
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, Illinois 60439||||||||||ANL/MCS-TM-183||||||||||Workshop Report onFirst Theory Institute onComputational Di�erentiationheld at Argonne National LaboratoryMay 24{26, 1993edited byChristian H. Bischof, Andreas Griewank, and Peyvand M. KhademiMathematics and Computer Science DivisionTechnical Memorandum No. 183December 1993This work was supported in part by the O�ce of Scienti�c Computing, U.S. Department of Energy,under Contract W-31-109-Eng-38.

ii

ContentsIntroduction vAcknowledgments ixList of Attendees xIn�nitely Small Numbers and Almost In�nitely Large Accelera-tors, or: Automatic Di�erentiation as Non-Archimedean Analysis| Martin Berz, Michigan State University 1Going Forward | Christian H. Bischof, Argonne National Laboratory 3Compile-Time Activity Analysis in ADIFOR | Alan Carle, RiceUniversity 6Reverse Accumulation of Functions Containing Gradients | BruceChristianson, University of Hertfordshire 7Program ODE | Harley Flanders, University of Michigan 10Adjoint Code Generation | Ralf Giering, Max-Plank-Institut f�ur Me-teorologie 11A Tour of Combinatorial Sparse Matrix Technology | John R.Gilbert, Xerox Palo Alto Research Center 13Di�erential Methods in Graphical Interaction | Michael Gleicher,Carnegie Mellon University 18Checking the Memory | Andreas Griewank, Argonne National Labora-tory and Technical University Dresden 19Trees and Di�erentiation | Robert Grossman, University of Illinois atChicago 21Jacobian Accumulation by Vertex Elimination | Kieran T. Herley,University College, Cork, Ireland 22Reverse Automatic Di�erentiation of Modular Fortran Programs| J. E. Horwedel, Oak Ridge National Laboratory 23iii

Computational Di�erential and Algebraic Complexity Theory |Erich Kaltofen, Rensselaer Polytechnic Institute 28Algebraic Complexity | Jacques Morgenstern, INRIA 31Runtime Compilation and Automatic Di�erentiation | Joel Saltz,University of Maryland 32Algebraic Simpli�cation and Automatic Di�erentiation | StephenM. Watt, IBM T. J. Watson Research Center 34

iv

IntroductionThe �rst Theory Institute on Combinatorial Challenges in Computational Di�erentia-tion was held at Argonne National Laboratory, May 24{26. Computational di�erentiation(CD) is concerned with tools, techniques, and mathematics for generating, with little hu-man e�ort, e�cient and accurate derivative codes from programs written in such computerlanguages as C and Fortran.Organized by Christian Bischof and Andreas Griewank of Argonne's Mathematics andComputer Science Division, the institute brought together many leading developers of CDtheory and implementations, along with the following prominent representatives of relatedareas:Bruce Char (Drexel University)Harley Flanders (University of Michigan)John Gilbert (Xerox PARC)Robert Grossman (University of Illinois, Chicago)Kieran Herley (University College, Cork, Ireland)Erich Kaltofen (Rensselaer Polytech Institute)Jacques Morgenstern (INRIA Sophia-Antipolis and the University of Nice, France)Joel Saltz (University of Maryland)Stephen Watt (IBM Thomas J. Watson Research Center)This diversity provided for a stimulating meeting and ensured a certain element ofsuspense. The primary purposes of the meeting were to explore the deep complexity issuesthat lie at the heart of the computation of derivatives from computer programs and toprovide a forum for brainstorming on future research directions, including the applicationsof automatic di�erentiation (AD) in scienti�c computing and the development of AD tools.What Is Automatic Di�erentiation?So-called AD techniques are the basis for all e�orts related to computational di�erentiation;with these techniques, it is possible to determine the sensitivities of certain output variableswith respect to certain input variables for any mapping that is described by a computerprogram. Automatic di�erentiation relies on the fact that every function is evaluated on acomputer as a sequence of elementary operations, such as +, -, and intrinsics such as sinand log. By successively applying the chain rule to the composition of those elementary op-erations, derivatives can be computed exactly (up to machine roundo�) and in a completelymechanical fashion. These successive chain rule applications traditionally proceed in oneof two modes: the forward mode, which propagates derivatives of intermediate values withrespect to the inputs, and the reverse mode|a discrete analog of the adjoint equations usedin optimal control|which propagates derivatives of outputs with respect to the intermedi-ates. A broad introduction to the �eld was given by Andreas Griewank (\The Chain RuleRevisited in Scienti�c Computing," SIAM News, May and July 1991).Tools for AD produce code for derivative computations either by operator overloading orby explicit augmentation of the original code with statements for derivative computations.v

More traditional methods for di�erentiation, such as divided di�erences, hand-derivation,and symbolic approaches, are less e�cient, more error-prone, or not generally applicableto large codes. AD software packages|some of which are briey discussed later in thisarticle|are already competitive with the other di�erentiation methods in terms of e�ciencyof derivative computation, with many approaches to speedup as yet unexplored.Speakers Document a Growing Research AreaThe talks presented at the institute touched on computer algebra, numerical linear algebra,complexity theory, graph theory, symbolic computing, parallel processing, and compiler de-sign. The diversity of the participants' backgrounds provided a fertile ground for extensiveinterdisciplinary discussions both during and outside the framework of the formal talks. Itemerged in the course of the institute that the research area of computational di�erentia-tion had grown from a series of isolated rediscoveries into a cohesive body of basic tenetsand that the scope of application areas had been extended. Important characteristics of the�eld discussed at the meeting included theoretical results con�rming the combinatorial com-plexity of the underlying problems, and the development of general-purpose di�erentiationtools.Automatic di�erentiation can be posed as a graph elimination problem, where the se-quence of operations can be represented as the nodes of a computational directed acyclicgraph (CDAG) and derivatives are propagated along the edges of the graph. Kieran Herleypresented a proof at this workshop that the problem of minimizing \�ll-in" of the CDAGduring Jacobian accumulation is NP-complete. This is an important result not only becauseit opens the door to the invention of ingenious heuristics for the implementation of AD, butalso because it shows that the e�cient computation of derivatives is a hard problem.Transpositionality, another interesting theoretical result, was discussed by Erich Kaltofen.Some computational targets, such as the solutions of linear systems, can be convenientlycharacterized as gradients of functionals. Using the fact that the reverse mode allows thecomputation of the gradient of a function at a cost that is at most �ve times that of eval-uating the function, independent of the number of independent variables, Kaltofen showedthat the application of AD to such functionals in some cases results in asymptotic com-plexity lower than that of direct methods. An example would be parallel matrix inversionperformed by di�erentiating a parallel method for computing the determinant.Andreas Griewank addressed the basic challenge of the reverse mode of AD, namely, thepotentially extremely large memory requirement that results from the need to record eachindividual transformation that nonlinearly impacts the �nal result. The memory require-ments can be dramatically reduced by the related techniques of multilevel di�erentiationand recursive checkpointing, at the expense of the moderate increase in the operations countthat results from repeated recalculation of intermediates.John Gilbert presented a survey of combinatorial sparse matrix theory as it relates toAD. He also illustrated Griewank's checkpointing algorithm in terms of a two-color pebblegame on a CDAG. Bruce Christianson of Hat�eld Polytechnic, England, introduced a novelapproach to nested di�erentiation whereby the reverse accumulation mode is extended tocompute successively higher-order derivatives.Stephen Watt prefaced his theoretical presentation with a look at the potential ad-vi

vantages of analytic derivatives over �nite di�erencing in real-world applications, wherethe computational e�ciency of AD has translated into substantial resource savings. Hecited the experience at IBM Burlington, where the use of analytic derivatives in circuitsimulations led to an estimated $1,000,000 in monthly savings in terms of CPU time. Inhis talk on algebraic methods, he showed how, through the speci�cation of canonical andrule-based simpli�cations, expressions appearing in automatically di�erentiated code canbe re-expressed in ways that lead to more parsimonious computation. Finally, he showedhow dataow analysis techniques can enhance the e�ectiveness of algebraic methods.Jacques Morgenstern presented results and methods in algebraic complexity, includingensembles computation, linear forms, and rational functions. Robert Grossman presented analgebra of rooted trees, which allows the symbolic translation of algorithms for manipulatingdi�erential operators into assertions about labeled trees, leading to exponential speedup overnaive algorithms.Christian Bischof discussed issues arising from a comprehensive study of the forward-mode approach using ADIFOR, a primarily forward-mode AD tool developed jointly atArgonne and Rice University. He concluded that traditional measures favoring the re-verse over the forward mode were too simplistic and that the forward mode, if supportedby dynamic data structures and applied in a hierarchical fashion, may be able to deliverderivatives, and, in particular gradients, much less expensively. He also illustrated the needto maintain forward-mode quantities (i.e., derivatives with respect to the input) in thecomputation of derivatives of iterative processes.Alan Carle of Rice discussed compile-time analysis in ADIFOR, describing in particu-lar how ADIFOR automatically identi�es active variables, that is, those variables on thedependency path from the independent to dependent variables, in the presence of scoping,actual-formal parameter binding, and memory layout. Limiting the number of active vari-ables at compile time leads directly to reduced time and space requirements for derivativecomputations.Martin Berz of Michigan State University interpreted computational di�erentiation interms of nonstandard arithmetics, by viewing the forward mode of AD in a more general wayas analysis on non-Archimedean structures. The methods discussed allow for the practicalcomputation of higher-order derivatives needed in Taylor series and have been applied inthe actual design of new accelerators, including the Superconducting SuperCollider in Texasand the electron{positron collider LEP at CERN in Europe.Joel Saltz discussed the implications of his group's ongoing research on runtime compila-tion techniques as applied to parallel computations. Such runtime techniques could equallywell be applied to e�cient sparse derivative computations.Tools and ApplicationsThe institute also provided a forum for the assessment of the state of the art in AD in termsof tools and applications. Jim Horwedel of Oak Ridge National Laboratory described thelatest version of GRESS (the GRadient Enhanced Software System). GRESS was designedto allow the application of AD to large-scale Fortran programs in the nuclear industrywithout requiring changes in the coding. GRESS implements both the forward and thereverse modes. The modular di�erentiation technique (MDT) uses both the forward and thevii

