
ADIFOR 2.0 Users' Guide(Revision D)byChristian Bischof,y Alan Carle,�Paul Hovland,zPeyvand Khademi,�� and Andrew Mauer��Mathematics and Computer Science DivisionTechnical Memorandum No. 192andCenter for Research on Parallel ComputationTechnical Report CRPC-95516-SJune 1998
This work was supported by the Mathematical, Information, and Computational Sciences Divisionsubprogram of the O�ce of Computational and Technology Research, U.S. Department of En-ergy, under Contract W-31-109-Eng-38, by the National Aerospace Agency under Purchase OrderL25935D, Cooperative Agreement No. NCCW-0027 and Cooperative Agreement No. NCC-1-212,and by the National Science Foundation, through the Center for Research on Parallel Computation,under Cooperative Agreement No. CCR-9120008.y Address: Computing Center, Technical University Aachen, Se�enter Weg 23, 52074 Aachen,bischof@rz.rwth-aachen.de.�Address: Department of Computational and Applied Mathematics, Rice University, MS 134, 6100Main Street, Houston, TX 77005, carle@rice.edu.z Address: Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S.Cass Ave., Argonne, IL 60439, hovland@mcs.anl.gov.�� Work performed while employed at Argonne National Laboratory.

Contents1 Miscellany 11.1 Supported Systems . 11.2 How to Get ADIFOR 2.0 . 11.3 Legal Notices . 12 Some Preliminaries 32.1 Installation . 52.1.1 Unix Installation and Con�guration . 62.1.2 Windows 95/NT Installation and Con�guration 82.2 Building the Libraries . 82.3 How the ADIFOR Preprocessor Transforms a Program 82.3.1 Code Canonicalization . 92.3.2 Variable Nomination . 92.3.3 Code Generation . 92.4 Functionality of ADIFOR 2.0-Generated Code . 92.5 A Quick Example . 112.6 A Roadmap . 133 Specifying Input for the ADIFOR Preprocessor 153.1 Option Processing in the ADIFOR Preprocessor . 153.2 Compositions . 173.3 Acceptable FORTRAN 77 Source Files . 174 A Tutorial Example 195 Known De�ciencies 275.1 Intrinsics Passed as Procedure Parameters . 275.2 Intrinsics Overridden by External Functions . 285.3 I/O Statements That Contain Function Invocations 286 Advanced Topics 306.1 Computation Is Not Encapsulated in Procedure . 306.2 Variables Other Than Parameters and Globals in AD TOP 31i

Revision D ADIFOR 2.0 User's Guide February 16, 19986.3 Variables That Are Overwritten . 326.4 Variables Involved in I/O Statements . 327 Pitfalls of Di�erentiating FORTRAN 77 358 Potential Problems 379 ADIFOR Preprocessor Options 399.1 Mandatory Options . 399.2 Other Options . 39A Seed Matrix Initialization 42A.1 Introduction . 42A.2 Case 1: Dense Jacobian, one independent, one dependent variable 42A.3 Case 2: Dense Jacobian, multiple independent and multiple dependent variables . . 47A.4 Case 3: Sparse Jacobian, one independent, one dependent variable 49A.5 Case 4: Sparse Jacobian, two independent variables, one dependent variable 52A.5.1 Approach 1 { Generate derivatives only for fnc 53A.5.2 Approach 2 { Generate derivatives for fun . 55A.6 Computing Gradients of Partially Separable Functions 57B ADIntrinsics 1.5: Exception Handling Support for ADIFOR 2.0 60B.1 Introduction . 60B.2 What Every User Should Do . 61B.3 De�nition of Intrinsic Exceptions and Default Behavior 61B.4 Exception Handler Modes . 64B.5 Changing Exception Reporting Options . 66B.5.1 Redirecting Exception Handler Output . 66B.5.2 Resetting Exception Counts . 66B.5.3 Fine-Grained Control of Exception Handler Modes 66B.6 Modifying Exceptional Behavior . 68B.6.1 Changing Exception Class Default Values . 68B.6.2 Changing Exceptional Behavior for a Particular Intrinsics 69B.7 Examples of the Use of ADIntrinsics . 70C Sparse Derivative Support for ADIFOR 2.0 through the SparsLinC 1.1 Library 72C.1 Introduction . 72C.2 Background . 73C.3 Where Is SparsLinC Useful? . 74C.3.1 De�nition of Sparsity . 74C.3.2 Sparse Derivative Problem Types . 74C.4 Usage of SparsLinC Access Routines . 75C.4.1 About SparsLinC 1.1 Routines and Their Names 75ii

Revision D ADIFOR 2.0 User's Guide February 16, 1998C.4.2 Declaration of Sparse Variables . 75C.4.3 Initializing and Customizing SparsLinC . 76C.4.4 Initializing the Seed Matrix . 78C.4.5 Extracting Directional Gradient Vectors from SparsLinC 78C.4.6 Adding the Contents of a Sparse Vector to a Dense Vector 80C.4.7 Dumping the Contents of a Sparse Vector . 80C.4.8 Extracting Performance Information . 81C.4.9 Freeing Dynamically Allocated Memory . 81C.5 A Brief Tutorial Example . 81C.6 Detailed Speci�cation of Access Routines . 83D Installation, Con�guration and Use of ADIFOR 2.0 on Windows 95/NT 92D.1 Installation . 92D.2 Con�guration . 92D.3 Use . 92Acknowledgments 92Bibliography 94

iii

Chapter 1Miscellany1.1 Supported SystemsADIFOR 2.0 currently runs on SPARC's running SunOS 4.1 or SunOS 5.x (Solaris 2.x), IBMRS/6000's running AIX 3.2.5 or 4.1.1, SGI workstations running IRIX Release 6.2, HP workstationsrunning HP-UX 9.x, and x86-class personal computers running Linux, Windows 95 or Windows NT.ADIFOR 2.0 will be ported to additional computing platforms if we �nd su�cient interest and haveaccess to that platform.1.2 How to Get ADIFOR 2.0To retrieve the ADIFOR 2.0 automatic di�erentiation software for educational and non-pro�t re-search use, and for commercial evaluation, visit either of the ADIFOR group World Wide Webhome pages, at URL's: http://www.mcs.anl.gov/adifor, or http://www.cs.rice.edu/~adifor.These pages describe how to request access to ADIFOR 2.0 and how to download the software. Thepages also contain links to publications related to ADIFOR, including many of the papers referencedin this user's guide, as well as the most recent version of this user's guide.1.3 Legal NoticesCopyright on the ADIFOR Preprocessor is held by Rice University. Copyright on the ADIntrinsicssystem and the SparsLinC libraries is held by the University of Chicago.ADIFOR 2.0 was prepared as an account of work sponsored by an agency of the United StatesGovernment, Rice University, and the University of Chicago. NEITHER THE AUTHOR(S), THEUNITED STATES GOVERNMENT NOR ANY AGENCY THEREOF, NOR RICE UNIVERSITY,NOR THE UNIVERSITY OF CHICAGO, INCLUDING ANY OF THEIR EMPLOYEES OR OF-FICERS, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGALLIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFUL-NESS OF ANY INFORMATION OR PROCESS DISCLOSED, OR REPRESENTS THAT ITSUSE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.If ADIFOR 2.0 has been installed at your site in the usual manner, then a copy of the publiclicense for ADIFOR 2.0 can be found in $AD HOME/LICENSE. The license is also available at both ofthe World Wide Web sites listed in Section 1.2. 1

Revision D ADIFOR 2.0 User's Guide February 16, 1998Any entity desiring permission to incorporate this software or a work based on the software intocommercial products or otherwise use it for commercial purposes should contact:Alan CarleDepartment of Computational and Applied MathematicsRice University, MS 1346100 Main StreetHouston TX 77005carle@rice.eduPaul HovlandMathematics and Computer Science Div.Argonne National Laboratory9700 S. Cass AvenueArgonne IL 60439hovland@mcs.anl.gov

2

Chapter 2Some PreliminariesAutomatic di�erentiation is a technique for computing the derivatives of functions described by com-puter programs. See [18, 24] for an introduction to automatic di�erentiation. ADIFOR implementsautomatic di�erentiation by transforming a collection of FORTRAN 77 subroutines that computea function f into new FORTRAN 77 subroutines that compute the derivatives of the outputs of fwith respect to a speci�ed set of inputs of f . This paper describes step by step how to use version2.0 (Revision D) of the ADIFOR system to generate derivative code. Familiarity with UNIX1 andFORTRAN 77 is assumed.We strongly suggest that you, before reading this manual, have a look at the overview papersof ADIFOR 2.0 [7] and ADIFOR 1.0 [6]. They provide an overview of the philosophy of ADIFOR,references to successful applications of ADIFOR, and a perspective of how automatic di�erentiationrelates to other approaches for computing derivatives.The ADIFOR 2.0 system consists of the ADIFOR Preprocessor, the ADIntrinsics template ex-pander and library, and the SparsLinC library. The Adifor2.1 command invokes both the pre-processor and the ADIntrinsics template expander. Figure 2.1 presents a block diagram of theADIFOR 2.0 process, which consists of three key steps:1. Apply the ADIFOR Preprocessor to your FORTRAN 77 program to produce augmented codefor the computation of derivatives. The preprocessor invokes the ADIntrinsics template ex-pander directly. We refer to the machine on which you execute the preprocessor as ADI-FORHOST.2. Construct a derivative driver code that invokes the generated derivative code and makes useof the computed derivatives.3. Compile the generated derivative code and your derivative driver code, and link these withthe derivative support packages, i.e., the ADIntrinsics exception handling package (see Ap-pendix B), and (optionally) the SparsLinC sparse derivative package (see Appendix C). Werefer to the machine on which you compile and link your derivative driver code and the ADI-FOR 2.0 support packages as EXECHOST. Notice that ADIFORHOST and EXECHOST maybe di�erent, for example, ADIFORHOST may be a SPARC workstation, and EXECHOST anRS6000.The �rst step of this process can be performed on SPARC's running SunOS 4.1 or SunOS 5.x(Solaris 2.x), IBM RS/6000's running AIX 3.2.5 or 4.1.1, SGI workstations running IRIX Release 6.2,HP workstations running HP-UX 9.x, and x86-class personal computers running Linux, Windows 951UNIX is a trademark of AT&T. 3

Revision D ADIFOR 2.0 User's Guide February 16, 1998
DerivativeCodeFORTRANDerivativeComputingCode User'sDerivativeDriver ADIntrinsics

Preprocessorand LinkCompileAnalysisCode ADIntrinsicsTemplateExpander
Library SparsLinCLibrary

FORTRAN ADIFOR 2.0
Figure 2.1. Block Diagram of the ADIFOR Process

4

Revision D ADIFOR 2.0 User's Guide February 16, 1998or Windows NT. ADIFORHOST is, therefore, currently limited to be a SPARC, an IBM RS/6000or, an SGI workstation, an HP workstation, or an x86-class personal computer. We currentlyprovide the necessary libraries for the second step precompiled for each of the machines listed above.Source code for the libraries is also provided in case you need to compile them to execute on otherarchitectures. A \C" compiler is required to compile the SparsLinC library. It should, therefore, bepossible to use any machine as EXECHOST.2.1 InstallationAll of these �les in the ADIFOR 2.0 distribution can be retrieved from the World Wide Web sitesdocumented in Section 1.2 of this guide. The distribution consists of the following �les:� Readme.txt provides late-breaking news about the ADIFOR 2.0 distribution, including an-nouncements of the availability of precompiled versions of the ADIFOR 2.0 executables andlibraries for new architectures.� InstallGuideUnix.txt and InstallGuideWindows.txt list the steps required to install AD-IFOR 2.0 on your system.� ad2.0D-XXXX.tar.gz is a gzip-compressed UNIX tar format �le. XXXX is one of SunOS-4.x,SunOS-5.x, AIX, IRIX, Hpux, or Linux86.� ad20D.exe is a self-extracting installer for Windows 95 and Windows NT.The �les ad2.0D-XXXX.tar.gz and ad20D.exe unpack into two directories named ADIFOR2.0Dand ADIFOR2.0D.lib.Directory ADIFOR2.0D contains:� bin: Contains Adifor2.1, the ADIFOR Preprocessor, and purse, the ADIntrinsics templateexpander. The template expander is responsible for expanding generic exception-handlingmacros introduced by ADIFOR 2.0 into the appropriate FORTRAN 77 code. The purseexecutable is a perl script.2� templates: Contains the de�nition of the exception handling macros used by purse.� docs: Contains postscript versions of relevant working notes and papers, including this manual.� examples: Contains examples of programs processed with ADIFOR 2.0.� man: Contains the man page for ADIFOR 2.0.� perl lib: Contains the perl libraries required by purse.Directory ADIFOR2.0D.lib contains:� src: Contains the source for the ADIntrinsics and SparsLinC libraries.� lib: Contains the precompiled versions of the ADIntrinsics and SparsLinC libraries.� bin: Contains several auxiliary binaries for use in building the libraries.2We have provided executables for perl version 5 in case it is unavailable on your system. To avoid con
icts withany version of perl you have installed on your system, we have named our copies of perl to be perl-$AD OS. Thepurse executable invokes the copy of perl that we have provided using this name.5

Revision D ADIFOR 2.0 User's Guide February 16, 1998Machine/OS compressed tar �leSPARC/SunOS 4.1.x ad2.0D-SunOS-4.x.tar.gzSPARC/SunOS 5.x (Solaris 2.x) ad2.0D-SunOS-5.x.tar.gzRS/6000/AIX 3.2.5 or 4.1.1 ad2.0D-AIX.tar.gzSGI/IRIX 6.2 ad2.0D-IRIX.tar.gzHP/HPUX 9.x ad2.0D-Hpux.tar.gzx86/Linux ad2.0D-Linux86.tar.gzTable 2.1. Machine to Archive MappingMachine/OS AD OSSPARC/SunOS 4.1.x SunOS-4.xSPARC/SunOS 5.x (Solaris 2.x) SunOS-5.xRS/6000/AIX AIXSGI/IRIX IRIXHP/HPUX 9.x Hpuxx86/Linux Linux86Cray T3E UnicosmkTable 2.2. Machine to AD OS MappingEach UNIX tar �le ad2.0D-XXXX.tar.gz contains an executable version of the ADIFOR Prepro-cessor for the operating system de�ned by XXXX. Similarly, ad20D.exe contains the Windows 95/NTexecutable for the preprocessor. Each of these distribution �les however, contain precompiled ver-sions of the ADIntrinsics and SparsLinC packages for all of the currently supported machines.If you intend to run ADIFOR 2.0 on multiple kinds of machines then you will need to downloadand unpack several of the ad2.0D-XXXX.tar.gz or ad20D.exe �les | one for each of the kindsof machine you intend to use as ADIFORHOST and EXECHOST. You may want to delete theunnecessary libraries that you get on ADIFORHOST after you unpack the tar �les.We now describe the installation and con�guration procedure for ADIFOR 2.0 under Unix andWindows 95/NT.2.1.1 Unix Installation and Con�gurationTo install ADIFOR 2.0 on one of the supported UNIX machines, you should �rst downloadthe appropriate gzip-compressed tar �le. Table 2.1 provides the names for these �les. Once youhave downloaded the �le, you should move it into the directory in which you wish to place theADIFOR2.0D and ADIFOR2.0D.lib directories, and then \un-gzip" and \untar" the �le using thefollowing commands:% gunzip ad2.0D-XXXX.tar.gz% tar xf ad2.0D-XXXX.taror % gnutar zxf ad2.0D-XXXX.tar.gzwhere XXXX is one of SunOS-4.x, SunOS-5.x, AIX, IRIX, Hpux, or Linux86.33If necessary, you should download a copy of gunzip or gnutar from ftp://prep.ai.mit.edu/pub/gnu/.6

Revision D ADIFOR 2.0 User's Guide February 16, 1998To con�gure ADIFOR 2.0, set the environment variable AD HOME to be the path to the directoryADIFOR2.0D, AD LIB to be the path to the directory ADIFOR2.0D.lib, and the variable AD OS asindicated in Table 2.2.setenv AD_HOME /usr/local/ADIFOR2.0setenv AD_LIB /usr/local/ADIFOR2.0.libsetenv PATH $AD_HOME/bin:$PATHsetenv MANPATH $AD_HOME/man:$MANPATHsetenv AD_OS SunOS-4.xFigure 2.2. Portion of .cshrc FileThe directories \$AD HOME/bin" and \$AD HOME/man" should be added to your execution andmanual paths, respectively. (The notation $X represents the value of the environment variable X.)If you use csh or a variant thereof, we suggest modifying your \.cshrc" �le to de�ne AD HOME andto modify your execution and manual paths. Figure 2.2 shows a fragment of a \.cshrc" �le thathas been modi�ed assuming that ADIFORHOST and EXECHOST are the same machine, and thatthe ADIFOR2.0D and ADIFOR2.0D.lib directories have been installed in /usr/local on a SPARCrunning SunOS 4.1.3. If you are using a shell other than csh, then use the appropriate commandsto modify your environment variables.The rest of this manual assumes that you have set AD HOME and AD LIB and modi�ed yourexecution path and manual path as just described. It is also assumed that ADIFORHOST andEXECHOST are the same machine.To link the ADIntrinsics package into an executable under UNIX4, you should use a command ofthe form (assuming that f77 is the Fortran 77 compiler)f77 -o adnewton adnewton.o g_func.o dlange.o dgesv.o ... \$AD_LIB/lib/ReqADIntrinsics-$AD_OS.o \$AD_LIB/lib/libADIntrinsics-$AD_OS.aor, equivalently,f77 -o adnewton adnewton.o g_func.o dlange.o dgesv.o ... \$AD_LIB/lib/ReqADIntrinsics-$AD_OS.o \-L $AD_LIB/lib -lADIntrinsics-$AD_OSSimilarly, to link the SparsLinC package into an executable, usef77 -o adnewton adnewton.o g_func.o dlange.o dgesv.o ... \$AD_LIB/lib/libSparsLinC-$AD_OS.aor f77 -o adnewton adnewton.o g_func.o dlange.o dgesv.o ... \-L $AD_LIB/lib -lSparsLinC-$AD_OS4Under IRIX on an SGI workstatation, the libraries that are identi�ed with the IRIX su�x have been compiledwith the -n32 compiler
ags. If you need to use -o32 or -64 compiler options, then use the libraries with su�xIRIX-o32 or IRIX-64, respectively. 7

Revision D ADIFOR 2.0 User's Guide February 16, 19982.1.2 Windows 95/NT Installation and Con�gurationTo install ADIFOR 2.0 on a x86-class PC running Windows 95/NT, you should download the �lead20D.exe. Executing this \self-extracting installer" will allow you to unpack all of the necessary�les into a directory that you select. Do not extract the �les contained in ad20D.exe into a directorywhose pathname contains space characters. For example, do not attempt to install ADIFOR 2.0 intoC:nProgram FilesnAdifor.To con�gure ADIFOR 2.0 under Windows-95/NT, we suggest that you modify yourautoexec.bat �le to include the following commands (assuming that you have installed ADIFORinto directory C:nAdifor):SET PATH=C:\Adifor\Adifor2.0D\bin;%PATH%;SET AD_HOME=C:\Adifor\Adifor2.0DSET AD_LIB=C:\Adifor\Adifor2.0D.libThe Windows 95/NT version of ADIFOR 2.0 also contains the �le examples.zip in the AdiforAdifor2.0D directory. You should be able to unpack these under Windows 95/NT using any modernversion of \zip" on the PC.To link the ADIntrinsics package into an executable under Windows 95/NT, you should use acommand of the form:link *.obj %AD_LIB%\lib\ReqADIntrinsics.obj \%AD_LIB%\lib\ADIntrinsics.lib /out:adnewton.exeSimilarly, to link the SparsLinC package into an executable, uselink *.obj %AD_LIB%\lib\SparsLinC.lib /out:adnewton.exe2.2 Building the LibrariesIt is sometimes necessary to build the ADIntrinsics and SparsLinC libraries from the source codeprovided. The source code for the ADIntrinsics and SparsLinC libraries are stored in subdirectoriesADIntrinsics and SparsLinC of directory ADIFOR2.0D.lib/src.The UNIX csh script Compile.Intrinsics in the ADIntrinsics directory and the csh scriptCompile.SparsLinC in the SparsLinC directory are used to build the libraries. To use these scripts,you will need to de�ne a set of environment variables described in the comments at the top ofeach script, and then execute the script. These scripts build the libraries in the ADIntrinsics andSparsLinC subdirectories, so do not forget to copy them to the AD LIB directory or modify theAD LIB variable accordingly.The Windows batch command �les CompileADIntrinsics.bat and CompileSparsLinC.bat areused to build the libraries under Windows 95/NT. In contrast to the Unix scritps, these scripts copythe compiled libraries into the AD LIB directory.2.3 How the ADIFOR Preprocessor Transforms a ProgramIn this section, we describe the mechanism used by the ADIFOR Preprocessor to transform yourFORTRAN 77 code into code that computes derivatives of dependent variables with respect toindependent variables. The mechanism has three key subtasks: code canonicalization, variablenomination, and code generation. Understanding these three tasks will help you better understandthe derivative code that is generated. We brie
y describe these subtasks in the next sections.8

Revision D ADIFOR 2.0 User's Guide February 16, 19982.3.1 Code CanonicalizationIn the code canonicalization phase, the FORTRAN 77 code is rewritten into a standard form. Forexample, expressions appearing as arguments to function or subroutine calls and function calls ap-pearing within conditional tests are hoisted into assignments to new temporary variables. Statementfunctions are expanded into in-line code. This phase also breaks up long right-hand sides of assign-ment statements into smaller pieces, and rewrites them such that all variables appearing on theright-hand side of an assignment statement are of the same type. The latter transformation isneeded for the code to be able to link in the SparsLinC library (see Appendix C).2.3.2 Variable NominationThe ADIFOR Preprocessor must decide which variables need to have \directional gradient objects"or \gradient objects" associated with them. The preprocessor associates a gradient object withevery variable whose value may depend on the value of a variable considered \independent" withrespect to di�erentiation, and whose value impacts a variable considered \dependent" with respect todi�erentiation. Such a variable is called active. Variables that do not require derivative informationare called passive.The ADIFOR Preprocessor employs interprocedural analysis techniques to determine which vari-ables in your code are active. First, it derives a \local interaction graph" for each subroutine. Thisis a bipartite graph where nodes representing input parameters or variables in common blocks areconnected with nodes representing output parameters or variables in common blocks whose valuesthey in
uence.Next, an interprocedural analysis is performed, which determines, in essence, all possible programpaths through which an independent variable can a�ect a dependent one and identi�es intermediatevariables that are involved along such a path. This analysis involves computing a transitive closureof the whole program graph composed from the local interaction graphs. In the presence of com-mon blocks, equivalences, and arbitrary control structures, this is a nontrivial and computationallyintensive process.2.3.3 Code GenerationAfter active variables have been nominated, derivative code is generated for each assignment state-ment containing an active variable, and gradient objects are allocated. For assignment statementscontaining a FORTRAN 77 intrinsic, a template is generated that will later be instantiated by theADIntrinsics system.2.4 Functionality of ADIFOR 2.0-Generated CodeConsider a function func with an n-vector x as independent and an m-vector y as dependent vari-ables. That is, we havesubroutine func(n,x,m,y)integer n, mreal x(n), y(m)...end 9

