
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-187
ADIFOR Working Note No. 11ADIFOR Strategies Related toPOINTER Usage in MM5Christian Bischof Peyvand Khademi Timothy Knau�Mathematics and Computer Science DivisionTechnical Memorandum No. 187

March 1994This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy,under Contract W-31-109-Eng-38, and by the National Aerospace Agency under PurchaseOrder L25935D.

ContentsAbstract 1Introduction 1POINTERs in Fortran 1Why and How POINTERs Are Used in MM5 3POINTERs and ADIFOR 6Stepping through the Transformation of HIRPBL 7Mapping Gradient POINTERs to Addresses 12Acknowledgments 15References 15

iii

ADIFOR Working Note No. 11ADIFOR Strategies Related toPOINTER Usage in MM5Christian Bischof Peyvand Khademi Timothy Knau�AbstractPOINTERs are nonstandard Fortran statements which cannot be processed by ADIFOR.We are interested in generating derivative code for MM5, a mesoscale model code whichuses POINTERs extensively and in a particular structured manner. We briey report onPOINTERs and their role in MM5 and, for their particular usage in MM5, describe the three-step code transformation scheme consisting of pre-ADIFOR, ADIFOR, and post-ADIFORtransformations that result in the generation of correct derivative code for MM5.IntroductionIn our attempt to generate derivative code for MM5 (the �fth-generation PennState/NCAR Mesoscale Model) [5], with ADIFOR (Automatic DI�erentiation ofFORtran) [2], [3], we encountered the nonstandard Fortran statement POINTER.The purpose of this note is to1. document our understanding of the role of POINTERs as they are used in MM5,and2. describe our workaround strategy for \masking" POINTERs for processing ofthe code with ADIFOR, and then \unmasking" them.POINTERs in FortranPOINTER is a Cray extension to the Fortran 77 standard which has been stan-dardized in Fortran 90. POINTERs are admissible parts of many Fortran compilers,including the Cray CFT77 [4], RS/6000 xlf [1], and Sun f77 [7] compilers, and tothe best of our knowledge have identical syntax and semantics in these compilers.The following information about POINTERs is worth noting:� The syntax is as follows:POINTER (pointer,pointee) [,(pointer,pointee)]...� The POINTER statement allows one to specify that the value of the variablepointer should be used as the base address for any reference to pointee.1

REAL A(10,10), CURCOL(10), NORMS(10)POINTER (PTR,CURCOL)C 2 Alternative Declarations for the pointer and pointee:C REAL CURCOL | REAL CURCOLC POINTER (PTR,CURCOL(10)) | POINTER (PTR,CURCOL)C | DIMENSION CURCOL(10)DO I=1,10PTR = LOC(A(1,I))NORMS(I) = SNORM2(10,CURCOL)ENDDOREAL FUNCTION SNORM2(N,X)REAL X(N)SNORM2 = 0.0DO I=1,NSNORM2 = SNORM2 + X(I)**2ENDDOSNORM2 = SQRT(SNORM2)RETURNFigure 1: A simple example of the usage of the POINTER statement� A pointer can appear in a COMMON statement but cannot appear in a typestatement.1 A pointer occupies storage adequate for an address. The com-pilers mentioned above assign storage equivalent to an INTEGER to a POINTERvariable.� A pointee cannot appear in a COMMON statement, but can be declared as avariable and can be dimensioned. The compiler does not allocate storage fora pointee, even if it appears in a type or dimension statement.� The LOC function returns the address of a variable and can be used to de�nea pointer (example: PTR = LOC(ARR(I,J))).Figure 1 shows a simple code making use of the POINTER statement. We computethe Euclidean norm of the columns of a matrix by using a POINTER to point to acolumn at a time.1The Cray compiler is less restrictive, stating that a pointer cannot appear in a preceding typestatement. 2

