
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-185A Collection of Tools in Support of Automatic Di�erentiationbyAndrew MauerMathematics and Computer Science DivisionTechnical Memorandum No. 185
February 1994

This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, under Contract W-31-109-Eng-38.

ContentsAbstract 11 Using m4 for Procedure Renaming 21.1 User Interface : 21.2 Implementation : 31.2.1 User-Serviceable Macros : 31.2.2 Under-the-Hood Macros : 42 On Linking ADOL-C and Fortran Programs 62.1 An Easy ADOL-C Program : 62.1.1 Variable Initializations : 72.1.2 Function Computation : 92.1.3 Getting Derivative Values : 92.1.4 Printing Results : 102.1.5 Main Program : 102.2 Connecting ADOL-C and Fortran : 102.2.1 Joining by Named Pipes : 112.2.2 Joining by Linking Together : 112.2.3 Speci�c (Practical) Results : 133 A Quick Discussion of the fortran-manipulate.pl Package 143.1 unify : 143.2 flow : 143.3 Warning : 144 Fortran Text Manipulation with perl 154.1 User-Level Details : 154.1.1 Command Line : 154.1.2 Output File Names : 154.1.3 Doing Something Useful : 154.2 Technical Details of the Main Loop (process fortran file) : : : : : : : : : : : : : : : : : : 165 A Simple Wrapper for ADIFOR 17Appendix: A Simple ADOL-C Code 18References 20
iii

A Collection of Tools in Support of Automatic Di�erentiationAndrew MauerAbstractThis document contains a collection of notes about tools that we have found useful in our work onautomatic di�erentiation.� Using m4 for Procedure Renaming. Most transformations necessary to link C and Fortran programsinvolve changing the case of the C prodecure names and some other trivial manipulations. Weautomate this procedure.� On Linking ADOL-C and Fortran Programs. This portion of the document serves a dual purpose.It is a guide to getting started with ADOL-C, and it also describes methods of linking ADOL-Cand Fortran programs together.� A Quick Discussion of the fortran-manipulate.pl Package. We provide two low-level perl func-tions that aid in coping with the fact that Fortran \logical" lines may include an initial line andmany continuation lines.� Fortran Text Manipulation with perl. We describe a very powerful perl template that may beeasily customized to perform many common Fortran manipulations, such as expansion of varioustemplates in the code.� A Simple Wrapper for ADIFOR. Some simple transformations of the ADIFOR script and compo-sition �les allow much more intuitive syntax.

1

1 Using m4 for Procedure RenamingIt is possible to use the standard Unix program m4 to rename C procedures in an intelligent and portablemanner that also has the major bene�t of being simple to maintain. In our experience, the only transfor-mations necessary to have a C subroutine callable from Fortran are the conversion to upper or lower caseand the prepending or appending of one or more underscores. Changing case is beyond the scope of the Cpreprocessor but is possible in m4, hence the choice.Many sections of this document are written in the literate programming system noweb [2] based on DonaldKnuth's original WEB. It is designed to blend the program code with an intelligible explanation of whatoccurs. The program chunks presented here are tagged with a number and a letter; the number correspondsto the page number on which the chunk is found, and the letter corresponds to the chunk's position on thatpage. After each chunk, there appears a listing of which chunks the current one is used in and, if the chunkis de�ned in more than one place, where the rest of the de�nitions are.1.1 User InterfaceThe basic idea is that we will have an m4 program that transforms to upper or lower case the C identi�ers bygenerating C preprocessor #define macros. Our base C code will read normally, regardless of the renamingnecessary.#include "rename.h"voidc_in_fortran (double *argument){ ... }The include �le will be generated automatically by m4 from a template �le. The template �le will list all ofthe identi�ers that we wish to rename, each wrapped in a call to the m4 function fort. (This include �lemay be automatically generated if desired.) It will resemble the following segment."template-file" 2 �#ifndef FORTRAN_TO_C_TEMPLATE_H#define FORTRAN_TO_C_TEMPLATE_Hfort(c_in_fortran)fort(another_c_subroutine)...#endif /* ndef FORTRAN_TO_C_TEMPLATE_H */3Note: The #ifndef bracketing is strongly suggested because it prevents the resulting C header�le from being included more than once in a given program.Note: The user should be careful about adding any other information to the template �le, as m4may interpret it rather than simply passing it through as expected.To generate the C header �le, the user will invoke m4 with the proper architecture de�ned. Currently, wesupport sun4 (Sun 4 and SPARCstation, SunOS 4.1.3), rs6000 (IBM RS/6000, AIX 3.2, iris4d (SGI Indigo,Irix 4.0.5), and cray (Cray Y-MP, Unicos 6). Adding others is simple and is covered in the Implementationsection below. We give a sample invocation.m4 -Drs6000 renaming-tool template-file > renaming.hNote: Two m4 processors ship with SunOS 4.1.x. The executable /usr/5bin/m4 should be used;the other is broken. (Note that /usr/5bin is frequently not on one's search path, so the namemust be typed in full.) There is a GNU m4 implementation available on most platforms if yourm4 is broken. 2