Revision D ADIFOR 2.0 User's Guide February 16, 1998The ADIFOR Preprocessor inserts a gradient object g x for x and g y for y (as well as gradientobjects for all other active variables in func) and, in its default con�guration, replaces each assign-ment statement in func involving an active variable with a few assignment statements and a vectorloop from 1 to g p . The interface of the routine generated from func issubroutine g_func(g_p_,n,x,g_x,ldg_x,m,y,g_y,ldg_y)integer n, m, g_p_real x(n), y(m), g_x(ldg_x,n), g_y(ldg_y,m)...endSo, for example, g x(:,i) is the gradient object corresponding to x(i). While somewhat incon-venient, the fact that the gradient dimension is the �rst dimension in the gradient objects cannotbe avoided if we want to be able to deal with assumed-size arrays (e.g., declared as real x(*)).We now illustrate the
exibility inherent in the ADIFOR 2.0-generated code. First, recall thede�nition of the Jacobian of func,J = d yd x = 0B@ @ y1@ x1 : : : @ y1@ xn... ...@ ym@ x1 : : : @ ym@ xn 1CA 2 Rm�n:Second, let S = g xT . We refer to S as the \seed matrix." The ADIFOR-generated code computesg y = (@ y@ x � g xT)T = (J � S)T ,where the number of columns p of S corresponds to the FORTRAN 77 variable g p in the generatedcode. Since most of the work of the derivative code is performed in the gradient loops (which rangefrom 1 to g p), the size of p has a direct impact on the runtime and storage requirements for runningthe derivative code.Properly initializing S, we can then obtain:Full Jacobian: Choosing S as the n � n identity matrix, we compute the transpose of the fullJacobian J . The complexity of the resulting derivative code is O(n) times that of the originalfunction.Jacobian-Vector Product: Choosing S = d 2 Rn, we compute the transpose of the Jacobian-vector product Jd in a time that is a small multiple (typically 2-3) of the function evaluationtime. Since Jd = limh!0 func(x + hd)� func(x)h ;this interface allows us to compute directional derivatives along arbitrary directions.Selecting Derivatives: Choosing S = [e5; : : : ; e10; e13], where ei is the ith canonical unit vector,i.e., an n-vector of all zeros except for an entry of 1 in the ith position, we compute thetranspose of the 5th through 10th, and 13th columns of J .See Appendix A for extensive information on seed matrix initialization. In particular, it explainshow to deal with several dependent and independent variables and how to exploit sparsity in theJacobian J . 10

Revision D ADIFOR 2.0 User's Guide February 16, 1998program mainreal x, yread *, xcall squareroot(x, y)print *, yend Figure 2.3. A Very Simple Program (main.f)subroutine squareroot(x, y)real x, yy = sqrt(x)end Figure 2.4. A Very Simple Subroutine (squareroot.f)2.5 A Quick ExampleWe demonstrate the use of ADIFOR 2.0, using its default con�gurations, with the very simpleprogram shown in Figures 2.3 and 2.4. Procedure squareroot assigns the square root of the valueof variable x to variable y. We now show, with only limited explanation, the sequence of stepsrequired to construct a procedure that computes the derivative of squareroot at a user-speci�edvalue of x. A more detailed description of the ADIFOR 2.0 process and of the various optionsavailable in the ADIFOR Preprocessor is presented in Chapter 4.1. Construct a composition simple.cmp that lists the names of all of the FORTRAN 77 source�les that constitute the example program. Figure 2.5 shows the composition we construct.2. Construct a script �le simple.adf that tells the ADIFOR Preprocessor to di�erentiate theprocedure named squareroot with the independent variable x and the dependent variable y,i.e., to generate code to compute the derivative dydx , where y is computed from x by proceduresquareroot. The script �le is shown in Figure 2.6.3. Create, in g squareroot.f �le in the output files subdirectory, the procedureg squareroot, as shown in Figure 2.7, by executing the commandAdifor2.1 AD SCRIPT=simple.adf.Note that an exception handler (ehufSV) is invoked when sqrt is invoked with a zero argument,as the derivative of p is unde�ned. The ADIFOR Preprocessor also creates a �le calledmain.fsquareroot.f Figure 2.5. Script File (simple.cmp) for Simple Example11

Revision D ADIFOR 2.0 User's Guide February 16, 1998AD_TOP = squarerootAD_PMAX = 1AD_IVARS = xAD_DVARS = yAD_PROG = simple.cmpFigure 2.6. Script File (simple.adf) for Simple Example
subroutine g_squareroot(g_p_, x, g_x, ldg_x, y, g_y, ldg_y)real x, yinteger g_pmax_parameter (g_pmax_ = 1)integer g_i_, g_p_, ldg_y, ldg_xreal r1_p, r2_v, g_y(ldg_y), g_x(ldg_x)integer g_ehfiddata g_ehfid /0/if (g_p_ .gt. g_pmax_) thenprint *, 'Parameter g_p_ is greater than g_pmax_'stopendifr2_v = sqrt(x)if (x .gt. 0.0e0) thenr1_p = 1.0e0 / (2.0e0 * r2_v)elsecall ehufSV (9, x, r2_v, r1_p, 'g_squareroot.f', 37)endifdo g_i_ = 1, g_p_g_y(g_i_) = r1_p * g_x(g_i_)enddoy = r2_vC--------end Figure 2.7. Derivative Code (g squareroot.f)12

Revision D ADIFOR 2.0 User's Guide February 16, 1998program driverreal x,yreal g_x(1), g_y(1)read *, xg_x(1) = 1.0call g_squareroot(1, x, g_x, 1, y, g_y, 1)call ehrptprint *, yprint *, g_y(1)endFigure 2.8. Derivative Code Driver (driver.f) for Simple Examplef77 -c driver.ff77 -c output_files/g_squareroot.ff77 -o driver driver.o g_squareroot.o \$AD_LIB/lib/ReqADIntrinsics-$AD_OS.o \$AD_LIB/lib/libADIntrinsics-$AD_OS.aFigure 2.9. Commands to Compile and Link Derivative Code Executableg squareroot.A in the output files subdirectory, which di�ers from g squareroot.f onlyinasmuch as the code for the intrinsics exception handling has not been instantiated yet.Usually, there is no need for the user to look at the .A �les. Appendix B describes this issuein more detail.4. Create the derivative code driver driver.f as shown in Figure 2.8. The driver invokesg squareroot with a user-speci�ed value of x to compute the value of y and dydx . The callto the error handler reporting routine ehrpt produces a summary report on FORTRAN 77intrinsics that were invoked at points of nondi�erentiability (see Appendix B for details).5. Compile and link driver.f, g squareroot.f and the ADIntrinsics exception handling librariesusing the commands shown in Figure 2.9 to build the desired derivative computing executable52.6 A RoadmapThe rest of this manual is organized as follows:Chapter 3 describes how to set up the inputs to the ADIFOR Preprocessor to enable it to generatederivative code. The input to the preprocessor takes the form of option bindings that arespeci�ed on the command line or in startup �les, and compositions, lists of FORTRAN 77 �lesthat constitute the program that contains the function to be di�erentiated.5If you should incur problems linking on a SPARC platform, you may not have the latest version of the Sun Fortrancompiler installed. You should recompile the libraries from the source we provide as described in section 2.2.13

Revision D ADIFOR 2.0 User's Guide February 16, 1998Chapter 4 is devoted to a step-by-step description of how to process a code by using the ADIFORPreprocessor and an explanation of how ADIFOR 2.0-generated code should be incorporatedinto a program.Chapter 5 documents the known de�ciencies in the ADIFOR Preprocessor's support for FOR-TRAN 77. For each de�ciency, a workaround is presented.Chapter 6 explains how to use ADIFOR 2.0 in cases where the \function to be di�erentiated" doesnot have the form expected by the ADIFOR Preprocessor.Chapter 7 covers some of the pitfalls associated with automatic di�erentiation of FORTRAN 77programs.Chapter 8 provides a list of problems that users of ADIFOR 2.0 may encounter.Chapter 9 de�nes all of the options to the ADIFOR Preprocessor and presents their default values.Appendix A describes seed matrix initialization, a powerful concept that provides users of ADI-FOR 2.0 signi�cant control over the computation performed by the generated derivative code,and allows one to compute arbitrary directional derivatives.Appendix B describes the ADIntrinsics template expander and library. ADIntrinsics providesuser-customizable handling of exceptions within ADIFOR 2.0.Appendix C describes the SparsLinC library, which provides support for sparse derivative com-putations within ADIFOR 2.0.

14

Chapter 3Specifying Input for the ADIFORPreprocessorIn order to apply the ADIFOR Preprocessor to a set of FORTRAN 77 procedures to generatederivative code, it is necessary to tell it several key pieces of information:1. The names of the �les containing the FORTRAN 77 source code to be processed. The names ofthe procedures are provided to the ADIFOR Preprocessor in a �le referred to as a composition.The preprocessor must be told the name of the �le containing the composition.2. The name of the \top-level routine," that routine whose invocation causes the function to beevaluated. The ADIFOR Preprocessor determines the names of all of the routines that maybe transitively invoked by the top routine by examining the source code.3. The names of the independent and dependent variables. The ADIFOR 2.0-generated codecomputes the derivatives of the dependent variables with respect to the independent ones.4. Values of numerous other options to the ADIFOR Preprocessor that control how vector oper-ations in the ADIFOR-generated code are implemented, what level of exception reporting fornondi�erentiable FORTRAN 77 intrinsics is performed, and to what extent the code shouldbe customized for particular execution environments.The names of the composition �le, the top routine, and the independent and dependent variables,and values for the various options, are provided to the ADIFOR Preprocessor in the form of bindings,as described in the next section. Section 3.2 describes the format of compositions. Section 3.3describes source �les that are acceptable for processing with the preprocessor and describes somecommon deviations from the FORTRAN 77 standard that cause problems.3.1 Option Processing in the ADIFOR PreprocessorThis section describes the ADIFOR Preprocessor's option-processing mechanism. Information isprovided to the preprocessor as bindings. Bindings have the formOPTION = VALUE,or OPTION = VALUE1; : : : ; VALUEN.15

Revision D ADIFOR 2.0 User's Guide February 16, 1998AD_PROG = rosenbrock.cmpAD_TOP = funcAD_IVARS = xAD_DVARS = yAD_PMAX = 2 # x has 2 elementsAD_OUTPUT_DIR = .Figure 3.1. Example Script File (rosenbrock.adf)The second form is used in de�ning list-valued options. Bindings may be provided as commandline arguments and, additionally, as lines in a \script" �le. Bindings speci�ed as command linearguments to the preprocessor may contain whitespace, consisting of a sequence of spaces and tabs,if they are quoted.A script �le is a sequence of lines. Blank lines are ignored. Each nonblank line contains a bindinghaving either of the two forms shown above. All characters on a line after the comment character`#' are ignored. There is no formal requirement for the name of the script �le, but our informalconvention is to use the .adf extension. Bindings de�ned in script �les may always use whitespaceliberally.All preprocessor options begin with an \AD " pre�x. Values of options are typically the namesof �les (AD PROG), the name of a procedure in the program (AD TOP), lists of names of variables in theprogram (AD IVARS and AD DVARS), integers (AD PMAX), Boolean values (AD DUMP CALLGRAPH), andswitches (AD FLAVOR and AD EXCEPTION FLAVOR). For Boolean-valued options, FALSE, false and 0are considered to be equivalent, as are TRUE, true and 1. Section 9 documents all of the ADIFORPreprocessor options.The ADIFOR Preprocessor processes bindings on its command line in the order that they arelisted. As bindings are processed, new bindings always override values de�ned by a previous bindingfor the same option. The option AD SCRIPT is used to specify the name of a script �le. Whenevera binding for AD SCRIPT is encountered, the �le identi�ed as the value of AD SCRIPT is opened, andthe bindings in the �le processed in order.Relative path names speci�ed as command line arguments to the ADIFOR Preprocessor aretaken as relative to the directory in which the preprocessor was executed. Relative path namesspeci�ed in bindings speci�ed in a script �le are taken as relative to the directory containing thescript �le.Now consider a sequence of examples using the script �le rosenbrock.adf shown in Figure 3.1.� Example 1Adifor2.1 AD_PROG=rosenbrock.cmp AD_TOP=func \AD_DVARS=y AD_IVARS=x AD_PMAX=2 AD_OUTPUT_DIR=.This command de�nes AD PROG to be the �lename \rosenbrock.cmp", AD TOP to be name ofthe procedure \func", AD IVARS to be the (single item) list \x", AD DVARS to be the (singleitem) list \y", and AD PMAX to be the integer value 2. ADIFOR will place derivative �les inthe current directory (which in UNIX is usually denoted by a dot).� Example 2Adifor2.1 AD_SCRIPT=rosenbrock.adf 16

Revision D ADIFOR 2.0 User's Guide February 16, 1998This command de�nes exactly the same values for the same set of options.� Example 3Adifor2.1 AD_SCRIPT=rosenbrock.adf AD_PMAX=5This command de�nes the exactly the same set of values for the same set of options, exceptfor option AD PMAX whose value is overridden with the integer value 5.3.2 CompositionsCompositions list the names of all of the source �les to be processed by the ADIFOR Preprocessor.A composition is a list of pathnames to source �les with zero, one, or more pathnames per line. Allcharacters on a line after the comment character `#' are ignored. Multiple pathnames on the sameline are delimited by commas and whitespace, where whitespace is any sequence of spaces or tabs.Relative pathnames are taken to be relative to the directory containing the composition.The name of the composition must end with a \.cmp" extension. The name of each source �lemust end with a \.f" su�x. Each source �le listed in a composition may contain the source for oneor more FORTRAN 77 routines.A composition must be top-complete and consistent. To be top-complete, every routine that maypossibly by called as a result of invoking the top routine must be included in a source �le listed inthe composition. To be consistent, all procedure interfaces of routines in the listed source �les mustagree as to the number of arguments and the types of the arguments being passed. Many programsin use today have inconsistent interfaces. Fixing the inconsistencies may take signi�cant e�ort, butis usually an enlightening process, resulting in a considerably more portable program.In addition to being top-complete and consistent, your program must not be recursive. TheADIFOR Preprocessor will complain if it encounters a recursive program and will print out thenames of each of the routines that are recursive. Recursion in FORTRAN 77 programs is usually,but not always, an indication of some underlying error.When the ADIFOR Preprocessor generates derivative code for a �le somedir/foo.f, it places thegenerated source code into a �le g foo.f in the subdirectory identi�ed by the option AD OUTPUT DIRof the directory in which the preprocessor was executed. Therefore, no two pathnames listed in acomposition may have the same basename, where the basename of somedir/foo.f is taken to befoo.f. The preprocessor will complain if multiple �les in your program have the same basename.3.3 Acceptable FORTRAN 77 Source FilesThe ADIFOR Preprocessor recognizes standard FORTRAN 77 syntax extended with DO-ENDDO,IMPLICIT NONE, DOUBLE COMPLEX, and INCLUDE. Variable names need not be limited to six charac-ters. If a program uses non-standard extensions, the preprocessor will probably not accept them. Inparticular, the preprocessor will not accept nonstandard intrinsic or type conversion functions, suchas arsin(), arcos(), and dfloat(). These should be replaced with standard functions like asin(),acos(), and dble(). In any case, for portability reasons, it is probably a good idea anyway to makesure that all code is standard-conforming. Also not accepted are system calls such as etime(). Inmost cases, such calls do not a�ect function evaluation and may be removed, commented out, orreplaced with a syntactically correct but nonfunctional subroutine, prior to processing.We strongly urge you to make sure that all of the �les in your composition compile correctlyand adhere to the FORTRAN 77 standard before submitting them to the ADIFOR Preprocessor for17

Revision D ADIFOR 2.0 User's Guide February 16, 1998processing. ADIFOR will complain about syntax errors, but its error messages are likely to be morecryptic. The preprocessor will also complain about problems in your source code that the typicalFORTRAN 77 compiler will fail to identify, speci�cally, inconsistencies between callsites and theprocedures they invoke, and inconsistencies between common block declarations across procedures.For example, in the following program fragment an integer*4 array of length 3 is passed to asubroutine whose arguments were declared to be of type character*12.program maininteger*4 x(3)...call func(x)...endsubroutine func(c)character*12 c...endThe following program fragment declares common blocks to be of di�erent length in di�erentprogram units.program maincall func1call func2...endsubroutine func1common /cmn/ x(10)...endsubroutine func2common /cmn/ x(20)...endThe FORTRAN 77 language de�nition requires that each common block, other than the blankcommon block //, must have the same size in each procedure in which it is declared. Anotherviolation of the FORTRAN 77 standard in this program fragment is the fact that the common blockis not declared in the main program from which both subroutines are called. While this is usuallynot an issue, because of the nature in which global variables are implemented, unexpected thingscould happen if a compiler exploited the liberty of the standard.18

Chapter 4A Tutorial ExampleWe demonstrate the use of ADIFOR 2.0 using the simple program shown in Figures 4.1 and 4.2.It shows a simple Newton iteration being used to minimize Rosenbrock's function. The routinesDLANGE and DGESV from the LAPACK package [1, 2] are used to compute the norm of y and to solvethe linear system dydxs = �y. Our goal will be to replace the subroutine fprime, which approximatesdydx by using central divided di�erences, with an ADIFOR-generated derivative code. This completeexample is provided in $AD HOME/examples/newton.Rosenbrock's function is used only for illustrative purposes. It is not indicative of the power ofADIFOR, which has processed programs up to 150,000 lines in length, albeit using more than 200Mb of virtual memory in the process.Step 1: Create a Composition FileFigure 4.3 presents composition rosenbrock.cmp for the example, assuming that newton, func,and fprime have been stored into the �les newton.f, func.f, and fprime.f, and that code fordlange and dgesv and all of the routines that they invoke has been located.Since func does not invoke any other functions or subroutines, instead of tracking down all ofthe source code for dlange and dgesv and the routines they invoke, we are free to create a veryshort composition, rosenbrock-func-only.cmp as shown in Figure 4.4, that contains only func.f.Step 2: Create an ADIFOR Script FileTo compute a Jacobian for the Newton example, you must provide ADIFOR with values for thefollowing options:AD PROG: The value of AD PROG is the name of the \composition" to be processed. Thename of the composition is communicated to the ADIFOR Preprocessor by specifyingAD PROG=composition-name on the command line.In this example, AD PROG will be set to rosenbrock.cmp.AD TOP: The value of AD TOP is the name of the procedure that contains the function to be di�er-entiated. That procedure may invoke other procedures to an arbitrary nesting level. We referto the procedure that is invoked to evaluate the function as the top-level routine or TOP.The name of the procedure TOP is communicated to the ADIFOR Preprocessor by using thecommand line option AD TOP=procedure-name.19

Revision D ADIFOR 2.0 User's Guide February 16, 1998PROGRAM NEWTONDOUBLE PRECISION DUMMY,TOL, DLANGEINTEGER INFO, N, IPIV(2)DOUBLE PRECISION X(2),Y(2),YPRIME(2,2)EXTERNAL DGESV, FPRIME, FUNC, DLANGETOL = 1.0E-12WRITE (*,FMT=*) 'Input 2-element starting vector 'READ (*,FMT=*) X(1),X(2)CALL FUNC(X,Y)10 IF (DLANGE('1',2,1,Y,2,DUMMY).LT.TOL) GO TO 20CALL FPRIME(X,Y,YPRIME)Y(1) = -Y(1)Y(2) = -Y(2)CALL DGESV(2,1,YPRIME,2,IPIV,Y,2,INFO)X(1) = X(1) + Y(1)X(2) = X(2) + Y(2)CALL FUNC(X,Y)WRITE (*,FMT=1000) 'Current Function Value:',Y(1),Y(2)GO TO 1020 CONTINUEWRITE (*,FMT=1000) 'Minimum is approximately:',X(1),X(2)1000 FORMAT (a,1x,2 (d15.8,2x))END Figure 4.1. A Simple Implementation of Newton's MethodIn Section 6 we will describe how to handle codes where the function to be di�erentiated doesnot conveniently correspond to a procedure invocation.In this example, the function to be di�erentiated corresponds to the subroutine func, so wewill set AD TOP to be func.AD IVARS and AD DVARS: The values of AD IVARS and AD DVARS are comma-separated lists of in-dependent (input) and dependent (output) variables of TOP, respectively. AD OVARS is asynonym for AD DVARS. A variable may be designated as independent, dependent, or both (ifit is overwritten during the execution of AD TOP).There is no way to nominate individual elements of a FORTRAN 77 array as being independentand dependent, although it is possible to specify at run time that only derivatives with respectto a particular set of elements should be computed (see Appendix A). Variables in the AD IVARSand AD DVARS lists must have type real, double precision, complex or double complex. Theindependent and dependent variables must be formal parameters of TOP, or global variablesdeclared within TOP. Again, in Section 6 we will describe how to handle codes in which thevariables that logically correspond to the independent and dependent variables are neitherformal parameters nor global variables in TOP.In this example, in order to compute the derivatives of y with respect to x, we will set AD DVARSto y and AD IVARS to x.AD PMAX: The value of AD PMAX is the upper bound on the number of independent variables forwhich derivatives can be computed simultaneously. It is necessary to specify this upperbound because FORTRAN 77 does not provide a standard mechanism for dynamic mem-ory allocation. It is introduced as the �rst dimension of each of the gradient objects declared20