reverse modes of GRESS to restrict the growth of execution time and storage requirements.The aforementioned ADIFOR (Automatic DI�erentiation of FORtran) is a general-purpose tool developed to deal with real-world Fortran 77 codes. ADIFOR, which employsparts of Rice University's ParaScope parallel programming infrastructure, has been success-fully applied to a variety of codes in areas ranging from biomedical modeling to turbulentuid ow.Ralf Giering of the Max-Plank-Institute for Meteorology in Hamburg, Germany, pre-sented AMC (Adjoint Model Compiler), a reverse-mode Fortran source-to-source translationtool developed to support adjoint code generation for climate modeling codes. Michael Gle-icher of Carnegie Mellon University demonstrated his graphical interaction system, whichuses AD to provide dynamic functionality for interactively built mechanical models. HarleyFlanders demonstrated the implementation of his AD tool for the PC Basic environment.Also discussed at the workshop was ADOL-C, a tool developed for C/C++ by AndreasGriewank with David Juedes, Duane Yoder, Jean Utke, and other students to computederivatives of any order in both the forward and the reverse modes. Other AD tools consid-ered were PADRE II, a Fortran precompiler developed by Koichi Kubota at Chuo Universityin Japan, and the Odyssee tool developed by Nicole Rostaing and Andre Galligo at INRIASophia-Antipolis. As part of an e�ort to aid in the development of robust AD tools, Chris-tian Bischof proposed to create a public-domain database of Fortran programs, input, andderivatives, for use in comparing di�erent AD tools.The general conclusion from the implementation-focused discussions was that AD soft-ware developers are committed to the development of AD software that is ever easier touse and ever more robust. The potential impact of this new technology was apparent atthe meeting as the various tool developers talked about the successful application of theirtools to promising pilot projects. It is hoped that the expansion of application areas willlead to widening awareness in the scienti�c and technology circles that AD is the approachof choice for computing derivatives.A consequence of this synergetic relation between tools, applications, and the mathe-matics of AD will be to bring research issues into sharper focus. Questions being consid-ered include: Is AD something that should eventually be native to compilers as an option,bringing to bear the full weight of dataow and dependence analysis for better AD imple-mentations? What happens to a uid ow or ODE solver that is di�erentiated by meansof AD, and how do the automatically derived derivatives correlate with the solution of theadjoint equation, for example? What is the meaning of the code generated by di�erentiatingthrough iterative methods?While previous research concentrated mainly on the \automatic" aspects of computa-tional di�erentiation, these questions provide an indication of the emerging issues in this�eld, namely, the exploitation of user insight into the structure or mathematical propertiesof a particular application so that AD tools can be used more e�ciently, and the math-ematical interpretation of the results of AD for computational paradigms approximatinglimit processes. These as yet mostly unresolved issues and the apparent potential for im-provements in tools supporting computational di�erentiation promise to make this �eld anexciting one in the years to come. viii

AcknowledgmentsThe editors express their deep appreciation and thanks to Judy Beumer for her tirelesswork both in the organization of the Institute and in the publication of these proceedings.We also thank Gail Pieper for numerous suggestions which greatly improved the organizationand readability of this report.

ix

List of AttendeesMartin BerzChristian BischofAlan CarleBruce CharBruce ChristiansonMene DoffouHarley FlandersKyoko FuchiDavid GayRalf GieringJohn GilbertMichael GleicherVictor GoldmanAndreas GriewankRobert GrossmanJames HorwedelPaul HovlandDavid JuedesErich KaltofenR. Baker KearfottPeyvand KhademiKoichi KubotaKieran HerleyJacques MorgensternLouis RallJoel SaltzDimitri ShiriaevAaron RossWilliam ThackerJean UtkeWolfgang WalterWeishi WanStephen WattDuane YoderToshinobu Yoshida
x

In�nitely Small Numbers and Almost In�nitelyLarge Accelerators, or: Automatic Di�erentiationas Non-Archimedean AnalysisMartin Berz(berz@vixen.nscl.msu.edu)Physics DepartmentMichigan State UniversityEast Lansing, MI 48842The method of the forward mode of automatic di�erentiation is viewed in a more generalway as analysis on non-Archimedean structures. If one views the tuples of derivative vectorsencountered in automatic di�erentiation as a ring, a total ordering can be introduced thatis compatible with the algebraic structure. In this view, the components of the higherderivatives appear as the coe�cients of a representation in in�nitely small basis vectors orin�nitesimals.Starting from this simple observation, one can generalize the structures to form a real-closed �eld. In this case, one also obtains in�nitely large numbers, and all customary algebracan be performed in this extension of the real numbers. Based on the ordering, it is possibleto study questions of convergence; it turns out that the structures are Cauchy-complete.There is another natural type of convergence that lends itself to the introduction of powerseries, which can be shown to converge within their conventional radius of convergence.In a similar way, questions of continuity and di�erentiability can be studied, and in mostcases, there are analogs to the standard theorems of analysis, including intermediate andmean value theorems. As a bonus, one obtains the theorem that \di�erential quotients arederivatives" or more speci�cally, the value of a derivative can be obtained up to an in�nitelysmall error by \numerically" evaluating the di�erence quotient using an in�nitely small �x.While providing a nice justi�cation to the concept of di�erential quotients in a similar wayas nonstandard analysis [1, 2], it puts the methods of forward automatic di�erentiation in amore philosophical and less technical light and even allows the computation of derivativesin cases where conventional automatic di�erentiation fails [3].On the practical side, the methods can be applied for the study of weakly nonlinearsystems in which the equations of motions as well as their ows can be represented by veryquickly converging Taylor series. In the �eld of optics, one of the sub�elds of this area, thesecoe�cients have been traditionally known as aberrations and, until the advent of automaticdi�erentiation methods, in particular in the connection with di�erential algebraic methods,have been next to impossible to compute for higher orders [4].In the case of repetitive structures studied in accelerator physics, the coe�cients manifestthemselves in the form of tune shifts and resonances and potentially limit the stability ofthe motion. Using methods of normal form theory that allow a rigorous analysis of therepetitive properties of weakly nonlinear systems [5], many important questions regardingthe long-term behavior can be analyzed in a very clean way. The methods are applied1

for the actual design for new accelerators, including the Superconducting SuperCollider inTexas.References[1] A. Robinson. Non-standard analysis. In Proceedings Royal Academy Amsterdam, SeriesA, volume 64, page 432, 1961.[2] C. Schmieden and D. Laugwitz. Eine Erweiterung der In�nitesimalrechnung. Mathe-matische Zeitschrift, 69:1{39, 1958.[3] M. Berz. Automatic di�erentiation as nonarchimedean analysis. In Computer Arithmeticand Enclosure Methods, Amsterdam, 1992. Elsevier Science Publishers.[4] M. Berz. Arbitrary order description of arbitrary particle optical systems. NuclearInstruments and Methods, A298:426, 1990.[5] M. Berz. Di�erential algebraic formulation of normal form theory. In M. Berz, S. Martinand K. Ziegler (Eds.), Proc. Nonlinear E�ects in Accelerators. IOP Publishing, 1993.

2

Going ForwardChristian H. Bischof(bischof@mcs.anl.gov)Mathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439For a given function f : x 2 Rn 7! y 2 Rm the forward mode propagates d hd x 2 Rnand the reverse (or adjoint) mode propagates d yd h 2 Rm, where h denotes an intermediaryvalue in the program. Hence, an often-used complexity �gure (see, e.g., [8]) for the opand storage complexity of an automatic di�erentiation program is O(r) times the op andstorage complexity of evaluating f , where r is the maximal number of nonzeros in any rowof the Jacobian d yd x .We show that this measure is too simplistic and that the forward mode, if supportedby dynamic data structures and applied in a hierarchical fashion, may be able to deliverderivatives, and in particular gradients, much less expensively. We also illustrate the needfor maintaining derivatives with respect to x, that is, forward-mode quantities, in the com-putation of derivatives of iterative processes.Dynamic Data Structures: Coloring techniques can be applied advantageously in thecomputation of \compressed" sparse Jacobians by using automatic di�erentiation [1, 5]much as with divided-di�erence approximations. However, the rows of the Jacobianare, in general, the densest derivative objects ever propagated in the forward mode.Hence, by employing sparse dynamic data structures for the vector operations exe-cuted in the forward mode, we can take advantage of hidden structure in the program.An example is given in [3], where on a 190� 190 Jacobian the dynamic sparse versionrequired only 4% of the additions and 17% of the multiplications compared with thecomputation of the 190 � 28 \compressed" Jacobian. Another class of functions forwhich this approach can be very favorably applied is so-called \partially separablefunctions" [11, 12], which, in particular, include functions that have sparse Hessians.Hierarchical Derivative Schemes: The ADIFOR tool [1], for example, employs a hybridmode for propagating derivatives. For an assignment statement w = <some expressioninvolving a; b; c >, say, we employ the reverse mode to compute @ w@ a ; @ w@ b ; @ w@ c , and thenemploy the forward mode to formdwd x = @ w@ a d ad x + @ w@ b d bd x + @ w@ c d cd xK:Note, however, that code of similar complexity would have been created if one hadused the forward mode to compute @ w@ a ; @ w@ b ; @ w@ c , since the decrease in complexity doesnot hinge on the choice of mode applied to the right-hand side of the assignmentstatement, but rather on the fact that x contains in general more than three entries.Studies exploiting this \contraction" in a larger context are described in [6].3

