebraic complexity estimates:

1. Baur and Strassen [2] show that the complexity of computing the determinant of an
arbitrary non-singular matrix is asymptotically no less than that of the inverse, because for
a square matrix A we have

. 0Det(A
(=1 S = Dty (47
The recent so-called processor efficient parallel algorithms of poly-logarithmic time for com-
puting the inverse of a non-singular matrix are based on this reduction (Kaltofen and Pan
1991 and 1992). Automatic differentiation is the only way known to me to compute inverses
within the given time and processor count constraints.

2. Furthermore, Baur and Strassen employ the gradient contruction to show that the
complexity of computing the sum 27+ - -+ is within a constant of computing the individ-
ual (n 4 1)%* powers 27+, ..., 271 which by the Strassen’s degree bound is ©(nlogn)[12].

3. The transposition principle asserts that for any (possibly structured) matrix A and
any vector b the problems of computing A-b and AY.p are of the same asymptotic complexity.
Proven explicitly by Kaminski, Kirkpatrick, and Bshouty [9] by reversing the flow in the

circuit for computing A - b, the principle is also a simple consequence of reverse mode: for

O, [
fler,..,zn) = (21 ... wn)-Atr)-b we have : = A,
87377,][
One application is when A = VI s a transposed Vandermonde matrix, a problem needed
in sparse polynomial interpolation [3] and polynomial factoring [10]. Shoup’s explicit algo-
rithm, however, is of linear space complexity and needs no divisions, unlike the one obtained
from the fast multipoint polynomial evaluation problem V -b (see [1], §6) and the transpo-

sition principle. Shoup [11] also uses this principle in the construction of a fast method for
computing the minimum polynomial of an element in an algebraic number field.
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4. Similarly, the problems A~!-b and (Atr)_1 -b have the same asymptotic complexity.

But again the explicitly derived algorithm for the Vandermonde case (Vtr)_1 -b by Kaltofen
and Lakshman [5] has the better linear space complexity.

As it turns out, higher derivatives are much more complex to compute. The following
clever reduction of the product of two n X n matrices B and C to the trace of the Hessian
has been communicated to me by T. Lickteig. Let A be a third n X n matrix. Then

1
)(xtrABCx), where x=| ! [;

T,

0? 0?
22 T T a2

Trace(ABC) = (

n
note that the argument to the trace of the Hessian, XtrABCX, can be computed in O(n?)
time. However, by reverse mode, we can compute

JdTrace(ABC')

1 =(BC);,

i,
Therefore, any method for finding the trace of the Hessian within a factor g(n) gives a
matrix multiplication algorithm of O(g(n)n?) arithmetic steps.

Finally, computing multiple partial derivatives is known to be as hard as counting the
number of satisfying assignments in a Boolean formula [14]: Consider

P($1,. . .,$n,Z171,. . .,an) = H (Z $]ZZ7])

=1 \j=1
Then
a" P
8$1 te 8$n
Therefore, given a transformation that computes 0" /(dzy - --0x,) within a factor of h(n)

leads to an algorithm to compute the permanent with O(h(n)n?) arithmetic operation. By
Valiant’s proof [13] that the permanent is #P-complete, h(n) is likely exponential in n.

= Permanent(Z).
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Some Results and Methods in Algebraic Complexity (short survey)

1. Ensembles computation:

Given a family of subsets {E;};cs of subsets of a finite set E, can it be reached by
union steps (inclusive or), disjoint unions, or symmetric differences (exclusive or) in
less than r steps? NP-complete for the two first cases. Unknown for the third case.

2. Linear forms:

a) Isv € Q™ alinear combination of length < r of m > n given vectors vy, ve,...,v,7
NP-complete?

b) Can you compute a set of ¢ linear forms in less than = binary linear combinations
(Af+ ag)? Known for t = 2. May be indivisible in general over the integers.

¢) Lower bound in terms of the determinant if the scalars used are bounded.

3. Rational functions:

m functions of n variables. ¢ : @™ — ™. The degree of group ¢ C C"™ x C'™ leads to
a lower bound on the number of multiplications or divisions.

Short Description of Odyssée in Our SAFIR Group at INRIA-University
of Nice

We develop a software for automatic differentiation of Fortran programs in the direct or
reverse mode. We use a strongly typed polymorphic “ML” language, CAML, and the
Fortran programs are read, syntactically analyzed; an abstract syntax tree is produced and
transformed, and a Fortran code for the derivatives is then generated.
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Our research focuses on the development of methods to make it possible to produce
portable compilers that generate efficient multiprocessor code for irregular scientific prob-
lemss (i.e., problems that are unstructured, sparse, adaptive, or block structured).

We work closely with applications scientists and engineers whose problem areas include
computational fluid dynamics, computational chemistry, computational biology, structural
mechanics, and electrical power grid calculations. Key aspects of the research associated
with irregular scientific problems focuses on the development of portable runtime support
libraries that (1) coordinate interprocessor data movement, (2) manage the storage of, and
access to, copies of off-processor data, (3) support a shared name space, and (4) couple
runtime data and workload partitioners to compilers. Researchers employ this runtime
support in distributed-memory compilers. The runtime support is also used to port appli-
cations codes to a variety of multiprocessor architectures. This compiler research involves
the development of methods to reduce interprocessor communication costs and to reduce
the overheads associated with runtime preprocessing ([2], [1]).