Revision D ADIFOR 2.0 User's Guide February 16, 1998SUBROUTINE FUNC(X,Y)DOUBLE PRECISION X(2),Y(2)Y(1) = 10.0* (X(2)-X(1)*X(1))Y(2) = 1.0 - X(1)RETURNENDSUBROUTINE FPRIME(X,Y,YPRIME)cc approximates derivatives of Func by central differences.cC .. Array Arguments ..DOUBLE PRECISION X(2),Y(2),YPRIME(2,2)C .. Local Scalars ..DOUBLE PRECISION HC .. Local Arrays ..DOUBLE PRECISION XH(2),YM(2),YP(2)C .. External Subroutines ..EXTERNAL FUNCC ..IF (X(1).EQ.0.0) THENH = 1.0e-7ELSEH = X(1)*1.0e-7END IFXH(1) = X(1) - HXH(2) = X(2)CALL FUNC(XH,YM)XH(1) = X(1) + HXH(2) = X(2)CALL FUNC(XH,YP)YPRIME(1,1) = (YP(1)-YM(1))/ (2.0*H)YPRIME(2,1) = (YP(2)-YM(2))/ (2.0*H)IF (X(2).EQ.0.0) THENH = 1.0e-7ELSEH = X(2)*1.0e-7END IFXH(1) = X(1)XH(2) = X(2) - HCALL FUNC(XH,YM)XH(1) = X(1)XH(2) = X(2) + HCALL FUNC(XH,YP)YPRIME(1,2) = (YP(1)-YM(1))/ (2.0*H)YPRIME(2,2) = (YP(2)-YM(2))/ (2.0*H)RETURNENDFigure 4.2. Rosenbrock's Function and Divided-Di�erence Approximations of the Jacobian21

Revision D ADIFOR 2.0 User's Guide February 16, 1998newton.ffunc.ffprime.f# LAPACK routinesdlange.f dgesv.f lsame.f dlassq.fxerbla.f dgetrf.f dgetrs.f ilaenv.fdgetf2.f dlaswp.f# BLAS routinesdtrsm.f dgemm.f idamax.f dswap.f dscal.f dger.fFigure 4.3. Composition for Newton's Method Example (rosenbrock.cmp)func.fFigure 4.4. Composition for Newton's Method Example (rosenbrock-func-only.cmp)by the ADIFOR Preprocessor. The value of AD PMAX is communicated by using the optionAD PMAX=integer-value.In the Newton example, we choose to set AD PMAX to 2, since x is an array with 2 elementsand we would like to compute derivatives with respect to x(1) and x(2). In general, in theinvocation of the routines generated by the ADIFOR Preprocessor, we can use any value ofg p that is not larger than AD PMAX. This issue is explained in more depth in Appendix A. Wealso note that if subroutines using the same common blocks are processed separately with thepreprocessor, it is essential to use the same value of AD PMAX in both cases, as otherwise thegradient object common blocks are declared inconsistently.AD OUTPUT DIR: The value of AD OUTPUT DIR speci�es the name of the directory in which the ADI-FOR Preprocessor places the generated derivative code.In the Newton example, we have chosen to set AD OUTPUT DIR to be \." so that the generatedcode will be placed back into the directory in which the ADIFOR Preprocessor is executed.After determining the values for each of these options, create an ADIFOR script �le containingthose values as shown in Figure 4.5.AD_PROG = rosenbrock.cmpAD_TOP = funcAD_IVARS = xAD_DVARS = yAD_PMAX = 2 # x has 2 elementsAD_OUTPUT_DIR = .Figure 4.5. Script File for Newton's Method Example (rosenbrock.adf)22

Revision D ADIFOR 2.0 User's Guide February 16, 1998subroutine g_func(g_p_, x, g_x, ldg_x, y, g_y, ldg_y)double precision x(2), y(2)C integer g_pmax_C parameter (g_pmax_ = 2)integer g_i_, g_p_, ldg_y, ldg_xdouble precision d5_b, d2_b, g_y(ldg_y, 2), g_x(ldg_x, 2)intrinsic dbleCC if (g_pmax_ .gt. g_p_) thenprint *, 'Parameter g_pmax_ is greater than g_p_'stopendifd2_b = dble(10.0)d5_b = -d2_b * x(1) + (-d2_b) * x(1)do g_i_ = 1, g_p_g_y(g_i_, 1) = d5_b * g_x(g_i_, 1) + d2_b * g_x(g_i_, 2)enddoy(1) = dble(10.0) * (x(2) - x(1) * x(1))C--------do g_i_ = 1, g_p_g_y(g_i_, 2) = -g_x(g_i_, 1)enddoy(2) = 1.0d0 - x(1)C--------returnend Figure 4.6. The ADIFOR-generated Code for Subroutine funcStep 3: Invoke the ADIFOR PreprocessorWhen executed with the command:Adifor2.1 AD_SCRIPT=rosenbrock.adfthe ADIFOR Preprocessor creates the subdirectory AD cache, which contains internal informationcreated by the preprocessor. Source �les generated by the preprocessor are placed in the workingdirectory. If AD OUTPUT DIR had been unspeci�ed, then the default value of output files wouldhave caused the generated �les to be placed into the subdirectory output files. The preprocessoremits the augmented code for procedure func into the �le g func.f, whose source is shown inFigure 4.6. Note that usually an assignment statement in the original code has been replaced bya few assignment statements and a vector loop of length g p . When g p is moderate, or thegradient objects always dense vectors, this is an e�cient representation of this vector operation.The SparsLinC library (see Appendix C) provides an alternative approach for expressing this vectoroperation when the gradient objects are mostly sparse vectors.Exactly the same processing process will be performed by executing the command:Adifor2.1 AD_PROG=rosenbrock.cmp AD_TOP=func \AD_DVARS=y AD_IVARS=x AD_PMAX=2 AD_OUTPUT_DIR=.23

Revision D ADIFOR 2.0 User's Guide February 16, 1998but without the need to create rosenbrock.adf.Step 4: Incorporate ADIFOR-generated SubroutineIncorporating the ADIFOR-generated subroutine into a program to compute derivatives requiresthe following three steps:1. Allocate the gradient objects in the calling module. The user should carefully check theADIFOR-generated code to determine which variables in common blocks and which argumentsto the top-level routine have been found to be active. For our small example, the declarationsare double precision g_x(PMAX,2), g_y(PMAX,2)where PMAX is an integer constant (FORTRAN 77 PARAMETER) whose value is greater than orequal to the value of AD PMAX. In this case, we choose to set PMAX to 2.2. Initialize the seed matrix. In order to compute the Jacobian of the function de�ned byfunc, the gradient object for the independent variable x should be initialized to a 2�2 identitymatrix. This initialization amounts to saying that the derivative of each independent variablewith respect to itself is 1:0.3. Call the ADIFOR-generated top-level subroutine. The ADIFOR-generated subroutinecomputes both the function value and the value of the derivatives. So, in our example, we canreplace the calls to func and fprime by a single call to g func.In the call to the ADIFOR-generated top-level subroutine, the parameter g p should be setequal to the length of the gradient objects, and all of the ldg variables should be set equalto the leading dimension with which the corresponding gradient objects (g variables) wereactually declared. Thus, for our simple example, the call would look likecall g_func(2, x, g_x, PMAX, y, g_y, PMAX)4. Call the intrinsics error reporting routine. ehrpt provides a summary report on FOR-TRAN 77 intrinsics that have been called at points where they are not di�erentiable. Seeappendix B for details.For our example, the new driver is shown in Figure 4.7.1 As mentioned above, since ADIFOR-generated derivative code computes the transpose of the Jacobian, we must retranspose g y beforepassing it to dgesv. Together with the subroutine func and the subroutine shown in Figure 4.6, thenew program replaces the program shown in Figure 4.1.Step 5: Compile and LinkAfter a suitable driver has been developed, the ADIFOR-generated code, the driver, and any othermodules necessary to form a complete program should be compiled. Under UNIX, the necessarycommands to compile and link an executable typically look like the following, where f77 is theFortran 77 compiler:1Some comments were removed to �t the program on one page.24

Revision D ADIFOR 2.0 User's Guide February 16, 1998PROGRAM ADNEWTONC .. Parameters ..INTEGER PMAXPARAMETER (PMAX=2)C .. Local Scalars ..DOUBLE PRECISION DUMMY,TEMP,TOLINTEGER INFOC .. Local Arrays ..DOUBLE PRECISION G_X(PMAX,2),G_Y(PMAX,2),X(2),Y(2)INTEGER IPIV(2)C .. External Functions ..DOUBLE PRECISION DLANGEEXTERNAL DLANGEC ..TOL = 1.0E-12WRITE (*,FMT=*) 'Input 2-element starting vector 'READ (*,FMT=*) X(1),X(2)CALL FUNC(X,Y)10 IF (DLANGE('1',2,1,Y,2,DUMMY).LT.TOL) GO TO 20cc compute function and Jacobian at current iteratec G_X(1,1) = 1.0G_X(1,2) = 0.0G_X(2,1) = 0.0G_X(2,2) = 1.0CALL G_FUNC(2,X,G_X,PMAX,Y,G_Y,PMAX)cc transpose g_yc TEMP = G_Y(2,1)G_Y(2,1) = G_Y(1,2)G_Y(1,2) = TEMPcc solve J * s = - f and update x = x + sc Y(1) = -Y(1)Y(2) = -Y(2)CALL DGESV(2,1,G_Y,PMAX,IPIV,Y,2,INFO)X(1) = X(1) + Y(1)X(2) = X(2) + Y(2)cc compute new function valuec CALL FUNC(X,Y)WRITE (*,FMT=1000) 'Current Function Value:',Y(1),Y(2)GO TO 1020 CONTINUEWRITE (*,FMT=1000) 'Root is approximately:',X(1),X(2)CALL EHRPT1000 FORMAT (a,1x,2 (d15.8,2x))ENDFigure 4.7. The Driver for the Newton Program Using ADIFOR-generated Code25

Revision D ADIFOR 2.0 User's Guide February 16, 1998f77 -c adnewton.ff77 -c g_func.ff77 -c dlange.ff77 -c dgesv.ff77 -cf77 -o adnewton adnewton.o g_func.o dlange.o dgesv.o ... \$AD_LIB/lib/ReqADIntrinsics-$AD_OS.o \$AD_LIB/lib/libADIntrinsics-$AD_OS.awhere the module ReqADIntrinsics-$AD OS.o and archive libADIntrinsics-$AD OS.a implementthe ADIFOR 2.0 exception handling packages. If the SparsLinC package is required, then it will benecessary to link in the archive libSparsLinC-$AD OS.a, as well.Under Windows 95/NT, the following commands should compile and link an executable, assum-ing that fl32 is the Fortran 77 compiler:fl32 /c adnewton.f g_func.f \fl32 /c dgemm.f dger.f dgesv.f dgetf2.f \dgetrf.f dgetrs.f dlange.f dlassq.f \dlaswp.f dscal.f dswap.f dtrsm.f \fprime.f xerbla.f func.f idamax.f \ilaenv.f lsame.flink *.obj %AD_LIB%\lib\ReqADIntrinsics.obj \%AD_LIB%\lib\ADIntrinsics.lib /out:adnewton.exewhere the module ReqADIntrinsics.obj and archive ADIntrinsics.lib implement the Win-dows 95/NT version of the exception handler package. If the SparsLinC package is required underWindows 95/NT, then it will be necessary to link in the archive SparsLinC.lib.See Appendix B for more information on the ADIntrinsics template expander and library. SeeSection 8 if you encounter linking problems on a SPARC platform.
26

Chapter 5Known De�cienciesIn this section we describe several de�ciencies in ADIFOR 2.0's support of full FORTRAN 77. Ineach case, it is relatively easy to \work around" each of these de�ciencies. The ADIFOR Preprocessor
ags each of these as being \not supported" any time that they are encountered.5.1 Intrinsics Passed as Procedure ParametersThe ADIFOR Preprocessor prohibits intrinsics, such as DSIN and DCOS, from being passed as pro-cedure parameters as shown in the standard-conforming FORTRAN 77 code:subroutine bad(x0, x1)double precision x0, x1external integrateintrinsic dsincall integrate(dsin,x0, x1)endThis de�ciency can easily be circumvented by introducing a wrapper function for each intrinsic,which is to be passed as a procedure parameter, and by then passing that wrapper routine as theprocedure parameter instead of the intrinsic. For example, the following code performs the samecomputation as the code shown above by using a wrapper function MYDSIN for intrinsic DSIN:subroutine good(x0, x1)double precision x0, x1external integrate, mydsincall integrate(mydsin, x0, x1)endfunction mydsin(x)double precision xintrinsic dsinmydsin = dsin(x)end 27

Revision D ADIFOR 2.0 User's Guide February 16, 19985.2 Intrinsics Overridden by External FunctionsThe ADIFOR Preprocessor prohibits external routines from overriding intrinsic functions as shownin the standard-conforming FORTRAN 77 code:subroutine bad(x,y)external cosdouble precision x, y, cosc call user defined function with name "cos"y = cos(x0)endfunction cos(x)...endAgain, this de�ciency can easily be circumvented by renaming the external function so that itdoes not collide with the name of any intrinsic function, as follows:subroutine good(x,y)external mycosdouble precision x, y, mycosy = mycos(x0)endfunction mycos(x)...end5.3 I/O Statements That Contain Function InvocationsADIFOR Preprocessor prohibits I/O statements, i.e., READ, WRITE, and PRINT, from invoking func-tions and statement functions as shown in the standard-conforming FORTRAN 77 code:subroutine bad(y)double precision y(10)integer fexternal fread (3, 50) x, y(f(x))50 format (...)endModifying code that invokes functions from within I/O statements is very easy, but may changethe meaning of the I/O statements in ways that require other I/O statements in the program to bechanged as well. For example, the function call in the READ statement above can be removed froman I/O statement by rewriting the code as follows:28

Revision D ADIFOR 2.0 User's Guide February 16, 1998subroutine okay(y)double precision y(10)integer f, iexternal fread (3, 50) xi = f(x)read (3, 51) y(i)50 format (...)51 format (...)endNotice, however, that in the original code, the two elements that are read come from the sameinput �le record, while in the new code, the two elements come from di�erent records.

29

Chapter 6Advanced TopicsNormally, the ADIFOR Preprocessor assumes that independent variables are passed into the top-level routine TOP, and dependent variables are passed back out to the procedure that invokedTOP.Furthermore, it is assumed that the values of the independent variables will be assigned before TOPis invoked. \Passing" is either via procedure parameters or via global variables in common blocks.So, the normal ADIFOR 2.0 interface cannot compute derivatives of the following:� variables that are declared and computed in the main program,� variables that are declared locally in the top-level routine or variables declared in a routinetransitively invoked by the top-level routine,� variables that are assigned values during evaluation of AD TOP and then overwritten, and� variables that are initialized by a READ statement.This section describes some workarounds for these situations.6.1 Computation Is Not Encapsulated in ProcedureConsider the following example:program mainread(*,*) x(1)t= result of some computation involving x(1)read(*,*) x(2)y= result of some computation involving x(1) and x(2)endTo extract a procedure suitable for using ADIFOR 2.0 to generate code for @y@x(1) and @y@x(2) , youshould rearrange the computation so that both x(1) and x(2) are initialized �rst, then invoke anew procedure that computes y from x(1) and x(2) and then returns the value of y as follows:30

Revision D ADIFOR 2.0 User's Guide February 16, 1998program mainread(*,*) x(1)read(*,*) x(2)y = compute(x(1), x(2))endfunction compute(x1, x2)y = result of some computation involving x1 and x2end6.2 Variables Other Than Parameters and Globals in AD TOPConsider the following program:program maincall foo(x,y)endsubroutine foo(x,y)a = x+1y = x*xb = x/2endIf we want the derivative of y with respect to variable x, the code is appropriate as is. But, if wewant the derivatives of� y with respect to variable a,� b with respect to variable x, or� b with respect to variable a,we run into a problem. Speci�cally, we cannot nominate a local variable of subroutine foo asdependent or independent, since it is not visible outside of foo. To avoid this problem, we make all\interesting" variables in subroutine foo visible through parameter passing or common blocks. Forexample, program MAIN could be rearranged to:program maincall foo(x,y,a,b)endsubroutine foo(x,y,a,b)a = x+1y = x*xb = x/2endor, alternatively, 31

Revision D ADIFOR 2.0 User's Guide February 16, 1998program maincall foo(x,y)endsubroutine foo(x,y)common /globals/a,ba = x+1y = x*xb = x/2endAn alternative to this workaround is the buddy system discussed below.6.3 Variables That Are OverwrittenConsider the following program:program maincall foo(x,y)endsubroutine foo(x,y)10 y = x*x20 y = y * xendSay we want to compute the derivatives with respect to x of variable y at both the statementwith label 10 and the statement with label 20. Nominating variable y as the dependent variable,will generate code that computes only the derivative of y at the statement with label 20.In order to avoid this problem, we can expand y into an array and modify the code to the codethat follows: program mainreal y(2)call foo(x,y)endsubroutine foo(x,y)real y(2)10 y(1) = x * x20 y(2) = y(1) * xend6.4 Variables Involved in I/O StatementsSometimes the values of independent variables are read or computed within the active subtree (thatis, within the subtree of procedures below the top-level subroutine). This procedure does not posea problem, as long as the independent variables are parameters or global variables in AD TOP, andI/O functions are handled properly. Unfortunately, we cannot automate the proper handling of I/O32

Revision D ADIFOR 2.0 User's Guide February 16, 1998functions involving active variables because, in general, we have no way to trace the
ow of datavalues that are read or written to �les.Without this information, we have no way of knowing whether the gradient object for a variablethat is involved in a READ statement should be set to 0.0 or initialized by reading in derivative valuesfrom the �le system. Similarly, we have no way of knowing whether we should write the values ofthe gradient objects for variables involved in a WRITE statement to the �le system. Therefore, theADIFOR Preprocessor currently just echoes I/O statements like READ and WRITE without introducingcode to initialize or propagate the derivatives of variables involved in the I/O statement. Because ofthe problems that this approach may cause, the preprocessor generates a warning message wheneverit processes a source �le that contains an I/O statement involving an active variable. The warningmessage is printed out to stderr as the code is processed, and embedded as a comment just beforethe suspect I/O statement.Fortunately, in most of the cases that we have encountered, it is possible to use a scheme basedon \buddy variables" to modify the original function code in a manner that makes it possible for theADIFOR Preprocessor to generate correct derivative code in the presence of I/O of active variables.This workaround was originally suggested by Andreas Griewank.As an example, consider trying to process the following code to compute the derivative of e atthe statement with label 20 with respect to h at the statement with label 10:program mainreal lambdaread *, lambdacall foo(lambda)endsubroutine foo(lambda)real lambda, e, h10 read *, he = h * lambda20 write *, eendOne approach to modifying this code would be to extract the READ statements in foo into main,and to convert variables e and h into parameters to foo. As an alternative, consider modifying theoriginal code into the following code:
33

Revision D ADIFOR 2.0 User's Guide February 16, 1998program mainreal lambda, hbuddy, ebuddycommon /buddyvar/ hbuddy, ebuddyread *, lambdacall foo(lambda)endsubroutine foo(lambda)real lambda, e, h, hbuddy, ebuddycommon /buddyvar/ hbuddy, ebuddyh = 010 read *, hh = h + hbuddye = h * lambdaebuddy = e20 write *, eendand then nominating hbuddy as the independent variable, and ebuddy as the dependent variable.Initialization of hbuddy to 0:0 and g hbuddy to 1:0 in the derivative driver for g foo then results ing ebuddy being assigned the derivative of e with respect to h. Notice that nominating hbuddy andebuddy as the independent and dependent variables forces variables h and e to be active. Since his assigned the value 0:0 prior to the read statement, g h will be assigned the value 0:0. Therefore,since g hbuddy is initialized to 1:0, g h will be assigned the value 1:0 just after the READ, as requiredto compute the derivative of e with respect to h. Finally, the value of the computed derivative canbe returned via the global variable g ebuddy.The scheme that we just described has three key components. The �rst component forces vari-ables in I/O statements that depend on the independent variables and that are used to computedependent variables to be identi�ed as active variables. The second component forces the derivativesof variables appearing in READ statements to be initialized properly. Finally, the third componentmakes it possible to retrieve the values of the derivatives for variables that appear in WRITE state-ments.
34

Chapter 7Pitfalls of Di�erentiatingFORTRAN 77Some operations that are allowed in FORTRAN 77 do not have any (or, at least not the expected)mathematical meaning with respect to di�erentiation. Among these are:� Derivatives of integers and charactersThe derivative of an integer or character is meaningless. As a consequence, if an integer isassigned a value from an active variable the integer variable does not become active. Thus,the gradient objects of any variables that depend on these integers may not have the expectedvalues. The same holds true for characters.� Equivalencing of variables of di�erent typesThe process of equivalencing variables that have di�erent types such as in the following codefragment real r(10)double precision d(5)complex z(5)equivalence(r,d)equivalence(r,z)has no real mathematical meaning. Thus, if a program performs this operation, ADIFOR 2.0will generate the corresponding equivalences for the gradient objects of the equivalencedvariables, but they (and any gradient objects which depend on them) may have meaninglessvalues. Note that this form of equivalencing is nonportable anyway, since its results dependheavily on the
oating-point representation.� Introducing points of nondi�erentiabilitySometimes, for the sake of improving e�ciency, a program tests the value of a variable to seewhether a function is being evaluated at a special point in space, and then computes the valueof the function based on that knowledge. For example, the following piece of code computesy = x4. 35

Revision D ADIFOR 2.0 User's Guide February 16, 1998if ((x .eq. 0.0d0) .or. (x .eq. 1.0d0)) theny = xelset = x*xy = t*tendifIf automatic di�erentiation is used to compute dydx , then the value of dydx jx=0 will be 1:0 (becausethe statement y = x implies that dydx = dxdx = 1) rather than the expected 0:0. Similarly, thevalue of dydx jx=1 will be 1:0 rather than 4:0. This \anomaly" stems from the fact that automaticdi�erentiation di�erentiates the statements executed in the course of program execution. Thisissue, as well as other subtle pitfalls, is discussed in [16].