Why and How POINTERs Are Used in MM5In studying the MM5 code and documentation [6] we have learned that MM5uses POINTERs to associate model parameters with values for a given nest. Thereappear to be two principal reasons for using such a scheme:1. to allow for nest shifting without the need for passing long parameter lists,and2. to simplify dumping a state and subsequently restarting from the same.To better explain the above reasons, we describe some aspects of the code:� Two COMMONs play key roles in the overall MM5 pointer scheme:REAL ALLARRCOMMON /HUGE/ ALLARR(IHUGE,MAXNES)INTEGER IAXALLCOMMON /ADDR0/ IAXALL(NUMVAR,MAXNES)� ALLARR is the array where the values for all model variables for all nests reside.IHUGE is the sum of the product of the dimensions of all pointees (i.e., themaximum number of all variables describing the state of a particular nest),and MAXNES is the maximum number of nests during a simulation. Each columnof ALLARR contains the full set of model parameters for a given nest.� IAXALL is an array containing address values for all the POINTERs in MM5.NUMVAR (approximately 300) is the number of pointers. For a given nest,IAXALL maps each pointer to a location in ALLARR corresponding to the startof the image of the pointee. Each column of IAXALL is the full mapping for agiven nest.� The mapping for all nests is created once at the beginning of a new run or arestart by calling the addressing subroutine, ADDALL, and subsequently neverchanged. ALLARR addresses are assigned to corresponding IAXALL entries viathe LOC intrinsic. Figure 2 contains code fragments from SUBROUTINE ADDALL,showing instances of this mapping. (Note in this example that each twosuccessive IAXALL entries will be di�erent in value by an amount equal toMIX*MJX*MKX, which is equal to the \extent" of a particular pointee array. Weshall come back to this point later.)� A second addressing subroutine, ADDRX1C (Figure 3), is called once at thebeginning and subsequently for every nest shift, to e�ectively assign the ap-propriate column of IAXALL to the set of actual pointers. This process involves3

SUBROUTINE ADDALLIX3D = MIX*MJX*MKX...DO 100 K = 1,MAXNESIAXALL(1,K) = LOC(ALLARR(1,K))NCOUNT = 1NCOU = 1DO 15 N = 2,NVARX + 1NCOUNT = NCOUNT + 1IAXALL(NCOUNT,K) = LOC(ALLARR(1+ (N-1)*IX3D,K))15 CONTINUENCOU = NCOU + (NVARX)*IX3D...100 CONTINUE Figure 2: Excerpts from the �le \addall.f"passing the appropriate column of IAXALL to the dummy argument IARR ofADDRX1C, then EQUIVALENCEing the �rst pointer listed in each COMMON to the�rst entry in a local array (e.g., IDUDU(1)) (thus also EQUIVALENCEing sub-sequent entries in the COMMON to successive entries in the local array), and�nally copying the values of IARR into IDUDU(1), IDUDU(2), etc. As a resultof the EQUIVALENCE statement, IAUA, IAUB, ..., and IAPA, IAPB, ... are assigned(address) values stored in a particular column of IAXALL.� Figure 4 depicts the addressing scheme for a given nest value, NUMNES. We haveshown only one column (drawn as a row) of ALLARR and IAXALL, and only twoof the many COMMONs in MM5. The arrows from entries of IAXALL to startingaddresses of blocks of ALLARR depict the pointer assignments, which are madeonce by calling ADDALL and are never changed. The links between the pointersin the COMMONs and entries of IAXALL (drawn with three horizontal bars in themiddle) depict the assignment of pointer values to a given nest. Each timethere is a nest shift, these links are redrawn to reassign the pointers to theappropriate column of IAXALL.� ADDRX1N is called to concurrently de�ne pointers for a coarser and a �ner nest.We note that the sets of pointers accessed in the two nests will always bedisjoint. 4