After the header �le has been generated in this way, its contents will be C preprocessor macros thatrede�ne the basic names given in the template �le. A sample renaming �le for a Cray is given below.#define c_in_fortran C_IN_FORTRAN#define another_c_subroutine ANOTHER_C_SUBROUTINESince the C preprocessor #define will a�ect only whole tokens, and does not a�ect anything inside ofstrings, there is little danger of the C code being corrupted by these rede�nitions. For instance, a variablenamed c_in_fortran_var will not be renamed by the above code.1.2 ImplementationThis section describes the m4 macros that are used to provide the functionality described above.1.2.1 User-Serviceable MacrosThe macro fort generates a C preprocessor de�ne statement that renames its �rst argument properly. Notethat the #define portion is quoted twice, so that on reevaluation the # character will not make m4 thinkthat it is reading a comment.hfort macro 3ai �define(`fort',``#define '$1 fortran_identifier($1)')3Macro referenced in scrap 4f.The fortran_identifiermacro is the trick to success. We de�ne it di�erently depending on the architecturedesired. Note that the second argument to the ifdef must be quoted or it will not be evaluated in the expectedmanner. In m4, quoting opens with the left single quote ` ` ', and closes with the right single quote ` ' ', so itnests without a problem.We will give a synopsis of all the computers supported and then brie
y show each.hAll supported architecture de�nitions 3bi �hWarning if no architecture is de�ned 3eihSun de�nition of fortran_identifier 3aihrs6000 de�nition of fortran_identifier 3bihcray de�nition of fortran_identifier 3dihirix4d de�nition of fortran_identifier 3ci3Macro referenced in scrap 5c.� sun4 (SunOS 4.1.x): We wish lowercase identi�ers with an appended underscore.hSun de�nition of fortran_identifier 3ci �ifdef(`sun4',`define(`fortran_identifier',`m4_append_underscore(m4_lowercase($1))')')3Macro referenced in scrap 3b.� rs6000 (AIX): We wish lowercase identi�ers with no appended underscore.3

hrs6000 de�nition of fortran_identifier 4ai �ifdef(`rs6000',`define(`fortran_identifier',`m4_lowercase($1)')')3Macro referenced in scrap 3b.� irix4d (Indigo Irix 4.0.5): We wish lowercase identi�ers with an appended underscore.hirix4d de�nition of fortran_identifier 4bi �ifdef(`iris4d',`define(`fortran_identifier',`m4_append_underscore(m4_lowercase($1))')')3Macro referenced in scrap 3b.� cray (Cray Y-MP Unicos 6): We wish uppercase identi�ers with no appended underscore.hcray de�nition of fortran_identifier 4ci �ifdef(`cray',`define(`fortran_identifier',`m4_uppercase($1)')')3Macro referenced in scrap 3b.� No architecture de�ned. If the user does not de�ne an architecture, we issue a warning message.hWarning if no architecture is de�ned 4di �define(`fortran_identifier',`Need to define some architecture with -D$(ARCH)')3Macro referenced in scrap 3b.1.2.2 Under-the-Hood MacrosWe need support functions to put words into upper or lower case. This task is done through a tr-likemechanism provided by m4.hSupport Functions 4ei �hm4 Uppercase Function 4fihm4 Lowercase Function 5aihm4 Underscore Appending Function 5bi3Macro referenced in scrap 5c.This function translates all lowercase letters in its �rst argument to uppercase letters.hm4 Uppercase Function 4fi �define(`m4_uppercase',`translit($1,abcdefghijklmnopqrstuvwxyz,ABCDEFGHIJKLMNOPQRSTUVWXYZ)')3Macro referenced in scrap 4e. 4

