ADIFOR 2.0 Users’ Guide
(Revision D)

by

Christian Bischof,’ Alan Carle,*

Paul Hovland,*
Peyvand Khademi,* and Andrew Mauer**

Mathematics and Computer Science Division
Technical Memorandum No. 192
and
Center for Research on Parallel Computation

Technical Report CRPC-95516-5

June 1998

This work was supported by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Computational and Technology Research, U.S. Department of En-
ergy, under Contract W-31-109-Eng-38, by the National Aerospace Agency under Purchase Order
L25935D, Cooperative Agreement No. NCCW-0027 and Cooperative Agreement No. NCC-1-212,
and by the National Science Foundation, through the Center for Research on Parallel Computation,
under Cooperative Agreement No. CCR-9120008.

T Address: Computing Center, Technical University Aachen, Seffenter Weg 23, 52074 Aachen,
bischof@rz.rwth-aachen.de.

*Address: Department of Computational and Applied Mathematics, Rice University, MS 134, 6100
Main Street, Houston, TX 77005, carle@rice.edu.

t Address: Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S.
Cass Ave., Argonne, IL 60439, hovland@mcs.anl.gov.

** Work performed while employed at Argonne National Laboratory.

Contents

1 Miscellany
1.1 Supported Systems
1.2 How to Get ADIFOR 2.0
1.3 Legal Notices o e

2 Some Preliminaries
2.1 Imstallation
2.1.1 Unix Installation and Configuration
2.1.2 Windows 95/NT Installation and Configuration
2.2 Building the Libraries
2.3 How the ADIFOR Preprocessor Transforms a Program
2.3.1 Code Canonicalization
2.3.2 Variable Nomination
2.3.3 Code Generation
2.4 Functionality of ADIFOR 2.0-Generated Code
2.5 A Quick Exampleo
2.6 A Roadmap

3 Specifying Input for the ADIFOR. Preprocessor
3.1 Option Processing in the ADIFOR, Preprocessor
3.2 Compositions

3.3 Acceptable FORTRAN 77 Source Files
4 A Tutorial Example

5 Known Deficiencies
5.1 Intrinsics Passed as Procedure Parameters
5.2 Intrinsics Overridden by External Functions

5.3 1/0 Statements That Contain Function Invocations.

6 Advanced Topics
6.1 Computation Is Not Encapsulated in Procedure
6.2 Variables Other Than Parameters and Globals in AD-TOP

—_ e e

— O WO W W o K o O Ot W

15
15
17
17

19

27
27
28
28

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

6.3 Variables That Are Overwritten 32
6.4 Variables Involved in I/O Statements L. 32

7 Pitfalls of Differentiating FORTRAN 77 35
8 Potential Problems 37
9 ADIFOR Preprocessor Options 39
9.1 Mandatory Options 39
9.2 Other Options 39

A Seed Matrix Initialization 42
Al Imtroduction 42
A.2 Case 1: Dense Jacobian, one independent, one dependent variable 42
A.3 Case 2: Dense Jacobian, multiple independent and multiple dependent variables . . 47
A.4 Case 3: Sparse Jacobian, one independent, one dependent variable 49
A.5 Case 4: Sparse Jacobian, two independent variables, one dependent variable 52
A.5.1 Approach 1 — Generate derivatives only for fnc 53

A.5.2 Approach 2 — Generate derivatives for fun 55

A.6 Computing Gradients of Partially Separable Functions 57

B ADIntrinsics 1.5: Exception Handling Support for ADIFOR. 2.0 60
B.1 Introduction 60
B.2 What Every User Should Do 61
B.3 Definition of Intrinsic Exceptions and Default Behavior 61
B.4 Exception Handler Modes 64
B.5 Changing Exception Reporting Options 66
B.5.1 Redirecting Exception Handler OQutput 66

B.5.2 Resetting Exception Counts 0oL 66

B.5.3 Fine-Grained Control of Exception Handler Modes 66

B.6 Modifying Exceptional Behavior00 68
B.6.1 Changing Exception Class Default Values 68

B.6.2 Changing Exceptional Behavior for a Particular Intrinsics 69

B.7 Examples of the Use of ADIntrinsics 70

C Sparse Derivative Support for ADIFOR 2.0 through the SparsLinC 1.1 Library 72

C.1
C.2
C.3

C4

Introduction L 72
Background 73
Where Is SparsLinC Useful? 0 o 74
C.3.1 Definition of Sparsity 74
(C.3.2 Sparse Derivative Problem Types 74
Usage of SparsLinC Access Routines 75
C.4.1 About SparsLinC 1.1 Routines and Their Names 75

i

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

C.4.2 Declaration of Sparse Variables 75

C.4.3 Initializing and Customizing SparsLinC 76

C.4.4 Initializing the Seed Matrixo oL oo oL 78

C.4.5 Extracting Directional Gradient Vectors from SparsLinC 78

C.4.6 Adding the Contents of a Sparse Vector to a Dense Vector 80

C.4.7 Dumping the Contents of a Sparse Vector 80

C.4.8 Extracting Performance Information 0. 81

C.4.9 Freeing Dynamically Allocated Memory 81

C.5 A Brief Tutorial Exampleo 81
C.6 Detailed Specification of Access Routines 83

D Installation, Configuration and Use of ADIFOR. 2.0 on Windows 95/NT 92
D.1 Imstallation 92
D.2 Configuration 92
D.3 Use . . o o o e 92
Acknowledgments 92
Bibliography 94

11

Chapter 1

Miscellany

1.1 Supported Systems

ADIFOR 2.0 currently runs on SPARC’s running SunOS 4.1 or SunOS 5.x (Solaris 2.x), IBM
RS/6000’s running ATX 3.2.5 or 4.1.1, SGI workstations running TRIX Release 6.2, HP workstations
running HP-UX 9.x, and x86-class personal computers running Linux, Windows 95 or Windows NT.
ADIFOR 2.0 will be ported to additional computing platforms if we find sufficient interest and have
access to that platform.

1.2 How to Get ADIFOR 2.0

To retrieve the ADIFOR 2.0 automatic differentiation software for educational and non-profit re-
search use, and for commercial evaluation, visit either of the ADIFOR group World Wide Web
home pages, at URL’s: http://www.mcs.anl.gov/adifor, or http://www.cs.rice.edu/"adifor.
These pages describe how to request access to ADIFOR 2.0 and how to download the software. The
pages also contain links to publications related to ADIFOR, including many of the papers referenced
in this user’s guide, as well as the most recent version of this user’s guide.

