
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-189Nexus: An Interoperability Layer forParallel and Distributed Computer SystemsbyIan Foster, Carl Kesselman,� Robert Olson, and Steven TueckeMathematics and Computer Science DivisionTechnical Memorandum No. 189May 1994This work was supported in part by the O�ce of Scienti�c Computing, U.S. Department of Energy, underContract W-31-109-Eng-38, and in part by the National Science Foundation's Center for Research in ParallelComputation under Contract CCR-8809615.�Address: Mail Code 139-74, California Institute of Technology, Pasadena, CA 91125.

ContentsAbstract 11 Introduction 12 Basic Abstractions 23 Nexus Runtime Library 33.1 Initialization and Argument Handling : 33.1.1 nexus init() : 53.1.2 nexus start() : 63.1.3 nexus user iargc() : 73.1.4 nexus user getarg() : 73.1.5 nexus get argc and argv() : 73.1.6 nexus package iargc() : 73.1.7 nexus package getarg() : 73.2 Node Management : 73.2.1 nexus acquire nodes() : 83.2.2 nexus release nodes() : 83.3 Context Management : 83.3.1 nexus create context() : 93.3.2 nexus init create context handle() : : : : : : : : : : : : : : : : : 103.3.3 nexus create context wait() : 103.3.4 nexus destroy current context() : : : : : : : : : : : : : : : : : : : 103.3.5 nexus context initial segment() : : : : : : : : : : : : : : : : : : : 103.3.6 nexus malloc() : 113.3.7 nexus free() : 113.4 Thread Management : 113.4.1 nexus thread create() : 123.4.2 nexus thread exit() : 123.4.3 nexus thread yield() : 123.4.4 nexus thread self() : 123.4.5 nexus thread equal() : 133.4.6 nexus thread once() : 133.4.7 nexus thread key create() : 133.4.8 nexus thread setspecific() : 143.4.9 nexus thread getspecific() : 143.4.10 nexus mutex init() : 143.4.11 nexus mutex destroy() : 143.4.12 nexus mutex lock() : 143.4.13 nexus mutex unlock() : 143.4.14 nexus cond init() : 15iii

3.4.15 nexus cond destroy() : 153.4.16 nexus cond wait() : 153.4.17 nexus cond signal() : 153.4.18 nexus cond broadcast() : 153.5 Communication : 163.5.1 nexus init remote service request() : : : : : : : : : : : : : : : : 173.5.2 nexus sizeof TYPE() : 183.5.3 nexus sizeof global pointer() : 183.5.4 nexus set buffer size() : 183.5.5 nexus put TYPE() : 193.5.6 nexus check buffer size() : 193.5.7 nexus send remote service request() : : : : : : : : : : : : : : : : 193.5.8 nexus get TYPE() : 203.5.9 nexus stash buffer() : 203.5.10 nexus get stashed TYPE() : 213.5.11 nexus free stashed buffer() : 213.5.12 nexus register handlers() : 213.5.13 nexus substitute handler() : 223.5.14 nexus handler hash() : 233.5.15 nexus poll() : 233.6 Global Pointer Manipulation : 233.6.1 nexus global pointer() : 233.6.2 nexus convert global pointer address() : : : : : : : : : : : : : : 233.6.3 nexus destroy global pointer() : : : : : : : : : : : : : : : : : : : 233.6.4 nexus null global pointer() : 243.6.5 nexus is null global pointer() : : : : : : : : : : : : : : : : : : : 243.7 Inquiry Functions : 243.7.1 nexus node type() : 243.7.2 nexus node class() : 243.7.3 nexus same context() : 243.7.4 nexus same global pointer() : 243.7.5 nexus global pointer to current context() : : : : : : : : : : : : 253.8 Miscellaneous : 253.8.1 nexus master node() : 253.8.2 nexus exit() : 253.8.3 nexus shutdown() : 253.8.4 nexus abort() : 253.9 De�ned Symbols : 253.9.1 NEXUS NON PREEMPTIVE THREADS : 263.9.2 NEXUS SINGLE THREADED : 263.9.3 NEXUS USE MACROS : 26iv

4 Package-Supplied Functions 264.1 NexusBoot() : 274.2 NexusExit() : 274.3 NexusUnknownHandler() : 27

v

Nexus: An Interoperability Layer forParallel and Distributed Computer SystemsbyIan Foster, Carl Kesselman, Robert Olson, and Steven TueckeAbstractNexus is a set of services that can be used to implement various task-parallel languages,data-parallel languages, and message-passing libraries. Nexus is designed to permit thee�cient, portable implementation of individual parallel programming systems and theinteroperability of programs developed with di�erent tools. Nexus supports lightweightthreading and active message technology, allowing integration of message passing andthreads.1 IntroductionNexus is a set of services that can be used to implement many di�erent parallel program-ming tools, including task-parallel languages such as Fortran M and CC++; data-parallellanguages such as pC++ and High Performance Fortran (HPF); and message-passing li-braries such as Message Passing Interface (MPI), p4, and PVM. Nexus is intended as acompiler target or as a basis for a higher-level library, not for direct use by an end-userprogrammer.Nexus services provide direct support for lightweight threading, address space manage-ment, communication, and synchronization. A computation consists of a set of threads, eachexecuting in an address space called a context. An individual thread executes a sequentialprogram, which may read and write data shared with other threads executing in the samecontext. It can also generate asynchronous remote service requests, which invoke proceduresin other contexts. In a heterogeneous system, arguments to a remote service request areautomatically translated to a machine-independent format.Nexus is currently being used as a compiler target for Fortran M and CC++ compilers.These compilers generate an initial program and a set of handler routines, which can beinvoked by using remote service requests. The main program and handler routines are com-piled and linked with the Nexus library to produce an executable program. HPF compilersand message-passing libraries can also be modi�ed to use Nexus services. Hence, Nexusmakes it possible to combine, in a single application, programs developed with di�erenttools. 1