This function translates all uppercase letters in its �rst argument to lowercase letters.hm4 Lowercase Function 5ai �define(`m4_lowercase',`translit($1,ABCDEFGHIJKLMNOPQRSTUVWXYZ,abcdefghijklmnopqrstuvwxyz)')3Macro referenced in scrap 4e.This function appends an underscore to its �rst argument.hm4 Underscore Appending Function 5bi �define(`m4_append_underscore',`$1_')3Macro referenced in scrap 4e.Of course, the whole package needs to be put together."renaming-tool" 5c �hfort macro 3aihAll supported architecture de�nitions 3bihSupport Functions 4ei3

5

2 On Linking ADOL-C and Fortran ProgramsIt is important that you skim the ADOL-C manual [1]. It has most of the basics. I elaborate here only therepresentation of the power series.The gradient objects corresponding to f is the n-th derivative of f with respect to x divided by n factorial.That is, they are the coe�cients on the x terms in the Taylor expansion of f .a0x0 + a1x1 + (a2=2!)x2+ (a3=3!)x3 � � �2.1 An Easy ADOL-C ProgramLet us examine a simple ADOL-C program to get the derivative of the function f(x) = x2 with respect to x.The overall structure of our program will resemble the following."adol-c-example-1.cc" 6a �hObligatory Includes 6bihIncidental Includes 6cihFunction De�nition 6dihDerivative Subprogram 7aihMain Program 10bi3Only two �les are necessary to include in order to use ADOL-C.hObligatory Includes 6bi �#include "adouble.h"#include "adutils.h"3Macro referenced in scrap 6a.We include one more header �le so we can do I/O.hIncidental Includes 6ci �#include <iostream.h>3Macro referenced in scrap 6a.The actual de�nition of the function is similarly trivial; one needs only to take care to use the type adouble inthe place of double. To my knowledge, single-precision (float) arithmetic is not available. (The automaticpromotion of a float to a double by the compiler makes this a non-issue.) Note that the function returnsan adouble, not a double.hFunction De�nition 6di �adoublefunction (adouble x){ adouble result;result = x * x;return result;}3Macro referenced in scrap 6a.The di�cult part is correctly setting up the call so that it will compute the desired derivatives. Since ourfunction takes one input, we will pass this one input from the main program to our derivative-computingsubroutine. 6

hDerivative Subprogram 7ai �void derivative(double x, double &result){ hVariable Initializations 7bihSet up \tracing" 9bihCall function 9cihEnd \tracing" 9dihCompute Derivatives 9eihPrint results 10ai}3Macro referenced in scrap 6a.2.1.1 Variable InitializationsThere are a number of important variables that we will initialize. For the most part, they need not beinitialized independently, but all must appear in the function call that computes the desired derivatives. Thename per se is not signi�cant; the ones used here are the ones used in the manual.hVariable Initializations 7bi �hTape Tag 7cihNumber of Independents and Dependents 7dihHighest Order of Derivatives Desired 7eihTaylor Coe�cients of Intermediate Quantities to Keep 8aihDeclare Dependent and Independent Gradient Object 8bihAllocate Dependent and Independent Gradient Object 8cihInitialize Dependent and Independent Gradient Object 8d, : : : i3Macro referenced in scrap 7a.The variable tag is an integer indicator of which \stream" one is working with. It is possible to write andprocess more than one tape, so one may keep two or more sets of data from which to compute derivatives.For casual use, it should just be set to zero.hTape Tag 7ci �int tag = 0;3Macro referenced in scrap 7b.One must specify the number of dependent and independent variables. These can be compile-time constantsor set at run time, but the latter requires dynamic allocation of the gradient objects. We will do the latter.hNumber of Independents and Dependents 7di �int number_of_independents = 1;int number_of_dependents = 1;3Macro referenced in scrap 7b.One also needs to specify the highest order of derivatives desired.hHighest Order of Derivatives Desired 7ei �int derivative_order = 2;3Macro referenced in scrap 7b. 7