1.3 Legal Notices

Copyright on the ADIFOR, Preprocessor is held by Rice University. Copyright on the ADIntrinsics
system and the SparsLinC libraries is held by the University of Chicago.

ADIFOR 2.0 was prepared as an account of work sponsored by an agency of the United States
Government, Rice University, and the University of Chicago. NEITHER THE AUTHOR(S), THE
UNITED STATES GOVERNMENT NOR ANY AGENCY THEREOF, NOR RICE UNIVERSITY,
NOR THE UNIVERSITY OF CHICAGO, INCLUDING ANY OF THEIR, EMPLOYEES OR OF-
FICERS, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LEGAL
LIABILITY OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR USEFUL-
NESS OF ANY INFORMATION OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS
USE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS.

If ADIFOR 2.0 has been installed at your site in the usual manner, then a copy of the public
license for ADIFOR 2.0 can be found in $AD_HOME/LICENSE. The license is also available at both of
the World Wide Web sites listed 1n Section 1.2.

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

Any entity desiring permission to incorporate this software or a work based on the software into
commercial products or otherwise use it for commercial purposes should contact:

Alan Carle

Department of Computational and Applied Mathematics
Rice University, MS 134

6100 Main Street

Houston TX 77005

carle@rice.edu

Paul Hovland

Mathematics and Computer Science Div.
Argonne National Laboratory

9700 S. Cass Avenue

Argonne IL 60439

hovland@mcs.anl.gov

Chapter 2

Some Preliminaries

Automatic differentiation is a technique for computing the derivatives of functions described by com-
puter programs. See [18, 24] for an introduction to automatic differentiation. ADIFOR, implements
automatic differentiation by transforming a collection of FORTRAN 77 subroutines that compute
a function f into new FORTRAN 77 subroutines that compute the derivatives of the outputs of f
with respect to a specified set of inputs of f. This paper describes step by step how to use version
2.0 (Revision D) of the ADIFOR system to generate derivative code. Familiarity with UNIX! and
FORTRAN 77 is assumed.

We strongly suggest that you, before reading this manual, have a look at the overview papers
of ADIFOR 2.0 [7] and ADIFOR 1.0 [6]. They provide an overview of the philosophy of ADIFOR,
references to successful applications of ADIFOR, and a perspective of how automatic differentiation
relates to other approaches for computing derivatives.

The ADIFOR 2.0 system consists of the ADIFOR Preprocessor, the ADIntrinsics template ex-
pander and library, and the SparsLinC library. The Adifor2.1 command invokes both the pre-
processor and the ADIntrinsics template expander. Figure 2.1 presents a block diagram of the
ADIFOR 2.0 process, which consists of three key steps:

1. Apply the ADIFOR Preprocessor to your FORTRAN 77 program to produce augmented code
for the computation of derivatives. The preprocessor invokes the ADIntrinsics template ex-
pander directly. We refer to the machine on which you execute the preprocessor as ADI-

FORHOST.

2. Construct a derivative driver code that invokes the generated derivative code and makes use
of the computed derivatives.

3. Compile the generated derivative code and your derivative driver code, and link these with
the derivative support packages, i.e., the ADIntrinsics exception handling package (see Ap-
pendix B), and (optionally) the SparsLinC sparse derivative package (see Appendix C). We
refer to the machine on which you compile and link your derivative driver code and the ADI-
FOR 2.0 support packages as EXECHOST. Notice that ADIFORHOST and EXECHOST may
be different, for example, ADIFORHOST may be a SPARC workstation, and EXECHOST an
RS6000.

The first step of this process can be performed on SPARC’s running SunOS 4.1 or SunOS 5.x
(Solaris 2.x), IBM RS/6000’s running AIX 3.2.5 or 4.1.1, SGI workstations running TRIX Release 6.2,

HP workstations running HP-UX 9.x, and x86-class personal computers running Linux, Windows 95

lUNIX is a trademark of AT&T.

Revision D

FORTRAN
Analysis
Code

ADIFOR 2.0 User’s Guide

ADIFOR 2.0

Preprocessor

Derivative
Computing
Code

e

ADIntrinsics
Template

Expander

Compile
and Link

RN

February 16, 1998

FORTRAN
Derivative

Code

User’s
Derivative
Driver

ADIntrinsics
Library

SparsLinC
Library

Figure 2.1. Block Diagram of the ADIFOR Process

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

or Windows NT. ADIFORHOST is, therefore, currently limited to be a SPARC, an IBM RS/6000
or, an SGI workstation, an HP workstation, or an x86-class personal computer. We currently
provide the necessary libraries for the second step precompiled for each of the machines listed above.
Source code for the libraries is also provided in case you need to compile them to execute on other
architectures. A “C” compiler is required to compile the SparsLinC library. It should, therefore, be
possible to use any machine as EXECHOST.

2.1 Installation

All of these files in the ADIFOR 2.0 distribution can be retrieved from the World Wide Web sites

documented in Section 1.2 of this guide. The distribution consists of the following files:

e Readme.txt provides late-breaking news about the ADIFOR 2.0 distribution, including an-
nouncements of the availability of precompiled versions of the ADIFOR, 2.0 executables and
libraries for new architectures.

e InstallGuideUnix.txt and InstallGuideWindows.txt list the steps required to install AD-
IFOR 2.0 on your system.

e ad2.0D-XXXX.tar.gz is a gzip-compressed UNIX tar format file. XXXX is one of Sun0S-4.x,
Sun0S-5.x, AIX, IRIX, Hpux, or Linux86.

e ad20D.exe is a self-extracting installer for Windows 95 and Windows NT.

The files ad2.0D-XXXX.tar.gz and ad20D.exe unpack into two directories named ADIFOR2.0D
and ADIFOR2.0D.1ib.

Directory ADIFOR2.0D contains:

e bin: Contains Adifor2.1, the ADIFOR Preprocessor, and purse, the ADIntrinsics template
expander. The template expander is responsible for expanding generic exception-handling
macros introduced by ADIFOR 2.0 into the appropriate FORTRAN 77 code. The purse
executable is a perl script.?

e templates: Contains the definition of the exception handling macros used by purse.

e docs: Contains postscript versions of relevant working notes and papers, including this manual.
e examples: Contains examples of programs processed with ADIFOR 2.0.

e man: Contains the man page for ADIFOR 2.0.