SUBROUTINE ADDRX1C(IARR)INTEGER IARR(NUMVAR)INTEGER IAUA,IAUB,...COMMON /ADDR1/IAUA,IAUB,...INTEGER IAPA,IAPB,IAZO,IAHO,...COMMON /ADDR2/IAPA,IAPB,IAZO,IAHO,...INTEGER IDUDU1(NVARX+NVARMX+4),IDUDU2(NVARSX),...EQUIVALENCE (IDUDU1(1),IAUA)EQUIVALENCE (IDUDU2(1),IAPA)...DO 10 N = 1,NVARX + NVARMX + 4NN = NIDUDU1(N) = IARR(NN)10 CONTINUENM = NNDO 20 N = 1,NVARSXNN = NM + NIDUDU2(N) = IARR(NN)20 CONTINUE...CALL ADDRX1C(IAXALL(1,NUMNES))Figure 3: Excerpts from the �le \addrx1c.f" and an example of a call to ADDRX1C� A pointee array (e.g., UA in Figure 6), wherever it appears in the computation,will refer to the values of some quantity some model values for some nest, butthe nest information will not appear explicitly in its dimensions.Thus, in using POINTERs, to shift from one nest to another, one simply reassignsall pointers by calling ADDRX1C. Shifting nests has been achieved without the needfor potentially very large subroutine interfaces. Also, dumping a state now merelyrequires saving ALLARR. 5

IAPAIAUA

COMMON /ADDR1/COMMON /ADDR1/

IAUB

UA UB PSA PSB

IAXALL (:,NESTNUM)

ALLARR (:,NESTNUM)

Other

IAPB

COMMONsFigure 4: Schematic illustrating the MM5 POINTER addressing schemePOINTERs and ADIFOROur �rst challenge in the development of a sensitivity-augmented version ofMM5 is that the POINTER extension is not supported by ADIFOR. This necessitatesmodifying the original code in such a way as to make it admissible for ADIFORprocessing, while maintaining the dependence pro�le of the code (which is used byADIFOR in constructing the derivative code) as well as the intended semantics ofthe program. While one could avoid the use of POINTERs, the e�ort seems prohibitivegiven the pervasive and structured use of POINTERs in MM5.We have devised a method for solving this problem by systematically \mask-ing" POINTERs prior to processing the code with ADIFOR, and reintroducing inthe ADIFOR-generated code the same POINTER statements and, additionally, thecorresponding POINTER statements for the derivative objects. To this end, we havedeveloped a set of Perl scripts tailored to the particular structured use of POINTERsin MM5.A critical aspect of the usage of POINTERs in MM5 is that there is no \aliasing";that is, every address in ALLARR is pointed to by exactly one pointer. As a result, adependence analysis at one particular nest level will accurately capture the depen-dence pro�le of the code, since, outside of pointer shifting in ADDRX1C, there is no\hidden" dependence between nest levels. This fact is signi�cant from the point of6

CODE

MM5

AUGMENTED

MM5

CODE

DERIVATIVE

BLACK BOX

IDENTIFYING

SENSITIVITY-
ENHANCED

CODE

EMBEDDING

 A PROBLEM

OUTPUTS:

INPUTS:

ROUTINES:

X, G_X

Z, G_Z

OUTPUTS:

INPUTS:

ROUTINES:

X

Z

A, B

G_A, G_B

CODE-GENERATION

Figure 5: Schematic illustrating the augmentation of MM5 with sensitivity codeview of dependence analysis in ADIFOR, since there is never a danger of an entryin ALLARR having multiple dependency pro�les.Stepping through the Transformation of HIRPBLADIFOR operates on a subroutine or a suite of subroutines. Our initial goal isto augment some subset of MM5 with sensitivity code.Figure 5 is a schematic of this process. Subroutine A is identi�ed as the top-levelsubroutine, and B represents other subroutines in the calling sequence of A. X and Zhave been nominated as the independent and dependent variables, respectively. The\Derivative Code-Generation Black Box," which we will describe in the followingparagraphs, includes ADIFOR as well as the pre- and post-ADIFOR transforma-tions. The black box generates the derivative code, contained in the subroutinesG A and G B. Finally, a sensitivity driver code will embed the sensitivity-enhancedcode in the original calling context by properly initializing the seed matrix, G X.7