36

Chapter 8Potential ProblemsUsers may encounter several problems while trying to process programs with ADIFOR 2.0. Weprovide a brief explanation of each and possible solutions.� ADIFOR 2.0 may complain about errors in the original FORTRAN 77 source codeAs discussed in Section 3.3, ADIFOR 2.0 may report that errors are present in your FOR-TRAN 77 program that typical FORTRAN 77 compilers will not detect. Inconsistencies insubroutine interfaces and common blocks are the most frequently reported errors (see Sec-tion 3.3).� ADIFOR 2.0-generated code fails to link on a SPARCSun changed the interface to the internal I/O routines provided in libF77.a between versionsSC1.0 and SC2.0 of the f77 compilation system. The default version of the ADIntrinsics library(su�x SunOS-4.x) that we provide has been compiled using version SC2.0. Unresolved refer-ences for entries beginning with three underscores, such as do l in, do l out, e rsle,s rsle, and flushio, will be reported if you attempt to compile your source �les withversion SC1.0 and link against the SunOS-4.x libraries we provide. In this case, you shouldrecompile the libraries (see section 2.2) and then link against them to build your executable.� ADIFOR 2.0 may generate subscripted variables with more than 7 dimensionsIf the source code being di�erentiated contains active variables that are declared as arrays with7 dimensions, then ADIFOR 2.0, when generating dense derivative code, will insert gradientobjects with 8 dimensions. FORTRAN 77 limits the number of dimensions for arrays to 7. Itis unlikely that you will run into this problem, but if you do, then check your compiler to seewhether it has an option that will extend its limits.� ADIFOR 2.0 may generate variable names longer than 6 charactersADIFOR 2.0 generates names for new variables that may be more than 6 characters long.FORTRAN 77 limits the number of characters in a name to 6, but all compilers we haveworked with extend this limit. It is unlikely that you will run into this problem. If you do,then check your compiler to see whether it has an option that will extend its limits.� ADIFOR 2.0 generates DO-ENDDO loop statements instead of introducing a labeledCONTINUE statement to end each loopThe DO-ENDDO statement is not standard FORTRAN 77, but is accepted by all compilers thatwe have encountered. 37

Revision D ADIFOR 2.0 User's Guide February 16, 1998� Unneeded labels and CONTINUE statements appear in the ADIFOR-generated sub-routinesIn addition to creating new labels and CONTINUE statements, ADIFOR preserves those presentin the original programs. There are two reasons for this functionality. The �rst reason is toensure that any references to these labels (by a computed GOTO, for example) in the originalprogram remain properly de�ned. Labels are also preserved to facilitate cross-referencingbetween the original and ADIFOR-generated code. If a certain algorithm is present neara particular label in the original program, it will be at the same location in the ADIFOR-generated code.� By default, ADIFOR 2.0 inserts variables whose names contain ` ' charactersSome compilers may not permit ` ' characters to appear in variable names. This problem canbe avoided by setting the option AD SEP to a character other than ` '.

38

Chapter 9ADIFOR Preprocessor OptionsThis section provides short descriptions of each of the ADIFOR Preprocessor options. Default valuesfor options are presented within square brackets. Options that can be de�ned with a list of valuesare identi�ed with a \�" superscript.9.1 Mandatory Options� AD DVARS�List of names of the FORTRAN 77 variables that contain the dependent variables of thefunction to be di�erentiated. Synonym for AD DVARS.� AD IVARS�List of names of the FORTRAN 77 variables that contain the independent variables of thefunction to be di�erentiated.� AD OVARS�AD OVARS is a synonym for AD DVARS. At least one of AD OVARS and AD DVARS must be de�ned.� AD PMAX (mandatory if AD FLAVOR is dense)Maximum number of independent variables of the function to be di�erentiated. The valueof this option is compiled into each of the dense derivative code �les and is used as the �rstdimension of gradient objects for local and global variables.� AD PROGName of composition �le.� AD TOPName of the top-level routine, the routine whose invocation is responsible for evaluating thefunction that is to be di�erentiated.9.2 Other Options� AD ACTIVATE ALL [0]If AD ACTIVATE ALL is true, then all
oating point variables will be treated as being active.39

Revision D ADIFOR 2.0 User's Guide February 16, 1998� AD ALL SAVED [0]If your code assumes that all storage will be treated as static storage by your compiler, i.e., asif they had been listed in SAVE statements, then you must set AD ALL SAVED to true to generatecorrect derivative code. In this case, the ADIFOR Preprocessor will also treat all local andglobal variables in your program as being static variables, Many FORTRAN 77 compilers treatall local and global storage as being static, which means that variables always retain their valuebetween invocations of procedures. Use of this option will increase the time required for thepreprocessor to generate derivative code.� AD CACHE [AD cache]Name of directory in which the ADIFOR Preprocessor stores information about your programas analysis is performed. Permits incremental reanalysis of your code after changes to thesource code or changes in options.� AD CHECK COMPOSITION [false]If set to true, the ADIFOR Preprocessor will check your program for syntax errors andinconsistent interfaces and then stop. Derivative code will not be generated.� AD DUMP CALLGRAPH [false]If set to true, causes the ADIFOR Preprocessor to print out a callgraph for the program.� AD DUMP INTERFACE [false]If set to true, then the ADIFOR Preprocessor will print out a description of each of theprocedure interfaces in the program.� AD DUMP INTERFACE2 [false]If set to true, then the ADIFOR Preprocessor will print out a description of each of theprocedure interfaces in the program. The output format generated using AD DUMP INTERFACE2is somewhat di�ererent than that generated using AD DUMP INTERFACE.� AD EXCEPTION FLAVOR [reportonce]May be set to terse, verbose, counting, performance, or reportonce to control level ofexception handler error reporting. See Appendix B for more information.� AD EXCLUDE PROCS []The ADIFOR Preprocessor ignores invocations of procedures listed in AD EXCLUDE PROCS, acomma-separated list of procedure names. Derivative code will not be generated for theseprocedures. Only use this option if the procedures you list are known not to impact the valuesof derivatives you want computed.� AD FLAVOR [dense]The ADIFOR Preprocessor generates dense derivative code (i.e., expressing gradient objectsloops as normal FORTRAN 77 loops) if AD FLAVOR is set to dense, and sparse derivative code(i.e., calls to the SparsLinC library) if it is set to sparse.� AD NAMESHIFT CALLED PROCS []The ADIFOR Preprocessor \shifts" the names of invoked procedures that appear inAD NAMESHIFT CALLED PROCS, a comma-separated list of procedure names. The shifting oper-ation appends a su�x to the name of each listed procedure that encodes the type of each ofits arguments. 40

Revision D ADIFOR 2.0 User's Guide February 16, 1998� AD NAMESHIFT DEFINED PROCS []The ADIFOR Preprocessor \shifts" the names of de�ned procedures that appear inAD NAMESHIFT DEFINED PROCS, a comma-separated list of procedure names. The shifting op-eration appends a su�x to the name of each listed procedure that encodes the type of each ofits arguments.� AD NO CLEANUP [false]If AD NO CLEANUP is true then the ADIFOR Preprocessor will skip its \cleanup" phase. Thisis useful if you want to understand the hybrid mode of automatic di�erentiation, and codetransformation, used by ADIFOR.� AD NUM RHS VARS [5 if AD FLAVOR is sparse, 500 if AD FLAVOR is dense]The ADIFOR Preprocessor transforms each assignment statement whose right-hand side ex-pressions has more than AD NUM RHS VARS into a sequence of simpler assignment statements.� AD OUTPUT DIR [output files]Directory into which the ADIFOR Preprocessor places the augmented source code �les.� AD PREFIX [g]Character that serves as initial character of gradient object names and derivative computingprocedure names. For example, by default, the gradient object for foo is g foo.� AD SCALAR GRADIENTS [false]If set to true and AD FLAVOR is \dense", then the ADIFOR Preprocessor will generate codethat assumes that g pmax is 1. Executing this code provides an e�cient means of generatingJ � v, where J is the Jacobian of the function being di�erentiated, and v is a vector.� AD SCRIPT []Name of �le containing additional de�nitions of bindings.� AD SEP []Character that is used to separate components of generated variable names. If AD SEP ischanged to '$', then the gradient object for foo will be named g$foo.� AD SPARSLINC USE 64 PTR [false]If AD FLAVOR is sparse, then setting AD SPARSLINC USE 64 PTR to true will cause the ADIFORPreprocessor to declare derivative objects as INTEGER*8 values instead of INTEGER values.INTEGER*8 type variables should be able to contain all valid addresses on a 64-bit machine.� AD SUPPRESS LDG [false]If set to true and AD FLAVOR is \dense", then the ADIFOR Preprocessor will generate code thatassumes that all gradient objects are allocated with �rst dimensions set to g pmax . Leadingdimension arguments will not be passed as parameters throughout derivative code. Use of thisoption may allow the generated code to be vectorized e�ciently.� AD SUPPRESS NUM COLS [false]If set to true and AD FLAVOR is \dense", then the ADIFOR Preprocessor will generate codethat assumes that g p is g pmax , and hence does not pass g p as a parameter throughoutderivative code. Use of this option may allow the generated code to be vectorized e�ciently.� AD TEMPLATE DIR []Speci�es an additional directory in which to search for ADIntrinsic template �les. Only asingle additional directory may be speci�ed. See Appendix B for more information.41

Appendix ASeed Matrix InitializationA.1 IntroductionThis appendix focuses on the proper and e�cient use of ADIFOR-generated codes through detailedexamination of seed matrix initialization for the following cases:� Dense Jacobian, one independent, one dependent variable� Dense Jacobian, multiple independent, multiple dependent variables� Sparse Jacobian, one independent, one dependent variable� Sparse Jacobian, two independent variables, one dependent variable� Partially separable functionsIn most of these cases, a \variable" denotes an array; thus, we shall be dealing with vector-valuedfunctions.Note: The examples presented in Appendix A correspond to seed matrix initialization for thedefault or \nonsparse"
avor of ADIFOR 2.0 (see AD FLAVOR in Chapter 9). The di�erences betweenthe sparse and nonsparse ADIFOR 2.0-generated codes, which are discussed in Appendix C, imposedi�erences in the mechanics of seed matrix initialization in each case (see Section C.4.4 for details).Nonetheless, the general seeding ideas presented here for the nonsparse case apply equally as wellto the sparse case.A.2 Case 1: Dense Jacobian, one independent, one depen-dent variableOur �rst example is adapted from Problem C2 in the STDTST set of test problems for sti� ODEsolvers [15] and was brought to our attention by George Corliss of Marquette University. The routineFCN2 computes the right-hand side of a system of ordinary di�erential equations y0 = yp = f(x; y)by calling a subordinate routine FCN:C File: FCN2.fSUBROUTINE FCN2(M,X,Y,YP)INTEGER N 42

Revision D ADIFOR 2.0 User's Guide February 16, 1998DOUBLE PRECISION X, Y(M), YP(M)INTEGER ID, IWTDOUBLE PRECISION W(20)COMMON /STCOM5/W, IWT, N, IDCALL FCN(X,Y,YP)RETURNENDC File: FCN.fSUBROUTINE FCN(X,Y,YP)C ROUTINE TO EVALUATE THE DERIVATIVE F(X,Y) CORRESPONDING TO THEC DIFFERENTIAL EQUATION:C DY/DX = F(X,Y) .C THE ROUTINE STORES THE VECTOR OF DERIVATIVES IN YP(*). THEC DIFFERENTIAL EQUATION IS SCALED BY THE WEIGHT VECTOR W(*)C IF THIS OPTION HAS BEEN SELECTED (IF SO IT IS SIGNALLEDC BY THE FLAG IWT).DOUBLE PRECISION X, Y(20), YP(20)INTEGER ID, IWT, NDOUBLE PRECISION W(20)COMMON /STCOM5/W, IWT, N, IDDOUBLE PRECISION SUM, CPARM(4), YTEMP(20)INTEGER I, IIDDATA CPARM/1.D-1, 1.D0, 1.D1, 2.D1/IF (IWT.LT.0) GO TO 40DO 20 I = 1, NYTEMP(I) = Y(I)Y(I) = Y(I)*W(I)20 CONTINUE40 IID = MOD(ID,10)C ADAPTED FROM PROBLEM C2YP(1) = -Y(1) + 2.D0SUM = Y(1)*Y(1)DO 50 I = 2, NYP(I) = -10.0D0*I*Y(I) + CPARM(IID-1)*(2**I)*SUMSUM = SUM + Y(I)*Y(I)50 CONTINUEIF (IWT.LT.0) GO TO 680DO 660 I = 1, NYP(I) = YP(I)/W(I)Y(I) = YTEMP(I)660 CONTINUE680 CONTINUERETURNENDMost software for the numerical solution of sti� systems of ODEs requires the user to supply asubroutine for the Jacobian of f with respect to y. Such a subroutine can easily be generated by43

Revision D ADIFOR 2.0 User's Guide February 16, 1998ADIFOR. For the purposes of automatic di�erentiation, the vector Y is the independent variable,and the vector YP is the dependent variable. Then ADIFOR producessubroutine g_fcn2(g_p_, m, x, y, g_y, ldg_y, yp, g_yp, ldg_yp)CC ADIFOR: runtime gradient indexinteger g_p_C ADIFOR: translation time gradient indexinteger g_pmax_parameter (g_pmax_ = 20)C ADIFOR: gradient iteration indexinteger g_i_C integer ldg_yinteger ldg_ypinteger ndouble precision x, y(m), yp(m)integer id, iwtdouble precision w(20)common /stcom5/ w, iwt, n, idCC ADIFOR: gradient declarationsdouble precision g_y(ldg_y, m), g_yp(ldg_yp, m)if (g_p_ .gt. g_pmax_) thenprint *, "Parameter g_p is greater than g_pmax."stopendifcall g_fcn(g_p_, x, y, g_y, ldg_y, yp, g_yp, ldg_yp)returnendsubroutine g_fcn(g_p_, x, y, g_y, ldg_y, yp, g_yp, ldg_yp)CC ADIFOR: runtime gradient indexinteger g_p_C ADIFOR: translation time gradient indexinteger g_pmax_parameter (g_pmax_ = 20)C ADIFOR: gradient iteration indexinteger g_i_C integer ldg_yinteger ldg_ypC ROUTINE TO EVALUATE THE DERIVATIVE F(X,Y) CORRESPONDING TO THEC DIFFERENTIAL EQUATION:C DY/DX = F(X,Y) .C THE ROUTINE STORES THE VECTOR OF DERIVATIVES IN YP(*). THEC DIFFERENTIAL EQUATION IS SCALED BY THE WEIGHT VECTOR W(*)C IF THIS OPTION HAS BEEN SELECTED (IF SO IT IS SIGNALLEDC BY THE FLAG IWT).double precision x, y(20), yp(20)integer id, iwt, ndouble precision w(20)common /stcom5/ w, iwt, n, iddouble precision sum, cparm(4), ytemp(20)integer i, iid 44

Revision D ADIFOR 2.0 User's Guide February 16, 1998data cparm /1.d-1, 1.d0, 1.d1, 2.d1/CC ADIFOR: gradient declarationsdouble precision g_y(ldg_y, 20), g_yp(ldg_yp, 20)double precision g_sum(g_pmax_), g_ytemp(g_pmax_, 20)if (g_p_ .gt. g_pmax_) thenprint *, "Parameter g_p is greater than g_pmax."stopendifif (iwt .lt. 0) thengoto 40endifdo 99999, i = 1, nC ytemp(i) = y(i)do g_i_ = 1, g_p_g_ytemp(g_i_, i) = g_y(g_i_, i)enddoytemp(i) = y(i)C y(i) = y(i) * w(i)do g_i_ = 1, g_p_g_y(g_i_, i) = w(i) * g_y(g_i_, i)enddoy(i) = y(i) * w(i)20 continue99999 continue40 iid = mod(id, 10)C ADAPTED FROM PROBLEM C2C yp(1) = -y(1) + 2.d0do g_i_ = 1, g_p_g_yp(g_i_, 1) = -g_y(g_i_, 1)enddoyp(1) = -y(1) + 2.d0C sum = y(1) * y(1)do g_i_ = 1, g_p_g_sum(g_i_) = y(1) * g_y(g_i_, 1) + y(1) * g_y(g_i_, 1)enddosum = y(1) * y(1)do 99998, i = 2, nC yp(i) = -10.0d0 * i * y(i) + cparm(iid - 1) * (2 ** i) * sumdo g_i_ = 1, g_p_g_yp(g_i_, i) = cparm(iid - 1) * (2 ** i) * g_sum(g_i_) + -1*0.0d0 * i * g_y(g_i_, i)enddoyp(i) = -10.0d0 * i * y(i) + cparm(iid - 1) * (2 ** i) * sumC sum = sum + y(i) * y(i)do g_i_ = 1, g_p_g_sum(g_i_) = g_sum(g_i_) + y(i) * g_y(g_i_, i) + y(i) * g_y*(g_i_, i)enddosum = sum + y(i) * y(i)50 continue99998 continueif (iwt .lt. 0) thengoto 680endif 45

Revision D ADIFOR 2.0 User's Guide February 16, 1998do 99997, i = 1, nC yp(i) = yp(i) / w(i)do g_i_ = 1, g_p_g_yp(g_i_, i) = (1 / w(i)) * g_yp(g_i_, i)enddoyp(i) = yp(i) / w(i)C y(i) = ytemp(i)do g_i_ = 1, g_p_g_y(g_i_, i) = g_ytemp(g_i_, i)enddoy(i) = ytemp(i)660 continue99997 continue680 continuereturnendThe derivative objects g y and g yp are declared as matrices with 20 columns (since both y andyp were declared as vectors of length 20) and leading dimension ldg y and ldg yp, respectively. Theparameter g p denotes the actual length of the gradient objects in a call to g fcn2. Since Fortran77 does not allow dynamic memory allocation, derivative objects for local variables are staticallyallocated with leading dimension pmax, whose value was selected by the user during the invocationof ADIFOR. A variable and its associated derivative object are treated in the same fashion; that is,if x is a function parameter, so is g x. Derivative objects corresponding to locally declared variablesor variables in common blocks are declared locally or in common blocks as well.Subroutine g fcn2 relates to the JacobianJyp = 0B@ @yp1@Y1 � � � @yp1@Ym... ...@ypm@Y1 � � � @ypm@Ym 1CAas follows: Given input values for g p , m, x, y, g y, ldg y, and ldg yp, the routine g fcn2computes both yp and g yp, whereg yp(1:g p ,1:m) = (Jyp(g y(1:g p ,1:m)T))T :The superscript T denotes matrix transposition. The user must allocate g yp and g y with leadingdimensions ldg yp and ldg y that are at least g p . While the implicit transposition may seemawkward at �rst, this is the only way to handle assumed-size arrays (like real a(*)) in subroutinecalls.Assume that m and g p are 20 and that ldg yp and ldg y are at least 20. Then we can computethe derivative matrix Jyp simply by initializing g y to the identity:*************** Approach 1 ***************DO 10 I = 1, MDO 5 J = 1, MG_Y(I,J) = 0.0D5 CONTINUEG_Y(I,I) = 1.0D010 CONTINUEcall g_fcn2(20, m, x, y, g_y, ldg_y, yp, g_yp, ldg_yp)46

Revision D ADIFOR 2.0 User's Guide February 16, 1998On exit from g fcn2, the variable g yp contains the transpose of the Jacobian Jyp. Note that forthis program to work, g fcn2 must have been generated with AD PMAX at least 20.Alternatively, we could have computed the Jacobian one column at a time:*************** Approach 2 ***************DO 10 I = 1, M** initialize first row of G_Y to i-th unit vector* DO 5 J = 1, MG_Y(1,J) = 0.0D5 CONTINUEG_Y(1,I) = 1.0D0** call ADIFOR-generated derivative code* call g_fcn2(1, m, x, y, g_y, ldg_y, yp, g_yp, ldg_yp)** store ith column of the Jacobian in ith row of Jactrans array* DO 15 J = 1,MJACTRANS(I,J) = G_YP(1,J)15 CONTINUE10 CONTINUEEven though g yp(i,j) as computed in Approach 1 equals jactrans(i,j) computed in Ap-proach 2, the second method is signi�cantly less e�cient. This ine�ciency arises from the fact thatthe value of yp itself is computed once in the �rst approach, but m times in the second approach.Thus, it is usually best to compute as large a slice of the Jacobian as memory restrictions willallow. However, in this case, AD PMAX = 1 is su�cient, and, as a result, the memory requirementsof the ADIFOR-generated code can be expected to be more modest, roughly 1/20th of the memoryrequirements of the previous code. In this fashion, the ADIFOR interface provides a mechanismfor accomodating memory/runtime tradeo�s. An example of a parallel \derivative stripmining"technique based on this approach is presented in [9].A.3 Case 2: Dense Jacobian, multiple independent and mul-tiple dependent variablesThe second example involves a code that models adiabatic
ow [25], a commonly used module inchemical engineering. This code models the separation of a pressurized mixture of hydrocarbons intoliquid and vapor components in a distillation column, where pressure (and, as a result, temperature)decrease. This example was communicated to us by Larry Biegler of Carnegie-Mellon University.In its original version, the top-level subroutinesubroutine aifl(kf)integer kf 47

Revision D ADIFOR 2.0 User's Guide February 16, 1998has only one argument. All other information is passed in common blocks. For demonstrationpurposes, we changed the interface slightly tosubroutine aifl(kf,feed,pressure,liquid,vapor)integer kfreal feed(*), pressure(*), liquid(*), vapor(*)copying the values passed in those arguments into the proper common blocks in aifl. As our �rstexample, assume that we are interested in @ liquid@ feed and @ vapor@ feed 1. In this case, ADIFOR generatessubroutine g_aifl(g_p_, kf, feed, g_feed, ldg_feed, pressure,$ liquid, g_liquid, ldg_liquid,$ vapor, g_vapor, ldg_vapor)integer g_p_, kf, ldg_feed, ldg_liquid, ldg_vaporreal feed(*), g_feed(ldg_feed,*), pressure(*),$ liquid(*), g_liquid(ldg_liquid,*),$ vapor(*), g_vapor(ldg_vapor,*)In our example, the feed was a mixture of the hydrocarbons N-butane, N-pentane, 1-butene,cis-2-butene, trans-2-butene, and propylene, so the length of feed, liquid, and vapor was six, withfeed(1) corresponding to the N-butane feed, and so on. If we set g p =6 and initialize g feed to a6� 6 identity matrix, then on exit g liquid(i,j) contains@ (component j in liquid)@ (component i in feed) ;which predicts by what amount the liquid portion of substance j will change if the feed of componenti changes.Suppose that we also wish to treat the pressure at the various inlets as being independent, and(because of the conservation law) decide not to declare \vapor" as being dependent, ADIFOR gen-erates subroutine g_aifl(g_p_, kf, feed, g_feed, ldg_feed,$ pressure, g_pressure, ldg_pressure,$ liquid, g_liquid, ldg_liquid, vapor)The initialization is a little more complicated this time. Assuming that we have 3 feeds (sopressure has three elements), the total number of independent variables is 6 + 3 = 9. g liquidmeasures the sensitivity of the 6 substances with respect to changes in the 9 independent variables.Thus, Jliquid = � @ liquid@ pressure ; @ liquid@ feed �is a 6� 9 matrix. ADIFOR computesg liquid = �Jliquid� g feedTg pressureT ��T :If we wish to compute the whole Jacobian J , then� g feedTg pressureT �1Actually, it is su�cient to compute one or the other, since, because of conservation laws, @ liquid@ feed + @ vapor@ feed equalsthe identity matrix. 48

