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On Automatic Differentiation of Codes
with COMPLEX Arithmetic with Respect to Real Variables

by

Gordon D. Pusch, Christian Bischof, and Alan Carle

Abstract

We explore what it means to apply automatic differentiation with respect to a set of real
variables to codes containing complex arithmetic. That is, both dependent and independent
variables with respect to differentiation are real variables, but in order to exploit features of
complex mathematics, part of the code is expressed by employing complex arithmetic. We
investigate how one can apply automatic differentiation to complex variables if one exploits the
homomorphism of the complex numbers C onto R?. It turns out that, by and large, the usual
rules of differentiation apply, but subtle differences in special cases arise for sqrt (), abs(), and
the power operator.

1 Introduction

In physics and engineering applications, while the underlying independent variables and operations
are intrinsically real-valued, it is nevertheless often convenient to employ complex-valued represen-
tations. Applications of complex function theory in applied mathematics, physics, and engineering
(and hence presumably in the respective computer codes used) may be broadly grouped into two
classes:

1. pairs of real-valued functions of a set of purely real-valued parameters, whose resultants have
been combined into a complex number purely for convenience; and

2. functions of pairs of real-valued variables, which for the purposes of computation may be
treated as having been combined into a complex number.

Class (1) introduces no new rules for automatic differentiation (AD) beyond those of real-valued
AD, save that all operations and resultants are declared COMPLEX rather than REAL; therefore, we
discuss it no further. Class (2), however, introduces qualitatively new features. We shall discuss
to what extent AD, when applied to problems for which pairs of real-valued variables are formally
viewed as forming a single complex number, may be treated as a special case of differentiating maps
of R? onto itself, and where the peculiarities of complex analysis force exceptions.

Since we shall be discussing both mathematical and computational aspects of complex num-
bers, it will occasionally be necessary to distinguish between a function viewed as a mathematical
operator and its computational equivalent; we shall indicate this distinction by the typeface of the
function’s name—for example, exp() versus exp().



2 Complex Numbers and Functions

It will be useful to recall a few points about complex numbers and functions from standard complex
theory before discussing our “R? viewpoint” in detail. For a more detailed exposition, see, for
example, [1, 2, 3, 4].

A complex number is defined as a quantity of the form = = a + b, where a and b are real
numbers, and 7 is formally defined by 2 = —1. The set of all complex numbers forms the complex
plane, C.

Since the map (a, b) € R* — z € C is continuous, invertible, and one-to-one, it follows that
C and R? are locally equivalent spaces. However, the global topological structures of C and R?
are generally thought of as different. It is frequently convenient to consider infinity to be a point
in the extended complex plane, C := {C U oo}, where infinity is defined to be the formal reciprocal
of zero: oo := 1/0. By considering how neighborhoods about zero and infinity transform under the
inversion map z = 1/z, it can be shown that C must have the topology of a sphere [2, p. 20]; [4,
p. 9, 52]. One generally ignores the distinction between C and C in most applications of complex
analysis.!

A complex function of a complex variable is defined to be a map from some domain U in C (or
C) onto some range V in C (or C): f:={z= f(z)|2 €U CCwr 2€V CC}. The definition
of the term “function” is often somewhat abused in that the stipulation that a function be single
valued is dropped; that is, a complex function is sometimes defined to be a rule that associates a
unique set of complex values {z} to each z in some domain of C, rather than a single unique value.
Complex functions may therefore be one-to-many as well as many-to-one. Two examples of such
multiple-valued, or multibranched, functions are the complex square root and complex logarithm,
both of which will be discussed in detail in §3.

In keeping with our R? viewpoint, with every complex function we may associate a correspond-
ing map of R? onto itself. However, the converse is not true—not every map of R? onto itself may
be reinterpreted as a complex-valued function, but only those maps (¢, d) = ( f(a,b), g(a,b) ) that
satisfy the Cauchy-Riemann (CR) condition:

0f o9 9f _ i "
da  Ob’ ob  da’

A pair of real functions on R? satisfying the CR condition in some neighborhood about (but not
including) a point (a,b) is said to be complex analytic (or simply analytic) in that neighborhood,
and the linear combination h(z) := f(a,b) + ig(a,b) is said to be a complex-analytic function
over that neighborhood. It is appropriate to write h as a function of x alone, because the CR
condition may be interpreted as stating that f(a,b) 4+ ¢¢(a,b) depends on a and b only via the
linear combination z = a + b.