ccc The POINTERs originally listed in a COMMON statement:COMMON /ADDR1/ IAUA, IAUB, ...ccc The POINTEEs are originally declared as REAL:REAL UA, UB, ...ccc The non-standard POINTER statement:POINTER (IAUA, UA(MIX,MJX,MKX)), (IAUB, UB(MIX,MJX,MKX)), ...COMMON /ADDR2/ IAPA, IAPB, IAZO, IAHO, ...REAL PSA, PSB, ZOL, HOL, ...POINTER (IAPA, PSA(MIX,MJX)), (IAPB, PSB(MIX,MJX)),+ (IAZO, ZOL(MIX,MJX)), (IAHO, HOL(MIX,MJX)), ...Figure 6: Excerpts from the code for HIRPBLWe have chosen the high-resolution planetary boundary layer (HIRPBL) mod-ule, consisting of three subroutines (HIRPBL, SFCRAD, and SLAB) as the �rst MM5submodel to be augmented with sensitivity computations. This module was cho-sen because it is the interface along which one would incorporate the BATS codeinto MM5, by (in essence) interchanging the surface interaction model in BATS forSLAB. The sensitivities of interest, for example, derivatives of TTNP (tendencies oftemperature) with respect to DZQ (layer thickness), could provide insight into howMM5 is impacted by di�erent approaches to the modeling of this phenomenon.We will now step through Figures 6{10 which exemplify the transformationsyielding the derivative code. First a few general remarks about the code segmentsin these �gures:� The code segments were extracted verbatim from actual �les and massagedslightly and only for readability purposes.� Wherever \..." appears, it signi�es that in the actual code more variablesfollowed which we have omitted since they behave similarly to the variableswe've shown.� There are two kinds of comment lines in the code: those starting with \C" arepart of the transformations themselves and were inserted by the Perl tools;those starting with \ccc" were subsequently inserted manually for readability.8

� Each �gure is divided into two sections. The upper section is an example ofa COMMON that ADIFOR will not nominate as active, and the lower section isan example of an active COMMON. We will follow the progression of these twoCOMMONs through the transformations.� We make use of the functions unify and ow of the fortran-manipulate.pl pack-age in /home/derivs/share/lib/perl, which, respectively, construct a long linefrom a set of Fortran continuation lines and split up a long line into Fortrancontinuation lines.� The main Perl scripts, de pointer.pl, re pointer.pl, and gradient ptr.pl, alongwith a few other subsidiary ones, reside in /home/derivs/share/MM5. Wewill not go into the internal details of these scripts here; rather, we'll discussthe main functionalities and refer the reader to the README �le in the samedirectory for the details.Figure 6, an excerpt from the code for HIRPBL, is the starting point of ourtransformation scheme. Each POINTER statement is coupled with the appearanceof its pointer in a COMMON statement and the declaration of its pointee in a REALstatement. We note that each pointee appears with a dimension in the POINTERstatement, which speci�es its \extent" and is used to infer the proper o�set fromthe base address.By masking the POINTER statement, de pointer.pl transforms the code for HIRPBLto the code fragment we denote as de pointered hirpbl.f (Figure 7). Here \masking"means that though the POINTER statement no longer appears as code, the pointerand pointee appear in a context visible to ADIFOR, namely, in INTEGER and COMMONstatements, respectively. We do echo the POINTER statement in de pointered hirpbl.fas a comment to facilitate its unmasking later.The key idea is this: de pointered hirpbl.f will never get executed; therefore, atthis stage of the transformation we are interested not in code that will run correctlybut rather in code that will meet the ADIFOR restriction requirements and willcause the correct dependency propagation in ADIFOR.The INTEGER declaration of the pointer will simply ensure that we do not relyupon default implicit typing of Fortran and that the former POINTER variables areproperly typed. This declaration is in fact extraneous, but it does serve a documen-tation purpose without complicating the transformation or ADIFOR steps. TheCOMMON statements inserted by de pointer.pl (e.g., COMMON /UA_CMN/) do play a nec-essary role (one that could also be played by DIMENSION statements). Since thepointee arrays appear dimensionless in the REAL declaration, without the dimen-sion information in the COMMON, ADIFOR would not know how to dimension the G_variables corresponding to those variables that it determines to be active.A somewhat unwanted side e�ect of the COMMON declaration is that all variablesin the COMMON will be activated if ADIFOR recognizes a subset of them to be active.9