Revision D ADIFOR 2.0 User's Guide February 16, 1998must be initialized to a 9 � 9 identity matrix. Thus, g feedT must contain the �rst six rows of a9� 9 identity matrix (since there are six variables in the feed), and g pressureT must contain thelast three rows of a 9� 9 identity matrix. This con�guration is achieved by initializingg feed = 0BBBBBBBBBBBB@ 1 0 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 0 1 00 0 0 0 0 10 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 1CCCCCCCCCCCCA , and g pressure= 0BBBBBBBBBBBB@ 0 0 00 0 00 0 00 0 00 0 00 0 01 0 00 1 00 0 1 1CCCCCCCCCCCCA :A.4 Case 3: Sparse Jacobian, one independent, one depen-dent variableFrom the previous discussion, ADIFOR may seem to be well suited for computing dense Jacobianmatrices, but rather expensive for sparse Jacobians. A primary reason is that the forward modeof automatic di�erentiation upon which ADIFOR is mainly based (see [7]) requires roughly g poperations for every assignment statement in the original function. Thus, if we compute a JacobianJ with n columns by setting g p = n, its computation will require roughly n times as many opera-tions as the original function evaluation, independent of whether J is dense or sparse. However, itis well known [13, 17] that the number of function evaluations that are required to compute an ap-proximation to the Jacobian by �nite di�erences can be much less than n if J is sparse. Fortunately,the same idea can be applied to greatly reduce the running time of ADIFOR-generated derivativecode as well. This section suggests a technique for exploiting sparsity in derivative computations ifthe sparsity pattern is known a priori. Appendix C describes the the SparsLinC library, which, inconjunction with ADIFOR 2.0, allows exploitation of sparsity without a priori knowledge, and evencomputes the sparsity pattern of the Jacobian as a byproduct of the derivative computation.The idea is best understood with an example. Assume that we have a functionF = 0BBBB@ f1f2f3f4f5 1CCCCA : x 2 R4 7! y 2 R5whose Jacobian J has the following structure (symbols denote nonzeros, and zeros are not shown):J = 0BBBB@

 34 34 24 2 1CCCCA :That is, the function f1 depends only on x1, f2 depends only on x1 and x4, and so on. The key ideain sparse �nite di�erence approximations is to identify structurally orthogonal columns ji of J{ thatis, columns whose inner product is zero, independent of the value of x. In our example, columns 149

Revision D ADIFOR 2.0 User's Guide February 16, 1998and 2 are structurally orthogonal, and so are columns 3 and 4. This means that the set of functionsthat depend nontrivially on x1, and the set of functions that depend nontrivially on x2 are disjoint.To exploit this structure, recall that ADIFOR (ignoring transposes) computes J � S, where S isa matrix with g p columns. For our example, setting S = I4�4 will give us J at roughly four timesthe cost of evaluating F , but if we exploit the structural orthogonality and setS = 0BB@ 1 01 00 10 1 1CCA ;the running time for the ADIFOR code is roughly halved. Note that the ADIFOR-generated coderemains unchanged.As a more realistic example, we consider the swirling
ow problem, part of the MINPACK-2test problem collection [3], which was made available to us by Jorge Mor�e of Argonne NationalLaboratory. Here we solve a nonlinear system of equations F (x) = 0 for F : Rn ! Rn. The swirling
ow code has the formsubroutine dswirl3(nxmax,x,fvec,fjac,ldfjac,job,eps,nint)integer nxmax, ldfjac, job, nintdouble precision x(*), fvec(*), fjac(ldfjac,*), epsLike all codes in the MINPACK-2 test collection, it is set up to compute the function values (infvec) and, if desired, the analytic �rst-order derivatives (in fjac) as well. The vectors x and fvecare of size nxmax = 14*nint. For example, for nint = 4, the Jacobian of F is of size nxmax = 56and has the structure shown in Figure A.1.
o

o
o

o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o

o o o o o o o o
o o o o o o o

o o o o o o
o o o o o o o

o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o

o o o o o o o o
o o o o o o o

o o o o o o
o o o o o o o

o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o

o o o o o o o o
o o o o o o o

o o o o o o
o o o o o o o

o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o

o o o o o o o
o o o o o oFigure A.1. Structure of the swirling
ow Jacobian, n = 56The derivative subroutine produced by ADIFOR issubroutine g_dswrl3 (g_p_, nxmax, x, g_x, ldg_x,$ fvec, g_fvec, ldg_x,$ fjac, ldfjac, 1, eps, nint)50

Revision D ADIFOR 2.0 User's Guide February 16, 1998If we initialize g x to a 56�56 identity matrix, and let g p =56, and if ldg x is at least 56, then onexit from g dswrl3, g fvec will contain the transpose of @ F@ x , stored as a dense matrix. As it turnsout, less than 7 % of the total operations performed with gradient objects in the ADIFOR codeinvolve nonzeros. On the other hand, by using a graph-coloring algorithm designed to identifystructurally orthogonal columns (we used the one described in [12]), we can determine that thisJacobian can be grouped into 14 sets of structurally orthogonal columns, independent of the sizeof the problem. In our example, columns 1, 16, 31, and 51 were in the �rst group; columns 2, 17,37, and 43 were in the second group; and so on. We can take advantage of this fact by initializingthe �rst column of g xT such that it has 1.0 in rows 1, 16, 31, and 51; by initializing the secondcolumn of g xT such that it has 1.0 in rows 2, 17, 37, and 43; and so on. The structure of g xT thusinitialized is shown in Figure A.2 together with the resulting compressed Jacobian g fvecT . Notethat instead of g p = 56 we now can get by with g p = 14, a sizable reduction in cost.
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

o
o

o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o
o o o o o o o o

o o o o o o o
o o o o o o

o o o o o o o
o o o o o o

o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o
o o o o o o o o
o o o o o o o

o o o o o o
o o o o o o o

o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o o o
o o o o o o o o o
o o o o o o o o
o o o o o o o

o o o o o o
o o o o o o o

o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o

o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o

o o o o o o o
o o o o o oFigure A.2. Left: Structure of (g x)T Right: Structure of (g fvec)TAssuming that color(i) is the \color" of column i of the Jacobian and that nocolors is thenumber of colors (in our example we had 14 colors), the following code fragment properly initializesg x, calls g dswrl3 to compute the compressed Jacobian, and then extracts the Jacobian.n = 14*nintdo i = 1, ndo j = 1, nocolorsg_x(j,i) = 0enddog_x(color(i),i) = 1enddocall g_dswrl3 (nocolors, nxmax, x, g_x, pmax,+ fvec, g_fvec, pmax,+ fjac, ldfjac, 1, eps, nint)c job = 1 indicates that only the function value is to be computed inc dswrl3. 51

Revision D ADIFOR 2.0 User's Guide February 16, 1998c nonzero(j,i) is TRUE if the (j,i) entry in the Jacobian is nonzero,c and FALSE otherwise.do i = 1, ndo j = 1, nif (nonzero(j,i)) thenjac(j,i) = g_fvec(color(i),j)elsejac(j,i) = 0.0endifenddoenddoExperimental results using this approach on a suite of problems from the MINPACK test setcollection are presented in [4, 10].A.5 Case 4: Sparse Jacobian, two independent variables, onedependent variableThe coating thickness problem, conveyed to us by Janet Rogers of the National Institute of Standardsand Technology, presents many alternatives for using ADIFOR-generated subroutines. The code forthis problem is (in abbreviated form) shown below:SUBROUTINE fun(n,m,np,nq,+ beta,xplusd,ldxpd,+ f,ldf)c Subroutine Argumentsc ==> n number of observationsc ==> m number of columns in independent variablec ==> np number of parametersc ==> nq number of responses per observationc ==> beta current values of parametersc ==> xplusd current value of independent variable, i.e., x + deltac ==> ldxpd leading dimension of xplusdc <== f predicted function valuesc ==> ldf leading dimension of fc Variable DeclarationsINTEGER i,j,k,ldf,ldxpd,m,n,np,nq,numparsINTEGER ia, ibDOUBLE PRECISION beta(np),f(ldf,nq),xplusd(ldxpd,m)double precision par(20),fn(2)do 10 k=1,nppar(k) = beta(k)10 continuedo 100 i=1,ndo 20 j=1,mpar(np+j) = xplusd(i,j)20 continue 52

Revision D ADIFOR 2.0 User's Guide February 16, 1998c compute function values (fn) given parameters (par)call fnc(par,fn)f(i,1) = fn(1)f(i,2) = fn(2)100 continuereturnendsubroutine fnc(x,fn)integer m,np,nqparameter (np=8,m=2,nq=2)integer idouble precision x(np+m),fn(nq)double precision beta(np),xplusd(m)do 10 i=1,npbeta(i) = x(i)10 continuedo 20 i=1,mxplusd(i) = x(np+i)20 continuec compute first of multi-response observationsfn(1) = beta(1)+ + beta(2)*xplusd(1)+ + beta(3)*xplusd(2)+ + beta(4)*xplusd(1)*xplusd(2)c compute second of multi-response observationsfn(2) = beta(5)+ + beta(6)*xplusd(1)+ + beta(7)*xplusd(2)+ + beta(8)*xplusd(1)*xplusd(2)returnendThe special format of this code is due to its embedding in the ODRPACK software for orthogonaldistance regression. We are interested in the derivatives of f with respect to the variables beta andxplusd. We shall explore various ways to do this in some detail.A.5.1 Approach 1 { Generate derivatives only for fncThe easiest approach is to generate the derivative code only for fnc, since it is clear from the codethat f(i,1:2) depends only on beta(1:np) and xplusd(i,1:m). ADIFOR then producessubroutine g_fnc(g_p_, x, g_x, ldg_x, fn, g_fn, ldg_fn)integer m, np, nqparameter(np = 8, m = 2, nq = 2)53

Revision D ADIFOR 2.0 User's Guide February 16, 1998double precision x(np+m), fn(nq), g_x(ldg_x,np+m), g_fn(ldg_fn,nq)If inside fun we replace the call to fnc with a call to g fnc, always initializing g x to a 10� 10identity matrix before the call, theng fn(k; j) = @ f(i; j)@ beta(k) ; k = 1; : : :8; j = 1; 2:and g fn(k; j) = @ f(i; j)@ xplusd(i; k� np) ; k = 9; 10 :Closer inspection reveals that the 10� 2 array g fn always has the following structure (numbersare used to uniquely identify nonzero elements):0BBBBBBBBBBBB@ 1 02 03 04 00 50 60 70 89 1011 12 1CCCCCCCCCCCCA :In other words, fn(i,1) depends only on beta(1:4), and fn(i,2) depends only on beta(5:8).Hence, we can compute a compressed version of g fn at reduced cost by merging rows 1 and 5, 2and 6, 3 and 7, and 5 and 8 of g fn. Keeping in mind that g fn is the transpose of the Jacobian,this is an especially simple case of the compression strategy outlined in the preceding section. Thisis achieved by initializing g x = 0BBBBB@ 1 0 0 0 1 0 0 0 0 00 1 0 0 0 1 0 0 0 00 0 1 0 0 0 1 0 0 00 0 0 1 0 0 0 1 0 00 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 1 1CCCCCA ;which results in g fn =0BBBBB@ 1 52 63 74 89 1011 12 1CCCCCA :All the nonzero values of the Jacobian are now computed at roughly 60% of the cost of the previousapproach.On a SPARC-compatible Solbourne 5E/900 with a clock resolution of 0.01 seconds, executing funtook 0.01 seconds, computing derivative values using g fnc without compression took 0.06 seconds,and exploiting the structure of g fn through the initialization of g x shown above reduced that timeto 0.03 seconds. 54

Revision D ADIFOR 2.0 User's Guide February 16, 1998A.5.2 Approach 2 { Generate derivatives for funAn alternative method of applying ADIFOR is to process subroutine fun. ADIFOR detects theinterprocedural data dependence between fun and fnc and therefore generates g fun as well asg fnc, with g fnc called properly within g fun. We obtainsubroutine g_fun(g_p_,n,m,np,nq,beta,g_beta,ldg_beta,$ xplusd,g_xplusd,ldg_xplusd,ldxpd,f,g_f,ldg_f,ldf)integer g_p_, n, m, np, nq, ldg_beta,ldg_xplusd,ldxpd,ldg_f,ldfdouble precision beta(np), g_beta(ldg_beta,np),$ xplusd(ldxpd,m), g_xplusd(ldg_xplusd,ldxpd,m),$ f(ldf,nq), g_f(ldg_f,ldf,nq)Now we have three-dimensional derivative objects, which somewhat complicates the initialization ofg xplusd and the interpretation of the results in g f. However, this is not too di�cult if we keep inmind that we wish to initialize � g betaTg xplusdT �to an identity matrix. The number of elements in xplusd is n*m, and the number of elements inbeta is np. For the coating thickness problem, n=63, m=2, and np=8. Hence, the identity matrixshould be 134� 134. This is also the value we shall use for g p . Initialization of g beta follows thescheme outlined in Section A.3; that is, the �rst 8 rows should be an 8� 8 identity matrix, and theremaining 126 rows should be initialized to zero. How to initialize g xplusd is less readily apparent,for it is not immediately obvious how to form a 126� 126 identity matrix from a three-dimensionalstructure. However, if one looks at the way Fortran stores two-dimensional structures in memory,a simple scheme for storing the Jacobian develops. In Fortran, element (j; i) in an n � m arrayis stored as if it were element n � (i � 1) + j of a one-dimensional array. Thus, we can apply thistechnique to map the 126 columns of the Jacobian that should be initialized to the identity ontog xplusd. Speci�cally, element (np+ k; j; i) is initialized to 1 if and only if k = 63 � (i� 1) + j. Thefollowing code segment accomplishes this initialization.c n=63, m=2, np=8g_p_ = np + m*ndo 44 i = 1, npdo 144 j = 1, g_p_g_beta(j,i) = 0.0144 continueg_beta(i,i) = 1.044 continuedo 45 i = 1, mdo 145 j = 1, ndo 245 k = 1, g_p_g_xplusd(k,j,i) = 0.0245 continueg_xplusd(np+((i-1)*n)+j,j,i) = 1.0145 continue45 continueWhen initialized in this manner, ADIFOR computes55

Revision D ADIFOR 2.0 User's Guide February 16, 1998g f = �Jf = � @ f@ beta ; @ f@ xplusd��T :However, the performance of this approach is poor, since we totally ignore the sparsity structureof the Jacobian. As a result, the computation of Jf takes 0.77 seconds on a Solbourne 5E/900. Abetter way to �nd the Jacobian of f using g fun is to take note of the structures used by fun. Fromthis, it becomes obvious that @f [i;j]@xplusd[k;l] is nonzero only when i = k. As a consequence, we maychange theg_p = np + m*n. . .g_xplusd(np+((i-1)*n)+j,j,i) = 1.0to the much simplerg_p = np + m. . .g_xplusd(np+i,j,i) = 1.0with the understanding that g f(np+i,j,k) (i = 1::m) represents @f [j;k]@xplusd[j;i] . This is equivalent toinitializing g beta = 0BBBBBBBBBBBBBB@ 1 0 0 0 0 0 0 00 1 0 0 0 0 0 00 0 1 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 10 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1CCCCCCCCCCCCCCA , and g xplusd[n] = 0BBBBBBBBBBBBBB@ 0 00 00 00 00 00 00 00 01 00 1 1CCCCCCCCCCCCCCA :This implementation is much more e�cient than that described in the preceding paragraph and moreclosely mimics the behavior of the original subroutine fun. As a consequence, the time required toexecute g fun using this initialization is 0.07 seconds.As discussed in Section A.5.1, only half of the derivatives of f with respect to beta are nonzero.Speci�cally, @f [i;1]@beta[j] is nonzero for j = 1::4 and zero for j = 5::8, while @f [i;2]@beta[j] is zero for j = 1::4and nonzero for j = 5::8. This information can be used to further compress the Jacobian. Theinitializationg beta = 0BBBBBB@ 1 0 0 0 1 0 0 00 1 0 0 0 1 0 00 0 1 0 0 0 1 00 0 0 1 0 0 0 10 0 0 0 0 0 0 00 0 0 0 0 0 0 0 1CCCCCCA , and g xplusd[n] = 0BBBBBB@ 0 00 00 00 01 00 1 1CCCCCCA56

Revision D ADIFOR 2.0 User's Guide February 16, 1998compresses the Jacobian into only 6 columns. Columns 1 through 4 represent the nonzero derivativesof f with respect to beta, while columns 5 and 6 correspond to the derivatives of f[i,j] withrespect to xplusd[i,1..2], as above. This initialization may be accomplished with the followingcode fragment.c n=63, m=2, np=8halfnp = 4g_p_ = 4 + mdo 44 i = 1, halfnpdo 144 j = 1, g_p_g_beta(j,i) = 0.0g_beta(j,i+halfnp) = 0.0144 continueg_beta(i,i) = 1.0g_beta(i,i+halfnp) = 1.044 continuedo 45 i = 1, mdo 145 j = 1, ndo 245 k = 1, g_p_g_xplusd(k,j,i) = 0.0245 continueg_xplusd(halfnp+i,j,i) = 1.0145 continue45 continueThis approach is e�cient, capable of computing all derivatives in 0.03 seconds. However, it has thedisadvantage that the initialization routine might have to be changed if fnc or np is altered.A.6 Computing Gradients of Partially Separable FunctionsA particular class of functions that arises often in optimization contexts is that of the so-calledpartially separable functions [14, 19, 20, 21, 22]. That is, we have a function f : Rn ! R that canbe expressed as f(x) = nfXi=1 fi(x):Usually each fi depends on only a few (say, ni) of the x's, and one can take advantage of this factin computing the (sparse) Hessian of f .As was pointed out to us by Andreas Griewank, now at the University of Dresden, this structurecan be used advantageously in computing the (usually dense) gradient rf of f .Assume that the code for computation of f looks as follows:subroutine f(n,x,fval)integer nreal x(n), fval, tempfval = 0call f1(n,x,temp)fval = fval + temp 57

Revision D ADIFOR 2.0 User's Guide February 16, 1998......call fnb(n,x,temp)fval = fval + tempreturnendIf we submit f to ADIFOR, it generatessubroutine g_fn(g_p_,n,x,g_x,ldg_x,fval,g_fval,ldg_fval).To compute rf , the �rst (and only) row of the Jacobian of f , we set g p = n and initialize g x toa n � n identity matrix. Hence, the cost of computing rf is of the order of n times the functionevaluation.As an alternative, we realize that with f : Rn ! Rnb de�ned asg = 0B@ f1...fnb 1CA ;we have the identities f(x) = eTg(x), and hence rf(x) = eTJg ;where e is the vector of all ones, and Jg is the Jacobian of g. We can get the gradient of f bycomputing Jg and adding up its rows. The corresponding code fragment for computing f issubroutine f(n,x,fval)integer nreal x(n)integer nf, iparameter (nf = <whatever>)real gval(nf)call g(n,x,gval)fval = 0do i = 1,nbfval = fval + gval(i)enddoreturnendIt may not appear that we have gained anything, since Jg is nf � n. If we initialize g x insubroutine g_g(g_p_,n,x,g_x,ldg_x,gval,g_gval,ldg_gval)to an n � n identity matrix, then the computation of Jg still takes about n times as long as thecomputation of g (or f). 58

Revision D ADIFOR 2.0 User's Guide February 16, 1998The key observation is that the Jacobian Jg is likely to be sparse, sinceJg = 0B@ (rf1)T...(rfnb)T 1CA ;and each of the fi's depends only on ni of the x's. By using the graph coloring techniques describedin Section A.4, we can compute Jg at a cost that is proportional to the number of columns in thecompressed Jg, and then add up its (sparse) rows. As a result, we can compute rf at a cost that ispotentially much less than n times the evaluation of f . Alternatively, we can employ the SparsLinClibrary (see Appendix C), which will exploit sparsity even if the Jacobian contains a few dense rows(in this case, its chromatic number is n, and nothing has been gained). Experimental results withpartially separable functions from the MINPACK test set collection are presented in [5].