The relatively simple-looking condition (1) actually has deep and profound consequences: it is
the necessary and sufficient condition for the complex-valued function & to be considered differen-

"However, ignoring this distinction is of course not possible on a finite-precision computer without introducing
special arithmetic rules that properly handle points near infinity. While it is possible to define such rules, they would
add additional overhead, make less efficient use of any floating-point hardware, and be awkward to implement in a
language that does not support operator overloading. Furthermore, while such rules would be mathematically more
correct, they would be inconsistent with both the IEEE floating-point and Fortran 77 standards because they would
provide meaning to operations that are declared to represent exception conditions under those standards.



tiable (in the complex sense) at the point (a,b). Furthermore, it can be shown that if the function
is once differentiable at a given point, then it is also infinitely many times differentiable there.

Finally, it can be shown that unless h is everywhere constant, there must be at least one point
on the extended complex plane where h has some sort of singularity—and at that singularity, the
CR conditions will fail to be satisfied. In fact, it can be shown that any complex function may be
completely specified by stating the locations and natures of all of its singularities. Hence, standard
complex analysis places signal importance on the study of a function’s singularities. (One often
studies the zeros of a function as well, because the reciprocal of a zero is a singularity.)

A singularity may be either a pole or an essential singularity. A pole is a singular point zg of
f such that, for some finite integer n (called the order of the pole), the quantity (z — o)™ f(z)
is nonzero and nonsingular at every point in some open neighborhood about zg, and its limit as
x approaches zg (called the residue of the pole) exists and is independent of the Cauchy sequence
used to approach xzg. Any singularity that is not a pole is an essential one. Furthermore, while the
behavior of a function near a pole may be neatly described by the pole’s order, the behavior near
an essential singularity is always pathological in some way. The only type of essential singularities
we shall discuss in detail in this note are branch point singularities (§3). The reciprocal of f at a
pole is a zero of the same order, which is not a singularity. However, the reciprocal of an essential
singularity is still a point of nonanalyticity.

Because it is foreign to our R? viewpoint, we shall make no explicit use of the CR condition
in this note; however, our knowledge that its consequences should still hold true will occasionally
guide our development.

2.1 Complex Arithmetic Rules

Let = a + b, y = ¢+ id, and i* = —1. Furthermore, let Re(z) denote the real and Im (z)
the imaginary part of a complex number z. Then the results of elementary arithmetic operations
have the real and imaginary parts shown in Table 1. The singularities that may result from the
arithmetic operations are the union of the singularities of z and y for x oy, o € {4+, —, *}, and the
union of the singularities of 2 with the zeros and essential singularities of y for z/y.

Table 2 shows results of some elementary functions; the properties and singularities of each will
be discussed in separate subsections below. In the table, T denotes the complex conjugate of z,
while |z | denotes its modulus (neither ¥ nor |z | = /27 is a complex-analytic operation, because
any appearance of T causes the CR condition to be violated).

Finally, for analysis purposes, it is useful to note that the singularities of a composite function
p(q(z)) consist of the union of the singularities of ¢ with the preimage of the singularities of p under

q.
2.2 Transcendental Functions

The algebraic extension of real analytic functions to the complex plane is achieved by Taylor series
expansion. For example, consider the exponential with a pure imaginary argument:

explib) = Y0 L (i)
k=0 """
O > 1 2kl
- ;W(lb)k+,§(2k+l)!(lb) H



Table 1: Complex arithmetic operations

Operation | Re(z) | Im(2)

z=z+y |a+c b4+ d

z=x—y |a—c b—d

z=x*y ac —bd | ad + be

—b
z=1/x a2ib2 2152
bd be—ad
Z = x/@/ ?fidz C2C_|_(Zl2

Table 2: Real and imaginary parts of some elementary functions

Operation Re(2) Im (z)
c=vT |/t [2]) | yE—at |2])
z=é€" e cos(b) e?sin(b)

z=In(z) | $In(|2|?) atan(b/a)

2=71 a —b

z=|a| Va? + b? 0
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Comparing the final line above with the expansions for the trigonometric functions cos() and sin(),
one obtains Euler’s identity,

exp(ib) = cos(b) + i sin(b). (2)
Consider now the exponential of the complex argument (a 4 ¢b) : if one assumes the usual rules for
exponentiation hold, then
exp(a + tb) = exp(a) exp(ib). (3)
It is straightforward but tedious to verify by Taylor expansion that the left- and right-hand sides
of (3) are indeed equal term by term.