We only need to keep intermediate Taylor coe�cients if we are interested in the reverse mode.hTaylor Coe�cients of Intermediate Quantities to Keep 8ai �int keep = 0;3Macro referenced in scrap 7b.One needs space for the gradient objects. They are either declared as two-dimensional arrays or createdwith the C++ new operator. Note that these are double variables, not adouble.hDeclare Dependent and Independent Gradient Object 8bi �double **X_indeps; // Independentdouble **Y_deps; // Dependent3Macro referenced in scrap 7b.We will immediately allocate memory for the gradients. Note the allocation of derivative_order+1 ele-ments; we must allow for the \zero order derivative."hAllocate Dependent and Independent Gradient Object 8ci �int loop;X_indeps = new double* [number_of_independents];for (loop = 0 ; loop < number_of_independents; loop ++)X_indeps[loop] = new double[derivative_order+1];Y_deps = new double* [number_of_dependents];for (loop = 0 ; loop < number_of_dependents; loop ++)Y_deps[loop] = new double[derivative_order+1];3Macro referenced in scrap 7b.Of course, we wish to initialize the independents.1 To have an independent variable behave as expected, onesets the �rst partial derivative to 1. No initialization of the dependents is necessary.hInitialize Dependent and Independent Gradient Object 8di �for (int j = 0 ; j < number_of_independents ; j ++){ for (int i = 0; i < derivative_order ; i++){ X_indeps[j][i] = 0.0;if (i == 1){ X_indeps[j][i] = 1.0;}}}3Macro de�ned by scraps 8d{9a.Macro referenced in scrap 7b.When initializing the independents, one should set the zero-order partial derivative to the value of theindependent variable.1One can think about power series and get e�ects similar to the seed-matrix initialization in ADIFOR (not compression;only multiplication by a constant). 8

hInitialize Dependent and Independent Gradient Object 9ai �// Here we know there is only one independentX_indeps[0][0] = x;3Macro de�ned by scraps 8d{9a.Macro referenced in scrap 7b.2.1.2 Function ComputationThe rest of the process is quite simple. We call the \tracing" function to tell ADOL-C to write its tape, callthe function, and end the tracing.hSet up \tracing" 9bi �trace_on (tag, keep);3Macro referenced in scrap 7a.All of the \active" variables passed into the function must be of type adouble. An \active" variable isinitialized from its regular double counterpart by using the operator <<= as below. To extract the doublevalue from an active variable, one uses the >>= operator.hCall function 9ci �adouble active_x;adouble active_result;// Initialize the active variableactive_x <<= x;active_result = function (active_x);// Extract the result from the active varactive_result >>= result;3Macro referenced in scrap 7a.Once all of the functional computation is completed, trace_off should be called.hEnd \tracing" 9di �trace_off();3Macro referenced in scrap 7a.2.1.3 Getting Derivative ValuesTo get derivative values, the user should call one of the functions detailed in the manual. For our purpose,forward is su�cient.hCompute Derivatives 9ei �forward(tag, number_of_dependents, number_of_independents,derivative_order, keep,X_indeps, Y_deps);3Macro referenced in scrap 7a. 9