¢ perl lib: Contains the perl libraries required by purse.
Directory ADIFOR2.0D.1ib contains:
e src: Contains the source for the ADIntrinsics and SparsLinC libraries.

e lib: Contains the precompiled versions of the ADIntrinsics and SparsLinC libraries.

e bin: Contains several auxiliary binaries for use in building the libraries.

2We have provided executables for perl version 5 in case it is unavailable on your system. To avoid conflicts with
any version of perl you have installed on your system, we have named our copies of perl to be perl1-$AD.0S. The
purse executable invokes the copy of perl that we have provided using this name.

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

Machine/OS compressed tar file
SPARC/SunOS 4.1.x ad2.0D-Sun0S-4.x.tar.gz
SPARC/SunOS 5.x (Solaris 2.x) | ad2.0D-SunOS-5.x.tar.gz
RS/6000/AIX 3.2.5 or 4.1.1 ad2.0D-AIX tar.gz
SGI/IRIX 6.2 ad2.0D-IRIX tar.gz
HP/HPUX 9.x ad2.0D-Hpux.tar.gz
x86/Linux ad2.0D-Linux86.tar.gz

Table 2.1. Machine to Archive Mapping

Machine/OS AD_0S
SPARC/SunOS 4.1.x SunOS-4.x
SPARC/SunOS 5.x (Solaris 2.x) | SunOS-5.x
RS/6000/ATX AIX
SGI/IRIX IRIX
HP/HPUX 9.x Hpux
x86/Linux Linux86
Cray T3E Unicosmk

Table 2.2. Machine to AD_0S Mapping

Each UNIX tar file ad2.0D-XXXX. tar.gz contains an executable version of the ADIFOR Prepro-
cessor for the operating system defined by XXXX. Similarly, ad20D. exe contains the Windows 95/NT
executable for the preprocessor. Each of these distribution files however, contain precompiled ver-
sions of the ADIntrinsics and SparsLinC packages for all of the currently supported machines.

If you intend to run ADIFOR 2.0 on multiple kinds of machines then you will need to download
and unpack several of the ad2.0D-XXXX.tar.gz or ad20D.exe files — one for each of the kinds
of machine you intend to use as ADIFORHOST and EXECHOST. You may want to delete the
unnecessary libraries that you get on ADIFORHOST after you unpack the tar files.

We now describe the installation and configuration procedure for ADIFOR 2.0 under Unix and
Windows 95/NT.

2.1.1 Unix Installation and Configuration

To install ADIFOR 2.0 on one of the supported UNIX machines, you should first download
the appropriate gzip-compressed tar file. Table 2.1 provides the names for these files. Once you
have downloaded the file, you should move it into the directory in which you wish to place the
ADIFOR2.0D and ADIFOR2.0D.1ib directories, and then “un-gzip” and “untar” the file using the
following commands:

% gunzip ad2.0D-XXXX.tar.gz

% tar xf ad2.0D-XXXX.tar
or
% gnutar zxf ad2.0D-XXXX.tar.gz

where XXXX is one of Sun0S$-4.x, Sun0S-56.x, AIX, IRIX, Hpux, or Linux86.3

31f necessary, you should download a copy of gunzip or gnutar from ftp://prep.ai.mit.edu/pub/gnu/.

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

To configure ADIFOR 2.0, set the environment variable AD_HOME to be the path to the directory
ADIFOR2.0D, AD LIB to be the path to the directory ADIFOR2.0D.1lib, and the variable AD_0S as
indicated in Table 2.2.

setenv AD_HOME /usr/local/ADIFOR2.0
setenv AD_LIB /usr/local/ADIFOR2.0.1ib
setenv PATH $AD_HOME/bin:$PATH
setenv MANPATH $AD_HOME/man:$MANPATH
setenv AD_0S Sun0S-4.x

Figure 2.2. Portion of .cshrc File

The directories “$AD HOME/bin” and “$AD HOME/man” should be added to your execution and
manual paths, respectively. (The notation $X represents the value of the environment variable X.)
If you use csh or a variant thereof, we suggest modifying your “.cshrc” file to define AD_HOME and
to modify your execution and manual paths. Figure 2.2 shows a fragment of a “.cshrc” file that
has been modified assuming that ADIFORHOST and EXECHOST are the same machine, and that
the ADIFOR2.0D and ADIFOR2.0D.1ib directories have been installed in /usr/local on a SPARC
running SunOS 4.1.3. If you are using a shell other than csh, then use the appropriate commands
to modify your environment variables.

The rest of this manual assumes that you have set AD_HOME and AD LIB and modified your
execution path and manual path as just described. It is also assumed that ADIFORHOST and
EXECHOST are the same machine.

To link the ADIntrinsics package into an executable under UNIX*, you should use a command of
the form (assuming that £77 is the Fortran 77 compiler)

£77 -o adnewton adnewton.o g_func.o dlange.o dgesv.o ... \
$AD_LIB/1ib/ReqADIntrinsics-$AD_0S.o \
$AD_LIB/1ib/1ibADIntrinsics-$AD_0S.a
or, equivalently,
£77 -o adnewton adnewton.o g_func.o dlange.o dgesv.o ... \
$AD_LIB/1ib/ReqADIntrinsics-$AD_0S.o \
-L $AD_LIB/lib -1ADIntrinsics-$AD_0S

Similarly, to link the SparsLinC package into an executable, use

£77 -o adnewton adnewton.o g_func.o dlange.o dgesv.o ... \
$AD_LIB/1ib/libSparsLinC-$AD_0S.a

or

£77 -o adnewton adnewton.o g_func.o dlange.o dgesv.o ... \
-L $AD_LIB/1lib -1SparsLinC-$AD_0S

4Under IRIX on an SGI workstatation, the libraries that are identified with the IRIX suffix have been compiled
with the -n32 compiler flags. If you need to use -032 or -64 compiler options, then use the libraries with suffix
IRIX-032 or IRIX-64, respectively.

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

2.1.2 Windows 95/NT Installation and Configuration

To install ADTFOR 2.0 on a x86-class PC running Windows 95/NT, you should download the file
ad20D.exe. Executing this “self-extracting installer” will allow you to unpack all of the necessary
files into a directory that you select. Do not extract the files contained in ad20D.exe into a directory
whose pathname contains space characters. For example, do not attempt to install ADIFOR 2.0 into
C:\Program Files\Adifor.