ccc We leave the COMMON statement listing POINTERs as is:COMMON /ADDR1/ IAUA, IAUB, ...ccc The POINTERs are now declared as INTEGERs:INTEGER IAUA, IAUB, ...ccc We leave the REAL declaration of the POINTEEs as is:REAL UA, UB, ...ccc The POINTER statement is commented out:C POINTER (IAUA, UA(MIX,MJX,MKX)), (IAUB, UB(MIX,MJX,MKX)), ...ccc We insert a COMMON statement listing the POINTEEs. Theccc name for the COMMON is constructed using the name of theccc first POINTEE in the POINTER list:COMMON /UA_CMN/ UA(MIX,MJX,MKX), UB(MIX,MJX,MKX), ...COMMON /ADDR2/ IAPA, IAPB, IAZO, IAHO, ...INTEGER IAPA, IAPB, IAZO, IAHO, ...REAL PSA, PSB, ZOL, HOL, ...C POINTER (IAPA, PSA(MIX,MJX)), (IAPB, PSB(MIX,MJX)),C + (IAZO, ZOL(MIX,MJX)), (IAHO, HOL(MIX,MJX))COMMON /PSA_CMN/ PSA(MIX, MJX), PSB(MIX, MJX), ZOL(MIX, MJX),+ HOL(MIX, MJX), ...Figure 7: Excerpts from the �le \depointered hirpbl.f"Since the corresponding gradient arrays will also be pointee arrays, however, nostorage cost will be associated with this side e�ect.ADIFORed hirpbl.f is the result of processing de pointered hirpbl.f through ADI-FOR. The only changes caused by this step are the appearance, in the lower sectionof Figure 8, of REAL and COMMON declarations of the gradient variables created byADIFOR. It turns out that none of the variables in COMMON /ADDR1/ are active;hence, ADIFOR does not create gradient objects corresponding to any of these vari-ables. On the other hand, in COMMON /ADDR2/, variable ZOL is active, and hence,ADIFOR creates gradient objects corresponding to all of these variables.re pointer.pl transforms ADIFORed hirpbl.f to re pointered ADIFORed hirpbl.f(Figure 9) by unmasking the POINTER statement. In the upper section of Figure 9,10

COMMON /ADDR1/ IAUA, IAUB, ...INTEGER IAUA, IAUB, ...REAL UA, UB, ...C POINTER (IAUA, UA(MIX,MJX,MKX)), (IAUB, UB(MIX,MJX,MKX)), ...COMMON /UA_CMN/ UA(MIX, MJX, MKX), UB(MIX, MJX, MKX), ...ccc Note: ADIFOR does not create gradient object variable decla-ccc rations here, since the COMMON /UA_CMN/ is not active.COMMON /ADDR2/ IAPA, IAPB, IAZO, IAHO, ...INTEGER IAPA, IAPB, IAZO, IAHO, ...REAL PSA, PSB, ZOL, HOL, ...C POINTER (IAPA, PSA(MIX,MJX)), (IAPB, PSB(MIX,MJX)),C + (IAZO, ZOL(MIX,MJX)), (IAHO, HOL(MIX,MJX)), ...COMMON /PSA_CMN/ PSA(MIX, MJX), PSB(MIX, MJX), ZOL(MIX, MJX),+HOL(MIX, MJX), ...ccc ADIFOR inserts REAL gradient object variables in corres-ccc pondance to active variables, and puts these in a COMMON:REAL ...REAL G_HOL(G_PMAX_, MIX, MJX)REAL G_ZOL(G_PMAX_, MIX, MJX)REAL G_PSB(G_PMAX_, MIX, MJX)REAL G_PSA(G_PMAX_, MIX, MJX)COMMON /G_PSA_CMN/ G_PSA, G_PSB, G_ZOL, G_HOL, ...Figure 8: Excerpts from the �le \ADIFORed hirpbl.f"this unmasking entails the reintroduction of the POINTER statement and the removalof both the INTEGER statement for the pointers and the COMMON statement for thepointees. It is worth noting that the upper section is now identical to what it lookedlike originally in Figure 6, as it should since there were no active variables present.By contrast, in the lower section of Figure 9, we note the continued presence of theREAL declarations of the gradient variables; however, the COMMON declaration for thegradient variables is deleted in anticipation of last step of the transformation.gradient ptr.pl performs the last step in our transformation scheme, resultingin augmented ADIFORed hirpbl.f (Figure 10). For every POINTER statement in11