The array Y_deps contains the Taylor series of the dependent variables in chronological order of theirdesignation with the >>= operator (starting with Y_deps[0]). The entry Y_deps[n][0] is the value ofthe dependent number n. The entry Y_deps[n][i] is the i-th derivative of dependent n with respect to theindependent.There is no allowance for multivariate functions in the old (Version 1.3) forward mode.2 In a simpleexperiment, I analyzed the function f(x; y) = x � y, for x = 1:5, y = 6:0, with x having the Taylor series1:5, 1, 0, and y having the Taylor series 6:0, 1:0, 0:0. The resulting derivative of f had the Taylor series 9:0,7:5, 1:0. Version 1.4, however, has a new function, hov_forward, that computes the \higher-order vector"in forward mode. I am told that this is capable of handling independents.2.1.4 Printing ResultsWe will use a simple output routine to print out the Taylor coe�cients of each of the dependents.hPrint results 10ai �for (int k = 0; k < number_of_dependents ; k++){ cout << "Dependent #" << k << " has stored Taylor series coefficients: " << endl;for (int l = 0 ; l < derivative_order+1; l++){ cout << Y_deps[k][l];if (l != derivative_order)cout << ", ";}cout << endl;}3Macro referenced in scrap 7a.2.1.5 Main ProgramA trivial main program is needed to drive our subroutine. We will call it with an arbitrary value for thefunction.hMain Program 10bi �int main (void){ double result;derivative(7.0, result);// Safe exitreturn 0;}3Macro referenced in scrap 6a.2.2 Connecting ADOL-C and FortranADOL-C can be used with Fortran in two ways. One way is to set up a C++ process that acts as a server,getting input from the Fortran program and returning the output of some function along with the relevantderivatives. This was the �rst approach that we used. Another way is to link together a Fortran programand a C++ program; this is the method to which we will devote the most attention. It has been testedon a Sun SPARCstation, under Sun OS 4.1.3, and on an RS/6000 workstation under AIX, both with the2It seems that all of the Taylor series are written in terms of the same variable x. When one gives the Taylor series for a givenindependent, ADOL-C assumes the user is telling it how that variable varies with respect to some underlying independent.10

GNU g++ compiler and the native Fortran 77 compiler. A similar method should work with other operatingsystems..Warning : No C++ global constructors or destructors will be called if the main routine in theresulting program is from Fortran. The Fortran I/O libraries will not be initialized if the resultingmain routine is from C++.2.2.1 Joining by Named PipesBasically, the method of joining by named pipes involves setting up two processes, a server and a client,that communicate by named pipes. Generally the C++ side will be the server, accepting input values forfunctions and returning the function output and the desired derivatives.The way we set up our communications was quite simple. Two named pipes were created, inpipe andoutpipe.mknod inpipe pmknod outpipe pThe C++ server was set up so that it read from the standard input and wrote to the standard output. Itwas then invoked in the background reading from inpipe and writing to outpipe../c++-derivative-server < inpipe > outpipe &On the (Fortran) client side, one writes function input to inpipe and reads results from outpipe. Weimplemented this by linking a C routine with Fortran and using the standard C functions for I/O. Presumablythe Fortran I/O functions would serve the same purpose.An example is available in /home/derivs/share/fortran-to-c/pipe-communication.2.2.2 Joining by Linking TogetherThere are two basic steps one must follow to link a C++ routine and a Fortran routine. First, one needsto create a subroutine on the C++ side that is accessible through Fortran. Since any C++ identi�eris \mangled" in the output (the mangling process is a compiler-dependent change of the name to allowoverloading), the routine should be declared extern "C". In addition, it may need to have a speci�c case,and it will probably need an underscore appended (on the C++ side only). See Section 1 for furtherinformation.� Cray: Uppercase, no appended underscore.� rs6000: Lowercase, no appended underscore.� sun4: Lowercase, appended underscore.� iris4d: Lowercase, appended underscore.For instance, on the Fortran side, we will havecall deriv (x,y)whereas on the C++ side for a SUN, we will haveextern "C" deriv_ (double *x, double *y){ /* Function Body */ }and on the Cray, we will haveextern "C" DERIV (double *x, double *y){ /* Function Body */ } 11