To configure ADIFOR 2.0 under Windows-95/NT, we suggest that you modify your
autoexec.bat file to include the following commands (assuming that you have installed ADIFOR
into directory C:\Adifor):

SET PATH=C:\Adifor\Adifor2.0D\bin;%PATHY;
SET AD_HOME=C:\Adifor\Adifor2.0D
SET AD_LIB=C:\Adifor\Adifor2.0D.lib

The Windows 95/NT version of ADIFOR 2.0 also contains the file examples.zip in the Adifor
Adifor2.0D directory. You should be able to unpack these under Windows 95/NT using any modern
version of “zip” on the PC.

To link the ADIntrinsics package into an executable under Windows 95/NT, you should use a
command of the form:

link *.obj %AD_LIB%\1lib\ReqADIntrinsics.obj \
%AD_LIBY%\1ib\ADIntrinsics.lib /out:adnewton.exe

Similarly, to link the SparsLinC package into an executable, use

link *.o0bj %AD_LIB%\1lib\SparsLinC.lib /out:adnewton.exe

2.2 Building the Libraries

It is sometimes necessary to build the ADIntrinsics and SparsLinC libraries from the source code
provided. The source code for the ADIntrinsics and SparsLinC libraries are stored in subdirectories
ADIntrinsics and SparsLinC of directory ADIFOR2.0D.1ib/src.

The UNIX csh script Compile.Intrinsics in the ADIntrinsics directory and the csh script
Compile.SparsLinCin the SparsLinC directory are used to build the libraries. To use these scripts,
you will need to define a set of environment variables described in the comments at the top of
each script, and then execute the script. These scripts build the libraries in the ADIntrinsics and
SparsLinC subdirectories, so do not forget to copy them to the AD_LIB directory or modify the
AD_LIB variable accordingly.

The Windows batch command files CompileADIntrinsics.bat and CompileSparsLinC.bat are
used to build the libraries under Windows 95/NT. In contrast to the Unix scritps, these scripts copy
the compiled libraries into the AD _LIB directory.

2.3 How the ADIFOR Preprocessor Transforms a Program

In this section, we describe the mechanism used by the ADIFOR Preprocessor to transform your
FORTRAN 77 code into code that computes derivatives of dependent variables with respect to
independent variables. The mechanism has three key subtasks: code canonicalization, variable
nomination, and code generation. Understanding these three tasks will help you better understand
the derivative code that is generated. We briefly describe these subtasks in the next sections.

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

2.3.1 Code Canonicalization

In the code canonicalization phase, the FORTRAN 77 code is rewritten into a standard form. For
example, expressions appearing as arguments to function or subroutine calls and function calls ap-
pearing within conditional tests are hoisted into assignments to new temporary variables. Statement
functions are expanded into in-line code. This phase also breaks up long right-hand sides of assign-
ment statements into smaller pieces, and rewrites them such that all variables appearing on the
right-hand side of an assignment statement are of the same type. The latter transformation is
needed for the code to be able to link in the SparsLinC library (see Appendix C).

2.3.2 Variable Nomination

The ADIFOR Preprocessor must decide which variables need to have “directional gradient objects”
or “gradient objects” associated with them. The preprocessor associates a gradient object with
every variable whose value may depend on the value of a variable considered “independent” with
respect to differentiation, and whose value impacts a variable considered “dependent” with respect to
differentiation. Such a variable is called active. Variables that do not require derivative information
are called passive.

The ADIFOR, Preprocessor employs interprocedural analysis techniques to determine which vari-
ables in your code are active. First, it derives a “local interaction graph” for each subroutine. This
is a bipartite graph where nodes representing input parameters or variables in common blocks are
connected with nodes representing output parameters or variables in common blocks whose values
they influence.

Next, an interprocedural analysis i1s performed, which determines, in essence, all possible program
paths through which an independent variable can affect a dependent one and identifies intermediate
variables that are involved along such a path. This analysis involves computing a transitive closure
of the whole program graph composed from the local interaction graphs. In the presence of com-
mon blocks, equivalences, and arbitrary control structures, this is a nontrivial and computationally
intensive process.

2.3.3 Code Generation

After active variables have been nominated, derivative code is generated for each assignment state-
ment containing an active variable, and gradient objects are allocated. For assignment statements
containing a FORTRAN 77 intrinsic, a template is generated that will later be instantiated by the
ADIntrinsics system.

2.4 Functionality of ADIFOR 2.0-Generated Code

Consider a function func with an n-vector x as independent and an m-vector y as dependent vari-
ables. That is, we have

subroutine func(n,x,m,y)
integer n, m
real x(n), y(m)

end

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

The ADIFOR Preprocessor inserts a gradient object g_x for x and g_y for y (as well as gradient
objects for all other active variables in func) and, in its default configuration, replaces each assign-
ment statement in func involving an active variable with a few assignment statements and a vector
loop from 1 to g_p_. The interface of the routine generated from func is

subroutine g_func(g_p_,n,x,g_x,ldg_x,m,y,g_y,ldg_y)
integer n, m, g_p_
real x(n), y(m), g_x(ldg_x,n), g_y(ldg_y,m)

end

So, for example, g x(:,1) is the gradient object corresponding to x(i). While somewhat incon-
venient, the fact that the gradient dimension is the first dimension in the gradient objects cannot
be avoided if we want to be able to deal with assumed-size arrays (e.g., declared as real x(*)).

We now illustrate the flexibility inherent in the ADIFOR 2.0-generated code. First, recall the
definition of the Jacobian of func,

dys Oy
d X 21 dxy
_ y _ . . mxn
J=—-—2= : : eR .
dr . .
OYm OYm
dwy dwy

Second, let S = g_x”. We refer to S as the “seed matrix.” The ADIFOR-generated code computes

0
gy = (5, xgx") = (J5)",
where the number of columns p of S' corresponds to the FORTRAN 77 variable g_p_in the generated
code. Since most of the work of the derivative code is performed in the gradient loops (which range
from 1 to g_p_), the size of p has a direct impact on the runtime and storage requirements for running
the derivative code.

Properly initializing S, we can then obtain:

Full Jacobian: Choosing S as the n x n identity matrix, we compute the transpose of the full
Jacobian J. The complexity of the resulting derivative code is O(n) times that of the original
function.

Jacobian-Vector Product: Choosing S = d € R"™, we compute the transpose of the Jacobian-
vector product Jd in a time that is a small multiple (typically 2-3) of the function evaluation

time. Since id
Jd = Tim func(z + hd) — func(x)’
h—0 h

this interface allows us to compute directional derivatives along arbitrary directions.

Selecting Derivatives: Choosing S = [es, ..., e10,€13], where ¢; is the ith canonical unit vector,
il.e., an n-vector of all zeros except for an entry of 1 in the ith position, we compute the
transpose of the bth through 10th, and 13th columns of J.