N O D E

Context

T T T TTT T

ContextContext

N O D EFigure 1: Nodes, Contexts, and Threads2 Basic AbstractionsNexus supports �ve basic abstractions: the node, context, thread, global pointer, and remoteservice request.Node. A node represents a physical processing resource. It is distinguished by itslocation (machine name and, in a multicomputer, processor number). A node may variouslycorrespond to a physical processor, a shared-memory multiprocessor, or a Unix process.Context. A context is an address space plus an executable program. A context is locatedwithin a node; more than one context can be allocated to a node. The address space consistsof one or more data segments. An initial data segment is created when a context is allocated,and additional segments can be added as needed. A data segment can be part of only onecontext. The program associated with a context de�nes a NexusBoot() routine, which isinvoked when the context is created; a NexusExit() routine, which is invoked when thecontext is destroyed; and any handlers that may be invoked by using remote service requests(see below).Thread. A thread is a thread of control. A thread is located within a context; more thanone thread can be allocated to a context. Hence, the mapping of computation to physicalprocessors is determined by both the mapping of threads to contexts and the mapping ofcontexts to nodes. The relationship between nodes, contexts, and threads is illustrated inFigure 1.Global Pointer. A global pointer is a fNode,Context,Addressg triple. A thread canaccess data within its context as local data. To access data within a di�erent context (onthe same or di�erent node), it must be provided with a global pointer.Remote Service Request. A thread can request that an action be performed on aremote node by issuing a remote service request. This takes a handler identi�er, a global2

pointer, and a message bu�er as arguments and causes the speci�ed handler to be executedon the node and within the context of the global pointer. The handler is passed the localaddress component of the global pointer and the message bu�er as arguments.These abstractions can be used to implement a variety of programming language concepts.For example, a Fortran M process corresponds to a context (used to hold process common)plus a thread (the thread of control); a Fortran M send statement may be translated into aremote service request that places a message in a remote message queue in the appropriateprocess's context. A CC++ processor object corresponds to a context; CC++ statementscalled in parallel blocks execute as threads (if local) or as remote service requests (if remote).3 Nexus Runtime LibraryThe Nexus runtime library provides primitive functions for node management, context man-agement, thread management, and communication. In the following sections, threads andglobal pointers are represented by the C-language typedefs nexus thread t andnexus global pointer t, respectively.Any program that uses Nexus functions must include \nexus.h".3.1 Initialization and Argument HandlingNexus is intended to be both portable and usable by diverse programming packages. There-fore, initialization and argument handling in Nexus must be able to deal with a wide varietyof situations.De�nitions.� package: The system using Nexus, such as Fortran M or CC++.� application: The end-user program that uses a package that is implemented uponNexus.� package designator: The string (i.e., \-fm") used to separate command line argumentsdestined for the application from those destined for Nexus and the package. Argumentsbefore the �rst package designator are for the application, and those after it are forNexus and the package.� process: An address space and set of associated resources that will be used by Nexusto implement its node and context abstractions. Normally this corresponds to a Unixprocess.� master node: One of the Nexus nodes designated as master. This node has the specialtask of initiating execution of the application program.3

Initialization Model. Nexus initialization is designed to handle various combinations ofthe following situations:� A single process is created, which starts additional processes during Nexus initializa-tion. This is a common approach for starting a parallel program on a network ofworkstations. A variety of methods may be used to start the other processes, includingrsh and special startup daemons. Each process represents a separate node. The �rstprocess is designated as the master node.� All processes are started simultaneously by operating system tools. This is a commonapproach on massively parallel processing machines. Again, each process represents aseparate node. One process is designated the master node.� Processes are added to the parallel program dynamically through either context cre-ation (x 3.3.1) or node creation (x 3.2.1).In each case, the application is assumed to start execution as a single thread of control onthe master node. It can then create additional threads of control by making remote servicerequests, create new processes using nexus acquire nodes(), etc.Initialization is performed in two phases: nexus init() begins initialization, andnexus start() completes it. In Fortran M, the main routine simply calls nexus init(),followed immediately by nexus start(). In contrast, CC++ requires that Nexus be ini-tialized before the �rst global constructor is called, which is long before main() is called.The split initialization allows nexus init() to be called from the �rst global constructor,followed by the execution of the remaining constructors, followed by a call to nexus start()from within main().System Con�guration. The system can be con�gured at run time using arguments pro-vided by one or more of three mechanisms: an environment variable, command line argu-ments (if they are accessible), and a parameters string. The third mechanism is used whena process is created by an existing Nexus node. Redundant arguments in the parametersstring override arguments in the environment variable, and arguments in the command lineoverride both.Because nexus init() may be called prior to main(), the command line argumentscannot simply be extracted from the argument list (argc/argv) that is normally passed tomain(). (Of course, Fortran does not have argc/argv, which is another problem withthat approach.) Instead, Nexus must �nd the command line arguments through someother method, such as the environ variable on most Unix machines. If Nexus succeeds,nexus init() will1. retrieve the command line arguments (from the environ variable),2. combine the command line arguments with the environment variable arguments andthe parameters string, 4