COMMON /ADDR1/ IAUA, IAUB, ...REAL UA, UB, ...ccc We uncomment the original POINTER statement, and remove theccc INTEGER and COMMON statements which were introduced earlier.POINTER (IAUA, UA(MIX,MJX,MKX)), (IAUB, UB(MIX,MJX,MKX)), ...ccc The pointers in the COMMOM /ADDR2/ will point to activeccc variables.COMMON /ADDR2/ IAPA, IAPB, IAZO, IAHO, ...REAL PSA, PSB, ZOL, HOL, ...POINTER (IAPA, PSA(MIX,MJX)), (IAPB, PSB(MIX,MJX)),+ (IAZO, ZOL(MIX,MJX)), (IAHO, HOL(MIX,MJX)), ...REAL ...REAL G_HOL(G_PMAX_, MIX, MJX)REAL G_ZOL(G_PMAX_, MIX, MJX)REAL G_PSB(G_PMAX_, MIX, MJX)REAL G_PSA(G_PMAX_, MIX, MJX)Figure 9: Excerpts from the �le \repointered ADIFORed hirpbl.f"re pointered ADIFORed hirpbl.f, augment ptr.pl generates a corresponding POINTERstatement for the gradient variables and also a COMMON containing those gradientpointers.It should be clear why these are precisely the transformations needed to com-plete our scheme for the objects in the lower (active) section of Figure 10. Forthe upper section, though the gradient pointers do not enter into the computationof derivatives (because they correspond to inactive variables), both the gradientCOMMON and POINTER statements are needed for the proper implementation of thegradient addressing scheme. As we shall see in the next section, COMMON /G_ADDR1/is accessed in SUBROUTINE G_ADDRX1C; the gradient POINTER statement is needed sothat the compiler knows the sizes of the items in the COMMON. We also note that inthe upper section, the pointee variables are not dimensioned anywhere.Mapping Gradient POINTERs to AddressesThe sole remaining issue to be resolved is the above-mentioned gradient POINTERaddressing scheme. Earlier, we discussed the addressing subroutines, in particular,12

ccc We insert a COMMON statement, listing the original pointersccc prepended by 'G_':COMMON /G_ADDR1/ G_IAUA, G_IAUB, ...COMMON /ADDR1/ IAUA, IAUB, ...REAL UA, UB, ...ccc We insert a POINTER statement for the gradient objects inccc correspondance to the original POINTER statement:POINTER (g_IAUA, g_UA), (g_IAUB, g_UB), ...POINTER (IAUA, UA(MIX,MJX,MKX)), (IAUB, UB(MIX,MJX,MKX)), ...COMMON /G_ADDR2/ G_IAPA, G_IAPB, G_IAZO, G_IAHO, ...COMMON /ADDR2/ IAPA, IAPB, IAZO, IAHO, ...REAL PSA, PSB, ZOL, HOL, ...POINTER (g_IAPA, g_PSA), (g_IAPB, g_PSB), (g_IAZO, g_ZOL),+ (g_IAHO, g_HOL)POINTER (IAPA, PSA(MIX,MJX)), (IAPB, PSB(MIX,MJX)),+ (IAZO, ZOL(MIX,MJX)), (IAHO, HOL(MIX,MJX)), ...REAL ...REAL G_HOL(G_PMAX_, MIX, MJX)REAL G_ZOL(G_PMAX_, MIX, MJX)REAL G_PSB(G_PMAX_, MIX, MJX)REAL G_PSA(G_PMAX_, MIX, MJX)Figure 10: Excerpts from the �le \augmented ADIFORed hirpbl.f"ADDALL and ADDRX1C and the arrays ALLARR and IAXALL. What is now needed aresubroutines G_ADDALL and G_ADDRX1C (and G_ADDRX1N) to implement the corre-sponding mapping for the gradient scheme involving G_ALLARR and G_IAXALL. For-tunately, it turns out that we can do this quite simply. Having included all gradientpointers (corresponding to active and inactive variables) in COMMONs (see Figure 10),we can now exploit the inherent structural commonality between the original andthe gradient addressing schemes.We �rst declare the arrays G_ALLARR and G_IAXALL (Figure 11). Note thatG_ALLARR has the added leading dimension for the gradient vectors, but G_IAXALLhas the same dimension as IAXALL, since there is a one-to-one correspondence be-tween the original POINTERs and their gradient counterpart.13