Derivatives of Iteratively De�ned Functions: Most CFD codes in aeronautical engi-neering, for example, compute ow and displacements �elds by iterative procedures,which may converge very slowly and often involve discontinuous adjustments of gridsor free boundaries. That is, for given x� we are solving a nonlinear systemF (z; x�) = 0 (1)to �nd the value z� = z(x�) of the function implicitly de�ned by F . What we wish tocompute are the derivatives z0� = dzdx jx=x� . Recently, we have been able to show thatapplying automatic di�erentiation to the iteration for z will generate a convergentiteration for z0 for a wide class of iterative schemes [9]. We have also shown thatthe convergence of z0 may lag behind the convergence of z and that one needs tomonitor the convergence of the derivative iteration by computing jj@F@x j(zk ;x�) jj. Ifx is k-vector, this quantity can be computed with an e�ort that is no more thank evaluations of F . Experiments with the di�erentiation of iterative procedures arereported in [3, 2, 7]. Note, however, that @F@x j(zk ;x�) is a forward-mode quantity andthat, as a result, application of the reverse mode in a fashion crossing the iterationboundaries seems problematic from a numerical point of view.In summary, we believe that the forward mode is more powerful than ordinarily assumedand that forward-mode-based tools will be competitive with reverse-mode-based tools for awider class of problems than traditionally assumed. However, we also admit that there areproblems for which there is no alternative to the classical reverse mode and that, in general,hybrid forward/reverse mode schemes will be the most e�cient (see, for example, [10, 4]).References[1] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland.ADIFOR: Generating derivative codes from Fortran programs. Scienti�c Programming,1(1):1{29, 1992.[2] Christian Bischof, George Corliss, Larry Green, Andreas Griewank, Kara Haigler, andPerry Newman. Automatic di�erentiation of advanced cfd codes for multidisciplinarydesign. ADIFOR Working Note #12, MCS{P339{1192, Mathematics and ComputerScience Division, Argonne National Laboratory, 1992.[3] Christian Bischof and Andreas Griewank. ADIFOR: A Fortran system for portableautomatic di�erentiation. In Proceedings of the 4th Symposium on MultidisciplinaryAnalysis and Optimization, AIAA Paper 92-4744, pages 433{441. American Instituteof Aeronautics and Astronautics, 1992.[4] Christian Bischof and Andreas Griewank. On the development of pseudo-adjoint codes.ADIFOR Working Note MCS-P375-0793, Mathematics and Computer Science Divi-sion, Argonne National Laboratory, 1993. To appear in the Proceedings of the Work-shop on Computing in the Geosciences. 4

[5] Christian Bischof and Paul Hovland. Using ADIFOR to compute dense and sparseJacobians. ADIFOR Working Note #2, ANL/MCS{TM{158, Mathematics and Com-puter Science Division, Argonne National Laboratory, 1991.[6] Christian H. Bischof and Moe El-Khadiri. Extending compile-time reverse mode andexploiting partial separability in ADIFOR. ADIFOR Working Note #7, ANL/MCS{TM-163, Mathematics and Computer Science Division, Argonne National Laboratory,1992.[7] Lawrence Green, Perry Newman, and Kara Haigler. Sensitivity derivatives for advancedCFD algorithm and viscous modeling parameters via automatic di�erentiation. InProceedings of the 11th AIAA Computational Fluid Dynamics Conference, AIAA Paper93-3321. American Institute of Aeronautics and Astronautics, 1993.[8] Andreas Griewank. On automatic di�erentiation. In Mathematical Programming: Re-cent Developments and Applications, pages 83{108, Amsterdam, 1989. Kluwer Aca-demic Publishers, Dordrecht.[9] Andreas Griewank, Christian Bischof, George Corliss, Alan Carle, and KarenWilliamson. Derivative convergence of iterative equation solvers. ADIFOR WorkingNote MCS-P333-1192, Mathematics and Computer Science Division, Argonne NationalLaboratory, 1992.[10] Andreas Griewank and Shawn Reese. On the calculation of Jacobian matrices bythe Markowitz rule. In Andreas Griewank and George F. Corliss, editors, AutomaticDi�erentiation of Algorithms: Theory, Implementation, and Application, pages 126{135. SIAM, Philadelphia, Penn., 1991.[11] Andreas Griewank and Philippe L. Toint. On the unconstrained optimization of par-tially separable objective functions. In M. J. D. Powell, editor, Nonlinear Optimization1981, pages 301{312. Academic Press, London, 1981.[12] Andreas Griewank and Philippe L. Toint. Partitioned variable metric updates for largestructured optimization problems. Numerische Mathematik, 39:119{137, 1982.
5

Compile-Time Activity Analysis in ADIFORAlan Carle(carle@cs.rice.edu)Center for Research on Parallel ComputationRice UniversityHouston, TX 77251E�cient computation of derivatives by automatic di�erentiation requires good compile-time analysis of the programs to be di�erentiated, good derivative code generation based onthe results of compile-time analysis, and good run-time support. This talk will examine thecurrent use of compile-time analysis in ADIFOR (Automatic DI�erentiation of FORtran).The cost of computing derivatives by the forward or reverse modes of automatic di�eren-tiation can be reduced by computing derivatives or adjoints only of \active" variables, thosevariables that are on a dependence path from the independent to the dependent variables.Compile-time analysis to solve this problem should result in large computational savingswhen applied to \multipurpose" codes, codes that have been designed to compute a set offunctions simultaneously, but that are often used to compute only a single function.Activity analysis is an interprocedural problem; its solution depends on the actionsperformed by each of the routines in a program. Complex issues of scoping, actual-formalparameter binding, and memory layout must all be addressed. A series of examples will bepresented demonstrating the e�ect of each of these issues on precise activity analysis. Thealgorithm currently being used by ADIFOR will then be outlined and critiqued.

6

Reverse Accumulationof Functions Containing GradientsBruce Christianson(comqbc@herts.ac.uk)School of Information Sciences, Hat�eld CampusUniversity of HertfordshireAL10 9AB EnglandWe extend the technique of reverse accumulation so as to allow e�cient extractionof gradients of scalar-valued functions, which are themselves constructed by composingoperations that include taking derivatives of subfunctions. The �rst technique describedhere relies upon augmenting the computational graph and performs well when the highestorder of derivative information required is fourth or �fth order. When higher order isrequired, an approach based upon interpolation of Taylor series is likely to give betterperformance, and as a �rst step in this direction we introduce a transformation mappingreverse passes through an augmented graph onto Taylor-valued accumulations through aforward pass.It is well known (see, for example, [2]) that reverse accumulation can be used to extractall components of the gradient vector rf of any scalar-valued function f for about 3 timesthe oating-point computational cost of a single evaluation of f , where the constant 3 isindependent both of the form of f and of the number of parameters (independent variables).We develop these techniques to derive a simple and elegant way of extracting gradients(and higher derivatives) of functions such as y = �(u;rf(u)) which are constructed bycomposing operations that include taking gradients of subfunctions. We show how to obtainsuch information to the same level of accuracy as the function value for f , and at a smallconstant multiple of the computational cost.We assume for ease of exposition that reverse accumulation is implemented in the styleof [2], by operator overloading but without overloading assignment. Floating-point programvariables are redeclared as of type vary, wheretype vary = record (ref node : pointer to node)type node = record (opcode : integer; arg1 : vary; arg2 : vary;forward value : real; adjoint value : real)Evaluation of the function f produces as a side e�ect a computational graph for f . Thereverse accumulation sweep to evaluate rf begins by placing the value 1:0 in the adjointvalue �eld of the end node. The reverse sweep then moves backwards through the graphincrementing the adjoint values by appropriate multiples of the operation derivatives, asrequired by the chain rule. For example, the adjoint accumulation step corresponding to theforward step v = sin u is �u = �u+ �v cos u, and the adjoint accumulation steps correspondingto the forward step w = u � v are �u = �u + �w � v; �v = �v + �w � u. At the end of the reversesweep, the adjoint value in each node is the partial derivative of the function value in the7

end node with respect to the forward value in the given node. In particular, adjoint valuesin the nodes pointed at by the independent variables correspond to the components of rf .Suppose now that we have some function �(rf(u)) and we wish to evaluate r�. Thiscan be done by the very same code that we have just described, by making one crucialchange. We redeclare the adjoint value �eld asadjoint value : varyThe reverse accumulation step a = a + b � c, where a and b are now varys, is implementedby overloading in such a way that null+ a returns a and null � b returns a null pointer.The e�ect of this redeclaration is that the reverse sweep now creates an additionalsegment of the computational graph, recording the calculation of the various operationderivatives and adjoint values. At the end of the reverse sweep,x:ref node:adjoint value:ref node:forward value contains the oating-point adjoint value(derivative component) corresponding to the independent variable x.Part or all of the computational graph can be swept in this way, and similarly adjointvalues, once calculated, can be used in subsequent constructions which can then themselvesbe reverse-swept. In this case, it is important to reset (to null pointers) the adjoint �elds inthe part of the graph to be reswept before resweeping. This can be done as a side e�ect inthe course of the previous reverse sweep. Note that this reset operation does not a�ect thenode previously pointed at by the reinitialized �eld. This approach has been implementedby Kubota [4].The repeated use of reverse accumulation on a problem of the formf(z;rg(y;rh(x)))where y; z also depend partially on x, will produce duplicate structures with the same formform as G(h), the graph of h. The number of copies of G(h) is exponential in the depth ofgradient nesting. The question therefore arises whether it might be more e�cient to storethe various coe�cients in a single (enlarged) copy of the graph for h. We have shown in [2,x5],[3, x6] that reversal through the reversed graph is equivalent to developing a �rst-orderTaylor series in a single variable forward through the original graph.It turns out (using similar arguments) that nested reverse traversals amount to main-taining precisely the completely heterogeneous terms of a multivariate Taylor series (i.e.,no variable appearing in power two or higher).For example, if p = rx h(x);q = rx g(y;p), then we can evaluate q as follows: buildthe graph G(h), reverse through G(h) to obtain the values �x = p, copy these into the base ofthe graph for g, build G(g), reverse through G(g) to obtain �p = rp g, set x1 = x+�p:t wheret is the (�rst) Taylor variable, then make a second pass forward and backward through G(h)computing the linear Taylor terms in t. The �rst-order terms in t for �x1 give the value for q.These in turn are built into the base of the graph for f , and the reverse pass through G(f)requires a second pass forward and back through G(g) in a direction �q corresponding to thesecond Taylor variable s. This in turn requires a further pass forward and back throughG(h) evaluating the coe�cients of the terms of order s and st. The next level of nestingwould require passes for terms r; rt; rs; rst, and so on (hence the exponential growth withnesting level). 8