3. make the application destined arguments available through nexus user iargc(),nexus user getarg(), and nexus get argc and argv(), and4. parse the Nexus and package arguments. The package is allowed access to any argu-ments following the package designator that Nexus does not recognize through functioncallbacks provided by the package in the nexus init() call.If Nexus cannot retrieve the command line arguments (or if a particular startup methoddoes not allow the use of command line arguments), then only the environment variable andparameters string can be used.3.1.1 nexus init()void nexus_init(char *args_env_variable,char *package_designator,void (*package_args_init_func)(),int (*package_args_func)(int,int),void (*usage_message_func)(),int (*new_process_params_func)(char *,int)nexus_global_pointer_t **node_gps,int *n_node_gps)Initialize a process for Nexus. The args env variable argument holds the name of the envi-ronment variable to check for con�guration information. The package designator argumentholds the package designator string. The package args init func, package args func,usage message func, and new process params func arguments are pointers to packagecallback functions as described below, or NULL pointers to designate no callback.This routine should be the �rst one called by any new process that will be used withina Nexus computation. Depending on the particular Nexus implementation, a new processis created when a node and/or when a context is created; arguments automatically passedto this process by the Nexus run-time system will allow nexus init() to distinguish thesecases.The mechanism nexus init() �rst parses the environment variable, the parametersstring, and command line arguments. This process consists of the following steps:1. The command line arguments are split (using the passed package designator) andcombined with the environment variable and parameters string, as described above.2. The package args init func package callback function is called. The package can usethis to initialize variables that will be used to hold con�guration information extractedfrom the arguments.3. Nexus invokes the package args func package callback function once for each argu-ment that is not recognized by Nexus, passing the current argument number and the5

total number of arguments. Using these in conjunction with nexus package getarg(),it can decide whether a particular argument is meant for the package. If so, it shouldextract all relevant information into its own variables. It should return a new currentargument that is greater than or equal to the current argument it was passed.4. If an error occurred during argument parsing (an argument was recognized neither byNexus nor by the package), the usage message func package callback is called. Itshould print a usage message for its arguments to stdout.Nexus is now initialized. A subsequent call to nexus start() should now be made tocomplete the initialization. Package initialization can be performed between the nexus init()and nexus start() calls.On machines that start a set of processes simultaneously, such as on many parallel com-puters, nexus init() will be called simultaneously in each of these processes. One of theseprocesses will be designated the master node. On other machines, such as workstations,command line arguments to the master node process may cause nexus init() to createother nodes, perhaps on other workstations.All nodes, including the master, will automatically have a default context created onthem. On the master node, nexus init() sets its node gps argument to an array of globalpointers to these contexts, and n node gps to the number of global pointers in this array. Themaster node's global pointer is always the �rst in this array. Subsequent context creationsand remote service requests may be used to run threads on those nodes or on additionalnodes created by nexus acquire nodes() (see x 3.2.1). On processes other than the masternode, nexus init() sets node gps to NULL and n node gps to zero.The array of global pointers returned in nodes gps by this function is allocated usingnexus malloc(). Therefore, when it is no longer needed, each global pointer should bedestroyed using nexus destroy global pointer(), and the array freed using nexus free().The new process params func package callback function is saved by Nexus for futureuse. Whenever a new process is created for a node and/or context, this routine is calledwith a character bu�er and the bu�er size. This callback function should �ll in the bu�erwith any (space separated) package arguments that need to be passed to the new process; itshould return the number of characters that it wrote into the bu�er, up to the passed bu�ersize.3.1.2 nexus start()void nexus_start()Call after nexus init(). On the master node, nexus start() returns. In all other cases,nexus start() does not return; program execution on these nodes is invoked by subsequentcontext creations and remote service requests to these nodes.6

3.1.3 nexus user iargc()int nexus_user_iargc()Return the number of user arguments (number of arguments up to, but not including, thepackage designator argument).3.1.4 nexus user getarg()char *nexus_user_getarg(int i)Return a pointer to the string that represents the i'th user argument. This string shouldnot be modi�ed.3.1.5 nexus get argc and argv()void nexus_get_argc_and_argv(int *argc,char ***argv)Store at the locations referenced by argc and argv the number and location of the userarguments.3.1.6 nexus package iargc()int nexus_package_iargc()Return the number of package arguments (number of arguments after the package designatorargument).3.1.7 nexus package getarg()char *nexus_package_getarg(int i)Return a pointer to the string that represents the i'th package argument. This string shouldnot be modi�ed.3.2 Node ManagementThree primitive functions are provided for manipulating the set of nodes in a Nexus compu-tation:� nexus acquire nodes: bring additional nodes into the computation� nexus release nodes: release nodes from the computation� nexus current node: obtain the current node's node descriptor (see x3.7)7

3.2.1 nexus acquire nodes()void nexus_acquire_nodes_on_host(char *host_name,nexus_path_name *path_name,int count,nexus_global_pointer_t **node_gps,int *n_node_gps)void nexus_acquire_nodes_of_type(nexus_arch_type_t type,nexus_path_name *path_name,int count,nexus_global_pointer_t **node_gps,int *n_node_gps)Introduce count new nodes into the computation. The �rst call obtains those nodes fromthe machine speci�ed by host name. The second version of the call allocates nodes of aspeci�c architecture type.The path name argument speci�es the path of the Nexus node server executable (i.e.,an application compiled with Nexus or a generic Nexus node server). If path name is NULL,then the path to the current executable on this node is used. If host name is NEXUS MY HOST,count nodes are allocated on the same host as the current node. If type is NEXUS TYPE ANY,count nodes of any type are allocated. Each routine returns an array of global pointers innode gps, one for each allocated node, and the size of this array in n node gps. If no nodecan be acquired, node gps is set to NULL and n node gps is set to 0.The array of global pointers returned in nodes gps by these functions is allocated usingnexus malloc(). Therefore, when it is no longer needed, each global pointer should bedestroyed using nexus destroy global pointer(), and the array freed using nexus free().3.2.2 nexus release nodes()int nexus_release_nodes(nexus_global_pointer_t *node_gps,int n_node_gps)Remove a set of nodes from the computation. The nodes to be released are speci�ed by theglobal pointer array node gps, which has n node gps elements. All contexts and threadsthat are active on the speci�ed nodes will be destroyed. This function returns 0 if the nodesare successfully released, or -1 otherwise.3.3 Context ManagementPrimitive functions are provided for context operations:8