See Appendix A for extensive information on seed matrix initialization. In particular, it explains

how to deal with several dependent and independent variables and how to exploit sparsity in the
Jacobian J.

10

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

program main

real x, y

read *, x

call squareroot(x, y)
print *, y

end

Figure 2.3. A Very Simple Program (main.f)

subroutine squareroot (x, y)
real x, y

y = sqrt(x)

end

Figure 2.4. A Very Simple Subroutine (squareroot.f)

2.5 A Quick Example

We demonstrate the use of ADIFOR 2.0, using its default configurations, with the very simple
program shown in Figures 2.3 and 2.4. Procedure squareroot assigns the square root of the value
of variable x to variable y. We now show, with only limited explanation, the sequence of steps
required to comstruct a procedure that computes the derivative of squareroot at a user-specified
value of x. A more detailed description of the ADIFOR, 2.0 process and of the various options
available in the ADIFOR, Preprocessor 1s presented in Chapter 4.

1. Construct a composition simple.cmp that lists the names of all of the FORTRAN 77 source
files that constitute the example program. Figure 2.5 shows the composition we construct.

2. Construct a script file simple.adf that tells the ADIFOR Preprocessor to differentiate the
procedure named squareroot with the independent variable x and the dependent variable y,
dy

i.e., to generate code to compute the derivative 2, where y is computed from x by procedure

squareroot. The script file is shown in Figure 2.6.

3. Create, in g_squareroot.f file in the outputfiles subdirectory, the procedure
g-squareroot, as shown in Figure 2.7, by executing the command

Adifor2.1 AD_SCRIPT=simple.adf.

Note that an exception handler (ehufSV) is invoked when sqrt is invoked with a zero argument,
as the derivative of N2 is undefined. The ADIFOR Preprocessor also creates a file called

main.f

squareroot.f

Figure 2.5. Script File (simple.cmp) for Simple Example

11

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

AD_TOP = squareroot
AD_PMAX =1
AD_IVARS = x
AD_DVARS = y
AD_PROG = simple.cmp
Figure 2.6. Script File (simple.adf) for Simple Example
subroutine g_squareroot(g_p_, X, g_x, 1ldg_x, y, g_y, ldg_y)
real x, y
integer g_pmax_
parameter (g_pmax_ = 1)
integer g_i_, g_p_, ldg_y, ldg_x
real ri_p, r2_v, g_y(ldg_y), g_x(1dg_x)
integer g_ehfid
data g_ehfid /0/
if (g_p_ .gt. g_pmax_) then
print %, ’Parameter g_p_ is greater than g_pmax_’
stop
endif
r2_v = sqrt(x)
if (x .gt. 0.0e0) then
ri_p = 1.0e0 / (2.0e0 * 1r2_v)
else
call ehufSV (9, x, r2_v, rl_p, ’g_squareroot.f’, 37)
endif
do g i_ =1, g_p_
g_y(g_i_) = ri_p * g_x(g_i_)
enddo
y =1r2_v
C ________
end

Figure 2.7. Derivative Code (g_squareroot.f)

12

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

program driver
real x,y
real g_x(1), g_y(1)

read *, x

g_x(1) = 1.0

call g_squareroot(1l, x, g_x, 1, y, g_y, 1)
call ehrpt

print *, y

print *, g_y(1)

end

Figure 2.8. Derivative Code Driver (driver.f) for Simple Example

£f77 -c driver.f

£77 -c output_files/g_squareroot.f

£77 -o driver driver.o g_squareroot.o \
$AD_LIB/1ib/ReqADIntrinsics-$AD_0S.o \
$AD_LIB/1ib/1ibADIntrinsics-$AD_0S.a

Figure 2.9. Commands to Compile and Link Derivative Code Executable

g-squareroot.A in the output_files subdirectory, which differs from g_squareroot.f only
inasmuch as the code for the intrinsics exception handling has not been instantiated yet.
Usually, there is no need for the user to look at the .A files. Appendix B describes this issue
in more detail.

4. Create the derivative code driver driver.f as shown in Figure 2.8. The driver invokes
g-squareroot with a user-specified value of x to compute the value of y and g—g. The call
to the error handler reporting routine ehrpt produces a summary report on FORTRAN 77
intrinsics that were invoked at points of nondifferentiability (see Appendix B for details).

5. Compileand link driver.f, g_squareroot.f and the ADIntrinsics exception handling libraries
using the commands shown in Figure 2.9 to build the desired derivative computing executable®

2.6 A Roadmap

The rest of this manual is organized as follows:

Chapter 3 describes how to set up the inputs to the ADIFOR, Preprocessor to enable it to generate
derivative code. The input to the preprocessor takes the form of option bindings that are
specified on the command line or in startup files, and compositions, lists of FORTRAN 77 files
that constitute the program that contains the function to be differentiated.

51f you should incur problems linking on a SPARC platform, you may not have the latest version of the Sun Fortran
compiler installed. You should recompile the libraries from the source we provide as described in section 2.2.

13

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

Chapter 4 is devoted to a step-by-step description of how to process a code by using the ADIFOR,
Preprocessor and an explanation of how ADIFOR 2.0-generated code should be incorporated
into a program.

Chapter 5 documents the known deficiencies in the ADIFOR Preprocessor’s support for FOR-
TRAN 77. For each deficiency, a workaround is presented.

Chapter 6 explains how to use ADIFOR 2.0 in cases where the “function to be differentiated” does
not have the form expected by the ADIFOR, Preprocessor.

Chapter 7 covers some of the pitfalls associated with automatic differentiation of FORTRAN 77
programs.

Chapter 8 provides a list of problems that users of ADIFOR, 2.0 may encounter.
Chapter 9 defines all of the options to the ADIFOR Preprocessor and presents their default values.

Appendix A describes seed matrix initialization, a powerful concept that provides users of ADI-
FOR 2.0 significant control over the computation performed by the generated derivative code,
and allows one to compute arbitrary directional derivatives.

Appendix B describes the ADIntrinsics template expander and library. ADIntrinsics provides
user-customizable handling of exceptions within ADIFOR 2.0.

Appendix C describes the SparsLinC library, which provides support for sparse derivative com-
putations within ADIFOR 2.0.

14

Chapter 3

Specifying Input for the ADIFOR

Preprocessor

In order to apply the ADIFOR Preprocessor to a set of FORTRAN 77 procedures to generate
derivative code, it is necessary to tell it several key pieces of information:

1. The names of the files containing the FORTRAN 77 source code to be processed. The names of
the procedures are provided to the ADIFOR Preprocessor in a file referred to as a composition.
The preprocessor must be told the name of the file containing the composition.