The individual program modules are then compiled separately.The second major step in the process is to link them together. This must be done with the C++ linkersince nontrivial things happen to a C++ program in the link stage. In general, linking will involve addingthe Fortran libraries to the C++ link step. Here we detail how to �nd those magical libraries. If one is usingan RS/6000 or Sun, the remainder of this (sub)section can be skipped.First, we create or get a trivial Fortran program called test.f. The following will serve nicely.program mainendNow we compile this program with the appropriate Fortran compiler (usually f77 or xlf), but using the-v switch so that we see everything that happens.IBM RS/6000On an rs6000, a verbose link shows% xlf -v test.fexec:/usr/lpp/xlf/bin/xlfentry(xlfentry,test.f,/tmp/F8HAID0V,test.lst,\xlfsmsg.cat,xlfmsg.cat,NULL)** main === End of Compilation 1 ===1501-510 Compilation successful for file test.f.exec: /bin/ld(ld,-bh:4,-T512,-H512,/lib/crt0.o,test.o,-lxlf,-lm,-lc,NULL)unlink: test.oThe important lines are those in the link step (/bin/ld). Scanning through the arguments, we see that(1) no libraries are being added to the search path with the -L option; and (2) the options that are linkinglibraries are -lxlf, -lm, and -lc. We will add these three libraries to the C++ link step.Note: We do not add crt0.o.Sun SPARCstationOn a Sun 4, a verbose link shows% f77 -v test.f/usr/lang/SC1.0.1/f77pass1 "-P -cg87" test.f /tmp/f77pass1.17110.s.0.s \/tmp/f77pass1.17110.i.1.s /tmp/f77pass1.17110.d.2.stest.f:MAIN main:/usr/lang/SC1.0.1/as -o test.o -Q -cg87 /tmp/f77pass1.17110.s.0.s \/tmp/f77pass1.17110.i.1.s /tmp/f77pass1.17110.d.2.srm /tmp/f77pass1.17110.s.0.srm /tmp/f77pass1.17110.i.1.srm /tmp/f77pass1.17110.d.2.s/bin/ld -dc -dp -e start -u _MAIN_ -X -o a.out /usr/lang/SC1.0.1/crt0.o \/usr/lang/SC1.0.1/cg87/_crt1.o -L/usr/lang/SC1.0.1/cg87 \-L/usr/lang/SC1.0.1 test.o -lF77 -lm -lcrm test.oAgain, the important data here is (1) two directories have been added to the library search path:-L/usr/lang/SC1.0.1/cg87 and -L/usr/lang/SC1.0.1; and (2) three libraries are being linked: -lF77,-lm, and -lc. We will add both the libraries and the library search path to the C++ link step.Note: We do not add crt0.o. 12

2.2.3 Speci�c (Practical) ResultsFirst, a summary of the known ways to link Fortran and C++. To link on an RS/6000, one should use acommand of the form[Usual link line plus...] -lxlf -lmTo link on a sun, one should use a command of the form[Usual link line plus...] \-L/usr/lang/SC1.0.1/cg87 -L/usr/lang/SC1.0.1 -lF77 -lmThe user should re-read Section 2.2.2, page 11, to become familiarwith the Fortran-C++ calling sequence.All Fortran double-precision variables are passed as double * to C++. Strings in Fortran may or may notpresent di�culties, depending on the compiler.3 Remember that we have the normalized Taylor coe�cients,not the plain derivatives (one must to multiply them by the order factorial to get plain derivatives).

3We encountered no problems receiving them as char in C++ on the RS/6000, Sun 4, and SGI Irix Indigo machines butdid have di�culties on the NeXT. 13