From Euler’s identity and the symmetry properties of the trigonometric functions, one may
derive the identities

1 . ,
cos(h) = (e e, (1)
1. ,
sin(b) = Z(elb —e . (5)
From the preceding, one can show that
cosh(b) = cos(ib), (6)
isinh(b) = sin(ib), (7)
and also that
cos(a+1b) = cos(a)cosh(b)+ isin(a)sinh(b), (8)
sin(a 4 1) = sin(a)cosh(b) + 7 cos(a) sinh(b). (9)

Here sin, cos, and exp are nonsingular everywhere in C, but not in C where they each have essential
singularities at infinity.
It is frequently convenient to use the polar coordinate representation of a complex number:

v = pe = |2 exp(iarg(z), (10)
where p = |z | = [a® + b2]1/2 is called the “modulus” of z, and
atan(y/x), x>0, y>0 (quadrantI)
atan(y/z)+ 7, <0, y>0 (quadrant II)
atan(y/z) — 7, <0, y<0 (quadrant III)
6 = arg(z) :=
atan(y/x), x>0, y<0 (quadrantIV)
gsign(y), x=0, y#0 (yaxis)
NaN, =0, y=0 (origin)




is called the “argument” or “phase” of z. “NaN” denotes “Not a Number” because in this case the
phase is indeterminate—the left- and right-hand sides of (10) are equal no matter what value is
chosen for arg(z).

If one assumes that the usual identity In( 2 y) = In(2) + In(y) still holds for complex numbers,
then from the polar representation we obtain

Ln(z) =1In(|z]|) 4+ iarg(a), (11)

where the capitalized notation “Ln” indicates that this defines the “principal branch” of the complex
logarithm (principal branches of functions will be discussed in more detail in § 3). So, unlike its
real cousin, the complex natural logarithm is defined for all # € C\{0, 0o}. Its singularities at zero
and infinity are branch points, a concept which we will discuss in more detail in §3.

In addition to the principal branch of the logarithm, there are an infinite number of additional
branches [3, p. 77], [4, p. 71], differing from the principal branch by an additive factor of 2win,
where n is any integer:

In(z) =In(|z|)+ targ(z) + 27in, n=0,%£1,£2,%£3,.... (12)
The additional branches arise because, from Euler’s identity, e2™" = 1, so that e®(®)+2min —
eln(#) = . Therefore, in the sense that it satisfies the identity ¢™®) = 2, Ln(z) + 27in has as
much claim to being “a logarithm of 2” as Ln(z). In other words, the logarithm is an infinitely

many-valued function.

2.3 SQRT()

Two simple approaches exist for obtaining the complex extension of sqrt(). One is to consider
z = +./x to be the solution of 2? = # = (¢ — d? + 2icd) = (a+ tb), which may be formally solved
for ¢ and d in terms of @ and b. Another simpler approach is to apply the identity z/2 = Ve to
the polar representation of z. Let @ = pcos(8), b = psin(8), where p := |z |, 0 := arg(x). Then

1z p'/? [exp(i0)]'/?

vt = [pexp(if)]

_ y2) JILAcos(@)] . [[L = cos(6)]
Y= )

= {Viora+i/lo-af. (13)

However, (13) is not the only solution of z? = z; its negative solves this equation, also. Hence,
sqrt() is a double-valued function; each object point in the z-plane has two image points in the
z-plane, z = +y/x, with the + and — signs distinguishing the two branches of sqrt() (we shall
discuss branches and branch-point singularities in more detail in §3). Therefore, in terms of its real
and imaginary components the complex square-root is

Re(z) = :I:¢% [a +Va? + bQ], (14)
Im(z) = :I:¢% [—a—l—\/(ﬂ—l—b?], (15)
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where the + signs are to be taken as the same in both equations. It is conventional to choose the
+ branch as the principal branch.

The only singularities of sqrt() are the origin and infinity, both of which are branch points.
That infinity should be a singularity is obvious; however, the singularity at the origin is more
subtle—while the value of sqrt() is well behaved at this point (it vanishes), the CR condition is
violated there.

3 Branch Cuts and Riemann Sheets

Many-valued complex functions are rendered single-valued by the imposition of an artificial bound-
ary called a branch cut [3, p. 117]. The principal branch of the complex logarithm is conventionally
obtained by selecting n = 0 in (12) and choosing a cut along the negative real axis of the z-plane:
Re(z) < 0, Im(2) = 0. The branch cut is introduced to coerce In() to be single valued; its image
under In() topologically separates the image plane into inequivalent “sheets,” each of which con-
tains only one image of the object point. Each image point represents a logarithm of the object
point, but generally one refers to the principal-branch value as the logarithm of the object point.