� nexus init create context handle: initialize context creation handle� nexus create context: create a context� nexus create context wait: wait for context creation(s) to complete� nexus destroy current context: destroy a contextA context, when created, consists of an initial data segment (a block of memory in thecontext which is requested during context creation) and an executable program.Data segments can be manipulated with the operations:� nexus context initial segment: retrieve the initial data segment of the current con-text� nexus malloc: allocate a data segment in the current context� nexus free: free a data segment from the current contextThe executable program is loaded from a user-speci�ed location. This program maycontain the following functions:� NexusBoot: a function that is invoked upon creation of the context (required)� NexusExit: a handler that is invoked upon termination of the context (optional)� NexusUnknownHandler: a handler that is invoked if a remote service request is madeto this context with an unknown handler (optional)See x 4 for more information on these functions.3.3.1 nexus create context()void nexus_create_context(nexus_global_pointer_t *node_gp,char *executable_path,int size,nexus_global_pointer_t *new_context_gp,int *return_code,nexus_create_context_handle_t *contexts)Create a context on the same node as the context pointed to by the node gp argument. Thecontext is allocated an initial data segment of size bytes and loads the executable speci�edby executable path.A global pointer to the new context's initial data segment is placed in new context gp,and a return code is placed in return code, once the context has been initialized. A nonzeroreturn code indicates that the context creation failed. NexusBoot() (x 4.1) is automatically9

invoked in the new context when it is created, and that context does not complete initializa-tion until NexusBoot() has returned. If NexusBoot() returns nonzero in this context, thenthe context creation fails, and that return value is placed in return code.If contexts is NULL, then this call waits for the new context to be initialized, andnew context gp is valid immediately upon return of this call. If contexts is a validnexus create context handle t initialized by nexus init create context handle(), thenthis call will return before the new context is initialized, and new context gp is not validuntil after the subsequent nexus create context wait() call using this contexts handle.3.3.2 nexus init create context handle()void nexus_init_create_context_handle(nexus_create_context_handle_t *contexts,int n_contexts)Initialize the context handle, contexts, to be used by n contexts subsequent calls tonexus create context.Use of a context handle when creating multiple contexts allows the context creations tooverlap with each other and to overlap with work by the package.3.3.3 nexus create context wait()void nexus_create_context_wait(nexus_create_context_handle_t *contexts)Wait for the contexts created using the contexts handle to be initialized.3.3.4 nexus destroy current context()void nexus_destroy_current_context()Deallocate the current context by freeing all data segments acquired during its execution.The thread that calls this function is terminated. The behavior is unde�ned if other threadsexecuting on the current context have not terminated.Before Nexus services have been deallocated, a user-de�ned functionNexusExit() is called. This can be used to free package data structures, etc. NexusExit()returns a void and takes no arguments.3.3.5 nexus context initial segment()void *nexus_context_initial_segment()Return a pointer to the initial data segment of the context of the calling thread.10

3.3.6 nexus malloc()void *nexus_malloc(size_t size)Allocate a data segment with size bytes, and add it to the current context. Return a pointerto this newly allocated data segment, or NULL if it cannot be allocated.3.3.7 nexus free()void nexus_free(void *data_segment)Free the data segment pointed to by data segment from the current context. This operationmay be applied to the context's initial data segment.3.4 Thread ManagementNexus threads are modeled after a subset of POSIX threads (IEEE standard P1003.4a).Primitive functions are provided for basic thread operations:� nexus thread create: create a thread� nexus thread exit: terminate the current thread� nexus thread yield: yield the processor to another thread� nexus thread self: return the thread ID of the calling thread� nexus thread equal: compare two thread IDs� nexus thread once: for dynamic module initialization� nexus thread key create: create a thread speci�c data key� nexus thread setspecific: associate a value with a thread-speci�c data key� nexus thread getspecific: retrieve the value associated with a thread-speci�c datakeyMutual exclusion and synchronization between threads is provided by the operations:� nexus mutex init: initialize a mutual exclusion lock� nexus mutex destroy: destroy a lock� nexus mutex lock: obtain a mutually exclusive access to lock� nexus mutex unlock: release a lock� nexus cond init: initialize a condition variable11

� nexus cond destroy: destroy a condition variable� nexus cond wait: wait for a condition� nexus cond signal: signal a condition� nexus cond broadcast: signal to all waiting for a condition3.4.1 nexus thread create()typedef void *(*nexus_thread_func_t)(void *user_arg);int nexus_thread_create(nexus_thread_t *thread,nexus_thread_attr_t *attr,nexus_thread_func_t func,void *user_arg)Create a new thread in the current context that invokes the supplied function func with oneargument user arg. The thread ID for the newly created thread is placed in thread. Thisfunction returns zero if the thread is successfully created, or nonzero otherwise.The attr argument is for speci�cation of attributes for the thread. However, this is notyet implemented.Note: There are no equivalents to pthread detach() and pthread join() in Nexus. AllNexus threads are automatically detached when they are created.3.4.2 nexus thread exit()void nexus_thread_exit(void *status)Terminate the calling thread. Returning from the user thread function will implicitly termi-nate the thread.The status argument is currently not used.3.4.3 nexus thread yield()void nexus_thread_yield()Yield the processor to another thread.3.4.4 nexus thread self()nexus_thread_t nexus_thread_self()Return the thread ID of the calling thread. 12

3.4.5 nexus thread equal()int nexus_thread_equal(nexus_thread_t t1,nexus_thread_t t2)Compare the two thread IDs, t1 and t2. If they are the same, then this returns nonzero,otherwise zero.3.4.6 nexus thread once()nexus_thread_once_t once_control = NEXUS_THREAD_ONCE_INIT;int nexus_thread_once(nexus_thread_once_t *once_control,void (*init_routine)())Call the init routine() with no arguments. Subsequent calls of nexus thread once()will not call the init routine(). On return of nexus thread once() it is guaranteed thatinit routine() has completed. The once control parameter is used to determine whetherthe associated initialization routine has been called.This returns 0 upon successful completion, otherwise -1.3.4.7 nexus thread key create()typedef void (*nexus_thread_key_destructor_func_t)(void *value);int nexus_thread_key_create(nexus_thread_key_t *key,nexus_thread_key_destructor_func_t func)Create a thread speci�c data key that is visible to all threads in the context, and place thatkey in the key argument. Although the same key value may be used by di�erent threads, thevalues bound to the key by nexus thread setspecific() are maintained on a per-threadbasis.The value associated with a new key is NULL in all active threads and will be initializedto NULL in all threads that are subsequently created.If func is not NULL, then upon termination of the thread, if the value for this key is notNULL, the function pointed to by func is called with the current value for the key as itsargument.This function returns zero upon successful completion, or nonzero otherwise. A -1 returnindicates that the key name space is exhausted.13