REAL G_ALLARRCOMMON /G_HUGE/ G_ALLARR(G_PMAX,IHUGE,MAXNES)INTEGER G_IAXALLCOMMON /G_ADDR0/ G_IAXALL(NUMVAR,MAXNES)SUBROUTINE G_ADDALLG_IAXALL(NCOUNT,K) = LOC(G_ALLARR(1,1+ (N-1)*IX3D,K))SUBROUTINE G_ADDRX1C(IARR)COMMON /G_ADDR1/ G_IAUA, G_IAUB, ...Figure 11: Excerpts from the �les \g addall.f and g addrx1c.f"Given the of Fortran array A, declared as \DIMENSION A(X,Y,Z)",and the formula for linearizing the array o�set for the entry A(i,j,k):i + (j-1)*X + (k-1)*X*Y,we can compute the di�erence between two consecutive G_IAXALL entries,G_IAXALL(NCOUNT,K) and G_IAXALL(NCOUNT+1,K):LOC(G_ALLARR(1,1+ ((N+1)-1)*IX3D,K)) -LOC(G_ALLARR(1,1+ (N-1)*IX3D,K))= [1 + ((1 + N*IX3D)-1)*G_PMAX + (K-1)*G_PMAX*IHUGE] -[1 + ((1 + N*IX3D - IX3D)-1)*G_PMAX + (K-1)*G_PMAX*IHUGE]= (N*IX3D)*G_PMAX - (N*IX3D - IX3D)*G_PMAX= IX3D*G_PMAXFigure 12: Computation of a gradient pointer o�setWe then copy each addressing subroutine to its gradient counterpart and per-form a few changes, as shown by example in Figure 11 (compare these with Fig-ures 2 and 3). Thus G_ADDRX1C/N di�er from ADDRX1C/N only in the names usedin the pointer COMMONs. And G_ADDALL di�ers from ADDALL in that \ALLARR(" and\IAXALL" are replaced by \G_ALLARR(1," and \G_IAXALL", respectively. Figure 1214

is the address computation showing the correctness of the resulting gradient pointero�set calculations.AcknowledgmentsThe authors express their thanks to Thomas Can�eld (ANL/MCS), John Micha-lakes (ANL/MCS), and Kathy Simunich (ANL/EID) for helping us understandMM5.References[1] AIX XL FORTRAN Compiler/6000 Language Reference. International BusinessMachines Corporation, 1992.[2] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank and Paul Hov-land. ADIFOR: Generating Derivative Codes from Fortran Programs. Scienti�cProgramming, 1(1), pp. 1-29, 1992[3] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank and Paul Hov-land. Getting Started with ADIFOR. Argonne Technical Memorandum MCS-TM-164, 1992.[4] Cray Computer Systems CFT77 Reference Manual. Cray Research, Inc., 1986.[5] Georg A. Grell, Jimy Dudhia and David R. Stau�er. A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). National Center forAtmospheric Research, NCAR/TN-398+IA, 1993.[6] Phillip L. Haagenson and Jimy Dudhia. The Penn State/NCARMesoscale Model(MM5) Source Code Documentation. National Center for Atmospheric Research,NCAR/TN-392, 1993.[7] Sun FORTRAN Reference Guide. Sun Microsystems, Inc. 1991.
15