We have already considered representing a reversal through a previously built graphsegment as an explicit computational step (corresponding to a graph node). This could beextended so as to de�ne operations representing the addition of another Taylor variable tothe (forward or reverse portion of the) graph. Combining this with the interpolated Taylorseries approach [1] holds out the prospect of some time and space savings if the total orderof di�erentiation is high, and this is identi�ed as a promising avenue for future research.References[1] Christian Bischof et al., 1992, Structured Second- and Higher-Order Derivativesthrough Univariate Taylor Series, Optimization Methods and Software, to appear[2] Bruce Christianson, 1992, Automatic Hessians by Reverse Accumulation, IMA Jour-nal of Numerical Analysis 12, 135{150[3] Bruce Christianson, 1992, Reverse Accumulation and Accurate Rounding Error Es-timates for Taylor Series Coe�cients, Optimization Methods and Software 1, 81{94[4] Koichi Kubota, 1989, An Implementation of Fast Automatic Di�erentiation withC++, Abstracts of the 1989 Spring Meeting of the Operations Research Society ofJapan, 175{176 (in Japanese)

9

Program ODEHarley Flanders(usergee3@umichum.bitnet)Department of MathematicsUniversity of MichiganAnn Arbor, MI 48109ODE is a program under development to show the power of automatic computationof Taylor polynomials (AD) in various applications. It uses the MS-DOS platform, usesprotected mode, and requires VGA graphics. The program is menu-driven and quite userfriendly. It will be distributed commercially in time.ODE accepts user input of any function expressible in terms of the usual algebraicoperations and the usual transcendental functions used in computer languages.Its current modules:1. Computation of a Taylor approximation to any function up to degree 100. Plot of thefunction and the Taylor polynomial. Comparison of computed values.2. Ditto for functions implicitly de�ned by F(x, y) = c.3. Ditto for inverse functions.4. Solution of systems of ODE, numerical and graphical, by Taylor polynomials andanalytic continuation. Up to 3 dependent variables. Various plane and space plots.5. Ditto for ODE systems de�ned implicitly, up to 20 dependent variables.6. Solution of F(x) = 0 by Newton, Halley, another third-order method, three fourth-order methods, and one �fth-order method, with comparison of convergence.7. Integration of F(x) over [a, b] by Taylor expansion with adaptive step size.8. Graph of F(x, y, z) = c. This uses gradient computations.Projected modules:9. Two-body problem10. Three-body problem11. Singular systems of ODE12. System of DAEs (di�erential algebraic equations)13. Initial value Cauchy problem 10

Adjoint Code GenerationRalf Giering(giering@dkrz-hamburg.dbp.de)Max-Planck-Institut f�ur MeteorologieBundesstrasse 55, D-20146 Hamburg, GermanyAdjoint models are increasingly in development for use in meteorology and oceanogra-phy for data assimilation, model tuning, sensitivity analysis, and determination of singularvectors. The adjoint model computes the gradient of a cost function with respect to controlvariables. Direct coding of the adjoint of a complex CFD model is extremely time consum-ing and subject to errors. Automatic generation of adjoint models would greatly help. Forthis purpose a tool has been developed.The automatic generation of adjoint code is a special case of automatic di�erentiation ofalgorithms in backward mode, where the dependent function is a scalar. Out of a Fortransubroutine calculating a cost function ff : RN =) Rx =) ya Fortran subroutine is generated computingf 0 : R =) RN ; f 0i := @ y@ xi :The method used is based on a few principles:� Every active variable (inside dependency tree) has a corresponding adjoint variable.� For every common block containing active variables, an adjoint common block iscreated.� For every subroutine (function) that calculates active variables, an adjoint structureis generated.� The active output variables of a structure are the adjoint input variables of the corre-sponding adjoint structure and vice versa. In addition to this, input variables of thestructure needed for the adjoint calculations are also input variables of the adjointstructure. This checkpointing ensures that each adjoint structure could be generatedseparately, by knowing only the active variables.The body of each structure is analyzed, and for every statement the input and outputvariables are determined. After constructing the corresponding adjoint statements accordingto speci�ed rules, the variables of the original code needed for the adjoint calculations aredetermined. These may be indices, passive variables, or active variables. Code is included,where necessary, to calculate these values as they are calculated in the original code. The11

user may use directives to create code to store the values during the calculation of the costfunction and to restore them during the adjoint calculations.A Fortran program consists mainly of four kinds of statements. The generation of theadjoint statements is shortly described:assignment X � g(X;A;B; :::)The expression on the right hand-side of an assignment is symbolically di�erentiatedwith respect to every active variable that occurs in the assignment. For each of theman adjoint assignment is generated (adA = adjoint of A)adA � adA + adX � @ g@ AThe last assignment contains the assignment to the adjoint variable of the left-handside variable of the original code.adX � adX � @ g@ Xconditional statement For a conditional statementIF condition THEN statement AELSE statement Bthe adjoint statement isIF condition THEN adjoint statement AELSE adjoint statement Bloop In case there is any recursive assignment inside a loop, the adjoint loop has to takethe reverse order. The number of passes has to be provided.sequence of statements The adjoint of the statements are arranged in reverse order.Code is included in front to provide variables, which are needed.subroutine call The corresponding adjoint subroutine is called.A peculiar problem may arise from multiple assignment to a variable within a structureif the same variable is needed for the adjoint calculations. In this case a warning is givento the user.For the iterative calculation of a nonlinear implicit function, a special adjoint code can begenerated assuming that the iteration converged. This code avoids the storing of variablesat each iteration.In general the user has to choose between recalculating or storing of variables. Theformer takes additional computer time; the later requires memory or disk space. Thisdecision cannot be made automatically. 12

A Tour of CombinatorialSparse Matrix TechnologyJohn R. Gilbert(gilbert@parc.xerox.com)Computer Science LaboratoryXerox Palo Alto Research CenterPalo Alto, CA 94304Graph theory has been ubiquitous as a tool for sparse matrix computation since Sey-mour Parter described �ll during Cholesky factorization as a transformation on graphs in1961 [26]. Graphs conveniently capture the path structure that is important in Gaussianelimination; they expose the issues of locality that a�ect e�ciency on machines with hi-erarchical or distributed memory; and they bring to bear a well-developed set of e�cientalgorithms and data structures.This talk surveys some combinatorial sparse matrix theory that relates (sometimes tan-gentially!) to automatic di�erentiation. We consider four topics: directed graphs and sparsematrix algorithms; the minimum �ll problem; graph partitioning; and a game that modelsthe space/time tradeo� in reverse mode.Directed Graphs and Sparse Matrix AlgorithmsIf A is an n by n nonsingular matrix with nonzero diagonal elements, its directed graphhas n vertices and an edge (i; j) for each o�-diagonal nonzero aij . Permuting the rowsand columns of A to block triangular form (so that a system of linear equations can besolved by block back-substitution, factoring only the irreducible diagonal blocks) is thesame as �nding the strongly connected components of the graph. Tarjan's linear-time strongcomponents algorithm [30] was one of the �rst applications of depth-�rst search to numericalcomputation. The irreducible diagonal blocks of an arbitrary matrix are independent of thechoice of nonzero diagonal in the matrix [6].If in addition A has an LU factorization without pivoting, Rose and Tarjan [28] givea simple characterization of the nonzero structure of the factors in terms of paths in thegraph of A. Several people have studied this so-called \directed �lled graph" [7, 14, 21].Consider a linear system Ax = b in which both the matrix A and the vector b are sparse.The nonzero positions of b can be thought of as a set of vertices of the graph of A. Thenonzero positions of x correspond to exactly those vertices from which there exist paths inthe graph to vertices of b [11]. This makes possible an e�cient algorithm to solve triangularsystems with sparse right-hand sides, which in turn permits LU factorization with partialpivoting of an arbitrary nonsingular matrix in time proportional to the number of nonzeroarithmetic operations [15].Jacobian accumulation by automatic di�erentiation is related to computing a Schurcomplement in a sparse triangular matrix by Gaussian elimination [18]. Consider the graphof the computation of outputs y1, : : : , ym from inputs x1, : : : , xn by way of intermediatevalues z1, : : : , zp. Let C be the matrix of that graph, with diagonal elements equal to �113

and o�-diagonal elements equal to the local partial derivatives. Then C is triangular, andthe Jacobian is them by n Schur complement J = Cxy�CzyC�1zz Cxz obtained by eliminatingall the intermediate vertices zi. In this setting, the forward, reverse, and Markowitz modesof automatic di�erentiation correspond to di�erent elimination orders. Schur complementsin sparse matrices have been studied in a graph-theoretic setting [8].Approximately Minimum FillKieran Herley showed at this workshop that minimizing the �ll in the computational graphduring Jacobian accumulation is NP-complete. Fill and other cost measures for sparseGaussian elimination have been studied extensively, especially in the setting of undirectedgraphs and Cholesky factorization of symmetric, positive de�nite matrices [10]. Minimumdegree (the symmetric version of the Markowitz heuristic) is very e�ective in practice inreducing �ll and operation count, though there are simple examples where it performsarbitrarily badly [3].Nested dissection, a divide-and-conquer heuristic based on separators in the graph,usually does not perform quite as well as minimum degree in practice. However, nesteddissection is the only method known that can produce provable guarantees on the variouscost measures. For example, the Leighton-Rao algorithm [22] produces separators withinO(logn) of optimal for any bounded-degree graph in polynomial time; using these separatorsin nested dissection guarantees that �ll, operation count, frontsize, treewidth, pathwidth,and elimination tree height are all within a polylogarithmic factor of minimum [1, 4]. Thus,at least in the undirected case, the quality of a graph's elimination orders is intimatelyconnected to the quality of its separators.Graph PartitioningRecent interest in separators has been sparked by the desire to partition computationalgraphs for distributed-memory parallel machines. Random graphs (in a suitable sense) donot have good separators [23], but several useful classes do, including trees [19], planargraphs [23], graphs of bounded genus [12], graphs that forbid a �xed set of minors [2], andchordal graphs [16]. In practice, many heuristic methods have been used to �nd separa-tors [9, 20, 24]; recently suggested methods use ingredients as diverse as the spectrum ofthe Laplacian matrix of the graph [27] and the geometry of an underlying �nite elementmesh [25].Modular automatic di�erentiation and Griewank's checkpointing algorithm can be viewedas partitioning the computational graph. However, it is probably not useful in this contextto use a general-purpose partitioner on the computational graph. Rather, the key researchquestion is likely to be how to use the call graph and/or some version of the dataow graph(such as static single-assignment form [5]) to partition the computational graph suitably (atappropriate subroutine or basic block boundaries, for example) without actually forming it.Reverse Mode as a Pebble GameGriewank's checkpointing algorithm [17] can be described in terms of a one-person gameon a directed acyclic graph. The player has a number of \pebbles" in two colors, black and14