3.4.8 nexus thread setspecific()void nexus_thread_setspecific(nexus_thread_key_t key,void *value)Set the value associated with the thread-speci�c data key to value. Di�erent threads maybind di�erent values to the same key.3.4.9 nexus thread getspecific()void nexus_thread_getspecific(nexus_thread_key_t key,void **value)Get the thread-speci�c data value associated with key, and return it in the value argument.3.4.10 nexus mutex init()void nexus_mutex_init(nexus_mutex_t *mutex,nexus_mutexattr_t *attr)Initialize the mutual exclusion lock, mutex. The attributes for the mutex are speci�ed byattr. Default attributes will be used if attr is NULL.The result of calling nexus mutex lock() or nexus mutex unlock() on a mutex thathas not been initialized is unde�ned.3.4.11 nexus mutex destroy()void nexus_mutex_destroy(nexus_mutex_t *mutex)Destroy the mutex that was initialized with nexus mutex init(). The result of callingnexus mutex lock() or nexus mutex unlock() on a mutex that has been destroyed is un-de�ned.3.4.12 nexus mutex lock()void nexus_mutex_lock(nexus_mutex_t *mutex)Block until the mutual exclusion lock, mutex, is acquired. This may or may not be imple-mented as a spin lock (i.e., busy wait).3.4.13 nexus mutex unlock()void nexus_mutex_unlock(nexus_mutex_t *mutex)Unlock the mutual exclusion lock, mutex, enabling another thread to acquire the mutex.Fairness in locking is not guaranteed; that is, a thread is not guaranteed to acquire a lock ifother threads are also attempting to acquire the same lock.14

3.4.14 nexus cond init()void nexus_cond_init(nexus_cond_t *cond,nexus_condattr_t *attr)Initialize the condition variable, cond. The attributes for the condition are speci�ed by attr.Default attributes will be used if attr is NULL.The result of calling any other nexus cond *() function on a condition that has not beeninitialized is unde�ned.3.4.15 nexus cond destroy()void nexus_cond_destroy(nexus_cond_t *cond)Destroy the speci�ed condition. The result of calling any other nexus cond *() function ona condition that has been destroyed is unde�ned.3.4.16 nexus cond wait()void nexus_cond_wait(nexus_cond_t *cond,nexus_mutex_t *mutex)Atomically release mutex, and wait on cond. When the function returns, mutex has beenreacquired.If the thread executing the function has not acquired mutex, the result is unde�ned.3.4.17 nexus cond signal()void nexus_cond_signal(nexus_cond_t *cond)Signal the speci�ed condition, waking up one thread that is suspended on this condition. Ifno threads are suspended on this condition, this call will have no e�ect.3.4.18 nexus cond broadcast()void nexus_cond_broadcast(nexus_cond_t *cond)Unsuspend all threads suspended on the speci�ed condition.
15

3.5 CommunicationFunctions are provided for issuing remote service requests:� nexus init remote service request: initiate a remote service request� nexus sizeof TYPE: determine the amount of message bu�er space needed to senddata values of a special TYPE� nexus put TYPE: place a data value of a special TYPE in a message bu�er� nexus check buffer size: check the message bu�er for overow, and, if necessary,resize the bu�er� nexus send remote service request: issue a remote service requestWhen a remote service request is executed by a handler, primitive functions are providedfor handling it:� nexus get TYPE: extract a data value of a special TYPE from a message bu�er� nexus stash buffer: stash the bu�er so that it is accessible outside of the messagehandler� nexus get stashed TYPE: extract a data value of a special TYPE from a stashed messagebu�er� nexus free stashed buffer: free a stashed bu�erOther handler related primitives include the following:� nexus register handlers: register handlers� nexus substitute handler: change a handler registration� nexus poll: handle any outstanding messagesHandlers can be either threaded or nonthreaded. A threaded handler executes in a threadcreated speci�cally for it, is passed a stashed bu�er of type nexus stashed buffer t, andhas no restrictions on what it may do. A nonthreaded handler executes in an existing thread,is passed a bu�er of type nexus buffer t, and has some restrictions on what it may do.The following are noteworthy items regarding handler design and behavior:� Remote service requests between any two contexts using nonthreaded handlers areperformed in sequence. No other constraint is placed on the order in which remoteservice requests are executed; in particular, they can be executed concurrently withother nonthreaded handlers requested from other contexts and with other threadedhandlers from any context. There is no ordering of threaded handlers.16