3 A Quick Discussion of the fortran-manipulate.pl PackageThe fortran-manipulate.pl package provides two basic functions: \unify" and \
ow". The function\unify" assembles a single logical line from an initial line and continuation lines. The function \
ow" breaksa single logical line into continuation lines suitable for digestion by a Fortran compiler.3.1 unifyCALLING: &unify (*array_of_fortran_lines)INPUT: A single array of 1 line, its continuation lines, and optionally more lines that are ignored. Theinitial line should be in the �rst index of the array (that is, in $[).RETURNS: The �rst line with all of its continuation lines, ending with a newline.Note: The *name calling format is necessary to allow the routine to modify the array that is passed toit.This routine strips out the continuation line \junk" (the spaces and continuation line character | up tocolumn 6) and anything after column 72 and then appends the multiple lines in the array together into onelong line. This line is returned.The lines are removed from the argument array as they are added to the �nal assembly. Hence the arraypassed in will be modi�ed. (This behavior can be changed, if desired.)This routine also pads short lines to column 72.3.2 flowCALLING: &flow($unflowed_line, @nobreak_list)INPUT: $unflowed_line, one long Fortran line, like that generated by unify(). It should not haveembedded newlines. @nobreak_list is a (possibly empty) array of strings that should be placed onlines by themselves.RETURNS: $unflowed_line broken up into continuation lines. Each one of these lines will end witha newline (including the last one).Warning: If the string speci�ed has embedded newlines, they will be respected as line breaks. This maybe desired in the middle of the line, but there should certainly not be one at the beginning. Beginningwith a newline will cause the �rst line to be generated as a continuation. This will most likely resultin incorrect code.The routine \
ow" breaks a long line into smaller lines of 72 characters or less, adding the continuationline pre�x to every line after the �rst. Elements of the array @nobreak_list are placed on lines by themselves(followed by as many commas, spaces, and left parentheses immediately after it; this behavior can be changedif desired). This is useful for preserving preprocessor tokens.The arguments are not modi�ed.3.3 WarningIf one processes a program that uses the C preprocessor to #define certain tokens, care must be taken thatthey are not broken across a continuation line. In practice, this is hardly ever a problem.14

4 Fortran Text Manipulation with perlWe provide a template and support functions to make it simple to perform certain types of massaging Fortransource code. We process only lines that are in a user-speci�ed format, so we do not need to understand theentire source.4.1 User-Level DetailsThe general philosophy of this template is to alter only those lines that the user has speci�ed as \interesting."Other lines are left intact, allowing for any absurd structure such as signi�cant information in columnsbeyond 72, line numbers on continuation lines, comment code. By passing through the majority of thesource code unaltered, we have the greatest chance of not changing (destroying) the original program.This template uses the fortran-manipulate.pl package. Section 3 documents that package.There is a separate document explaining the functions unify and flow contained in that package. Noknowledge of them is necessary to use this template.Note: This entire program runs with $[= 1, so arrays are indexed starting at one, just likecolumns in Fortran lines.4.1.1 Command LineBy default, the template recognizes four options. The -help option prints a help message. The -versionoption prints the RCS version of the template expander (or the derived program, if it is under RCS control).The -c option prints all output to the standard output, rather than the speci�ed �le (see Section 4.1.2).The -n option does not write any output. This can be useful if one prints speci�c debugging messages butdoes not care about the actual output.4.1.2 Output File NamesThe name of the output �le is derived from the name of the input �le in the program section CHOOSING THEOUTPUT FILENAME. By default, input �les ending in .f are mapped to the same base name, with the su�x.F. Other �les have .processed.F appended.Warning: If the output �le name is the same as the input �le name, the input �le will getclobbered.By altering the replacement expression or adding new ones, the user can control the name of the output�le. Another option that should be considered is that of invoking the tool once for each individual �le, usingthe -c option, and redirecting the resulting output. The following example illustrates this style../template -c myfile.f > processed.F4.1.3 Doing Something UsefulThe areas mentioned above will probably be tweaked when customizing the template, but the most work willgo into actually making it do something. The �rst thing one will need to do is change $interesting_regex.This is a regular expression that must match the initial line of any whole line (initial line and continuationlines) that one desires to \process." It is very important to note that this must match the initial line orincorrect results may be obtained.Once a line matches the $interesting_regex, all of its continuation lines are gathered together andjoined into one long line, and it is passed to the subroutine your_routine.4 In this subroutine one canrestructure the line in any way desired (or even replace it). The line that is returned from this subroutine istaken to be the \processed" line. This processed line is broken into continuation lines and output.If one wishes to make modi�cations that will not be subject to the process of folding into continua-tion lines, for instance adding #ifdef directives to conditionally compile code, one should do them in theyour_post_processing routine. The line that this routine returns is output exactly as it is received.4For those who need to know exactly what happens, columns 1 to 72 of the initial line are taken, and the columns 7 to 72of all of its continuation lines are appended to it. 15

4.2 Technical Details of the Main Loop (process fortran file)If a line is \interesting," it is pushed on to the @raw_lines array, and we see whether it has any continuationlines. We set the $interesting
ag to indicate that we are not just supposed to pass through continuationlines and go back through the processing loop.5 We go on, grabbing continuation lines and spewing out anyembedded comments, until we �nd a line that is not a continuation line.At this point, we \unify" the lines and send the uni�ed line to the routine that processes the exceptionhandler call. We \
ow" the line we get back, and output it.When we near the end of loop after processing an \interesting" line, we are carrying another line in $_that may or may not be interesting. We reset $interesting to false and go back through the loop to check$_.