white, which can be placed on the vertices of the graph according to the following rules:� Black rule: A black pebble may be placed on a vertex if all its immediate predecessorvertices hold black pebbles. (Thus a black pebble may be placed on a source, or inputvariable, at any time).� White rule: A black pebble on a vertex may be replaced with a white pebble if all itsimmediate successor vertices hold white pebbles. (Thus a black pebble on a sink, oroutput variable, may be changed to a white pebble at any time.)Placing a black pebble on a vertex corresponds to computing a value; placing a white pebblecorresponds to computing a derivative. The goal of the game is to place white pebbles on allthe input vertices, while using as few pebbles (that is, as little space) and as few placements(that is, as little time) as possible.The conventional noncheckpointing reverse mode corresponds to placing a black pebbleon every node in forward topological order, and then replacing each black pebble with awhite one in reverse topological order. Griewank's checkpointing algorithm correspondsto a pebbling strategy that leaves black pebbles on a logarithmic number of cuts in thegraph, repebbling as necessary to move a cut of white pebbles up from the outputs to theinputs; the time/space analysis says that the total number of pebbles is only O(logn) timesthe largest cut, and the total number of placements is only O(logn) times the number ofvertices. It might be possible to design more e�cient reverse-mode algorithms for particularcomputations by considering pebbling strategies for their graphs.The black-only pebble game has been studied as a model of register allocation in com-pilers [29]; a two-color pebble game with a rather di�erent white rule has been studied as amodel of space-time tradeo�s in nondeterministic computation [13].References[1] Ajit Agrawal and Philip Klein. Cutting down on �ll using nested dissection: Provablygood elimination orderings. In Alan George, John R. Gilbert, and Joseph W. H. Liu,editors, Graph Theory and Sparse Matrix Computation. Springer-Verlag, 1993.[2] Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem for graphs withan excluded minor and applications. In Proceedings of the 22th Annual Symposium onTheory of Computing. ACM, 1990.[3] Piotr Berman and Georg Schnitger. On the performance of the minimum degree or-dering for Gaussian elimination. SIAM Journal on Matrix Analysis and Applications,11:83{88, 1990.[4] Hans Bodlaender, Hj�almt�yr Hafsteinsson, John R. Gilbert, and Ton Kloks. Approxi-mating treewidth, pathwidth, and minimum elimination tree height. In Proceedings ofthe 17th International Workshop on Graph-Theoretic Concepts in Computer Science,volume 570, pages 1{12. Springer-Verlag, 1992.15

[5] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. KennethZadeck. E�ciently computing static single assignment and the control dependencegraph. ACM Transactions on Programming Languages and Systems, 13:451{490, 1991.[6] A. L. Dulmage and N. S. Mendelsohn. Graphs and matrices. In Frank Harary, editor,Graph Theory and Theoretical Physics, pages 167{227. Academic Press, 1967.[7] Stanley C. Eisenstat and Joseph W. H. Liu. Exploiting structural symmetry in un-symmetric sparse symbolic factorization. Technical Report CS{90{12, York University,1990. To appear in SIAM Journal on Matrix Analysis and Applications.[8] Stanley C. Eisenstat and Joseph W. H. Liu. Structural representations of Schur com-plements in sparse matrices. In Alan George, John R. Gilbert, and Joseph W. H. Liu,editors, Graph Theory and Sparse Matrix Computation. Springer-Verlag, 1993.[9] Alan George and Joseph W. H. Liu. An automatic nested dissection algorithm forirregular �nite element problems. SIAM Journal on Numerical Analysis, 15:1053{1069,1978.[10] Alan George and Joseph W. H. Liu. Computer Solution of Large Sparse PositiveDe�nite Systems. Prentice-Hall, 1981.[11] John R. Gilbert. Predicting structure in sparse matrix computations. Technical Report86{750, Cornell University, 1986. To appear in SIAM Journal on Matrix Analysis andApplications.[12] John R. Gilbert, Joan P. Hutchinson, and Robert Endre Tarjan. A separator theoremfor graphs of bounded genus. Journal of Algorithms, 5:391{407, 1984.[13] John R. Gilbert, Thomas Lengauer, and Robert Endre Tarjan. The pebbling problemis complete in polynomial space. SIAM Journal on Computing, 9:513{524, 1980.[14] John R. Gilbert and Joseph W. H. Liu. Elimination structures for unsymmetric sparseLU factors. SIAM Journal on Matrix Analysis and Applications, 14:334{352, 1993.Also available as Xerox PARC report CSL 90{11.[15] John R. Gilbert and Tim Peierls. Sparse partial pivoting in time proportional toarithmetic operations. SIAM Journal on Scienti�c and Statistical Computing, 9:862{874, 1988.[16] John R. Gilbert, Donald J. Rose, and Anders Edenbrandt. A separator theorem forchordal graphs. SIAM Journal on Algebraic and Discrete Methods, 5:306{313, 1984.[17] Andreas Griewank. Achieving logarithmic growth of temporal and spatial complexity inreverse automatic di�erentiation. Optimization Methods and Software, 1:35{54, 1992.[18] Andreas Griewank and Shawn Reese. On the calculation of Jacobian matrices bythe Markowitz rule. In Andreas Griewank and George F. Corliss, editors, AutomaticDi�erentiation of Algorithms: Theory, Implementation, and Application, pages 126{135. SIAM, Philadelphia, Penn., 1991. 16

[19] Camille Jordan. Sur les assemblages de lignes. Journal Reine Angew. Math., 70:185{190, 1869.[20] B. W. Kernighan and S. Lin. An e�cient heuristic procedure for partitioning graphs.The Bell System Technical Journal, 49:291{307, 1970.[21] D. J. Kleitman. A note on perfect elimination digraphs. SIAM Journal on Computing,3:280{282, 1974.[22] Tom Leighton and Satish Rao. An approximate max-ow min-cut theorem for uniformmulticommodity ow problems with applications to approximation algorithms. In Pro-ceedings of the 29th Annual Symposium on Foundations of Computer Science, pages422{431. IEEE, 1988.[23] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs.SIAM Journal on Applied Mathematics, 36:177{189, 1979.[24] Joseph W. H. Liu. A graph partitioning algorithm by node separators. ACM Trans-actions on Mathematical Software, 15:198{219, 1989.[25] Gary L. Miller, Shang-Hua Teng, William Thurston, and Stephen A. Vavasis. Auto-matic mesh partitioning. In Alan George, John R. Gilbert, and Joseph W. H. Liu,editors, Graph Theory and Sparse Matrix Computation. Springer-Verlag, 1993.[26] S. Parter. The use of linear graphs in Gauss elimination. SIAM Review, 3:119{130,1961.[27] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices witheigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications, 11:430{452, 1990.[28] Donald J. Rose and Robert Endre Tarjan. Algorithmic aspects of vertex eliminationon directed graphs. SIAM Journal on Applied Mathematics, 34:176{197, 1978.[29] R. Sethi. Complete register allocation problems. SIAM Journal on Computing, 4:226{248, 1975.[30] Robert E. Tarjan. Depth-�rst search and linear graph algorithms. SIAM Journal onComputing, 1:146{159, 1972.
17

Di�erential Methods in Graphical InteractionMichael Gleicher(gleicher@cs.cmu.edu)School of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213-3891Traditional methods for manipulating graphical objects have been limited by simplecontrols that can be employed only one at a time. By employing constrained optimizationto couple interactive controls to the parameters of graphical objects, these restrictions canbe removed. Such techniques can allow users to control objects by specifying attributesthat are computed as functions of the parameters, and also allow multiple attributes to bespeci�ed simultaneously, as constraints.Although the graphics applications require solving very standard numerical problems,challenges are introduced by the interactive nature of the applications. First, the numericsmust be transparent, since the user is most likely interested in solving a graphical problem,not in numerical optimization. Second, the system must be dynamic, as the user willcontinually be changing the set of constraints. Finally, it is important that the numericsbe fast, not only to achieve a dynamic state, but also to achieve frame rates fast enough toprovide the illusion of continuous motion, which is critical to usability.Because the applications are dynamic, the functions that represent the constraints andobjective functions are not known at compile time. I have created a C++ toolkit calledSnap-Together Math, which allows the functions to be dynamically de�ned from smallerpieces. Classes of objects representing primitive function types are de�ned at compiletime by using automatic code-generation tools. At run time, these objects are hookedtogether to form expression graphs. These graphs are traversed to evaluate the functionsand their derivatives. The derivative evaluations are a form of forward-mode automaticdi�erentiation.For the needed performance, four techniques are used. First, caching is used extensivelyto avoid recomputing. Second, the sparse nature of the derivatives and matrix calculations isexploited, yielding not only faster performance, but lower computational complexity. Third,the system attempts to solve smaller problems by partitioning and freezing subsets of theconstraints. Finally, in an interactive setting we are able to trade accuracy for performance,for example, using larger tolerances in our iterative solving algorithms.
18