59

Appendix BADIntrinsics 1.5: ExceptionHandling Support for ADIFOR 2.0B.1 IntroductionIn ADIFOR parlance, an \exception" is an event that occurs when an elementary function is eval-uated at a point where the function result is de�ned, but the derivative is not. For instance, thesquare root of zero is zero, but the derivative of the square root function at zero is not de�ned.For most functions, there are several reasonable interpretations of what should be done when anexception occurs.ADIFOR 2.0, by default, chooses the approach that was deemed appropriate for most cases, basedon the arguments presented in [8, 23]. However, only a person familiar with the code can decidewhether this choice is the correct one for a particular given instance. Hence, when an exceptionoccurs, one should examine the derivative code generated by ADIFOR 2.0 to make sure that thedefault values had the desired e�ect. Section B.2 describes what every user should do to beaware of the occurrence of such exceptions. Section B.3 de�nes exceptional occurrences inADIFOR 2.0 and the default action taken.In dealing with FORTRAN 77 intrinsics, the ADIFOR 2.0 system relies on the ADIntrinsicssystem which has been developed mainly so that a user can easily customize the behavior of ADIFORin the cases where the default option turns out to be inappropriate. It allows the user to specifyalternative strategies through directives in the code to be di�erentiated and alternate template �les,thereby documenting the changes and obviating the need to manually post-process the ADIFOR-generated code. The ADIntrinsics system also allows one to switch between di�erent error reporting
avors. To achieve this
exibility, derivative code generation in ADIFOR 2.0 is split into two phases:1. ADIFOR 2.0 generates code containing invocations of \templates" at call sites of FORTRAN 77intrinsics. This code is contained in the �les with the .A su�x in the AD OUTPUT DIR directory.2. The purse postprocessor expands the templates into explicit Fortran code.These two steps are usually transparent to users as these two components are invoked directly bythe Adifor2.0 command. Section B.4 describes the di�erent exception handler modes in details.To link ADIntrinsics into your executable, you must add one of the following to your link line:... $AD_LIB/lib/ReqADIntrinsics-$AD_OS.o \-L $AD_LIB -lADIntrinsics-$AD_OS # in UNIX60

Revision D ADIFOR 2.0 User's Guide February 16, 1998or ... $AD_LIB/lib/ReqADIntrinsics-$AD_OS.o \$AD_LIB/lib/libADIntrinsics-$AD_OS.a # in UNIXor ... %AD_LIB%\lib\ReqADIntrinsics-%AD_OS%.obj \%AD_LIB%\lib\libADIntrinsics-%AD_OS%.lib # in Windows~95/NTThe reason for not combining the two �les in one archive is that the .o �le contains some block datainitializations which may not get linked into your executable if they are contained in the archive.In section B.5, we describe how to change the exception reporting options, such as, for example,1. changing the exception handler output unit,2. resetting the exception handler counts,3. dynamically changing between di�erent levels of exception reporting, or4. ignoring exceptions in particular regions of code.5. Section B.6 describes how to rede�ne the exceptional values returned at points of nondi�er-entiability, either by changing globally the de�nitions of default values for certain exceptionclasses, or by changing the behavior associated with a particular intrinsic.Lastly, in Section B.7, we present an example of employing some of these features. We alsomention that the user can go beyond what is described here in rede�ning the behavior of theexception handler by rede�ning the templates governing the purse translation. These issues will bedescribed in a forthcoming edition of this user guide.B.2 What Every User Should DoTo obtain a summary report on intrinsic exceptions, one should always call the routine ehrpt (forexception handler report) after the call to the ADIFOR-generated procedure derived from thetop-level subroutine.program main[...]call ADIFOR_GENERATED_CODE ()[...]call EHRPTreturnendB.3 De�nition of Intrinsic Exceptions and Default BehaviorSome of the FORTRAN 77 intrinsics are not globally di�erentiable at all points of their domain,such as, for example, d pxd x jx=0. However, the propagation mechanism employed in automatic di�er-entiation requires that some value be returned for that derivative. Table B.1 lists the �ve types ofexceptional values employed, their default value (in brackets), and their interpretation.61

Revision D ADIFOR 2.0 User's Guide February 16, 1998Exceptional Value [Default] InterpretationJumpVal[0] The function is discontinuous at this point.NoLimit[0] The directional derivatives do not agree.TieVal[0.5] The case x = y for min and max.InfVal[0] The derivative approaches in�nity.NaNVal[0] Not even a generalized interpretation makes sense.Table B.1. Exceptional Derivative ValuesIntrinsic fx unde�ned Default ValueAINT(x) x = �1;�2; : : : JumpValANINT(x) and DNINT x =odd multiples of 1/2 JumpValABS(x) x = 0 NoLimitMOD(x,y) x = n � y for an integer n JumpValSIGN(x,y) x = 0 or y = 0 JumpValDIM(x,y) x = y NoLimitMAX(x,y) x = y TieValMIN(x,y) x = y TieValSQRT(x) real-valued x x = 0 InfValSQRT(x) complex-valued x x = 0 NaNValASIN j x j � 1 InfValACOS j x j � 1 InfValTable B.2. Points of Nondi�erentiability and Default Values of Partial for unary FORTRAN 77IntrinsicsThese default exceptional values are employed as shown in Tables B.2 and B.3. We employ theshorthand fx and fy to denote the partial derivative with respect to the �rst and second argument,respectively.In case of a complex-valued argument, abs(x) is treated like sqrt(re(x)**2 + im(x)**2), andhence has the same exceptional behavior like the real-valued square root.The following principles were considered in designing the ADIFOR exception-handling mecha-nism (see [8, 23] for more background information):Generalized Gradient: Many algorithms for optimizing nonsmooth functions use generalized gra-dient values. A generalized gradient is any value in the convex hull of derivative values in theneighborhood of the point of nondi�erentiability. For univariant functions, one may obtainany value in the interval [lim inf f 0; lim supf 0]. For example, a generalized gradient for jxj at0 is any number in [�1; 1]. The values we choose to return as \derivative" values at points ofnondi�erentiability are generalized gradient values, provided that the chain rule for generalizedgradients holds as a set inequality, rather than as an inclusion [11].Continuity of Catastrophe: The value at the point of nondi�erentiability should in some sensebe the limit of what happens in a neighborhood. For example, the derivative of asin (x) at1 should be INFINITY. For some functions, the mathematical limit may be di�erent from thecomputational limit, as a result of �nite precision or denormalized numbers.Extreme Point: A necessary condition for the existence of an extreme point is f 0 = 0. A point of62

Revision D ADIFOR 2.0 User's Guide February 16, 1998Intrinsic fx unde�ned Default for fx fy unde�ned Default for fyMOD(x,y) x = n � y for an integer n JumpVal never N/ASIGN(x,y) x = 0 or y = 0 JumpVal never N/ADIM(x,y) x = y NoLimit x = y same as for fxMAX(x,y) x = y TieVal x = y fy = 1� fxMIN(x,y) x = y TieVal x = y fy = 1� fxx��y x = 0 and 0 < y < 1 InfVal x < 0 or (x = 0 and y = 0) NoLimitTable B.3. Points of Nondi�erentiability and Default Values of Partials of binary FORTRAN 77Intrinsicsnondi�erentiability is usually at least a local extreme point, so returning a value of 0 as thederivative may signal an optimization algorithm that an extreme point has been found.Evaluation of Unde�ned Functions: In some computing environments, execution may continueafter an attempt to evaluate a function at a point outside its domain (perhaps with a valueof NaN). If the program has not crashed while evaluating p�2:0 (in real arithmetic), then ourderivative evaluation should not crash, either.Scaling: It is critical to scale many applications appropriately before applying an optimization orODE-solving algorithm. In many calculations, variable vectors are scaled by their L1 normor L1 norm (i.e., the sum or maximum of the component moduli). Later on, this scalingis undone so that the overall calculation is mathematically smooth, even when some of thecomponents are zero or their absolute values are tied at the maximum. The derivative is locallynot de�ned, but the entire computation is globally di�erentiable. We have attempted to returnderivative values that make sense in connection with commonly used scaling techniques.These principles often con
ict with one another and have di�erent implications regarding thevalues that should be returned at points of nondi�erentiability. We made trade-o� choices that wethink can be justi�ed.For sqrt, at the point of nondi�erentiability x = 0, the default for InfVal = 0 is a generalizedgradient value if we assume that sqrt(x) := sqrt(abs(x)). Further, it makes expressions likesqrt(X*X*X*X + Y*Y*Y*Y) have the correct derivative. However, it violates the principle ofcontinuity of catastrophe. Alternatively, the value of InfVal = INFINITY makes the one-sided limitcorrect. For asin and acos, at the points of nondi�erentiability x = �1, the default for InfVal= 0 indicates an extreme point. However, it violates the principle of continuity of catastrophe.Alternatively, the value of InfVal = INFINITY makes the one-sided limit correct. If jxj > 1, usuallythe user's original code will have already crashed while evaluating asin(x). If it has continuedexecution (perhaps with value NaN), we should continue execution also. No value is reasonable sincethe function is not de�ned, so we choose to return the same value as at x = �1. Alternatively, wecould return whatever was assigned to the value of asin(x).For the sign function, at the point of nondi�erentiability x = 0, the default value of 0 forNoLimit is a generalized gradient value equal to the average of the two limits from each side. UsingNoLimit = 0 also provides a generalized gradient for abs at the point of nondi�erentiability x = 0and indicates an extreme point. This choice also satis�es the generalized gradient requirement fordim at the points of discontinuity, x = y.The derivatives of aint and anint are set to JumpVal at the points of nondi�erentiability, and0 elsewhere. The default value for JumpVal is 0, the limit from each side. The derivative of mod isalso set equal to JumpVal at points of discontinuity. Although the default value of 0 is not equal to63

Revision D ADIFOR 2.0 User's Guide February 16, 1998the limit from both sides, which is 1, it does signal an extreme value, important for optimization.The default value for TieVal is 1/2. This value has the bene�t that it is a generalized gradientand implies that if x = y then fx = fy. However, Fortran's max and min functions accept more thantwo arguments. Consequently, the current implementation of ADIFOR breaks all calls to min andmax into a series of binary calls. Thus, if many arguments are equal, their slopes are weighted 1/2,1/4, 1/8, : : :.B.4 Exception Handler ModesThe exception handler operates in �ve modes: verbose, report-once, counting, terse, and perfor-mance. The default mode is reportonce. Note, however, since reportonce requires the compilationof some C libraries, if your system does not support a C compiler, you will need to override thisdefault by setting AD EXCEPTION FLAVOR to one of performance, terse, counting, or verbose.In verbose mode, every time an exceptional condition occurs, a message is written to the pro-gram's error unit (by default unit number zero, which usually outputs to the screen) indicating thefunction, the arguments to the function, and the �le name and line number containing this functionevaluation. A sample output line is shown in Figure B.1. This information allows one to track downException: ABS (0.000000000000000000E+00)Occurred in g_func.f at line # 93Figure B.1. Verbose Mode Sample Error Reportexactly where the exception is occurring and decide whether it is generating appropriate results.However, this option may generate a signi�cant amount of output.Report-once mode combines all of the exception reports for a source line into a single report, asshown in Figure B.2.In addition, counting, terse, and performance modes provide a decreasing amount of informationabout exceptions that occur.Note: Unless you invoke the exception handler reporting routine ehrpt afterthe execution of the ADIFOR-generated code, you will not see any of thereports generated by the report-once, counting, and terse modes.Counting mode maintains a running total of each type of exception that occurs, as shown inFigure B.3. It avoids the work associated with tabulating exceptions in report-once mode, andhence should execute faster.Terse mode indicates whether any exceptions of a given type occurred. This mode may be usefulfor vectorizing compilers, where the recurrence required for counting may inhibit vectorization. Asample terse mode output is given in Figure B.4.Performance mode contains only a minimal amount of exception-checking code. It makes nosubroutine calls and always assigns the default value when an exception occurs. We suggest thatone should only use performance mode after running the code with report-once or verbose mode andconvincing oneself that either no exceptions occur or the default exception handling is appropriate.The following sections describe how to change the default handling in case it is not. No report ismade, since no exceptions are tracked. 64

Revision D ADIFOR 2.0 User's Guide February 16, 1998At line 100 in file "g_func.f", while executing routine "foo",an exception occurred evaluating ABS : 50 times.At line 3 in file "g_misc.f", while executing routine "bar",an exception occurred evaluating ABS : 1 time.At line 7 in file "g_misc.f", while executing routine "bar",an exception occurred evaluating POWER: df/dx : 5 times.At line 17 in file "g_misc.f", while executing routine "bar",an exception occurred evaluating ACOS first deriv : 17 times.At line 920 in file "g_misc.f", while executing routine "bar",an exception occurred evaluating ABS : 49 times.Figure B.2. Report-once Mode Error ReportDouble precision exception(s) occurred evaluating:ABS : 100 times.POWER: df/dx : 5 times.ACOS first deriv : 17 times.Figure B.3. Counting Mode Error ReportDouble precision exception(s) occurred evaluating:ABSPOWERACOS first deriv Figure B.4. Terse Mode Error Report65

Revision D ADIFOR 2.0 User's Guide February 16, 1998The exception handling mode may be chosen at the time ADIFOR 2.0 is executed by setting theAD_EXCEPTION_FLAVOR variable to one of: performance, terse, counting, reportonce, or verbose.B.5 Changing Exception Reporting OptionsB.5.1 Redirecting Exception Handler OutputTwo di�erent routines are provided for report-once mode and the remaining exception handlingmodes. Two di�erent routines are necessary as report-once mode is generated by a C subroutine,whereas all other output modes are generated by Fortran code.Report-once Mode | ehofil: To direct the output of report-once mode to a �le, call ehofilwith the name of the output �le, e.g.,call ehofil ('reportonce.out')All Modes but report-once | ehsup: To direct the exception handler output for all modesbut report-once to a di�erent unit, open the unit in your driver program, and then call ehsup withtwo parameters: -1, and then the unit number. The driver is also responsible for closing this unitbefore the program terminates. Failure to do so may result in a loss of output that has been bu�eredbut not written to the �le.call ehsup (-1, UNIT-NUMBER)A segment of the user code might resemble this fragment.open (UNIT=13, FILE='adifor-errors.out')call ehsup (-1, 13)[... Useful Work ...]close(13)B.5.2 Resetting Exception CountsThe routine ehrst causes all counts of exceptions to be reset to zero. An example of use iscall ehrst()B.5.3 Fine-Grained Control of Exception Handler ModesFine-grained control over exception handler modes is achieved by embedding directives in the user'scode.Change of Verbosity Level: The verbosity level can be dynamically set with theAD_EXCEPTION_LEVEL() directive. Valid levels are verbose, counting, terse, reportonce,performance, and default, which restores the exception level to the one with which ADIFOR 2.0was run. For example, to guarantee verbose exception reporting around a certain region, the usermight use the following code: 66

Revision D ADIFOR 2.0 User's Guide February 16, 1998C AD_EXCEPTION_LEVEL(VERBOSE)[... Interesting Code Here ...]C AD_EXCEPTION_LEVEL(DEFAULT)Warning :Terse mode is incompatible with both counting mode and verbose mode in the sense thatswitching from verbose or counting mode to terse mode anywhere in your program leadsto incorrect summary information being reported by ehrpt.If you intend to use the report-once mode anywhere in your program, you must runADIFOR 2.0 with the AD EXCEPTION FLAVOR=reportonce binding. Otherwise, report-once mode will not function properly.Ignoring Exceptions in a Region: To ignore exceptions in a region, bracket the region withthe directives AD_EXCEPTION_BEGIN_IGNORE and AD_EXCEPTION_END_IGNORE. \Ignoring" exceptionssimply means that no exceptional information is printed out; it does not mean that the exceptionhandler is disabled.1 Truly disabling the exception handler (that is, using performance mode)should be done with caution, because at exceptional points the performance mode may return avalue di�erent than that returned by the exception handler for a user-con�gured value.C AD_EXCEPTION_BEGIN_IGNORE()[... Exceptions to be Ignored Here ...]C AD_EXCEPTION_END_IGNORE()Warning : These directives do not nest. This means that any AD_EXCEPTION_END_IGNOREcancels all previous AD_EXCEPTION_BEGIN_IGNORE commands, regardless of how manypreceded the end ignore.Here is an example showing how the ignore directives do not nest.C AD_EXCEPTION_BEGIN_IGNORE()[... Exceptions are Ignored Here ...]C AD_EXCEPTION_BEGIN_IGNORE()[... Exceptions are Ignored Here ...]C AD_EXCEPTION_END_IGNORE()[... Exceptions are REPORTED Here ...]C AD_EXCEPTION_END_IGNORE()[... Exceptions Continue to be Reported Here ...]Syntax of Directives: The syntax of the directives is intended to be reasonably intuitive:� any comment character (C, c, or *) may be used to begin the comment line;� spaces cannot appear in the middle of a keyword, but may appear around parentheses andcommas;� the directives can appear in upper or lower case, as can the keywords (arguments) given; and1Currently, the \ignore" mode is implemented by placing the exception handler in counting mode for the givenregion. 67

Revision D ADIFOR 2.0 User's Guide February 16, 1998� zero or more whitespace characters may appear between the comment character and the be-ginning of the directive, but no other spurious characters should appear in the line, even aftercolumn 72.Warning : Directives a�ect only the parts of the program that are literally after them.In particular, a directive cannot change the mode in which an invoked procedure runs.The example below shows incorrect usage of the AD_EXCEPTION_LEVEL directive.C This is an incorrect use of the AD_EXCEPTION_LEVEL directive.C it has no effect on the subroutine "slow_func".CC AD_EXCEPTION_LEVEL(PERFORMANCE)call slow_funcC AD_EXCEPTION_LEVEL(DEFAULT)B.6 Modifying Exceptional BehaviorFor each of the FORTRAN 77 intrinsics that are not globally di�erentiable, purse requires a defaultvalue to be inserted for the �rst (and sometimes also second) partial derivatives at the point ofnondi�erentiability.It is possible to override the default behavior for the exceptions. This overriding is precision-speci�c, and is done through the routines ehsev* and ehsup*, where * is one of s, d, c, or z, forsingle, double precision, complex, or double complex, respectively. The �rst one changes the valuesassociated with the symbolic exception values InfVal, etc. (see section B.3), the second changes theexceptional behavior associated with a particular intrinsic function.B.6.1 Changing Exception Class Default ValuesThe routines ehsev*, where * is one of s, d, c, or z, for single, double precision, complex, or doublecomplex, respectively, allow the user to set the symbolic exceptional values \ InfVal", \ NaNval",\ NoLimit", \ TieVal", and \ JumpVal".The usage iscall ehsev* (SYMBOLIC-NUMBER, NEW-VALUE)where SYMBOLIC-NUMBER is the integer number of the symbolic exceptional value from Table B.4,and NEW-VALUE is the
oating point numerical value to set. So for example, to set TieVal to zeroSymbolic Name NumberInfVal 1NaNval 2NoLimit 3TieVal 4JumpVal 5Table B.4. Numbering of Symbolic Exceptional Valuesfor double precision, one would execute 68

Revision D ADIFOR 2.0 User's Guide February 16, 1998call ehsevd(4,0.0d0)It is important that the numerical value be of the right type, as there is, in general, no guaranteethat the compiler would convert it to the right type.B.6.2 Changing Exceptional Behavior for a Particular IntrinsicsTo override the exceptional behavior of a particular intrinsic, one needs to know two facts: theinteger that represents the intrinsic for which the exception is occurring, and the integer \o�set" ofthe exceptional condition whose return value is to be altered. The integer representing the intrinsiccan be found in Table B.5. Intrinsic Numerical ValueAINT 1ANINT 2DNINT 2ABS 3MOD 4SIGN 5DIM 6MAX 7MIN 8SQRT 9currently not used 10currently not used 11** 12ASIN 13ACOS 14SQRT4CABS 15Table B.5. Numbering of Intrinsic FunctionsNote: The SQRT4CABS \function" is a dummy intrinsic generated by ADIFOR 2.0 tohandle the complex ABS function. Let z = x + iy. The complex ABS(z) function isrewritten as abs(z) = SQRT4CABS(x2 + y2)By default, SQRT4CABS has the same exceptional behavior as SQRT.Single Exceptional ConditionAll intrinsics except for the power operator �� have only a single exceptional condition (see Tables B.2and B.3) and therefore have an o�set of one. Suppose one wishes to change the exceptional value ofABS at zero (for both real and double precision) so that the partial derivative of ABS(x) with respectto x at zero is one. First, one would look in Table B.5 to �nd that the integer representing ABS is 3.Hence, one would use the following two calls to set the desired partials of ABS.C Set single precision partial of abscall ehsups (3,1,1.0e0) 69

Revision D ADIFOR 2.0 User's Guide February 16, 1998xabs = abs(x)yabs = abs(y)w = max(xabs,yabs)if (w .eq. 0.0) thenz = 0.0elsez = w*sqrt((xabs/w)**2 + (yabs/w)**2)endifFigure B.5. Computation of Euclidean Norm with ScalingC Set double precision partial of abscall ehsupd (3,1,1.0d0)Handling of the POWER operator (��):As indicated in Table B.5, the integer representing the power operator is 12. The partial with respectto x is associated with an o�set of 1, the partial with respect to y is associated with an o�set of 2,for example:C Set single precision partial w.r.t. x of **call ehsups (12,1,1.0e0)C Set double precision partial w.r.t. y of **call ehsupd (12,2,1.0d0)B.7 Examples of the Use of ADIntrinsicsAs an example, consider the computation of the Euclidean norm z = px2 + y2. A numericallysensible way of doing this is shown in Figure B.7. This function is di�erentiable except for x = y = 0.However, automatically di�erentiating with respect to x and y, we note that we might attempt tocompute the derivatives of abs() when its argument is zero, and of max() when both its argumentshave the same value, even when x and y are not both zero. By default, the ADIntrinsics systemwould invoke the error handler, which would report these exceptions to the user. However, we knowthat, unless x = y = 0, this computation represents a di�erentiable function and that, independentof the value of w, we will obtain the same result.Thus, as shown in Figure B.7, we go into \performance mode" in the part of the code thatgenerates exceptions that are merely caused by our use of scaling, thus avoiding invocation of theerror handler altogether. Also, since the value w did not have an impact on the computed value, thevalue for the derivative of w will not matter, either. For x = y = 0, we trigger an invocation of theADintrinsics error handler at the point of nondi�erentiability by replacing z = 0 with z = sqrt(w).When translated by ADIFOR, the generated derivative code will report a \SQRT" exception onlyat x = y = 0. 70

Revision D ADIFOR 2.0 User's Guide February 16, 1998
C AD EXCEPTION LEVEL(PERFORMANCE)xabs = abs(x)yabs = abs(y)w = max(xabs,yabs)C AD EXCEPTION LEVEL(DEFAULT)if (w .eq. 0.0) thenC the sqrt(0.0) call triggers exception reportingz = sqrt(w)elseC AD EXCEPTION LEVEL(PERFORMANCE)z = w*sqrt((xabs/w)**2 + (yabs/w)**2)C AD EXCEPTION LEVEL(DEFAULT)endifFigure B.6. Computation of Euclidean Norm Annotated for Subsequent Automatic Di�erentiation

71

Appendix CSparse Derivative Support forADIFOR 2.0 through theSparsLinC 1.1 LibraryC.1 IntroductionSparsLinC 1.1 (Sparse Linear Combinations) is a library of C routines that provide an implemen-tation of the \vector linear combination":w = kXi=1 �i � vi; (C.1)employing sparse data structures. Here w and the vi are vectors, the �i are scalar multipliers, andk is referred to as the arity. This operation is the fundamental computational kernel for �rst-orderautomatic di�erentiation.To link SparsLinC into your executable, you must add one of the following to your link line:... -L$AD_LIB/lib -lSparsLinC-$AD_OS # in UNIXor ... $AD_LIB/lib/libSparsLinC-$AD_OS.a # in UNIXor ... %AD_LIB%\lib\libSparsLinC.lib # in Windows~95/NTSparsLinC utilizes dynamic data structures to represent only the nonzero information containedin each vector and performs the vector linear combinations on these sparse representations of thevectors. By doing so, it avoids storing zero values and performing computation with zeros, at thecost of introducing some overhead associated with maintaining sparse data structures.One way of representing a sparse vector with nnz nonzeros in Fortran is by means of two arrays,each of length nnz, one an integer array containing the indices of the nonzero entries, and the other72