It is important to recognize that the location of the branch cut is purely a matter of convention
and that nothing unusual happens to the function in question there. Indeed, it does not matter
where one draws the branch cut, so long as it is a non-self-intersecting curve connecting the branch
points at the origin and infinity, which are the only true singularities of In(). The branch cut’s
function is somewhat analogous to that of the International Date Line in that it represents an
arbitrary directed boundary establishing a convention as to where one should consider oneself to
have transitioned onto a different sheet. On circumnavigating any closed path in the complex plane,
one considers oneself to have moved forward or backward by a number of sheets equal to the net
number of branch-cut crossings.

3.1 Ln()

Return now to the principal branch Ln() of the complex logarithm. Here z = Ln(z) maps the cut
z-plane into the strip 0 < Im (z) < 27. It appears to be discontinuous, jumping from In(p) + 7i to
In(p) — i as @ crosses the branch cut. Hence, one might fear that the logarithm is nondifferentiable
at the cut. However, in reality this is not so, for the principal branch is but a part of the complex
logarithm function, and the sheet that it represents patches continuously and smoothly onto the
n =1 and n = —1 sheets.

3.2 sqrt()

The apparent singularity of sqrt() is more subtle. Suppose one arbitrarily selected the 4+ branch to
represent sqrt() as in the real case. Then while both Re (z) and Im(2) are continuous everywhere
in the complex plane, at first glance one might think that the derivative of Re (z) would fail to be
defined where the argument of the root in (14) vanishes. This condition will occur if @ = —p, which
is true when @ < 0 and b = 0. By a similar argument regarding (15), one might also expect that
the derivative of Im (z) would fail to be defined if @ > 0, b = 0. If true, this would put one in the
awkward position of having the derivative of at least one part of sqrt() fail to exist at every point
on the real axis.



Fortunately, this singularity in the derivatives turns out to be illusory. The flaw in the preceding
argument is that both the + and — branches of sqrt() are required in order to completely describe
this function. That is, sqrt() is intrinsically double valued, identifying two points of the image
complex plane with each point of the object plane.

We coerce sqrt() into being single valued by again introducing an artificial branch cut on the
object plane, whose image under sqrt() topologically separates the image plane into two inequivalent
sheets, each of which contains only one of the two images of the object point. For sqrt(), the
branch cut is conventionally taken to be the negative real axis. The + branch of sqrt() maps the
entire cut z-plane onto the right half of the z-plane, plus the upper portion of the imaginary axis:
{Re(2) >0} U {Re(2) =0,Im(2) > 0}. However, the — branch of sqrt() also maps that cut z-
plane onto the left half of the z-plane, plus the lower portion of the imaginary axis: {Re(z) <0} U
{Re(2) =0,Im(2) < 0}. In other words, for z = sqrt(z), the preimage of the z-plane is a double
covering of the z-plane.

Note once more that the location of the branch cut is purely a matter of convention and nothing
unusual happens to the derivatives there. Wherever one chooses to draw the branch cut, a careful
analysis will show that the + and — branches match together smoothly everywhere along the branch
cut except at the branch points at the origin and infinity, which are the only true singularities of
sqrt(). Another way of seeing that sqrt() = z'/? is nonsingular on the real axis is to note that the
“power function” ¥ to be discussed in §3.3 has no singularity there for y = 1/2.

3.3 The Power Function, z¥

A complex number raised to a complex power is defined by the identity z¥ = exp(y In(z)). The
function exp() is regular everywhere except infinity; therefore, ¥ will be singular at the singularities
of y In(z), which in turn will be singular at the singularities of y or the zeros and singularities of z
(because In() has branch points at both zero and infinity). With no loss of generality, we may assume
that any singularities in @ or y will have already generated exceptions during their computation.
Therefore, it follows that for ¥, the only singularity of interest is the branch point at # = 0. Like
the logarithm, the power function will in general have infinitely many branches,

xY :{ exply(Ln(z)+2min)], ne{0,£1,4£2,...} } (16)

However, if y happens to be real and rational (y = p/¢ with p and ¢ integers), then z¥ will
have only ¢ inequivalent branches [4, p. 73], because exp[(p/q)(27in)] = exp[(p/q)(2mim )] if
n = m(mod ¢q). A corollary is that for y a nonzero integer, z¥ has only a single branch (since ¢ = 1
in this case). The case y = 0 is more subtle and will be deferred to the next section.

The cut for 2¥ is conventionally chosen to be the negative real axis. (The image of the cut plane
is a sector subtending 27p/q radians if y is real and rational.)

The definitions in subsequent sections will implicitly assume that the principal branch is always
chosen. As with sqrt(), there will be an apparent discontinuity in the derivative of the principal
branch of x¥. However, it is merely an illusion introduced by the arbitrary imposition of a branch
cut.