Checking the MemoryAndreas Griewank(griewank@math.tu-dresden.de)Argonne National Laboratoryand Technical University DresdenBeing a discrete analog of the adjoint or costate equations used in optimal control, thebasic reverse, or top-down, mode of computational di�erentiation [2] yields gradients at verylow operations count. However, it has a potentially extremely large memory requirement.This e�ect is particularly noticeable on time-dependent problems, where the memory re-quirement of the basic reverse mode grows in proportion to the number of time steps. Theproportionality factor achieved by automatic di�erentiation tools tends to be much largerthan that achieved by the careful hand-coding of adjoints through the judicious selection ofthe quantities that need to be saved. Fortunately, by the related techniques of multileveldi�erentiation and recursive checkpointing, the memory requirement can be dramaticallyreduced at the expense of a moderate increase in the operations count that results from therepeated recalculation of intermediates.Multilevel di�erentiation, originally proposed by Volin et al. [3], is already employedin some hand-coded adjoints and some automated adjoint code generators like the ACMsystem presented at this institute by Ralph Giering. Each subroutine of the original code isinterpreted as a superelementary function that can be called (repeatedly) in a direct modeand once in an (adjoint) version. For the repeated direct calls the actual parameters andcertain global variables must be either restored from memory or recalculated by the callingroutine.A tight identi�cation of these input sets is crucial for the e�cacy of the multileveldi�erentiation approach. It can be based on user-supplied directives or interproceduraldependency analysis performed by a (pre)compiler. Consequently, the exact memory re-quirement is hard to predict. The same observation is true for a related scheme, wherethe parameters and global variables altered by the subroutine are saved and restored. Ineither case the number of times that the forward version of a particular subroutine is calledequals exactly the number of its predecessors in the calling tree. On time-dependent prob-lems with a calling tree of bounded depth, multilevel di�erentiation does not overcome theproportionality between memory requirement and the number of time steps.Checkpointing can be applied to any sequence of elementary transformations on a givencorememory. The basic reverse mode involves recording each individual transformation on aseparate disk memory and then playing this tape backward to calculate the gradient. Ratherthan recording the whole calculation in one forward sweep on the tape, one can generateit piece by piece from the end by restarting the calculation repeatedly from appropriatelyplaced checkpoints. For the binomial checkpointing scheme proposed in [1] one obtains thefollowing complexity result. Given a bound t on the number of repetitions and a bound son the number of snapshots kept on disk at any time, one can reverse a calculation, whose19

full tape would have taken up to s + ts ! = (s+ t)!s! t! = s+ tt !times the disk space needed for one snapshot of the core. For time-dependent problemsthis observation means that the spatial complexity ratio s and the temporal complexityratio t can both be limited to a logarithm of the number of time steps. Here, each ratiocompares the complexity of a gradient calculation with that of the underlying scalar functionevaluation. The binomial scheme can be interpreted as multilevel di�erentiation with anarti�cially created calling tree, whose depth grows with the length of the calculation (i.e.,the size of its tape). When suitable implementations become available, gradient-basedoptimization and parameter estimation methods will be applicable to computer models ofalmost arbitrary complexity.References[1] A. Griewank, Achieving logarithmic growth of temporal and spatial complexity inreverse automatic di�erentiation, Optimization Methods and Software, 1 (1992), pp.35{54.[2] Masao Iri, History of automatic di�erentiation and rounding estimation, in Auto-matic Di�erentiation of Algorithms: Theory, Implementation, and Application,A. Griewank and G. Corliss, eds., SIAM, Philadelphia, 1991, pp. 1{16 .[3] Yu. M. Volin and G. M. Ostrovskii, Automatic computation of derivatives withthe use of the multilevel di�erentiation technique, Computers and Mathematics withApplications, Vol. 11, no. 11 (1985), pp. 1099{1114.
20

Trees and Di�erentiationRobert Grossman(grossman@eecs.uic.edu)Department of MathematicsUniversity of Illinois at ChicagoChicago, IL 60680Let R denote the polynomial algebra k[x1, : : :, xN], and consider the formal symbols Fjde�ned by Fj = NX�=1 a�j @@x� ; j = 1; : : : ;Mas �rst-order di�erential operators with coe�cients a�j in R. Elements in the free associativealgebra A = k<F1, : : :, FM> on F1, : : :, FM may then be interpreted as higher-orderdi�erential operators generated by the F 0js.Let B denote the vector space whose basis is the set of �nite, rooted trees labeled withthe symbols fF1, : : :, FMg. It turns out that B is a Hopf algebra and the map� : A �! B, which takes the generators Fj to the tree consisting of a root with a single child labeled withFj , can be extended to a Hopf algebra homomorphism. It also turns out that B, as wellas A, measures R to itself. With this structure, algorithms for manipulating di�erentialoperators symbolically are translated into assertions about labeled trees. The result isalgorithms that can be exponentially faster than naive ones.The derivation of specialized algorithms for numerically integrating the ow of the non-linear system _x(t) = F (x(t)); x(0) = x0 2 RNleads to computations in the algebras A and B. In particular, the elementexp tF = 1Xi=0 tii!F iand its image �(exp tF) turn out to be grouplike elements in the appropriate power seriesalgebras constructed from A and B. Finding e�cient numerical algorithms is equivalent tocomputing other grouplike elements with various desirable properties in these algebras. Inthis talk, we survey e�cient symbolic algorithms for computations of this type and indicatesome connections to automatic di�erentiation.21

Jacobian Accumulation by Vertex EliminationKieran T. Herley(STCS8125@bureau.ucc.ie)Department of Computer ScienceUniversity CollegeCork, IrelandThe computation of f(x1; � � �xn) = (y1; � � � ; ym) for some computable function f : Rn !Rm may be modeled in terms of its constituent elementary operations (additions, subtrac-tions etc.) by means of a suitably labeled directed acyclic graph Gf . In this framework,the vertices of indegree zero and vertices of outdegree zero in the graph represent the inde-pendent and dependent quantities of the computation, respectively; the other intermediatevertices (each labeled with an elementary operation) denote the individual steps and theintermediate quantities produced thereby; and the edges of the graph capture the compu-tational dependencies between the various quantities involved in the calculation.The Jacobian matrix Jf = [@yj=@xi] for f may be calculated from Gf by associatinga suitable weight cxy with each edge (x; y) and then eliminating the intermediate verticesof the graph one at a time as follows. To eliminate vertex v, (i) add cuv � cvw to theexisting weight of each edge (u; w) where u is an uneliminated predecessor of v and w is anuneliminated successor of v (or create a new edge, referred to as a �ll edge, with this weightif no such edge previously existed), and (ii) mark v eliminated.The order in which the vertices are eliminated does not a�ect the �nal result: the�nal weight of the edge (xi; yj) is the Jacobian entry @yj=@xi, but strongly inuences thecomputational resources required for its calculation. Many of the techniques such as forwardmode, backward mode, and Markowitz methods that have been proposed and studied inthe automatic di�erentiation literature for the e�cient calculation of Jacobians can beinterpreted, for a suitable choice of vertex elimination order, as a computation of the abovetype. Thus we have the question of whether, for a given function f , it is possible to determinean optimum elimination order, one that allows the above vertex elimination procedure tobe carried out as e�ciently as possible. Adopting the number of �ll edges created duringvertex elimination as a cost criterion, we adapt a result due to Rose and Tarjan to establishthe NP-completeness of the following problem: Given a directed acyclic graph G and apositive integer K, is there an elimination order for the intermediate vertices of G thatcreates at most K �ll edges?This result suggests that the problem of determining the optimum elimination order (atleast with respect to the minimum �ll cost criterion) is as hard as a host of other well-studiedcomputational problems such as the Travelling Salesman problem and Boolean satis�ability,and hence is unlikely to have an e�cient (polynomial time) algorithm.22

Reverse Automatic Di�erentiationof Modular Fortran ProgramsJ. E. Horwedel(jqh@ornl.gov)Computing Applications DivisionOak Ridge National LaboratoryOak Ridge, TN 37831The calculation of derivatives necessary for sensitivity analysis or for the optimal so-lution of systems of nonlinear equations continues to be an important research objective.Several software systems have been developed for implementing automatic di�erentiation ofcomputer programs. The forward mode of automatic di�erentiation is e�cient for calculat-ing derivatives for a large number of dependent variables with respect to a few independentvariables. As the number of independent variables increases, the computational complexity,as measured in execution time and memory requirements, renders the forward mode imprac-tical. The reverse mode or adjoint approach is e�cient for derivatives of a few dependentvariables with respect to thousands of independent variables; however, available memoryand disk storage generally limit the application of the reverse mode to problems with lessthan a few million oating-point assignments. The fundamental problem with the reversemode of automatic di�erentiation is that the accumulation of derivatives is required. Acode that uses 3 minutes of execution time to perform 50 million oating-point assignmentscould easily need more than one gigabyte to store the accumulated derivatives [1, 2, 4].GRESS (the GRadient Enhanced Software System) was designed to apply automaticdi�erentiation to large-scale FORTRAN programs in the nuclear industry without requiringchanges to the coding [4, 5, 6]. GRESS provides two methods for calculating and reportingderivatives. The CHAIN option implements the forward mode of automatic di�erentiation.The ADGEN option incorporates the reverse mode or adjoint sensitivity analysis methodsto calculate derivatives.A modular di�erentiation technique (MDT) is discussed that uses both forward andreverse modes to restrict the growth of execution time and storage requirements, thusextending the size of problems to which automatic di�erentiation can be applied. MDTis implemented using GRESS and provides a compromise between the forward mode withits computational limitations and the reverse mode with its excessive memory or storagerequirements. The e�ectiveness of the MDT in propagating derivatives through a computerprogram rests on the degree of modularity in the program. Most existing large-scale Fortranprograms do not have the degree of modularity necessary to apply MDT in an automatedfashion. The approach described is to provide the basic tools to allow one to implementMDT on a module-by-module basis in an existing code or in the development phase for anew code.A module can be considered to be any sequence of Fortran statements. Any module canbe represented by a computational graph. As an example consider the following formulafor DIST. A computational graph for this formula is shown in Figure 1. The squares inthe computational graph represent arithmetic assignment statements. The reverse mode of23