2. The name of the “top-level routine,” that routine whose invocation causes the function to be
evaluated. The ADIFOR Preprocessor determines the names of all of the routines that may
be transitively invoked by the top routine by examining the source code.

3. The names of the independent and dependent variables. The ADIFOR, 2.0-generated code
computes the derivatives of the dependent variables with respect to the independent ones.

4. Values of numerous other options to the ADIFOR Preprocessor that control how vector oper-
ations in the ADIFOR-generated code are implemented, what level of exception reporting for
nondifferentiable FORTRAN 77 intrinsics is performed, and to what extent the code should
be customized for particular execution environments.

The names of the composition file, the top routine, and the independent and dependent variables,
and values for the various options, are provided to the ADIFOR Preprocessor in the form of bindings,
as described in the next section. Section 3.2 describes the format of compositions. Section 3.3
describes source files that are acceptable for processing with the preprocessor and describes some
common deviations from the FORTRAN 77 standard that cause problems.

3.1 Option Processing in the ADIFOR Preprocessor

This section describes the ADIFOR, Preprocessor’s option-processing mechanism. Information is
provided to the preprocessor as bindings. Bindings have the form

OPTION = VALUE,

or
OPTION = VALUE1, ..., VALUEN.

15

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

AD_PROG = rosenbrock.cmp

AD_TOP = func
AD_IVARS = x
AD_DVARS =y

AD_PMAX = 2 # x has 2 elements
AD_OUTPUT_DIR = .

Figure 3.1. Example Script File (rosenbrock.adf)

The second form is used in defining list-valued options. Bindings may be provided as command
line arguments and, additionally, as lines in a “script” file. Bindings specified as command line
arguments to the preprocessor may contain whitespace, consisting of a sequence of spaces and tabs,
if they are quoted.

A script file is a sequence of lines. Blank lines are ignored. Each nonblank line contains a binding
having either of the two forms shown above. All characters on a line after the comment character
‘#> are ignored. There is no formal requirement for the name of the script file, but our informal
convention is to use the .adf extension. Bindings defined in script files may always use whitespace
liberally.

All preprocessor options begin with an “AD_” prefix. Values of options are typically the names
of files (AD_PROG), the name of a procedure in the program (AD_TOP), lists of names of variables in the
program (AD_IVARS and AD_DVARS), integers (AD_PMAX), Boolean values (AD_DUMP_CALLGRAPH), and
switches (AD_FLAVOR and AD_EXCEPTION FLAVOR). For Boolean-valued options, FALSE, false and 0
are considered to be equivalent, as are TRUE, true and 1. Section 9 documents all of the ADIFOR
Preprocessor options.

The ADIFOR Preprocessor processes bindings on its command line in the order that they are
listed. As bindings are processed, new bindings always override values defined by a previous binding
for the same option. The option AD_SCRIPT is used to specify the name of a script file. Whenever
a binding for AD_SCRIPT is encountered, the file identified as the value of AD_SCRIPT is opened, and
the bindings in the file processed in order.

Relative path names specified as command line arguments to the ADIFOR Preprocessor are
taken as relative to the directory in which the preprocessor was executed. Relative path names
specified in bindings specified in a script file are taken as relative to the directory containing the
script file.

Now consider a sequence of examples using the script file rosenbrock. adf shown in Figure 3.1.

e Example 1

Adifor2.1 AD_PROG=rosenbrock.cmp AD_TOP=func \
AD_DVARS=y AD_IVARS=x AD_PMAX=2 AD_OUTPUT_DIR=.

This command defines AD_PROG to be the filename “rosenbrock.cmp”, AD_TOP to be name of
the procedure “func”, AD_IVARS to be the (single item) list “x”, AD_DVARS to be the (single
item) list “y”, and AD_PMAX to be the integer value 2. ADIFOR will place derivative files in
the current directory (which in UNIX is usually denoted by a dot).

e Example 2

Adifor2.1 AD_SCRIPT=rosenbrock.adf

16

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

This command defines exactly the same values for the same set of options.

¢ Example 3

Adifor2.1 AD_SCRIPT=rosenbrock.adf AD_PMAX=5

This command defines the exactly the same set of values for the same set of options, except
for option AD_PMAX whose value is overridden with the integer value 5.

3.2 Compositions

Compositions list the names of all of the source files to be processed by the ADIFOR, Preprocessor.
A composition 1s a list of pathnames to source files with zero, one, or more pathnames per line. All
characters on a line after the comment character ‘#’ are ignored. Multiple pathnames on the same
line are delimited by commas and whitespace, where whitespace is any sequence of spaces or tabs.
Relative pathnames are taken to be relative to the directory containing the composition.

“.cmp” extension. The name of each source file

The name of the composition must end with a
must end with a “.f” suffix. Each source file listed in a composition may contain the source for one

or more FORTRAN 77 routines.

A composition must be top-complete and consistent. To be top-complete, every routine that may
possibly by called as a result of invoking the top routine must be included in a source file listed in
the composition. To be consistent, all procedure interfaces of routines in the listed source files must
agree as to the number of arguments and the types of the arguments being passed. Many programs
in use today have inconsistent interfaces. Fixing the inconsistencies may take significant effort, but
is usually an enlightening process, resulting in a considerably more portable program.

In addition to being top-complete and consistent, your program must not be recursive. The
ADIFOR Preprocessor will complain if 1t encounters a recursive program and will print out the
names of each of the routines that are recursive. Recursion in FORTRAN 77 programs is usually,
but not always, an indication of some underlying error.

When the ADIFOR, Preprocessor generates derivative code for a file somedir/foo. £, it places the
generated source code into a file g_foo.f in the subdirectory identified by the option AD_OUTPUT DIR
of the directory in which the preprocessor was executed. Therefore, no two pathnames listed in a
composition may have the same basename, where the basename of somedir/foo.f is taken to be
foo.f. The preprocessor will complain if multiple files in your program have the same basename.