Asymptotic Behavior of z¥

The singularity relevant to exception conditions for ¥ occurs at its branch point z = 0. To de-
termine how to properly handle this exception, one should examine the asymptotic behavior of =¥



under various singular limits.
Let = a+ib = pe'?, and y = ¢+ id. The usual rules for exponentiation still apply to complex
numbers, so one may write

Therefore,

¥ =

— (pceic€
ce—dﬁez(cﬁ—l—dlnp) )

= p

arg(a)

( peié’) (cid) _ (peie) ¢ ( pew)id

) (pide—dé’) = p° (eicé’eidlnp) o6

Eig

c_—db
= ple

Let us now examine the limiting cases & — 0 and y — 0.

Limit when « — 0, y #0

cd + dln p.

It is sufficient to consider lim, o+ ¥ with fixed # and fixed y = ¢ + id. One obtains the limiting
behaviors shown in Table 3 for the image point as p approaches zero from above (where “[C]JCW”
means “[Counter]Clock-Wise”).

Table 3: Limiting behavior of 2¥ as p = |z | — 0%

z= lim zY d<0 d=10 d>0
p—0t
spirals outward approaches oo along | spirals outward
¢< CCW to oo arg(z) = cd CW to oo
circles endlessly equals 1 4 ¢0 circles endlessly
c=0 CCW at abs(z) for all values CW at abs(z)
=¥ of p>0and @ =¥
spirals inward approaches 0 along | spirals inward
¢>0 CCW to 0 arg(z) = cd CW to 0

Limit when y — 0, = #0

Similarly, let us consider z¥ for y — 0. Let us also assume fixed z # 0; we shall defer the behavior
near the branch point = 0 until the next section.

To take this limit, we introduce a real parameter A such that y = Ayo = A(¢o + idp), where yg
is any fixed complex number. Then the limit |y| — 0 with arg(y) fixed is equivalent to lim_ g+ .



Proceeding much as before, one obtains

2Y = p/\coe—/\doﬁei/\(coﬁ—l—do lnp)‘
Therefore,
A
; Ayo — ; co ,—dof )" _
Ah_f& |z | = Ah_f& (,0 e ) =1, Vp>0, (20)
; Avoy — ; _
Ah_f{ﬁ arg(z™) = Ah_f{ﬁ Acob +dolnp) =0, Vp>0. (21)

Note that both limits above are well behaved and independent of z; taken together, they imply
that 2% = 1+ 40 for all @ # 0 (consistent with the real result). Therefore it follows that = # 0,
y = 0 is not an exception condition—although it may still be advantageous to treat it as a special
case, to avoid unnecessarily computing a log() and and exp().

Simultaneous Limit: Should 0° Be NalN?

Since we have shown that lim |, _g2¥ = 1+ i0 for y = 0, and also that lim |, _g2¥ = 1 + 0 for
x # 0, no new rules appear to be needed for the case # — 0, y — 0 simultaneously. However, one
should not be quite so sanguine about this, as we shall now show.

When evaluating limits of indeterminate forms, one must always exercise caution, particularly
when taking multiple limits (since the result may depend on the order in which the limits are
taken). We shall see that when we more carefully consider the limit of ¥ when 2 — 0 and y — 0,
it is not clear that any meaning can be assigned to this form, because

A
. . /\yo _ . . co do@ _ 3 A
/\158-" |x1|lTo+ a7 = Alfgi plﬂﬁ (’0 ‘ ) B AIE&(O) =0 (22)
while \
lim lim |2 | = lim lim 0eo?)" = 1im (1) = 1. 23
|z | =0t A—=0t | | p—0t A=0t (p ) p—>0+( ) ( )

Since the limits do not commute, even a generalized limit does not exist, suggesting that one should
define
$y|x:0 y=0 = NaN (24)

In summary, the combined results on the limiting behavior of ¥ reduce to the following rules
for exceptional cases:

0,1 =0, Re(y)>0
NaN, =0, Re(y)=0, VIm(y)
¥ =4 oo, f =0, Re(y) <0 (25)
171 x#£0, y=
xY otherwise.

It should be noted that while the above are mathematically correct in the various limiting cases,
they do not necessarily agree with the defined behavior of the F77 intrinsics or IEEFE floating-point
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standards. In fact, on two workstation platforms using IEEE arithmetic, a test-program yielded
NaN for 0 #*y independent of the value of y, which disagrees with both cases marked by a T above.
The appropriate behavior should, of course, be defined to reproduce the behavior of the original
program. It should also be noted that the case marked by * above is not an exception, but merely
a special case of the general form Y.