automatic di�erentiation requires the accumulation of derivatives for every oating pointassignment that is dependent on a declared parameter. In modular form the DIST formulacould be coded as a Fortran subroutine or function with the Y array as input and DIST asthe calculated result.A computer program can be represented as a sequence of modules each with its owncomputational graph. Each module is assumed to have input and output. Most largeFortran programs are modular in design; however, common blocks provide a mechanism bywhich modules can share global variables that are not provided on the link to the module.When processing a module, we have to be concerned only with global variables that areaccessed or stored during the execution of a module. Though a single module may havethousands of common block variables, only a subset may actually be used as dependent orindependent variables. Variables that are used can be determined during execution of themodule.Figure 2 shows the computational graph for a computer program with global variablesavailable to modules. The digits on the links indicate the number of input and outputvariables for each module. Module A has four inputs and six outputs, B has seven inputsand four outputs, and C has seven inputs and three outputs.MDT is designed to work with each module independently. Once a module is completed,then either forward or reverse mode is used to calculate the derivatives of the output fromthe module with respect to the input. Only the derivatives of the output with respect tothe input need to be stored. The decision to use forward or reverse mode does not have tobe made a priori; it can be determined when the module is �nished by the GRESS program.For MDT to be feasible, the number of variables on the links between modules mustbe small compared with the number of variables within the modules. The more modular acode system, the more e�ectively one could implement MDT. A module can be as simple asa subroutine or function; however, the composition of a module is arbitrary. For example,in a code that does hundreds of iterations, each iteration could be treated as a module.Though in the long term, completely automating MDT is recommended, the intent in thispaper is to test MDT with existing technology. To demonstrate MDT, we selected a sampleproblem with a main program and two subroutines. Each subroutine is called per iterationin the main program. The number of iterations can be varied. Four parameters and onedependent variable are retained after each iteration. Three methods were used to processthe sample problem: (1) the GRESS ADGEN option implementing reverse mode on theentire program; (2) MDT treating each iteration as a module; and (3) MDT treating eachsubroutine as a module. The sample problem selected is the test program provided on theGRESS distribution diskette. Of importance in this paper is that there are two subroutinesand no global variables. Shown in Figure 3 is a plot of the maximum amount of memoryrequired to store derivatives using each method as a function of the number of iterations.Method 1 is provided for comparison, since ADGEN requires the accumulation of derivativesfor every arithmetic assignment statement.The results clearly demonstrate the fundamental problem with the reverse mode ofautomatic di�erentiation; that is, the memory required to store derivatives is proportionalto execution time. Interestingly, Method 3 also shows a linear growth, though not as steepas Method 1. For this application, as the number of iterations increases, Method 2 wouldbe the most feasible in terms of memory requirements. Memory requirement using Method24

2 increases by 52 bytes per iteration. With an iterative code using Method 2, the expectedincrease per iteration would be the size of the module frame used to link each iteration.The results shown in Figure 3 demonstrate that MDT is both practical and feasible.Though the sample problem is very limited in that it does not include common blocksand does require hand intervention in identifying modules, I am very encouraged by the re-sults. Automating the procedure so that common block variables and variables on argumentlists can be automatically included as dependent or independent variables is conceptuallystraightforward. However, having the exibility of allowing the user to identify modules isalso desirable.The conclusion that Method 2 would be best can be made only for this application.The comparison between two di�erent implementations of MDT raises the question as towhether it would be viable to automatically process a code to determine which methodwould be most appropriate. Much of the information required may not be available untilexecution of the model. It may be more feasible to develop tools to enable the user toimplement MDT in a semiautomated fashion.References[1] J. E. Horwedel. Matrix Reduction Algorithms for GRESS and ADGEN. ORNL/TM-11261, Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab., 1989.[2] J. E. Horwedel, R. J. Raridon, and R. Q. Wright. Automated Sensitivity Analysis ofan Atmospheric Dispersion Model. Atmospheric Environment, 26A, no. 9, 1992.[3] A. Griewank. Achieving Logarithmic Growth of Temporal and Spatial Complexityin Reverse Automatic Di�erentiation. Preprint MCS-P228-0491, Mathematics andComputer Science Division, Argonne National Laboratory, 1991.[4] J. E. Horwedel, B. A. Worley, E. M. Oblow, and F. G. Pin. GRESS Version 2.0 User'sManual. ORNL/TM-11951, Martin Marietta Energy Systems, Inc., Oak Ridge Natl.Lab., 1991.[5] E. M. Oblow, F. G. Pin, and R. Q. Wright. Sensitivity Analysis Using ComputerCalculus: A Nuclear Waste Application. Nucl. Sci. Eng., 94, 46, 1986.[6] B. A. Worley, R. Q. Wright, F. G. Pin, and W. V. Harper. Application of an Auto-mated Procedure for Adding a Comprehensive Sensitivity Calculation Capability tothe ORIGEN2 Point Depletion and Radioactivity Decay Code. Nucl. Sci. Eng., 94,180, 1986.
25

Figure 1: Computational graph for a given module
Figure 2: Computational graph for program with common blocks

26

Figure 3: Memory required to store derivatives using MDT

27

Computational Di�erentiationand Algebraic Complexity TheoryErich Kaltofen(kaltofen@cs.rpi.edu)Department of Computer ScienceRensselaer Polytechnic InstituteTroy, NY 12180-3590The reverse mode of automatic di�erentiation allows within a constant cost factor thecomputation of the gradient of a multivariate, single-valued, function that is given by anarithmetic circuit. Indeed, a circuit can be constructed whose number of nodes does notexceed 4 times the number of nodes in the original circuit. Furthermore, it can be arrangedthat the depth of the circuit is within a constant of the original circuit as well [8], [6].Griewank [4] has also shown that the sequential space complexity can be kept within alogarithmic factor while increasing the time complexity by only a logarithmic factor. Thisresult has been used for several algebraic complexity estimates:1. Baur and Strassen [2] show that the complexity of computing the determinant of anarbitrary non-singular matrix is asymptotically no less than that of the inverse, because fora square matrix A we have(�1)i+j @Det(A)@Aj;i = Det(A) (A�1)i;j:The recent so-called processor e�cient parallel algorithms of poly-logarithmic time for com-puting the inverse of a non-singular matrix are based on this reduction (Kaltofen and Pan1991 and 1992). Automatic di�erentiation is the only way known to me to compute inverseswithin the given time and processor count constraints.2. Furthermore, Baur and Strassen employ the gradient contruction to show that thecomplexity of computing the sum xn1+� � �+xnn is within a constant of computing the individ-ual (n+ 1)st powers xn+11 ; : : : ; xn+1n which by the Strassen's degree bound is �(n logn)[12].3. The transposition principle asserts that for any (possibly structured) matrix A andany vector b the problems of computing A�b andAtr�b are of the same asymptotic complexity.Proven explicitly by Kaminski, Kirkpatrick, and Bshouty [9] by reversing the ow in thecircuit for computing A � b, the principle is also a simple consequence of reverse mode: forf(x1; : : : ; xn) = ((x1 : : : xn) �Atr) � b we have 0B@ @x1f...@xnf 1CA = Atrb:One application is when A = V tr is a transposed Vandermonde matrix, a problem neededin sparse polynomial interpolation [3] and polynomial factoring [10]. Shoup's explicit algo-rithm, however, is of linear space complexity and needs no divisions, unlike the one obtainedfrom the fast multipoint polynomial evaluation problem V � b (see [1], x6) and the transpo-sition principle. Shoup [11] also uses this principle in the construction of a fast method forcomputing the minimum polynomial of an element in an algebraic number �eld.28

4. Similarly, the problems A�1 � b and (Atr)�1 � b have the same asymptotic complexity.But again the explicitly derived algorithm for the Vandermonde case (V tr)�1 �b by Kaltofenand Lakshman [5] has the better linear space complexity.As it turns out, higher derivatives are much more complex to compute. The followingclever reduction of the product of two n� n matrices B and C to the trace of the Hessianhas been communicated to me by T. Lickteig. Let A be a third n� n matrix. ThenTrace(ABC) = @2@x21 + � � �+ @2@x2n! (xtrABCx); where x = 0B@ x1...xn1CA ;note that the argument to the trace of the Hessian, xtrABCx, can be computed in O(n2)time. However, by reverse mode, we can compute@Trace(ABC)Ai;j = (BC)j;iTherefore, any method for �nding the trace of the Hessian within a factor g(n) gives amatrix multiplication algorithm of O(g(n)n2) arithmetic steps.Finally, computing multiple partial derivatives is known to be as hard as counting thenumber of satisfying assignments in a Boolean formula [14]: ConsiderP (x1; : : : ; xn; Z1;1; : : : ; Zn;n) = nYi=10@ nXj=1 xjZi;j1AThen @nP@x1 � � �@xn = Permanent(Z):Therefore, given a transformation that computes @n=(@x1 � � �@xn) within a factor of h(n)leads to an algorithm to compute the permanent with O(h(n)n2) arithmetic operation. ByValiant's proof [13] that the permanent is #P-complete, h(n) is likely exponential in n.References[1] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Algorithms. Addisonand Wesley, Reading, Mass., 1974.[2] W. Baur and V. Strassen. The complexity of partial derivatives. Theoretical Comp.Sci., 22:317{330, 1983.[3] J. Canny, E. Kaltofen, and Yagati Lakshman. Solving systems of non-linear polynomialequations faster. In Proc. ACM-SIGSAM 1989 Internat. Symp. Symbolic AlgebraicComput., pages 121{128, 1989.[4] A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in re-verse automatic di�erentiation. Preprint MCS-P228-0491, Mathematics and ComputerScience Division, Argonne National Laboratory, Argonne, Ill., May 1991.29