3.3 Acceptable FORTRAN 77 Source Files

The ADIFOR Preprocessor recognizes standard FORTRAN 77 syntax extended with DO-ENDDO,
IMPLICIT NONE, DOUBLE COMPLEX, and INCLUDE. Variable names need not be limited to six charac-
ters. If a program uses non-standard extensions, the preprocessor will probably not accept them. In
particular, the preprocessor will not accept nonstandard intrinsic or type conversion functions, such
as arsin(), arcos(), and dfloat (). These should be replaced with standard functions like asin(),
acos(), and dble(). In any case, for portability reasons, it is probably a good idea anyway to make
sure that all code is standard-conforming. Also not accepted are system calls such as etime(). In
most cases, such calls do not affect function evaluation and may be removed, commented out, or
replaced with a syntactically correct but nonfunctional subroutine, prior to processing.

We strongly urge you to make sure that all of the files in your composition compile correctly
and adhere to the FORTRAN 77 standard before submitting them to the ADIFOR, Preprocessor for

17

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

processing. ADIFOR, will complain about syntax errors, but its error messages are likely to be more
cryptic. The preprocessor will also complain about problems in your source code that the typical
FORTRAN 77 compiler will fail to identify, specifically, inconsistencies between callsites and the
procedures they invoke, and inconsistencies between common block declarations across procedures.

For example, in the following program fragment an integer#4 array of length 3 is passed to a
subroutine whose arguments were declared to be of type character*12.

program main
integer*4 x(3)

call func(x)
end

subroutine func(c)
character*12 c

end

The following program fragment declares common blocks to be of different length in different
program units.

program main

call funcil
call func?2

end

subroutine funci
common /cmn/ x(10)

end

subroutine func?2
common /cmn/ x(20)

end

The FORTRAN 77 language definition requires that each common block, other than the blank
common block //, must have the same size in each procedure in which it is declared. Another
violation of the FORTRAN 77 standard in this program fragment is the fact that the common block
is not declared in the main program from which both subroutines are called. While this is usually
not an issue, because of the nature in which global variables are implemented, unexpected things
could happen if a compiler exploited the liberty of the standard.

18

Chapter 4

A Tutorial Example

We demonstrate the use of ADIFOR 2.0 using the simple program shown in Figures 4.1 and 4.2.

It shows a simple Newton iteration being used to minimize Rosenbrock’s function. The routines

DLANGE and DGESV from the LAPACK package [1, 2] are used to compute the norm of y and to solve
y

the linear system g—xs = —y. Our goal will be to replace the subroutine fprime, which approximates

% by using central divided differences, with an ADIFOR-generated derivative code. This complete
example is provided in $AD _HOME/examples/newton.

Rosenbrock’s function is used only for illustrative purposes. It is not indicative of the power of
ADIFOR, which has processed programs up to 150,000 lines in length, albeit using more than 200
Mb of virtual memory in the process.

Step 1: Create a Composition File

Figure 4.3 presents composition rosenbrock. cmp for the example, assuming that newton, func,
and fprime have been stored into the files newton.f, func.f, and fprime.f, and that code for
dlange and dgesv and all of the routines that they invoke has been located.

Since func does not invoke any other functions or subroutines, instead of tracking down all of

the source code for dlange and dgesv and the routines they invoke, we are free to create a very
short composition, rosenbrock-func-only.cmp as shown in Figure 4.4, that contains only func.f.

Step 2: Create an ADIFOR Script File

To compute a Jacobian for the Newton example, you must provide ADIFOR, with values for the
following options:

AD PROG: The value of AD_PROG is the name of the “composition” to be processed. The
name of the composition is communicated to the ADIFOR, Preprocessor by specifying
AD_PROG=composition-name on the command line.

In this example, AD_PROG will be set to rosenbrock. cmp.

AD _TOP: The value of AD_TOP is the name of the procedure that contains the function to be differ-
entiated. That procedure may invoke other procedures to an arbitrary nesting level. We refer
to the procedure that is invoked to evaluate the function as the top-level routine or TOP.
The name of the procedure TOP 1s communicated to the ADIFOR Preprocessor by using the
command line option AD_TOP=procedure-name.

19

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

PROGRAM NEWTON
DOUBLE PRECISION DUMMY,TOL, DLANGE
INTEGER INFO, N, IPIV(2)
DOUBLE PRECISION X(2),Y(2),YPRIME(2,2)
EXTERNAL DGESV, FPRIME, FUNC, DLANGE
TOL = 1.0E-12
WRITE (*,FMT=%) ’Input 2-element starting vector °’
READ (*,FMT=%) X(1),X(2)
CALL FUNC(X,Y)
10 IF (DLANGE(’1’,2,1,Y,2,DUMMY).LT.TOL) GO TO 20
CALL FPRIME(X,Y,YPRIME)
Y() = -Y(@1)
Y(2) = -Y(2)
CALL DGESV(2,1,YPRIME,2,IPIV,Y,2,INF0)
X(1) = X(1) + Y(1)
X(2) = X(2) + Y(2)
CALL FUNC(X,Y)
WRITE (*,FMT=1000) ’Current Function Value:’,Y(1),Y(2)
GO TO 10
20 CONTINUE
WRITE (*,FMT=1000) ’Minimum is approximately:’,X(1),X(2)
1000 FORMAT (a,1x,2 (d15.8,2x))
END

Figure 4.1. A Simple Implementation of Newton’s Method

In Section 6 we will describe how to handle codes where the function to be differentiated does
not conveniently correspond to a procedure invocation.

In this example, the function to be differentiated corresponds to the subroutine func, so we
will set AD_TOP to be func.

AD_IVARS and AD DVARS: The values of AD_IVARS and AD_DVARS are comma-separated lists of in-
dependent (input) and dependent (output) variables of TOP, respectively. AD_OVARS is a
synonym for AD DVARS. A variable may be designated as independent, dependent, or both (if
it is overwritten during the execution of AD_TOP).

There is no way to nominate individual elements of a FORTRAN 77 array as being independent
and dependent, although it is possible to specify at run time that only derivatives with respect
to a particular set of elements should be computed (see Appendix A). Variables in the AD_IVARS
and AD_DVARS lists must have type real, double precision, complex or double complex. The
independent and dependent variables must be formal parameters of TOP, or global variables
declared within TOP. Again, in Section 6 we will describe how to handle codes in which the
variables that logically correspond to the independent and dependent variables are neither
formal parameters nor global variables in TOP.

In this example, in order to compute the derivatives of y with respect to x, we will set AD_DVARS
to y and AD_IVARS to x.