� The bu�er that is passed to a nonthreaded handler is automatically freed upon exitfrom the handler. If it is required that the bu�er persist after the completion ofthe handler, then it must be stashed using nexus stash buffer() and later freed bynexus free stashed buffer().� The stashed bu�er that is passed to a threaded handler must be explicitly freed by acall to nexus free stashed buffer().� The nexus get TYPE() routines can be used to operate only onnexus buffer t bu�ers, and only within nonthreaded handlers. Thenexus get stashed TYPE() routines must be used to access stashed bu�ers, eitherfrom threaded handlers or from other threads.� A nonthreaded handler must not suspend inde�nitely. In some implementations ofNexus, all nonthreaded handlers may be called in sequence from within a single thread.Therefore, if a nonthreaded handler suspends, it will inde�nitely postpone the execu-tion of other handlers. If the behavior of a handler requires suspension, that handlereither must create a thread using nexus create thread() in which to implement thatbehavior or must be a threaded handler.� Any data that is put in a bu�er (using nexus put TYPE()must not change between thenexus init remote service request()and nexus send remote service request().This allows some implementations of Nexus to optimize away a data copy when sendingremote service requests.� Some care must be taken to avoid deadlock between the thread sending a remoteservice request and the nonthreaded handler for that remote service request. Forexample, when sending a remote service request from a context to the same context,the nonthreaded handler may be invoked from the same thread that sent the remoteservice request. Thus, the nonthreaded handler must not try to lock a resource whichthe sending thread already has locked and will not release until after the send hascompleted.3.5.1 nexus init remote service request()void nexus_init_remote_service_request(nexus_buffer_t *buffer,nexus_global_pointer_t *gp,char *handler_name,int handler_id,int force_translation)Allocate and initialize a message bu�er to be sent to the node speci�ed by gp. gp is usedto determine what sort of data translation is needed, if any. If the force translation ag17

is set to a nonzero value, data placed in the bu�er will always be translated to a machine-independent format.The handler invoked to service the request is speci�ed by the value of the handler idand handler name arguments. Handler names and identi�ers are local to a context. Thehandler will be invoked in the context speci�ed by gp with two arguments: the local addresscorresponding to gp, and a local pointer to a bu�er with the same contents as buffer.Return a bu�er in buffer that can be packed using nexus put TYPE calls, or NULL if abu�er cannot be successfully initialized.Invoking init remote service request() on a NULL global pointer results in a fatalrun-time error.3.5.2 nexus sizeof TYPE()size_t nexus_sizeof_TYPE(nexus_buffer_t *buffer,int count)Return the size in bytes required to encode count items of data type TYPE into buffer. Thiscan be used to calculate the precise size of the message bu�er needed for a given message.3.5.3 nexus sizeof global pointer()int nexus_sizeof_global_pointer(nexus_buffer_t *buffer,nexus_global_pointer_t *gp,int count,int *n_elements)Return the size in bytes required to encode the �rst count elements of the global pointerarray, gp. Set n elements to the number of nexus put TYPE() operations that will be usedby nexus put global pointer() to put these global pointers into the bu�er; this is for usewith nexus set buffer size().The size of a global pointer varies, depending upon the context to which it points; thusthe extra gp argument. Global pointers that point to the same context have the same size.3.5.4 nexus set buffer size()void nexus_set_buffer_size(nexus_buffer_t *buffer,int size,int n_elements)Sets buffer to be able to hold size bytes of data and n elements of data. n elementsshould be the number of nexus put TYPE() operations that will subsequently be invoked onthis bu�er, or -1 if that number is not known.This procedure does not have to be called. If it is not called, the number of nexus put TYPE()operations is assumed to be unknown, and nexus put TYPE() and nexus check buffer size()will be used to �ll in the bu�er. 18

3.5.5 nexus put TYPE()void nexus_put_TYPE(nexus_buffer_t *buffer,TYPE *data,int count)Copy count data elements from address data to the message bu�er referenced by buffer;convert data to a machine-independent form if necessary. These operations do not checkfor bu�er overow; the compiler must allocate a bu�er of adequate size usingnexus set buffer size() or generate calls to nexus check buffer size.Valid TYPE values include oat, double, short, u short, int, u int, long, u long, char,u char, and global pointer.Note: It is not clear how 64-bit integers will be handled (i.e., longs or long longs).3.5.6 nexus check buffer size()int nexus_check_buffer_size(nexus_buffer_t *buffer,size_t slack,int increment)Check that the message buffer has at least slack bytes remaining. If no resizing is necessary,leave buffer unchanged, and return nonzero. If resizing is necessary, increase the size byincrement byte increments until the bu�er has at least slack bytes remaining. If resizingis successful, modify buffer to a new, larger, bu�er and return nonzero. Otherwise, ifincrement is equal to zero and slack bytes are not available in the bu�er, then leavebuffer unchanged, and return zero. Note that buffermust be a bu�er structure previouslyallocated by a call to nexus init remote service request.The slack argument should be calculated by using nexus_sizeof_TYPE().3.5.7 nexus send remote service request()void nexus_send_remote_service_request(nexus_buffer_t *buffer)void nexus_send_urgent_remote_service_request(nexus_buffer_t *buffer)Generate a remote service request message to the node and context referenced by theglobal pointer gp used in the nexus init remote service request() call used to createthe buffer. After the message is generated, the bu�er is freed.Only two constraints are placed on when remote service requests are executed. First, anurgent remote service request executes within a bounded time (i.e., no inde�nite postpone-ment). Second, two remote service requests sent from one context to another are executed19

in order and in sequence. (Therefore, if two threads each send a remote service request tothe same context, they can guarantee the order in which those requests will be handled byguaranteeing the order in which they are sent.)3.5.8 nexus get TYPE()void nexus_get_TYPE(nexus_buffer_t *buffer,TYPE *dest,int count)Copy count elements from the message buffer to location dest. Convert data from amachine-independent form if necessary.These routines can be used only within a handler. To save and access a bu�er outside ahandler, nexus stash buffer(), nexus get stashed TYPE(), and nexus free stash buffer()must be used.See nexus_put_TYPE() for a list of the valid TYPE values.3.5.9 nexus stash buffer()void nexus_stash_buffer(nexus_buffer_t *buffer,nexus_stashed_buffer_t *stashed_buffer)When a remote service request is handled, the bu�er that is passed to the handler is validonly for the duration of that handler and is automatically freed upon completion of thehandler. It cannot, for example, be copied into a user data structure, to be accessed laterfrom outside of the handler.nexus stash buffer() saves the passed buffer so that it can be accessed later via thenexus get stashed TYPE() calls, and then freed bynexus free stashed buffer(). This stashed bu�er is placed into stashed buffer.It is legal to stash a bu�er from which some data has already be retrieved usingnexus get TYPE() calls. Subsequent nexus get stashed TYPE() calls will continue retriev-ing data where the nexus get TYPE() calls left o�.This mechanism means that an implementation of Nexus need not bu�er data receivedin a remote service request, if that data can be used immediately. Yet it also allows selectivebu�ering where it is advantageous to do so (for example, to enqueue a bu�er for later pro-cessing). If a Nexus implementation is not bu�ering messages, this operation must allocate abu�er and stash the message in that bu�er. But if a Nexus implementation is already bu�er-ing messages, this procedure can e�ciently convert the bu�er to a stashed bu�er withoutdoing an extra copy of the bu�er contents. 20