4 COMPLEX Computations in Fortran 77

Table 4 shows the Fortran 77-supported intrinsic generic functions and operations involving type
COMPLEX. The symbols I, R, D, C stand for INTEGER, REAL, DOUBLE PRECISION, and complex, re-
spectively. X stands for any one of I, R, D; Z stands for any one of I, R, D, C.

Table 4: Fortran 77 complex functions and operations

Operation Generic Name | Range and Domain
Type Conversion | int C—1
real C—-R
aimag C—R
dble C—-D
cmplx Z — C
X? - C
Arithmetic {+-x/xx} | CxI = C
IxC —=C
CxR — C
RxC — C
CxC —=C
Modulus abs C—=R
Conjugate conjg C—-C
Square Root sqrt C—=R
Exponential exp C—=R
Natural Log log C—-R
Sine sin C—=R
Cosine cos C—=R

11



The function int() truncates the real part of a complex argument, coercing it to INTEGER,
and discards the imaginary part. The function real() and aimag() extract the real and imaginary
parts and coerce the result to REAL. DBLE() extracts the real part, coercing it to DOUBLE PRECISION,
and discards the imaginary part. CMPLX can accept either one or two arguments: if there is a single
argument of type X, it is converted to REAL and assigned to the real part of the COMPLEX result while
zero is assigned to the imaginary part (a single argument of type C is passed through unaltered);
whereas if there are two arguments of type X, they are each converted to REAL and assigned to the
real and imaginary parts, respectively (both arguments must be of the same type).

Note that abs() is explicitly defined to return a REAL result.

Note also that if one operand of a binary arithmetic operator is COMPLEX, the standard explicitly
prohibits the other operand from being DOUBLE PRECISION.

The standard explicitly specifies that “the result of a function of type COMPLEX is the principal
value.” In particular, it states:

o “The result of CSQRT is the principal value with the real part greater than or equal to zero.
When the real part of the result is zero, the imaginary part is greater than or equal to zero.”

e “The value of the argument of CLOG must not be (0.,0.). The range of the imaginary part
of the result of CLOG is: —7 < imaginary part < 7. The imaginary part is 7 only when the
real part of the argument is less than zero and the imaginary part of the argument is zero.”

It also defines x ** y to be exp(y In(z) ), which implies the power function returns the principal
value.

The above facts will be needed to guide our definitions of gradient rules, and also our handling
of exception conditions.

5 Complex Differentiation Rules

Again, let 2 = a+1iband y = ¢+ id. The mapping  — (a,b) = (Re(2),Im (2)) is a homomorphism
from C to R%. Hence, one possibility for complex differentiation would be to rewrite all complex
operations explicitly in terms of their real and imaginary parts, converting complex arithmetic into
the corresponding R? arithmetic. While such an approach would lead to a tool that probably would
be useful in other circumstances, it would prevent the utilization of complex arithmetic hardware,
would greatly increase the length of the code, and would impair code readability.

The question then is whether the results of differentiation in R? can be expressed in terms of
complex arithmetic. That is, for a complex variable z, consider its real part Re (z) with its associ-
ated derivatives VRe (2), and its imaginary part Im (2) with derivatives VIm (2). An elementary
complex operation involving z, and possibly another variable y, defines new values for the real and
imaginary parts of the result by the rules set forth in §2.1. We wish to know whether the derivative
computations induced by these computations can be easily expressed in complex arithmetic if one
adopts the convention that

| Ve:=(VRe(z),Vim(z)). | (26)
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5.1 Gradient Rules for the Reciprocal, 1/z

Let us consider, as an example, z = 1/2. We know that Re () = 45> and Im (2) = ﬁ If we
define
t=a*+ 0% (27)
the differentiation rules of real calculus imply that
JRe (z) 1 2a?
- - = p
da 12 (28)
JRe (z) 2ab
- p
8[) t2 ? ( 9)
Jlm (z) 2ab
da T2 (30)
olm(z) 1 2b?
o - it (3
and we obtain
1 24’ 2ab
VRe(z) = (-2 ) VRe(z)— 2 VIm(z), (32)
t 12 12
2ab 20 1
Vim(z) = tiQVRe(x) + (T? - ;) ViIm (). (33)

On the other hand, let us consider

1
w = —EVJU

in complex arithmetic. With ¢ defined as in (27), we easily obtain

1 b? — a?
Re(-3) = "5 (34)
1 2ab
Im (—P) = t—z, (35)
and employing the rules of complex multiplication, we obtain
1 b2 — a? 2ab
1 2ab b? — a?

It is easily seen that (32) and (36) as well as (33) and (37) are identical. Hence, the differentiation
rules for the real reciprocal also apply to the complex reciprocal.