Revision D ADIFOR 2.0 User's Guide February 16, 1998a
oating-point array of appropriate precision, containing the corresponding values. So, for example,the 7-vector (11:0; 0; 33:0; 44:0; 0; 0; 77:0)would be represented by Index Array: 1 3 4 7Value Array: 11.0 33.0 44.0 77.0We will refer to this 2-array representation of the vector as the Fortran Sparse Format. Thecorresponding nonsparse representation, which we will call the Fortran Nonsparse Format, wouldbe a
oating-point array of length 7, containing zeros in entries 2, 5, and 6. Lastly, there is theSparsLinC Sparse Format, which is the internal SparsLinC representation of the vector.In addition to reducing the space required to store derivative values and the time required tocompute derivatives, SparsLinC is also useful for uncovering the sparsity features of a problem. Forexample, the detection of the sparsity pattern of Jacobians is of interest in a number of computations.The computation of the Jacobian using SparsLinC yields the sparsity pattern of the Jacobian asa natural consequence of the work it does in computing the Jacobian, and thus provides all theinformation needed for a sparse equation solving routine, for example. We anticipate that thisfeature of SparsLinC will be further strengthened in future releases with the addition of diagnosticcapabilities about the \sparsity behavior" of a computation.From the user's point of view, using SparsLinC is very simple. Much of the task of interfacingADIFOR 2.0-generated code and SparsLinC is done automatically and is transparent to the user.Section ?? describes how to invoke ADIFOR 2.0 to generate derivative code that uses the SparsLinClibrary. Such code will be referred to as \sparse derivative code." We will refer to derivative codegenerated by ADIFOR 2.0 in the default case (i.e., with do-loop implementation of vector linearcombinations, rather than calls to SparsLinC routines) as \nonsparse derivative code."Section C.2 provides some background information necessary to understand the use of SparsLinCwith ADIFOR 2.0. Section C.3 de�nes the notion of sparsity and discusses computational scenarioswhere sparsity exists and can be exploited by SparsLinC for faster, less memory-intensive code. Inthe tutorial example given in Chapter 4, Step 4 describes, for the nonsparse (default) case, how toincorporate the ADIFOR 2.0-generated derivative code in the derivative code driver. Section C.4outlines how this is done in the sparse derivative code driver by calling the appropriate SparsLinCAccess Routines. These routines are the subset of SparsLinC routines that allow the user to setup and con�gure SparsLinC, pass data to it, and extract results and performance measures from it.Section C.5 describes how to build a sparse derivative code by using ADIFOR 2.0 and SparsLinC.Section C.6 contains detailed description of the SparsLinC access routines.C.2 BackgroundIn ADIFOR 2.0, an active variable is one that lies on a dependency path from the independentto the dependent variables (the independents and dependents themselves are also considered to beactive). Active variables are the ones for which we compute directional derivatives with respectto a set of (not necessarily normalized) directions speci�ed via the seed matrix. In the simplest case,each unit direction is de�ned by one of the independent variables, which is equivalent to setting theseed matrix to be the identity.We de�ne the term directional gradient vector to be the set of directional derivatives of anyscalar active variable with respect to all directions speci�ed in the seed matrix. The term scalaractive variable here refers both to active variables declared as scalars in the user's Fortran source73

Revision D ADIFOR 2.0 User's Guide February 16, 1998code and to the individual elements of active variables that are declared as arrays. The directionalgradient vectors appear as vector operands in the vector linear combinations equation (C.1).C.3 Where Is SparsLinC Useful?The main rationale for the development of SparsLinC is to make derivative computation run fasterand use less memory. But not every problem will result in faster code if SparsLinC is used. Thepotential gain depends, to a large extent, on the inherent sparsity present in any particular derivativecomputation.C.3.1 De�nition of SparsityIn a nonsparse representation, a directional gradient vector V would be declared as an array oflength p, where p is the number of directions (i.e., the number of columns in the seed matrix).1We denote the number of nonzeros in V at a given point t during the execution by Vt:nnz. Thepercentage of zero entries or sparsity of Vt is de�ned asVt:sparsity := (1� Vt:nnzp) � 100%: (C.2)A good measure for the overall sparsity present in a derivative computation is the median ofthe sparsities of all directional gradient vectors during the entire execution of the derivative code.A necessary (but not su�cient) condition for SparsLinC to improve the runtime performance ofderivative computation is that the number of directions with respect to which we wish to computederivatives be \large". This is perhaps an obvious, but nonetheless signi�cant, point, since if thenumber of directions is small, directional gradient vectors will be short and any strategy to exploitsparsity will be defeated by the overhead associated with implementing that strategy. The determi-nation of what is considered a large sparse problem is to a great extent dependent upon the natureof the problem; however, in our experience, the threshold at which our strategy becomes e�ective is20{30 directions.Another important issue concerning sparsity in derivative computations is that the sparsity of the�nal result (the nonzero structure of the �nal directional gradient vectors of the dependents) is onlya lower bound on the sparsity of the intermediate directional gradient vectors; that is, the overallsparsity of the problem may be (and often is very) much higher than that of the �nal derivativeresult. In general, sparsity diminishes as the computation proceeds, because for all vector linearcombinations, the nonzero index set of the resulting left-hand-side vector is the union of index setsof the right-hand-side vectors.2 As a consequence, in many problems, there may be a lot of \hidden"sparsity that can be exploited by using SparsLinC.C.3.2 Sparse Derivative Problem TypesThe numerical computation of gradients and Jacobians is an important step in the solution of manynonlinear problems, such as constrained optimization, mesh computations, and the solution of sys-tems of sti� di�erential and algebraic equations. In many instances, these problems require deriva-1For the sake of clari�cation, we note that p denotes the same quantity as the Fortran variable g p , used elsewherein this document.2This discussion precludes the possibility of the occurrence of numerical zeros resulting from exact cancellation(e.g., a+ (�a)) and zero multipliers. In our experience, exact cancellation rarely occurs in derivative computation,and currently, SparsLinC does not check for it (i.e., numerically zero vector entries are treated like nonzero entries).SparsLinC does, however, check for zero multipliers, and vectors with zero multipliers are not referenced.74

Revision D ADIFOR 2.0 User's Guide February 16, 1998tive computations that have inherent sparsity. Two examples are gradients of partially separablefunctions and sparse Jacobians.A function is partially separable if it can be represented asf(x) = mXi=1 fi(x); (C.3)where m is the number of partitions, and where each component function, fi(x), is typically afunction of just a few of the elements of x, implying that each of the corresponding directionalgradient vectors, rfi(x), will be sparse, even though the aggregate f depends on all of x, leadingto a dense �nal gradient rf(x). Any f with a sparse Hessian belongs to this class of problem [19],regardless of whether the partially separable structure is expressed explicitly in the code.For many Jacobian computations, the �nal Jacobian is itself sparse, implying that there is muchsparsity to be exploited in the intermediate computations. As discussed above, every intermediatedirectional gradient vector is at least as sparse as (and often much sparser than) the �nal Jacobian.C.4 Usage of SparsLinC Access RoutinesThis section outlines the SparsLinC access routines and their use in the derivative code driver. Theseroutines allow the user to set up and con�gure SparsLinC, pass data to it, and extract results andperformance measures from it.C.4.1 About SparsLinC 1.1 Routines and Their NamesSparsLinC provides multiprecision arithmetic support, meaning that the underlying vectors canbe represented in REAL, DOUBLE PRECISION, COMPLEX, or DOUBLE COMPLEX precision. The routinesinvolving a vector or vectors have a pre�x letter designating the \precision" of the operation. Foreach precision-dependent SparsLinC routine, all instantiations of the routine have the same interface,meaning that they have the same arguments, in the same order, and with identical declarationsexcept for the types of the vectors and multipliers (as an example, see the declaration of VALVEC inthe de�nition of the [S,D,C,Z]SPSD routines in Section C.6).Here is a summary of the naming conventions we have adopted for SparsLinC routines:� The �rst letter will be an \S", \D", \C", \Z", or \X" indicating, respectively, whether the routinemanipulates vectors in REAL, DOUBLE PRECISION, COMPLEX, or DOUBLE COMPLEX precision orwhether it is a nonnumeric utility routine.� The second and third letters will be \SP", to denote that the routine is in the SParsLinClibrary.� The last two or three letters will be an abbreviation of the task performed by the routine.We use the shorthand, \[S,D,C,Z]name" to refer to all four precision instantiations of a routinename.C.4.2 Declaration of Sparse VariablesIn Section C.2 we introduced the concept of directional gradient vectors. In the case of the non-sparse invocation of ADIFOR 2.0, these vectors are implemented as Fortran arrays. In the followingexamples in this and subsequent sections (C.4.2 - ??), assume that x is the independent variable75

Revision D ADIFOR 2.0 User's Guide February 16, 1998(i.e., all 1000 entries of x are independent variables), f is the dependent variable, and w is an activevariable we need to access in the derivative code driver:REAL x(1000), f(5), wIn the nonsparse case, the derivative code generated by ADIFOR 2.0 (assuming the ADIFOR 2.0options AD PREFIX and AD SEP have the default bindings of \g" and \ ", respectively) will con-tain the following declarations:REAL g_x(g_pmax_,1000), g_f(g_pmax_,5), g_w(g_pmax_)By contrast, in the sparse case, the derivative code generated by ADIFOR 2.0 will contain thefollowing declarations:INTEGER g_x(1000), g_f(5), g_wNote that the Fortran interface to SparsLinC declares each directional gradient vector to be anINTEGER. This is because each Fortran INTEGER gradient variable will be interpreted by SparsLinCto be a pointer to the sparse representation of the corresponding vector.It is usually possible to clip-and-paste the declarations for the directional gradient vectors, andpossibly the declarations of COMMON blocks that contain directional gradient vectors, from the codegenerated by ADIFOR 2.0. This is true for both nonsparse and sparse applications of ADIFOR 2.0.Just be aware that the declarations for the directional gradient vectors in the nonsparse and sparsecodes are di�erent.Parenthetically, if you want to compare the sparse and nonsparse approaches for a particularproblem, it is often good coding practice to write one driver for both, with preprocessor directivesspecifying the parts where the two di�er. For example, for the above declaration, the following codecould appear in the driver:#ifdef NON_SPARSEREAL g_x(g_pmax_,1000), g_f(g_pmax_,5), g_w(g_pmax_)#elif SPARSEINTEGER g_x(1000), g_f(5), g_w#endifWe use this format, wherever applicable (i.e., wherever corresponding sparse and nonsparsecodes are present), in the rest of this discussion. (On most Unix systems, �lenames ending with\.F" are interpreted by make�les as Fortran �les with preprocessor statements. Users unfamiliarwith preprocessor directives can consult the \man" pages for \cpp", the C preprocessor.)C.4.3 Initializing and Customizing SparsLinCSparsLinC data structures must be initialized before any computation can be performed. To thisend, the user must call the routine XSPINI before all other calls to any SparsLinC (except for callsto XSPCNF, which must precede the call to XSPINI, as described below) or ADIFOR 2.0-generatedroutines. XSPINI takes no arguments and is called as follows:CALL XSPINIThe routine XSPCNF provides a means of tuning SparsLinC data structures for a particularproblem at hand. Most sparse vectors maintained by SparsLinC are stored in what is commonlyreferred to as the \single subscript" and \compressed subscript" scheme. The single subscript76

Revision D ADIFOR 2.0 User's Guide February 16, 1998scheme is the one already introduced in the Fortran context in Section C.1. In the compressedsubscript scheme, in contrast, we keep track of nonzero index ranges. Thus the compressed subscriptrepresentation of the vector of Section C.1 would be as follows:Index Array: [1,1] [3,4] [7,7]Value Array: 11.0 33.0 44.0 77.0This representation is more e�cient than the single-subscript representation when sparse vectorscontain a good portion of contiguous nonzero index ranges. A contiguous nonzero index range is arange of indices wherein all the corresponding values are nonzeros. For example, for our vector above,the largest such range has size 2 and contains elements 3 and 4. This scenario commonly arises whencomputing Jacobians with banded structure or gradients of partially separable functions. SparsLinCautomatically converts a vector from the single-subscript to the compressed-subscript representationwhen the number of nonzeros in the vector exceeds a certain threshold, called switch threshold,say.For either representation, since the size to which vectors can grow is not known a priori,SparsLinC must provide, for the value and index arrays, a data structure capable of represent-ing vectors of arbitrary size. The data structure currently employed in SparsLinC is a linked listof arrays each of which has a �xed number of entries. Let us denote this number of entries withSSbucket size for the single subscript scheme and CSbucket size for the compressed subscriptscheme.SparsLinC allows the user to adjust these values using the XSPCNF routine. For example, thesequence of callsCALL XSPCNF(1,10)CALL XSPCNF(2,500)CALL XSPCNF(3,20)sets SSbucket size to 10, CSbucket size to 500, and switch threshold to 20. This would beappropriate, for example, for computing the gradient of a partially separable function (see Sec-tion C.3.2), where each rfi usually contains about 20 nonzeros, and the number of independentvariables is greater than 500.While XSPINI assigns default values to these parameters and hence there is, from a functionalperspective, no need to call XSPCNF, we encourage experimenting with these parameters and welcomefeedback. Our experiments have shown that SparsLinC performs best if CSbucket size is close invalue to the size of the largest contiguous nonzero index range present in the problem. The tradeo�is between runtime and memory, where a larger value of CSbucket size is likely to result in fasterruntime, but also the dynamic allocation of more memory. In all cases, SSbucket size should be setsmaller (and usually much smaller) than CSbucket size and should not exceed switch threshold.We are working on a facility to trace and assimilate SparsLinC runtime information to aid withSparsLinC performance tuning.The user should pay heed to the following important note: XSPCNF may be called only beforecalling XSPINI to set SSbucket size and CSbucket size. This is because once XSPINI is called,the array dimensions set via these options cannot be modi�ed. Calling XSPCNF to set SSbucket sizeand CSbucket size, after a call to XSPINI, will result in a runtime error. Calls to XSPCNF to setswitch threshold can be made at any time. 77

Revision D ADIFOR 2.0 User's Guide February 16, 1998C.4.4 Initializing the Seed MatrixEach of the precision-speci�c SparsLinC routines [S,D,C,Z]SPSD converts a precision-speci�c sparsevector stored in the Fortran Sparse Format into a corresponding vector in the SparsLinC Sparse For-mat. In the following example, for the purpose of demonstration, we initialize columns 19 and 20 ofg_x (corresponding to the derivatives of x(19) and x(20)), in both the nonsparse and sparse ways(assume that the arrays, INDVEC and VALVEC are declared appropriately):#ifdef NON_SPARSEg_x(7,19) = 2.0g_x(19,19) = 1.0g_x(20,20) = 1.0#elif SPARSEINDVEC(1) = 7VALVEC(1) = 2.0INDVEC(2) = 19VALVEC(2) = 1.0CALL SSPSD(g_x(19),INDVEC,VALVEC,2)CALL SSPSD(g_x(20),20,1.0,1)#endifNote also that a vector must be initialized in a \one-shot" fashion; hence, for example, the fol-lowing piece meal approach would be an incorrect initialization of g_x(19):INDVEC(1) = 7VALVEC(1) = 2.0CALL SSPSD(g_x(19),INDVEC,VALVEC,1)INDVEC(1) = 19VALVEC(1) = 1.0CALL SSPSD(g_x(19),INDVEC,VALVEC,1)Because of the \destructive copy" feature of SPSD (see Section C.6), the above would be equivalentto having made only the second of the two calls.C.4.5 Extracting Directional Gradient Vectors from SparsLinCSparsLinC provides two sets of precision-speci�c interfaces for extracting vector results:[S,D,C,Z]SPXDQ (XVEC, INLEN, VPTR, OUTLEN, INFO)extracts sparse object(VPTR) into the Fortran Nonsparse Format vector XVEC. INLEN is the size ofXVEC. The returned value OUTLEN is the largest index in the nonzero index set in sparse object(VPTR).The value of INFO is used to indicate whether XVEC was su�ciently large to store all of the nonzeroelements in sparse object(VPTR). If OUTLEN is less than INLEN, then XVEC(OUTLEN+1:INLEN) is setto zero. [S,D,C,Z]SPXSQ (INDVEC, VALVEC, INLEN, VPTR, OUTLEN, INFO)extracts sparse object(VPTR) into the Fortran Sparse Format vector represented by the two arraysINDVEC and VALVEC. INLEN is the size of the arrays INDVEC and VALVEC. The returned value OUTLENis the number of nonzeros in sparse object(VPTR). The value of INFO is used to indicate whetherXVEC was su�ciently large to store all of the nonzero elements in sparse object(VPTR). If OUTLEN isless than INLEN, then VALVEC(OUTLEN+1:INLEN) and INDVEC(OUTLEN+1:INLEN) are not referenced.78

Revision D ADIFOR 2.0 User's Guide February 16, 1998In the following code segments, we show examples of the usage of these extraction routines alongwith the corresponding necessary declarations (there is no equivalent ADIFOR 2.0 nonsparse ex-traction, since in that case the output variables are already in Fortran Nonsparse Format).SPXDQ ExamplePARAMETER (in_len_xd = g_pmax_)INTEGER out_len_xd(5), info_xd(5)REAL g_f_xd(in_len_xd,5)...DO i = 1, 5CALL SSPXDQ(g_f_xd(1,i), in_len_xd, g_f(i),out_len_xd(i), info_xd(i))ENDDOin_len_xd is a user-de�ned value specifying the leading dimension of the Fortran nonsparsecolumn vectors of g_f_xd, i.e., it is the user's estimate of what is the largest index correspondingto a nonzero value in the vector to be extracted. In this case, by setting in_len_xd = g_pmax_, wehave ensured ourselves that the SparsLinC Sparse Format vector will always \�t" into the FortranNonsparse Format vector. (In the next example we will discuss the case of underestimating memoryrequirements.)Note that as speci�ed above, g_f_xd is de�ned identically to the nonsparse g_f in Section C.4.2.Given Fortran's column order array storage, the above call to SSPXDQ causes g_f_xd to be alignedexactly with the nonsparse g_f.SPXSQ ExamplePARAMETER (in_len_xs = 40)INTEGER g_f_ind_xs(in_len_xs,5), out_len_xs(5), info_xs(5)REAL g_f_val_xs(in_len_xs,5)...DO i = 1, 5CALL SSPXSQ(g_f_ind_xs(1,i), g_f_val_xs(1,i), in_len_xs, g_f(i),out_len_xs(i), info_xs(i))ENDDOHere, our choice of in_len_xs = 40 implies that we have made the assumption that there areat most 40 nonzeros in any row of the Jacobian @f@x (i.e., given our declaration of x in Section C.4.2,we assume that the least sparse directional derivative vector is 96% sparse). To make sure that ourmemory requirement assumption holds, we add the following code:max_len_xs = 0DO i = 1, 5IF (info_xs(i) .NE. 0 .AND. out_len_xs(i) .GT. max_len_xs) THENmax_len_xs = out_len_xs(i)END IFENDDONow max_len_xs is encoded with the information we need. That is, if zero, our assumptionwas true, else, max_len_xs is equal to the true number of nonzeros in the least sparse row of theJacobian and we know how much memory is really needed to extract all nonzero derivative values.79

Revision D ADIFOR 2.0 User's Guide February 16, 1998C.4.6 Adding the Contents of a Sparse Vector to a Dense VectorTwo SparsLinC routines are provided for adding a SparsLinC Sparse Format vector to a FortranNonsparse Format vector.[S,D,C,Z]SPXMQ (XVEC, INLEN, MULT, VPTR, OUTLEN, INFO)adds to XVEC the contents of sparse object(VPTR) multiplied by MULT(i.e., XVEC = XVEC + MULT � sparse object(VPTR)).[S,D,C,Z]SPXAQ (XVEC, INLEN, VPTR, OUTLEN, INFO)is identical to SPXMQ, except that the multiplier is assumed to be one (i.e., XVEC = XVEC +sparse object(VPTR)). Note that SPXMQ and SPXAQ are functionally very similar to the SPXDQ routine,the only di�erence being that SPXDQ \assigns to" XVEC while SPXMQ and SPXAQ \add to" XVEC thecontents of the sparse vector. Note also, that the interfaces of SPXAQ and SPXDQ are identical.C.4.7 Dumping the Contents of a Sparse VectorSparsLinC provides a set of precision-speci�c interfaces for dumping a sparse vector to a �le.[S,D,C,Z]SPPRQ (VPTR, EXT)writes the number of nonzeros as well as index/value pairs of sparse object(VPTR) to stdout or a �le.EXT is an INTEGER in the range [0,999] and speci�es the destination of the output: if zero, output iswritten to stdout; otherwise, output is written to the �le SPPRQ.EXT.SPPRQ can be a useful routine during debugging, to quickly check the values of a derivative vectorsomewhere in the code. It also has the advantage of not requiring that the user provide memory inwhich to extract the nonzero values in the sparse vector.Admittedly, the interface of SPPRQ is rather crude. This is because we have avoided passingstring arguments, because of the inconsistency of the Fortran-to-C string-passing protocols on dif-ferent platforms.SPPRQ ExampleDO i = 1, 2CALL SPPRQ(g_f(i), 6)ENDDOThe above code prints the nonzero derivative information in g_f(1) and g_f(2) into the �le\SPPRQ.6" in the current directory. Assume that g_f(1) and g_f(2) contain 4 and 2 nonzero val-ues, respectively. Then the following is an example of what might be the contents of \SPPRQ.6'subsequent to the execution of the above code:Number of nonzeros = 4Index Value----- -----4 -4.892400e-015 6.523200e+006 -1.630800e+00188 -2.030000e+01Number of nonzeros = 2 80