3.5.10 nexus get stashed TYPE()void nexus_get_stashed_TYPE(nexus_stashed_buffer_t *stashed_buffer,TYPE *dest,int count)Same as nexus get TYPE but obtains values from a stashed bu�er.3.5.11 nexus free stashed buffer()void nexus_free_stashed_buffer(nexus_stashed_buffer_t *stashed_buffer)Free the stashed buffer that was created by nexus stash buffer().3.5.12 nexus register handlers()typedef void (*nexus_non_threaded_handler_func_t)(void *address,nexus_buffer_t *buffer);typedef void (*nexus_threaded_handler_func_t)(void *address,nexus_stashed_buffer_t *buffer);typedef enum _nexus_handler_type_t{ NEXUS_HANDLER_TYPE_THREADED,NEXUS_HANDLER_TYPE_NON_THREADED} nexus_handler_type_t;typedef struct _nexus_handler_t {char * name;int id;nexus_handler_type_t type;nexus_handler_func_t func; /* nexus_non_threaded_handler_func_t *//* or nexus_threaded_handler_func_t */} nexus_handler_t;void nexus_register_handlers(nexus_handler_t *handlers)A handler is a function that is executed in response to a remote service request. Athreaded handler executes in a thread created speci�cally for it, while a nonthreaded han-dler executes in an existing thread. The arguments to a handler are the address portionof a global pointer and a pointer to a Nexus bu�er. A handler must be registered by anexus register handlers() call before it can be invoked. Handlers are local to a context.21

The handlers variable is an array of nexus handler t structures, terminated by anelement with a NULL func �eld. This call associates a handler name and id with a function,func. The type speci�es whether the handler is threaded or nonthreaded. A handler namemust be unique within a context. The handler id and function names need not be unique.A handler is run in the context speci�ed by the remote service request and has as argu-ments the local address speci�ed by the global pointer and a bu�er. A nonthreaded handlertakes a nexus buffer t bu�er, which is automatically freed on exit from the handler. Athreaded handler takes a nexus stashed buffer t bu�er, which must be freed explicitly bycalling nexus free stashed buffer().In the current implementation, the handler id must be the hash value for the handlername, as returned by nexus handler hash() (or the equivalent value generated at compiletime). The problem addressed here is that of a global name space. Some sort of global namespace is needed for handlers: one must know the \name" of a handler in order to invoke itby a remote service request. The string name of the handler function is a natural choicesince this information is already available to the compiler. Unfortunately, this means thatevery remote service request handler invocation would require a string to function pointerlookup, which would be fairly expensive. A more e�cient global name for a handler would aunique integer; however, this is much more di�cult to implement without a special link step.In the current implementation, our compromise is to use the string name of the handler asthe global name, but also to pass the hash value for that name along with it. And as longas the hash function is well known, the hash value for a name can be generated at compiletime. This should greatly speed the name to pointer lookup, with only a small increase incommunication cost and little additional complexity beyond using just the string.3.5.13 nexus substitute handler()void nexus_substitute_handler(char *name,int id,nexus_handler_type_t new_type,nexus_handler_func_t new_func,nexus_handler_type_t *old_type,nexus_handler_func_t *old_func)Replace the handler function for the handler designated by the name and id with new funcwhich is of the speci�ed new type. Return a pointer to the current handler function inold func, and its type in old type. If there is no handler is registered for the designatedname and id, then register this new handler and return NULL in old handler func.In the current implementation, id should be the hash value for name, as returned bynexus handler hash() (or the equivalent value generated at compile time).22

3.5.14 nexus handler hash()int nexus_handler_hash(char *name)Return the hash value for the passed handler name.The hash value is the sum of the ASCII values for the characters in name, modulo 1021.3.5.15 nexus poll()void nexus_poll()Handle any outstanding remote service requests to the context from which this function iscalled. If none are outstanding, then return immediately.This function is useful only in a Nexus implementation that does not automatically handleremote service requests asynchronously as they arrive. Two such cases are a single-threadedimplementation (x 3.9.2), and a nonpreemptive thread implementation. In an implementa-tion that does handle remote service requests asynchronously (a preemptive multithreadedimplementation), nexus poll() does nothing.3.6 Global Pointer Manipulation3.6.1 nexus global pointer()void nexus_global_pointer(nexus_global_pointer_t *new_gp,void *address)Place a global pointer that references the supplied address into new gp.3.6.2 nexus convert global pointer address()void *nexus_convert_global_pointer_address(nexus_global_pointer_t *gp)Return the local address for the speci�ed global pointer. This operation assumes that thenode and context of the global pointer are the same as the current node and context. If not,the results are unpredictable.3.6.3 nexus destroy global pointer()void nexus_destroy_global_pointer(nexus_global_pointer_t *gp)Destroy the speci�ed global pointer, freeing its associated resources. The result of calling anyNexus function with a global pointer that has been destroyed (or with a copy of a destroyedglobal pointer) is unde�ned.Any global pointers that are not explicitly destroyed using this function will be destroyedwhen the context in which they reside is destroyed.23