It is not difficult (albeit tedious) to show in an analogous fashion that the usual differentiation
rules apply to complex addition, subtraction, multiplication, division, square root, and exponential.

13



5.2 Gradient Rules for 1n()

From the identity ¢ = 2 one may obtain ™) dIn(z)/dxz = 1, which leads to the usual rule for
the derivative of the natural logarithm, dIn(z)/dz = 1/z. It is worth noting that this result is clearly
finite, single valued, and well behaved everywhere except at the origin, despite the multivalued
nature of In(). Also, it is clear that the derivative shows no evidence of the apparent discontinuity in
the principal branch caused by the branch cut on the negative real axis. This discontinuity is purely
the result of selecting out only the sheet corresponding to the principal branch for consideration,
despite the fact that it is smoothly connected to its neighboring branches. The final gradient rule
is

V (In(z)) = iVx, z #0. (38)

Note that in addition to the function z being nonvanishing at the point of interest, the entire
preceding argument implicitly assumes that it is also regular there; that is, it does not have a pole,
branch point, or other form of singularity at that point.

5.3 Gradient Rules for SQRT()

In order to obtain the derivative rules for sqrt(), it is best to start over from first principles. Since
the analytic derivative of the complex square root formally looks the same as its real counterpart,
we may proceed as follows:

da1/? 1, 1/ . \—1/2
_ Lo-1/2 4 - 70
+ prali :t296 —:t2 (pe ) (39)
_ 4l [;Q]
= j:Qp exp |—ig (40)
_ j:2,011/2 {cos [g] — ¢sin [g] (41)

1 [14 cos(8)] . [[1— cos(8)]
= i2p1/2{¢ 5 —z¢f} (42)

therefore,

Re (:l:dxl/z/dx) = :l:% 27 (44)
Im (:l:dxl/2/dx) = :F% ,0270;1' (45)
The chain-rule formula required for automatic differentiation is
+Vz = idi/zw (46)
= [Re(d2'/?/dz) +iTm (dz'/?/d2)| (Va +iVb) (47)
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= [Re (dwl/Q/dx) Va —Im (dwl/z/dx) Vb]
+1 [Im (dwl/z/dx) Va + Re (dwl/z/dx) Vb] ; (48)

1 +a —a
12y _ 1) /P [P
Re (Vx ) = :l:2{ 27 Va+ 5,2 Vb}, (49)
1 lp+a lp—a
12y _ 1) [LP _]Lp
Im (Vx ) = :EQ{ 3 2 Vb 2 2 Va}. (50)

Note that, while the above formulae are everywhere finite and continuous (except at the origin),
they again have the same branch-cut-induced apparent singularity in their derivatives as before.

therefore,

5.4 Gradient Rules for the Power Function, 2Y

The usual rules for the power operation z¥ follow from the logarithm and exponential, via the
identity z¥ = exp(yLn(z) ). By direct differentiation one gets

ozY 1 1
ptadi— yln(z) = _  v= _ . .(y=1) 1
2 ye C=yalo =y, (51)
y
da? = Ln(z)e™®) = Ln(z)aV. (52)
dy
Therefore, the appropriate gradient rule is
Vel = y2v"IV2 + Ln(z) 2¥Vy. (53)

However, (53) must be applied with caution, for in the final step in each of (51) and (52) we assumed
that we could use the definition of the principal value of the logarithm Ln(), that neither z nor y
has singularities at the point of interest, and that |z | # 0. If any of the preceding assumptions is
invalid, then the final step in each of (51) and (52) is arithmetically invalid, and one cannot proceed
o (53). We shall discuss this problem further in §6.3.

6 Exceptional Cases

While the rules of real calculus apply in the cases where the elementary functions in question are
well defined, subtle differences exist for exceptional cases. Again, z = a + ¢b and y = ¢ + id.

6.1 Exceptions for ABS()

From the definition of the absolute value of a complex number, we readily deduce that z = abs(z) =

va? + b? implies

_aVa 4 bVb
Va2 + 2 Va4 b2

Vz (54)