Revision D ADIFOR 2.0 User's Guide February 16, 1998Index Value----- -----37 3.812800e+00256 1.000000e+00Note that the vectors are printed out in the order in which the corresponding SPPRQ was called,and there is no identi�cation in the �le denoting which set of numbers belong to which vector. Thistask is left to the user.C.4.8 Extracting Performance InformationIn addition to providing derivative information, SparsLinC can also provide information about itsown performance. Because of the system-speci�c nature of timing routines, runtime measures, how-ever, are best arrived at by enveloping the appropriate system calls around the call to the top levelsubroutine. For example:CALL timer(t1)CALL g_top_foo(x, g_x, ...)CALL timer(t2)t_elapsed = t2 - t1The SparsLinC routine XSPMEM returns how many kilobytes of memory have been dynamicallyallocated in the process of computing derivatives:REAL USEDKB...CALL XSPMEM(USEDKB)C.4.9 Freeing Dynamically Allocated MemoryThe routine XSPFRA frees all dynamically allocated memory in SparsLinC. Freeing memory might beuseful if after �nishing the derivative computation, the user wishes to perform some further memory-intensive computation. There are no arguments, and the call is simplyCALL XSPFRAXSPFRA has the e�ect of leaving \dangling pointers", meaning that the Fortran INTEGER gradientvariables, which are interpreted by SparsLinC as pointers, will retain the values (addresses) theycontained before XSPFRA was called. However, after the call to XSPFRA, the memory pointed to bythese pointers will no longer be under SparsLinC control. Any attempt to use these variables aspointers (e.g., by using them as pointer arguments to some SparsLinC routine) will likely cause asegmentation fault. For this reason, no calls to any SparsLinC routine should be made after XSPFRA.C.5 A Brief Tutorial ExampleSparsLinC is designed to be easy to use. First, apply ADIFOR 2.0 to generate sparse derivativecode by specifying AD FLAVOR=sparse in your script �le. Then, create a \Sparse" derivative codedriver. The derivative code driver is a user-generated Fortran program that invokes the derivativecode generated by ADIFOR 2.0. In general, the sparse derivative code driver is analogous to thenonsparse derivative code driver and di�ers from the latter in only a few places. The following is an81

Revision D ADIFOR 2.0 User's Guide February 16, 1998example derivative code driver, based on the code fragments shown throughout Section C.4:PROGRAM DRIVERREAL x(1000), f(5), w#ifdef NON_SPARSEREAL g_x(g_pmax_,1000), g_f(g_pmax_,5), g_w(g_pmax_)#elif SPARSEINTEGER g_x(1000), g_f(5), g_wPARAMETER (in_len_xs = 40)INTEGER g_f_ind_xs(in_len_xs,5), out_len_xs(5), info_xs(5)REAL g_f_val_xs(in_len_xs,5)REAL USEDKB#endifCCC We assume some statements at this point initialize the independentCCC variables.#ifdef SPARSECCC Tuning of SparsLinC parameters (optional) and mandatory initializationCALL XSPCNF (1, 10)CALL XSPCNF (2, 500)CALL XSPCNF (3, 20)CALL XSPINI#endifCCC Initializing the seed matrix as identity.#ifdef NON_SPARSEDO i=1,1000DO j=1,1000g_x(i,j) = 0.0d0ENDDOg_x(i,i) = 1.0d0ENDDO#elif SPARSEDO i=1,1000CALL SSPSD(g_x(i),i,1.d0,1)ENDDO#endif#ifdef NON_SPARSECALL g_top_foo(g_p_, x, g_x, ldg_x, f, g_f, ldg_f,+ w, g_w, ldg_w, non_active_var)#elif SPARSECALL g_top_foo(x, g_x, f, g_f, w, g_w, non_active_var)#endifCALL EHRPT#ifdef SPARSE 82

Revision D ADIFOR 2.0 User's Guide February 16, 1998DO i = 1, 5CALL SSPXSQ(g_f_ind_xs(1,i), g_f_val_xs(1,i), in_len_xs, g_f(i),out_len_xs(i), info_xs(i))ENDDOmax_len_xs = 0DO i = 1, 5IF (info_xs(i) .NE. 0 .AND. out_len_xs(i) .GT. max_len_xs) THENmax_len_xs = out_len_xs(i)ENDIFENDDOCALL XSPMEM(USEDKB)#endifTaking a close look at the calls to the top level routine, g_top_foo, in the driver code, we notethat the sparse call di�ers from the nonsparse call in that there is never a need to pass a leadingdimension argument along with each gradient variable argument, and also in that there is no need topass a value for g_p_, the runtime nonsparse directional gradient vector size. Note that, regardless ofwhether ADIFOR 2.0 is invoked in the sparse or nonsparse mode, it generates the same subroutinename (assuming the ADIFOR 2.0 options AD PREFIX and AD SEP had the same bindings on bothcases).Finally, link all the generated derivative code and your driver with the SparsLinC 1.1 as describedat the beginning of this chapter.C.6 Detailed Speci�cation of Access RoutinesThis section contains the detailed description of the SparsLinC 1.1 access routines discussed inSection C.4.We adopt the convention that for a Fortran INTEGER variable VPTR, acting as a pointerto a SparsLinC Sparse Format vector, the sparse derivative object pointed to by VPTR is calledsparse object(VPTR). Also, to save space, only the calling sequence for one particular
oating-pointprecision is provided.
83

Revision D ADIFOR 2.0 User's Guide February 16, 1998SSPSD, DSPSD, CSPSD, ZSPSDSUBROUTINE SSPSD (VPTR, INDVEC, VALVEC, LEN)

84

Revision D ADIFOR 2.0 User's Guide February 16, 1998PurposeConversion of a vector in Fortran Sparse Format into a vector in SparsLinC Sparse For-mat. The Fortran Sparse Format vector is given by the two arrays, INDVEC(1:LEN)and VALVEC(1:LEN), representing the indices and values of a sparse vector x (say),respectively. x is copied into sparse object(VPTR), which is the vector in SparsLinCSparse Format. The indices in INDVEC need not be in any particular order (in-ternally, SPSD performs an ascending order sort). However, INDVEC and VALVECmust be identically aligned. That is, if in the Fortran Nonsparse Format x has anonzero entry at index i with value v, then for some J, the following must hold:INDVEC(J) = i and VALVEC(J) = v. SPSD performs a destructive copy. That is,if sparse object(VPTR) had been previously allocated (via SPSD or as a result of be-ing an output argument of some other SparsLinC routine), the previous information insparse object(VPTR) is lost, and the dynamically allocated memory where that informationresided is deallocated.ArgumentsVPTR (output) INTEGERUpon exit, sparse object(VPTR) contains a copy of the sparse vector repre-sented by INDVEC and VALVEC.INDVEC (input) INTEGER array, dimension (LEN)Indices of the nonzero values of the sparse vector. (We assume that indicesare � 1; therefore, INDVEC entries � 0 would be incorrect and would resultin a runtime error.)VALVEC (input) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array, di-mension (LEN)Nonzero values of the sparse vector.LEN (input) INTEGERLEN � 0 is the number of nonzeros in the sparse vector. If LEN = 0, VPTRis initialized to point to the vector of all zeros and INDVEC and VALVEC arenot referenced.SSPXDQ, DSPXDQ, CSPXDQ, ZSPXDQSUBROUTINE SSPXDQ (XVEC, INLEN, VPTR, OUTLEN, INFO)PurposeExtracts sparse object(VPTR) into the Fortran Nonsparse Format vector XVEC.ArgumentsXVEC (output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array,dimension (INLEN)On exit, if INFO = 0, XVEC(1:INLEN) will contain a dense representationof sparse object(VPTR). If OUTLEN < INLEN, then XVEC(OUTLEN+1:INLEN) isinitialized to all zeros. If INFO 6= 0, XVEC is not referenced.INLEN (input) INTEGERLength of XVEC. 85

Revision D ADIFOR 2.0 User's Guide February 16, 1998VPTR (input/output) INTEGERPointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it isinitialized to point to the vector of all zeros (which is why it might be anoutput argument).OUTLEN (output) INTEGERLargest index in the nonzero index set in sparse object(VPTR). This valuewill always be returned, whether XVEC is initialized or not. See the descrip-tion of INFO below.INFO (output) INTEGERIf INLEN < OUTLEN, INFO will be set to -1, and XVEC is not referenced.Otherwise, INFO is set to 0, and XVEC(1:INLEN) is initialized to a FortranNonsparse Format copy of sparse object(VPTR).SSPXSQ, DSPXSQ, CSPXSQ, ZSPXSQSUBROUTINE SSPXSQ (INDVEC, VALVEC, INLEN, VPTR, OUTLEN, INFO)PurposeExtracts sparse object(VPTR) into the Fortran Sparse Format vector represented by the twoarrays, INDVEC and VALVEC.ArgumentsINDVEC (output) INTEGER array, dimension (INLEN)On exit, if INFO = 0, INDVEC(1:OUTLEN) contains the indices of the nonzeroentries of sparse object(VPTR). If INFO = 0 and OUTLEN < INLEN thenINDVEC(OUTLEN+1:INLEN) is not referenced. If INFO 6= 0, INDVEC is notreferenced.VALVEC (output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array,dimension (INLEN)On exit, if INFO = 0, VALVEC(1:OUTLEN) will contain the nonzero en-tries of sparse object(VPTR). If INFO = 0 and OUTLEN < INLEN thenVALVEC(OUTLEN+1:INLEN) is not referenced. If INFO 6= 0, VALVEC is notreferenced.INLEN (input) INTEGERLength of INDVEC and VALVEC.VPTR (input/output) INTEGERPointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it isinitialized to point to the vector of all zeros (which is why it might be anoutput argument).OUTLEN (output) INTEGERNumber of nonzeroes in sparse object(VPTR). This value will always be re-turned, whether INDVEC and VALVEC are initialized or not. See the descrip-tion of INFO below. 86

Revision D ADIFOR 2.0 User's Guide February 16, 1998INFO (output) INTEGERIf INLEN < OUTLEN, INFO will be set to -1, and INDVEC and VALVEC arenot referenced. Otherwise, INFO is set to 0, and INDVEC(1:OUTLEN) andVALVEC(1:OUTLEN) are initialized to the Fortran Sparse Format copy ofsparse object(VPTR).SSPXMQ, DSPXMQ, CSPXMQ, ZSPXMQSUBROUTINE SSPXMQ (XVEC, INLEN, MULT, VPTR, OUTLEN, INFO)PurposeAdds the weighted contents of sparse object(VPTR) to the Fortran Nonsparse Formatvector XVEC, with MULT being the multplicative weight (i.e., XVEC = XVEC + MULT �sparse object(VPTR)). For example, say XVEC is a vector of length 7 containing all ones,MULT = 2.0, and sparse object(VPTR) is as follows:Index Array: 1 3 4 7Value Array: 11.0 33.0 44.0 77.0Subsequent to the call to this routine, XVEC would contain the following:(23:0; 1:0; 67:0; 89:0; 1:0; 1:0; 155:0)ArgumentsXVEC (input/output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX]array, dimension (INLEN)On exit, if INFO = 0, XVEC(1:INLEN) will have added to it the weightedcontributions of the values in sparse object(VPTR), with MULT specifying theweight. If INFO 6= 0, XVEC is not modi�ed.INLEN (input) INTEGERLength of XVEC.MULT (input) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX]Multiplier.VPTR (input/output) INTEGERPointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it isinitialized to point to the vector of all zeros (which is why it might be anoutput argument).OUTLEN (output) INTEGERLargest index in the nonzero index set in sparse object(VPTR). This valuewill always be returned, whether XVEC is modi�ed or not. See the descrip-tion of INFO below.INFO (output) INTEGERIf INLEN < OUTLEN, INFO will be set to -1, and XVEC is not modi�ed. Other-wise, INFO is set to 0, and XVEC(1:INLEN) is modi�ed as described above.87

Revision D ADIFOR 2.0 User's Guide February 16, 1998SSPXAQ, DSPXAQ, CSPXAQ, ZSPXAQSUBROUTINE SSPXAQ (XVEC, INLEN, VPTR, OUTLEN, INFO)PurposeAdds the contents of sparse object(VPTR) to the Fortran Nonsparse Format vector XVEC(i.e., XVEC = XVEC + sparse object(VPTR)). (SPXA is identical to the SPXMQ routine with MULT= 1.0; see the documentation for SPXMQ.)ArgumentsXVEC (input/output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX]array, dimension (INLEN)On exit, if INFO = 0, XVEC(1:INLEN) will have added to it the values insparse object(VPTR). If INFO 6= 0, XVEC is not modi�ed.INLEN (input) INTEGERLength of XVEC.VPTR (input/output) INTEGERPointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it isinitialized to point to the vector of all zeros (which is why it might be anoutput argument).OUTLEN (output) INTEGERLargest index in the nonzero index set in sparse object(VPTR). This valuewill always be returned, whether XVEC is modi�ed or not. See the descrip-tion of INFO below.INFO (output) INTEGERIf INLEN < OUTLEN, INFO will be set to -1, and XVEC is not modi�ed. Other-wise, INFO is set to 0, and XVEC(1:INLEN) is modi�ed as described above.SSPPRQ, DSPPRQ, CSPPRQ, ZSPPRQSUBROUTINE SSPPRQ (VPTR, EXT)PurposeWrites number of nonzeros as well as index/value pairs of sparse object(VPTR) onto stdoutor a �le, with the following format:Number of nonzeros = . . .Index Value||{ ||{.Arguments 88

Revision D ADIFOR 2.0 User's Guide February 16, 1998VPTR (input/output) INTEGERPointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it isinitialized to point to the vector of all zeros (which is why it might be anoutput argument).EXT (input) INTEGERMust be in the range [0,999]. If EXT = 0, output written is to stdout. Oth-erwise EXT is converted to its ASCII equivalent and used as the extensionappended to the �lename \SPPR." and output is written to this �le.XSPCNFSUBROUTINE XSPCNF (OPT, VAL)PurposeAllows user to customize SparsLinC for each run. The following table speci�es for eachparameter its name, option number, default value, and range of allowable values. \SS-bucket size" and \CSbucket size" are the number of entries per array in the linked listrepresentation of a single-subscript and compressed-subscript vector respectively. For allvector linear combinations, if at the conclusion of the computation the left-hand-side vectorhas an SS representation and the number of its nonzero entries exceeds \switch threshold",the vector is converted to a CS representation.Name OPT Default RangeSSbucket size 1 8 >1CSbucket size 2 32 >1switch threshold 3 16 >1XSPCNF with OPT = 1 or OPT = 2 may be called only before calling XSPINI. CallingXSPCNF with OPT = 1 or 2 after a call to XSPINI will result in a runtime error. Calls toXSPCNF with OPT = 3 can be made at any time.ArgumentsOPT (input) INTEGERSpeci�es the option number associated with a given parameter as given inthe above table.VAL (input) INTEGERThe new value for the parameter speci�ed by OPT.XSPMEMSUBROUTINE XSPMEM (USEDKB) 89

Revision D ADIFOR 2.0 User's Guide February 16, 1998PurposeReports how many kilobytes of memory have been allocated dynamically in SparsLinC.ArgumentsUSED (output) REAL.The number of kilobytes of storage allocated for SparsLinC data structures.

90

Revision D ADIFOR 2.0 User's Guide February 16, 1998XSPINISUBROUTINE XSPINIPurposeInitializes the sparse data structures by dynamically allocating memory for some SparsLinC-internal global variables. It must be called before any of the other SparsLinC routines(except for calls to XSPCNF with OPTs 1-2) and needs to be called no more than once (whencalled more than once, all but the �rst call act as no-ops).ArgumentsnoneXSPFRASUBROUTINE XSPFRAPurposeFrees all memory allocated for C sparse vector data structures. Note: all pointers tosparse directional gradient variables (VPTR's) are left dangling.Argumentsnone

91

Appendix DInstallation, Con�guration and Useof ADIFOR 2.0 onWindows 95/NTD.1 InstallationD.2 Con�gurationD.3 UseThe use of ADIFOR 2.0 under Windows-95/NT is practically identical to its use under Unix { you �rstcreate a composition and an ADIFOR script �le, then you invoke the ADIFOR Preprocessor which is namedAdifor21 passing it the same options as previously, and then you link your code against the generatedderivative code and against the ADIntrinsics and SparsLinC libraries. Note that the appropriate Windows95/NT libraries and components are named ADIntrinsics.lib, ReqADIntrinsics.obj and SparsLinC.lib.For each of the examples that we have provided, you will �nd a script adANDrun.bat that can be used toinvoke ADIFOR and then run the genererated derivative code.
92

AcknowledgmentsWe thank Andreas Griewank of the University of Dresden and George Corliss of Marquette Uni-versity for their invaluable contributions in getting the ADIFOR project started. We are gratefulto the users of ADIFOR 1.0 for putting up with the shortcomings of this system and for providingus with valuable feedback. In particular we acknowledge Larry Green and his colleagues at theMultidisciplinary Optimization Branch at NASA Langley, Joe Manke of Boeing Computing Ser-vices, Gordon Pusch at Argonne National Laboratory, and Janet Rogers of the National Institutefor Science and Technology. We are also indebted to John Dennis of Rice University, Jorge Mor�e ofArgonne National Laboratory, Ken Kennedy of Rice University, Gerald Marsh of Argonne NationalLaboratory and Mani Salas and Tom Zang, both of NASA Langley, for their support of our work.We also acknowledge the contributions of Heike Baars, Brad Homann, Ernesto Diaz, Fred Dilley,Moe El-Khadiri, Tim Knau�, Aaron Ross, and Vitaly Shmatikov during their student internshipsat Argonne National Laboratory. Lastly, we thank Judy Beumer, Mike Fagan, and Gail Pieper fortheir careful reading of the manuscript and their suggestions for improving the presentation of thisdocument.

93

Bibliography[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Ham-marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK User's Guide. SIAM,Philadelphia, 1992.[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Ham-marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK User's Guide Release 2.0.SIAM, Philadelphia, 1994.[3] B. M. Averick, R. G. Carter, J. J. Mor�e, and G. L. Xue. The MINPACK-2 test problem collec-tion. Preprint ANL-MCS-P153-0692, Mathematics and Computer Science Division, ArgonneNational Laboratory, 1992.[4] Brett Averick, Jorge Mor�e, Christian Bischof, Alan Carle, and Andreas Griewank. Computinglarge sparse Jacobian matrices using automatic di�erentiation. SIAM Journal on Scienti�cComputing, 15(2):285{294, 1994.[5] Christian Bischof, Ali Bouaricha, Peyvand Khademi, and Jorge Mor�e. Computing gradients inlarge-scale optimization using automatic di�erentiation. Preprint MCS-P488-0195, Mathemat-ics and Computer Science Division, Argonne National Laboratory, 1995.[6] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. ADIFOR:Generating derivative codes from Fortran programs. Scienti�c Programming, 1(1):11{29, 1992.[7] Christian Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. ADIFOR 2.0: AutomaticDi�erentiation of Fortran 77 Programs. IEEE Computational Science & Engineering, 3(3):18{32, Fall, 1996.[8] Christian Bischof, George Corliss, and Andreas Griewank. ADIFOR exception handling. Tech-nical Report ANL/MCS-TM-159, Mathematics and Computer Science Division, Argonne Na-tional Laboratory, 1991.[9] Christian Bischof, Larry Green, Kitty Haigler, and Tim Knau�. Parallel calculation of sen-sitivity derivatives for aircraft design using automatic di�erentiation. In Proceedings of the5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization,AIAA 94-4261, pages 73{84. American Institute of Aeronautics and Astronautics, 1994.[10] Christian Bischof, Peyvand Khademi, Ali Bouaricha, and Alan Carle. Computation of gradientsand Jacobians by transparent exploitation of sparsity in automatic di�erentiation. PreprintMCS-P519-0595, Mathematics and Computer Science Division, Argonne National Laboratory,1995.[11] Frank H Clark. Optimization and Nonsmooth Analysis. John Wiley and Sons, New York, 1983.94

Revision D ADIFOR 2.0 User's Guide February 16, 1998[12] Thomas F. Coleman. Large Sparse Numerical Optimization, volume 165 of Lecture Notes inComputer Science. Springer-Verlag, New York, 1984.[13] Thomas F. Coleman, Burton S. Garbow, and Jorge J. Mor�e. Software for estimating sparseJacobian matrices. ACM Transactions on Mathematical Software, 10(3):329{345, 1984.[14] A. R. Conn, N. I. M. Gould, and P. L. Toint. An introduction to the structure of large scalenonlinear optimization problems and the LANCELOT project. Report 89-19, Namur University,Namur, Belgium, 1989.[15] Wayne H. Enright and John D. Pryce. Two FORTRAN packages for assessing initial valuemethods. ACM Trans. Math. Software, 13(1):1{22, 1987.[16] Herbert Fischer. Special problems in automatic di�erentiation. In Andreas Griewank andGeorge F. Corliss, editors, Automatic Di�erentiation of Algorithms: Theory, Implementation,and Application, pages 43 { 50. SIAM, Philadelphia, Penn., 1991.[17] D. Goldfarb and P.L. Toint. Optimal estimation of Jacobian and Hessian matrices that arisein �nite di�erence calculations. Mathematics of Computation, 43:69{88, 1984.[18] Andreas Griewank. On automatic di�erentiation. In Mathematical Programming: Recent De-velopments and Applications, pages 83{108, Amsterdam, 1989. Kluwer Academic Publishers.[19] Andreas Griewank and Philippe L. Toint. On the unconstrained optimization of partiallyseparable objective functions. In M. J. D. Powell, editor, Nonlinear Optimization 1981, pages301{312, London, 1981. Academic Press.[20] Andreas Griewank and Philippe L. Toint. Partitioned variable metric updates for large struc-tured optimization problems. Numerische Mathematik, 39:119{137, 1982.[21] M. Lescrenier. Partially separable optimization and parallel computing. Ann. Oper. Res.,14:213{224, 1988.[22] J. J. Mor�e. On the performance of algorithms for large-scale bound constrained problems. InT. F. Coleman and Y. Li, editors, Large-Scale Numerical Optimization. SIAM, 1991.[23] Gordon Pusch, Christian Bischof, and Alan Carle. On automatic di�erentiation of codes withcomplex arithmetic with respect ot real variables. Technical Report ANL/MCS-TM-188, Math-ematics and Computer Science Division, Argonne National Laboratory, 1994.[24] Louis B. Rall. Automatic Di�erentiation: Techniques and Applications, volume 120 of LectureNotes in Computer Science. Springer Verlag, Berlin, 1981.[25] J. M. Smith and H. C. Van Ness. Introduction to Chemical Engineering. McGraw-Hill, NewYork, 1975.
95