5Of course, if no more lines are in the �le, we drop on down to process this line. This is where it is important that $ bereset, so that the loop does not continue to think it is getting new interestingmaterial just because it is not reading in anythingnew. 16

5 A Simple Wrapper for ADIFORWe provide some simple massaging of the script and composition �les required by ADIFOR Version 1. Thismakes their use more intuitive and less prone to syntatic errors.The following actions are performed for both the composition and script �les.� The # character is considered a comment character. Everything from it to the end of the line isstripped out. No provision is made for escaping it.� Leading and trailing whitespace is stripped from lines, so there is no danger of ADIFOR thinking thatyour �le has several leading or trailing spaces in the name.� Blank lines are removed, preventing ADIFOR from interpreting them in any way.The following actions are performed only in the script �le.� Whitespace around commas is removed. This prevents bad things from happening in the input andoutput variables lists.� Script �le variables may be set with the = operator. This allows the very natural syntax PMAX=30.� The variable DVARS is accepted as a synonym for OVARS.We gain some incidental bonuses from using this wrapper.� The directory /usr/local/adifor/bin is added to the search path, so ADIFOR can �nd its supportprograms even if they are not on the user's search path.Other potential enhancements could include allowing \n" at the end of a line to designate the next lineas a continuation line.

17

AppendixA Simple ADOL-C Code#include "adouble.h"#include "adutils.h"#include <iostream.h>adoublefunction (adouble x){ adouble result;result = x * x;return result;}void derivative(double x, double &result){ int tag = 0;int number_of_independents = 1;int number_of_dependents = 1;int derivative_order = 2;int keep = 0;double **X_indeps; // Independentdouble **Y_deps; // Dependentint loop;X_indeps = new double* [number_of_independents];for (loop = 0 ; loop < number_of_independents; loop ++)X_indeps[loop] = new double[derivative_order+1];Y_deps = new double* [number_of_dependents];for (loop = 0 ; loop < number_of_dependents; loop ++)Y_deps[loop] = new double[derivative_order+1];for (int j = 0 ; j < number_of_independents ; j ++){ for (int i = 0; i < derivative_order ; i++){ X_indeps[j][i] = 0.0;if (i == 1){ X_indeps[j][i] = 1.0;}}} 18

// Here we know there is only one independentX_indeps[0][0] = x;trace_on (tag, keep);adouble active_x;adouble active_result;// Initialize the active variableactive_x <<= x;active_result = function (active_x);// Extract the result from the active varactive_result >>= result;trace_off();forward(tag, number_of_dependents, number_of_independents,derivative_order, keep,X_indeps, Y_deps);for (int k = 0; k < number_of_dependents ; k++){ cout << "Dependent #" << k << " has stored Taylor series coefficients: " << endl;for (int l = 0 ; l < derivative_order+1; l++){ cout << Y_deps[k][l];if (l != derivative_order)cout << ", ";}cout << endl;}}int main (void){ double result;derivative(7.0, result);// Safe exitreturn 0;} 19

References[1] Andreas Griewank, David Juedes, and Jay Srinivasan. ADOL-C, a package for the automatic di�erentia-tion of algorithms written in C/C++. Technical Report MCS-P180-1190, Argonne National Laboratory,1990.[2] Norman Ramsey. Literate-programming tools can be simple and extensible. Report at bellcore.com in/pub/norman/noweb/xdoc/ieee.tex. software at bellcore.com in /pub/norman/noweb-2.5a.shar.z.,Department of Computer Science, Princeton University, October 1993.

20