15



and, in particular, Im (Vz) = 0. Depending on the curve along which one approaches the origin,
one obtains a different directional derivative (consider, for example, the cases b = 3a and b = 8a),
so that not even a generalized limit (e.g., 0o) exists for # = 0. This is because |z | = /27, while
everywhere continuous, is nowhere complex analytic. It does not satisfy the CR condition, because
it depends on the complex conjugate variable T as well as @; therefore, its directional derivatives
cannot be interpreted as a complex scalar. To attempt to assign a meaning to Vabs(z), one should
probably proceed by asserting that abs() should be interpreted as a map C — R.  Therefore,
the resultant is no longer an element of the complex number field and should not be interpreted as
such. 1If this approach is taken, then the above gradient should be interpreted as a “conventional”
directional derivative, that is, a map

c 2 r LR

The resultant of this map is therefore an ordinary two-dimensional vector and not a complex num-
ber anymore. We believe this interpretation is probably the one most often of interest; however, it
must only appear as the terminal complex operation, and the result assigned to a REAL variable.
If abs() were to occur as an intermediate step whose result could be acted on by further complex-
valued operations, it is not clear how the derivatives should be propagated or even whether any
meaning may be attributed to them, since the complex gradient of a non-complex-analytic func-
tion is mathematically meaningless. A strong case can be made that in this circumstance the
gradients should not be propagated at all, but rather the expression should be flagged as an error.
Unfortunately, nothing in the F77 standard forbids one from constructing such expressions.

It is worth noting at this point that similar problems will be encountered with the functions
Re (), Im (), arg(), and the complex-conjugate operation, none of which is by itself complex-analytic,
even though the combinations “Re ()4¢Im ()” and “In(abs())+7arg()” are analytic. The equivalent
FORTRAN 77 intrinsic functions are Re () = real(), Im () = imag(), and the complex-conjugate is
conjg(). The F77 standard supplies “abs()” for complex numbers, but does not supply “arg();”
arg() may be constructed via the composite-function imag( log() ).

6.2 Exceptions for sqrt()

If the 4+ (principal) branch is chosen to define sqrt(), then the gradients should be propagated
by using the partials

%, b#0or a>0,b=0

N —i
dx 2/ Ta]’ @<t (55)

NaN, a=20,0=0.

6.3 Exceptions for the Power Function 2

Since the power function depends on two variables, computing gradients with respect to either z
or y may produce exception conditions. We argue that, as required by complex analyticity theory,
the derivatives of the power function will be well defined at any point where the function itself is
defined and, conversely, will fail to be defined at any point where the function is undefined.
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6.3.1 QJzY/dz

The derivative of 2V with respect to 2 is naively y (=1, Therefore, by a similar analysis to § 3.3,
one might conclude that the branch point of this derivative will occur at z = 0, y = 1, rather than
x =0, y = 0. If true, this conclusion would violate one of the most fundamental results of complex
analyticity theory: that for any neighborhood in which a function is analytic, its derivative is also
analytic—and therefore must be well defined at any point where the function itself is defined (the
converse is also true). hence, we must go back to the gradient rules (51) and (52) and see what
happens when the steps that lead to them are arithmetically invalid.

Restating one of the intermediate steps in (51), we have

y
88% =ya? é (56)

It is reasonable to assume that =, y, and =¥ have already be computed; Hence, the only new factor in
the above expression that could generate and exception is 1/z, which will fail if |2 | = 0. However,
from the first three clauses of (25), one sees that ¥ has already generated an exception if |z | = 0;
therefore, no new exception conditions will be generated by dz¥/0x.

In summary, the exceptional cases for dz¥/0x are

0, T =0, Re(y)>0
NaN, =0, Re(y)=0, VIim(y)
dxY
a%: o, 1 2 =0, Re(y) <0 (57)
0, * t#0, y=0
v g
&, otherwise.
T

Again, the cases marked T may disagree with the IEEE standards definition of NaN, while ¥ denotes
a case that is not an exception but merely a special case of the general form y 2Y. We propose that
the specific computational form marked 3 be used, rather than the algebraically equivalent form
y Y71, since for both forward and reverse mode the value of 2¥ should already be available—thus
eliminating a log() and exp() in favor of a division.

6.3.2 0zY/0y

The naive derivative of z¥ with respect to y yields d2¥/9y = In(z) 2Y. In the limit of vanishing z,

lim |Lo(z)e?| = lim 1/(lnp)®+ 6% pe™ (58)

one obtains

p—>0+ p—>0+
= 1im+ [np| /14 (8/1n p)? pee=4 (59)
p—0
oo, ¢<0,
_ (60)
0, ¢>0,
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because a logarithmic singularity is weak enough to be overcome by any positive power-law.
In the limit of vanishing vy, one obtains

oxY

- — | Yy
\—ot Oy = Jlim, In(e) ¥y,

=In(z), Va#0, (61)

y=Ayo

which adds no new conditionals. Therefore, in summary we have

0,1 z =0, Re(y) >0, VIm(y)
dy In(x),* v#0, y=0
In(z)aYy otherwise

Cases marked T may disagree with the F77 and IEEE standards, while ¥ denotes a case that is not
an exception but merely a special case of the general form In(z) Y.
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