[5] E. Kaltofen and Yagati Lakshman. Improved sparse multivariate polynomial interpo-lation algorithms. In Proc. ISSAC '88. pages 467-474, Springer Lect. Notes Comput.Sci. 358, 1988.[6] E. Kaltofen and V. Pan. Processor e�cient parallel solution of linear systems overan abstract �eld. In Proc. 3rd Ann. ACM Symp. Parallel Algor. Architecture, pages180{191, ACM Press, 1991.[7] E. Kaltofen and V. Pan. Processor-e�cient parallel solution of linear systems II: Thepositive characteristic and singular cases. In Proc. 33rd Annual Symp. Foundations ofComp. Sci., pages 714{723, 1992.[8] E. Kaltofen and M. F. Singer. Size e�cient parallel algebraic circuits for partial deriva-tives. In Proc. IV International Conference on Computer Algebra in Physical Research,edited by D. V. Shirkov, V. A. Rostovtsev, and V. P. Gerdt, pages 133{145, WorldScienti�c Publ., Singapore, 1991.[9] M. Kaminski, D. G. Kirkpatrick, and N. H. Bshouty. Addition requirements for matrixand transposed matrix products. J. Algorithms, 9:354{364, 1988.[10] V. Shoup. A fast deterministic algorithm for factoring polynomials over �nite �elds ofsmall characteristic. In Proc. 1991 Internat. Symp. Symbolic Algebraic Comput., editedby S. M. Watt, pages 14{21, ACM Press, 1991.[11] V. Shoup. Fast construction of irreducible polynomials over �nite �elds. In Proc. 4thAnnual ACM-SIAM Symp. on Discrete Algor., pages 484{492, ACM and SIAM, NewYork, N.Y., and Philadelphia, Penn., 1993.[12] V. Strassen. Die Berechnungskomplexit�at von elementarsymmetrischen Funktionen undvon Interpolationskoe�zienten. Numer. Math., 20:238{251, 1973 (in German).[13] L. Valiant. The complexity of computing the permanent. Theoretical Comp. Sci., 8:189{201, 1979.[14] L. Valiant. Reducibility of algebraic projections. L'Enseignement math�ematique,28:253{268, 1982.
30

Algebraic ComplexityJacques Morgenstern(jacques.morgenstern@sophia.inria.fr)INRIA, 2004 route des Lucioles06565 - Sophia Antipolis, FranceSome Results and Methods in Algebraic Complexity (short survey)1. Ensembles computation:Given a family of subsets fEigi2J of subsets of a �nite set E, can it be reached byunion steps (inclusive or), disjoint unions, or symmetric di�erences (exclusive or) inless than r steps? NP-complete for the two �rst cases. Unknown for the third case.2. Linear forms:a) Is v 2 Qn a linear combination of length � r ofm > n given vectors v1; v2; : : : ; vn?NP-complete?b) Can you compute a set of t linear forms in less than r binary linear combinations(�f + �g)? Known for t = 2. May be indivisible in general over the integers.c) Lower bound in terms of the determinant if the scalars used are bounded.3. Rational functions:m functions of n variables. � : CIn ! CIm. The degree of group � � Cn �Cm leads toa lower bound on the number of multiplications or divisions.Short Description of Odyss�ee in Our SAFIR Group at INRIA-Universityof NiceWe develop a software for automatic di�erentiation of Fortran programs in the direct orreverse mode. We use a strongly typed polymorphic \ML" language, CAML, and theFortran programs are read, syntactically analyzed; an abstract syntax tree is produced andtransformed, and a Fortran code for the derivatives is then generated.
31

Runtime Compilationand Automatic Di�erentiationJoel Saltz(saltz@cs.umd.edu)Computer Science DepartmentUniversity of MarylandCollege Park, MD 20742Our research focuses on the development of methods to make it possible to produceportable compilers that generate e�cient multiprocessor code for irregular scienti�c prob-lemss (i.e., problems that are unstructured, sparse, adaptive, or block structured).We work closely with applications scientists and engineers whose problem areas includecomputational uid dynamics, computational chemistry, computational biology, structuralmechanics, and electrical power grid calculations. Key aspects of the research associatedwith irregular scienti�c problems focuses on the development of portable runtime supportlibraries that (1) coordinate interprocessor data movement, (2) manage the storage of, andaccess to, copies of o�-processor data, (3) support a shared name space, and (4) coupleruntime data and workload partitioners to compilers. Researchers employ this runtimesupport in distributed-memory compilers. The runtime support is also used to port appli-cations codes to a variety of multiprocessor architectures. This compiler research involvesthe development of methods to reduce interprocessor communication costs and to reducethe overheads associated with runtime preprocessing ([2], [1]).It seems likely that analogous runtime optimizations could be used in a number of con-texts in the area of automatic di�erentiation. When we embed an irregularly distributedarray onto a multiprocessor architecture, each processor's program must manage an arbi-trary subset of a global name space. In a more general context, our techniques make itpossible to e�ciently manage data and computations that are associated with arbitrarysubsets of a global name space. This capability could be very useful in automatic di�erenti-ation codes such as ADIFOR, as it could provide the basis for developing a general methodable to allocate data and computations associated with derivative objects in a sparse fash-ion. The automatic di�erentiation tool would �rst identify active variables (as is now doneby ADIFOR). It seems likely that, in many cases, only a subset of the indices of an arrayof active variables will actually be active at a given point in program execution. The toolwould then generate code that would, at runtime, identify the active index sets associatedwith variable arrays. The tool would also generate code to carry out the automatic di�er-entiation that would allocate the memory needed to store derivative objects only for theactive index sets associated with active variables. The compiler could also generate codethat uses knowledge of active index sets to reduce the amount of computation needed tocompute derivatives.Another method that may be useful in the context of automatic di�erentiation wouldbe a particularly aggressive form of stripmining whose goal would be to reduce the memoryrequirements associated with maintaining derivative objects for active arrays. The key hereis that many codes execute sequences of loops, each of which sweeps over some set of large32

array variables. Assume we can reorder the computation so that the sequence of loopssweep over roughly conforming subsets of active arrays. In other words, we would carry outa stripmine transformation, the result of which would be a code that would consecutivelycarry out computations for conforming patches of di�erent arrays. We should be able to takeadvantage of the fact that data access patterns associated with these sweeps are often ratherlocal. In that case, by carrying out runtime preprocessing, we may be able to determinethat many active variable indices are live only during a particular stripmine iteration.References[1] R. Das and J. H. Saltz. Program slicing techniques for compiling irregular problems.In Proceedings of the Sixth Workshop on Languages and Compilers for Parallel Com-puting, Portland, Ore., August 1993.[2] Ravi Ponnusamy, Joel Saltz, and Alok Choudhary. Runtime-compilation techniques fordata partitioning and communication schedule reuse. In Proceedings Supercomputing'93. IEEE Computer Society Press, November 1993.

33

Algebraic Simpli�cationand Automatic Di�erentiationStephen M. Watt(smwatt@watson.ibm.com)IBM T. J. Watson Research CenterP.O. Box 218Yorktown Heights, NY 10598This talk presents algebraic simpli�cation techniques of computer algebra and optimizingcompilers that can be usefully applied in the �eld of automatic di�erentiation.We preface the presentation with an example of how analytic derivatives improve upon�nite di�erencing in a real-world application: IBM Burlington has several mainframes de-voted to simulating new semiconductor technologies before they are manufactured. Convert-ing the device models with a custom piece of automatic di�erentiation software employingalgebraic simpli�cations led to an estimated $1,000,000 in monthly savings in terms of CPUtime.We note that the meaning of algebraic simpli�cation depends on the class of expres-sions and on the measure of simplicity. Even for the relatively simple class of univariatepolynomials, there is no single best de�nition: a factored or expanded representation mightbe \simpler" on a case-by-case basis. A well-de�ned subproblem of simpli�cation is toask whether an expression is equivalent to zero. This question is easier and su�cient formany purposes. Depending on the class of expressions, however, even this question can beprovably unsolvable.Some classes of expressions admit \normal" or \canonical" forms. Simpli�cation toa normal form converts a zero-equivalent expression to 0. Simpli�cation to a canonicalform converts mathematically equivalent expressions to a unique representative. Conversionto these forms requires exact coe�cient arithmetic, so implementations usually convertoating-point numbers to rational numbers beforehand.In computer algera, various normal and canonical forms are used for polynomials andrational functions. The class of functions can be extended by treating sin(x), cos(x), sin(2x),etc., as new indeterminates. In this setting, many identities are algebraic relations (e.g.,sin2(x) + cos2(x)� 1 = 0). There may be a structure theorem for a class of functions thatcan be used to express a given set of extensions in terms of an algebraically independentset. This leads to expressions that are in one sense simpler, even though the resulting formis usually more lengthy. It is often more convenient to retain a set of algebraic relations andto simplify expressions modulo this set. An important technique in computer algebra is tosimplify an expression modulo a set of polynomials of this sort. We describe how this canbe done using Gr�obner bases. We then describe other simpli�cation techniques includingfactorization, functional decomposition, radical transformation and rule-based methods.Various computational techniques of computer algebra are based on algebraic properties.One standard method is to solve and combine several simpler problems. An example of thisis the computation of several modular images that are combined by Chinese remaindering.34

One might distinguish between \black box" and \clear box" function representations. Ina \black box" representation, one can compute only values of a function | one cannot seeany explicit expression structure. This form is the standard in numerical computing, but ithas only recently found e�ective use in computer algebra. In a \clear box" representation,a function is represented as an expression tree or sequence. This is the standard form incomputer algebra, but it is relatively uncommon in numeric computing, with automaticdi�erentiation being one example.Compiler optimizations can be seen as algebraic simpli�cation of \clear box" functionrepresentations. We describe a number of these optimization techniques applicable to auto-matic di�erentiation. We begin with a description of basic blocks and ow graphs. We thengive a detailed description, global data-ow analysis and illustrate how it can be used toeliminate variables or eliminate common subexpressions. We also discuss transformation ofprograms to static single assignment form and data structure elimination.In conclusion, we present a list of \dos" and \don'ts":� Do exploit algebraic relationships (e.g., sin, cos, matrix ops.).� Do not blindly trust loosely de�ned simpli�cations.� Do use term orderings to eliminate more expensive function calls.� Do not expect miracles from expression simpli�cation.� Do use data-ow analysis for dependency information, common subexpression elimi-nation, etc.� Do not expect compiler providers to include speci�c automatic di�erentiation methods.� Do ask compiler providers to architect application-oriented back doors into their op-timizers.
35