It seems likely that analogous runtime optimizations could be used in a number of con-
texts in the area of automatic differentiation. When we embed an irregularly distributed
array onto a multiprocessor architecture, each processor’s program must manage an arbi-
trary subset of a global name space. In a more general context, our techniques make it
possible to efficiently manage data and computations that are associated with arbitrary
subsets of a global name space. This capability could be very useful in automatic differenti-
ation codes such as ADIFOR, as it could provide the basis for developing a general method
able to allocate data and computations associated with derivative objects in a sparse fash-
ion. The automatic differentiation tool would first identify active variables (as is now done
by ADIFOR). It seems likely that, in many cases, only a subset of the indices of an array
of active variables will actually be active at a given point in program execution. The tool
would then generate code that would, at runtime, identify the active index sets associated
with variable arrays. The tool would also generate code to carry out the automatic differ-
entiation that would allocate the memory needed to store derivative objects only for the
active index sets associated with active variables. The compiler could also generate code
that uses knowledge of active index sets to reduce the amount of computation needed to
compute derivatives.

Another method that may be useful in the context of automatic differentiation would
be a particularly aggressive form of stripmining whose goal would be to reduce the memory
requirements associated with maintaining derivative objects for active arrays. The key here
is that many codes execute sequences of loops, each of which sweeps over some set of large
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array variables. Assume we can reorder the computation so that the sequence of loops
sweep over roughly conforming subsets of active arrays. In other words, we would carry out
a stripmine transformation, the result of which would be a code that would consecutively
carry out computations for conforming patches of different arrays. We should be able to take
advantage of the fact that data access patterns associated with these sweeps are often rather
local. In that case, by carrying out runtime preprocessing, we may be able to determine
that many active variable indices are live only during a particular stripmine iteration.
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This talk presents algebraic simplification techniques of computer algebra and optimizing
compilers that can be usefully applied in the field of automatic differentiation.

We preface the presentation with an example of how analytic derivatives improve upon
finite differencing in a real-world application: IBM Burlington has several mainframes de-
voted to simulating new semiconductor technologies before they are manufactured. Convert-
ing the device models with a custom piece of automatic differentiation software employing
algebraic simplifications led to an estimated $1,000,000 in monthly savings in terms of CPU
time.

We note that the meaning of algebraic simplification depends on the class of expres-
sions and on the measure of simplicity. Even for the relatively simple class of univariate
polynomials, there is no single best definition: a factored or expanded representation might
be “simpler” on a case-by-case basis. A well-defined subproblem of simplification is to
ask whether an expression is equivalent to zero. This question is easier and sufficient for
many purposes. Depending on the class of expressions, however, even this question can be
provably unsolvable.

Some classes of expressions admit “normal” or “canonical” forms. Simplification to
a normal form converts a zero-equivalent expression to 0. Simplification to a canonical
form converts mathematically equivalent expressions to a unique representative. Conversion
to these forms requires exact coefficient arithmetic, so implementations usually convert
floating-point numbers to rational numbers beforehand.

In computer algera, various normal and canonical forms are used for polynomials and
rational functions. The class of functions can be extended by treating sin(z), cos(x), sin(2z),
etc., as new indeterminates. In this setting, many identities are algebraic relations (e.g.,
sin?(z) + cos?(z) — 1 = 0). There may be a structure theorem for a class of functions that
can be used to express a given set of extensions in terms of an algebraically independent
set. This leads to expressions that are in one sense simpler, even though the resulting form
is usually more lengthy. It is often more convenient to retain a set of algebraic relations and
to simplify expressions modulo this set. An important technique in computer algebra is to
simplify an expression modulo a set of polynomials of this sort. We describe how this can
be done using Grobner bases. We then describe other simplification techniques including
factorization, functional decomposition, radical transformation and rule-based methods.

Various computational techniques of computer algebra are based on algebraic properties.
One standard method is to solve and combine several simpler problems. An example of this
is the computation of several modular images that are combined by Chinese remaindering.
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One might distinguish between “black box” and “clear box” function representations. In
a “black box” representation, one can compute only values of a function — one cannot see
any explicit expression structure. This form is the standard in numerical computing, but it
has only recently found effective use in computer algebra. In a “clear box” representation,
a function is represented as an expression tree or sequence. This is the standard form in
computer algebra, but it is relatively uncommon in numeric computing, with automatic
differentiation being one example.

Compiler optimizations can be seen as algebraic simplification of “clear box” function
representations. We describe a number of these optimization techniques applicable to auto-
matic differentiation. We begin with a description of basic blocks and flow graphs. We then
give a detailed description, global data-flow analysis and illustrate how it can be used to
eliminate variables or eliminate common subexpressions. We also discuss transformation of
programs to static single assignment form and data structure elimination.

In conclusion, we present a list of “dos” and “don’ts”:

e Do exploit algebraic relationships (e.g., sin, cos, matrix ops.).

e Do not blindly trust loosely defined simplifications.

e Do use term orderings to eliminate more expensive function calls.
e Do not expect miracles from expression simplification.

e Do use data-flow analysis for dependency information, common subexpression elimi-
nation, etc.

e Do notexpect compiler providers toinclude specific automatic differentiation methods.

e Do ask compiler providers to architect application-oriented back doors into their op-
timizers.
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