3.6.4 nexus null global pointer()void nexus_null_global_pointer(nexus_global_pointer_t *gp)Place a NULL global pointer into gp.3.6.5 nexus is null global pointer()int nexus_is_null_global_pointer(nexus_global_pointer_t *gp)Return nonzero if gp is a NULL global pointer, or otherwise zero.3.7 Inquiry Functions3.7.1 nexus node type()nexus_arch_type_t nexus_node_type(nexus_global_pointer_t *gp)Return the architecture identi�er for node pointed to by the global pointer. Each di�erenttype of machine has a unique architecture identi�er.3.7.2 nexus node class()nexus_class_type_t nexus_node_class(nexus_global_pointer_t *gp)Return the class identi�er for the node pointed to by the global pointer. Each node type fallswithin a node class. All nodes within a node class can communicate with each other withoutperforming any data conversion (i.e., they have the same byte ordering, word length, andoating-point representation).3.7.3 nexus same context()int nexus_same_context(nexus_global_pointer_t *gp1,nexus_global_pointer_t *gp2)Return nonzero if the two global pointers point to the same context on the same node, orzero otherwise.3.7.4 nexus same global pointer()int nexus_same_global_pointer(nexus_global_pointer_t *gp1,nexus_global_pointer_t *gp2)Return nonzero if the two global pointers point to the same address in the same context onthe same node, or zero otherwise. 24

3.7.5 nexus global pointer to current context()int nexus_global_pointer_to_current_context(nexus_global_pointer_t *gp)Return nonzero if the global pointer points to an address in the context of the calling thread.3.8 Miscellaneous3.8.1 nexus master node()int nexus_master_node()Return nonzero if the current node is the master node, or zero otherwise.3.8.2 nexus exit()void nexus_exit(int rc,int shutdown)Terminate the computation with a return code of rc. All threads, nodes, and contextsremaining in the computation are terminated. It is guaranteed that NexusExit() will becalled on all contexts.If shutdown is not 0, then nexus shutdown() is called by nexus exit(). If shutdown is0, then nexus shutdown() is not called by nexus exit(). Instead, it must be called fromthe user program after the exit.3.8.3 nexus shutdown()void nexus_shutdown()Shut down Nexus. This function is called automatically by nexus exit() if the shutdownargument to nexus exit() is not 0. In other situations, the user must call nexus shutdown()explicitly after calling nexus exit(). For example, the last global destructor in CC++,which executes after nexus exit(), calls nexus shutdown().3.8.4 nexus abort()void nexus_abort()Terminate the computation. All threads, nodes, and contexts remaining in the computationare terminated. NexusExit() may not be called on all contexts.3.9 De�ned SymbolsSeveral symbols are bene�cial to an application that uses Nexus.25

3.9.1 NEXUS NON PREEMPTIVE THREADSNEXUS NON PREEMPTIVE THREADS is de�ned in nexus.h if the thread module being used byNexus is nonpreemptive.On such a system, nexus poll() or any of the other Nexus communication routines mustbe called su�ciently often to handler outstanding remote service requests.3.9.2 NEXUS SINGLE THREADEDNEXUS SINGLE THREADED is de�ned in nexus.h if the thread module being used by Nexusdoes not support multiple threads.Much to our dismay, some machines do not support multithreading. In order to supportthese machines, Nexus has been de�ned in such a way that a subset of the full Nexusfunctionality can still work in this single-threaded environment:� nexus poll() will handle any outstanding remote service requests. It is assumed thatthe application will call nexus poll() su�ciently often for this to be e�ective.� Only a single thread can exist at a time. When a new context is created, thereare no threads executing in that context. A new thread can be created by usingnexus create thread() from a handler in the context. If an additional call is made tonexus create thread() before the previous thread terminates(nexus terminate current thread()), this will generate a fatal error and cause thecomputation to abort (nexus abort()).NEXUS SINGLE THREADED allows the application using Nexus to adapt its behavior atcompile time for this special environment.3.9.3 NEXUS USE MACROSBy default, all Nexus calls are function calls. This simpli�es debugging and minimizes codesize. Many Nexus routines, however, may map trivially to underlying system routines. (Forexample, the Nexus thread routines map to Posix thread routines.) In this case, it may bemore e�cient to implement some Nexus functions as C macros that invoke the underlyingsystem routines.If NEXUS USE MACROS is de�ned before nexus.h is included in an application, then Cmacros are used where appropriate to avoid function call overheads for some Nexus routines.4 Package-Supplied FunctionsA package using Nexus must provide a small set of functions for use by Nexus:� NexusBoot: a function that is invoked upon creation of the context (required)26

� NexusExit: a function that is invoked upon termination of the context (optional)� NexusUnknownHandler: a function that is invoked if a remote service request is madeto this context with an unknown handler (optional)4.1 NexusBoot()int NexusBoot()NexusBoot() is automatically invoked when a context is created (see x 3.3.1). If may beused, for example, to register handlers required by the context.If NexusBoot() returns a non-zero value, then the creation of this context will fail (seex 3.3.1), and nexus create context()will use this value for its return code. If NexusBoot()returns zero, then context initialization will complete normally. It is recommended thatNexusBoot() return a positive value to indicate failure, since negative values are returnedby nexus create context() when context creation fails due to resource limitations.4.2 NexusExit()void NexusExit()If a handler is registered using the name NexusExit, that function will be called immediatelybefore a context is terminated (see x 3.3.4). This must be a nonthreaded handler.4.3 NexusUnknownHandler()void NexusUnknownHandler(void *address,nexus_buffer_t *buffer,char *handler_name,int handler_id)If a handler is registered using the name NexusUnknownHandler, that function will be invokedin a context when a remote service request is made to the context using an unknown handler.The address and buffer are the same as those of a normal handler: the global pointer'slocal address and the bu�er used in the remote service request. The handler name andhandler id arguments are those of the unknown handler speci�ed in the remote servicerequest. This must be a nonthreaded handler.
27