AD PMAX: The value of AD_PMAX is the upper bound on the number of independent variables for
which derivatives can be computed simultaneously. It is necessary to specify this upper
bound because FORTRAN 77 does not provide a standard mechanism for dynamic mem-
ory allocation. It is introduced as the first dimension of each of the gradient objects declared

20

Revision D ADIFOR 2.0 User’s Guide

February 16, 1998

SUBROUTINE FUNC(X,Y)
DOUBLE PRECISION X(2),Y(2)

Y(1) = 10.0% (X(2)-X(1)*X(1))
Y(2) = 1.0 - X(1)

RETURN

END

SUBROUTINE FPRIME(X,Y,YPRIME)

Qo0 o o0

. Array Arguments .
DOUBLE PRECISION X(2),Y(2),YPRIME(2,2)
C .. Local Scalars ..
DOUBLE PRECISION H
C .. Local Arrays ..
DOUBLE PRECISION XH(2),YM(2),YP(2)
C .. External Subroutines .
EXTERNAL FUNC

IF (X(1).EQ.0.0) THEN
H=1.0e-7
ELSE
H = X(1)*1.0e-7
END IF
XH(1) = X(1) - H
XH(2) = X(2)
CALL FUNC (XH,YM)
XH(1) = X(1) + H
XH(2) = X(2)
CALL FUNC (XH,YP)
YPRIME(1,1) = (YP(1)-YM(1))/ (2.0%H)
YPRIME (2,1) (YP(2)-YM(2))/ (2.0%H)

IF (X(2).EQ.0.0) THEN

H=1.0e-7
ELSE
H = X(2)*1.0e-7
END IF
XH(1) = X(1)

XH(2) = X(2) - H

CALL FUNC (XH,YM)

XH(1) = X(1)

XH(2) = X(2) + H

CALL FUNC (XH,YP)

YPRIME(1,2) = (YP(1)-YM(1))/ (2.0%H)
YPRIME(2,2) = (YP(2)-YM(2))/ (2.0%H)

RETURN
END

approximates derivatives of Func by central differences.

Figure 4.2. Rosenbrock’s Function and Divided-Difference Approximations of the Jacobian

21

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

newton.f
func.f
fprime.f

LAPACK routines

dlange.f dgesv.f lsame.f dlassq.f
xerbla.f dgetrf.f dgetrs.f ilaenv.f
dgetf2.f dlaswp.f

BLAS routines
dtrsm.f dgemm.f idamax.f dswap.f dscal.f dger.f

Figure 4.3. Composition for Newton’s Method Example (rosenbrock.cmp)

func.f

Figure 4.4. Composition for Newton’s Method Example (rosenbrock-func-only.cmp)

by the ADIFOR, Preprocessor. The value of AD_PMAX is communicated by using the option
AD_PMAX=integer-value.

In the Newton example, we choose to set AD_PMAX to 2, since x is an array with 2 elements
and we would like to compute derivatives with respect to x(1) and x(2). In general, in the
invocation of the routines generated by the ADIFOR Preprocessor, we can use any value of
g-p- that is not larger than AD_PMAX. This issue is explained in more depth in Appendix A. We
also note that if subroutines using the same common blocks are processed separately with the
preprocessor, it is essential to use the same value of AD_PMAX in both cases, as otherwise the
gradient object common blocks are declared inconsistently.

AD _OUTPUT DIR: The value of AD_OUTPUT DIR specifies the name of the directory in which the ADI-
FOR Preprocessor places the generated derivative code.

In the Newton example, we have chosen to set AD_OUTPUT DIR to be “.” so that the generated
code will be placed back into the directory in which the ADIFOR Preprocessor is executed.

After determining the values for each of these options, create an ADIFOR, script file containing
those values as shown in Figure 4.5.

AD_PROG = rosenbrock.cmp

AD_TOP = func

AD_IVARS = x

AD_DVARS =y

AD_PMAX = 2 # x has 2 elements

AD_OUTPUT_DIR = .

Figure 4.5. Script File for Newton’s Method Example (rosenbrock.adf)

22

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

subroutine g_func(g_p_, x, g_x, ldg_x, y, g_y, 1ldg_y)
double precision x(2), y(2)
C
integer g_pmax_
C
parameter (g_pmax_ = 2)
integer g_i_, g_p_, ldg_y, ldg_x
double precision d5_b, d2_b, g_y(1ldg_y, 2), g_x(1ldg_x, 2)
intrinsic dble
C
C
if (g_pmax_ .gt. g_p_) then
print %, ’Parameter g_pmax_ is greater than g_p_’
stop
endif
d2_b = dble(10.0)
d5_b = -d2_b * x(1) + (-d2_b) * x(1)
do g i_ =1, g_p_
g_y(g_i_, 1) = d5_b * g_x(g_i_, 1) + d2_b *x g_x(g_i_, 2)
enddo
y(1) = dble(10.0) * (x(2) - x(1) * x(1))
C ________
do g i_ =1, g_p_
g_y(g_i_, 2) = -g_x(g_i_, 1)
enddo
y(2) = 1.0d0 - x(1)
C ________
return
end

Figure 4.6. The ADIFOR-generated Code for Subroutine func

Step 3: Invoke the ADIFOR Preprocessor

When executed with the command:

Adifor2.1 AD_SCRIPT=rosenbrock.adf

the ADIFOR Preprocessor creates the subdirectory AD_cache, which contains internal information
created by the preprocessor. Source files generated by the preprocessor are placed in the working
directory. If AD_OUTPUT DIR had been unspecified, then the default value of output files would
have caused the generated files to be placed into the subdirectory output files. The preprocessor
emits the augmented code for procedure func into the file g_func.f, whose source is shown in
Figure 4.6. Note that usually an assignment statement in the original code has been replaced by
a few assignment statements and a vector loop of length gp.. When g_p_ is moderate, or the
gradient objects always dense vectors, this is an efficient representation of this vector operation.
The SparsLinC library (see Appendix C) provides an alternative approach for expressing this vector
operation when the gradient objects are mostly sparse vectors.

Exactly the same processing process will be performed by executing the command:

Adifor2.1 AD_PROG=rosenbrock.cmp AD_TOP=func \
AD_DVARS=y AD_IVARS=x AD_PMAX=2 AD_OUTPUT_DIR=.

23

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

but without the need to create rosenbrock.adf.

Step 4: Incorporate ADIFOR-generated Subroutine

Incorporating the ADIFOR-generated subroutine into a program to compute derivatives requires
the following three steps:

1. Allocate the gradient objects in the calling module. The user should carefully check the
ADIFOR-generated code to determine which variables in common blocks and which arguments
to the top-level routine have been found to be active. For our small example, the declarations
are

double precision g_x(PMAX,2), g_y(PMAX,2)

where PMAX is an integer constant (FORTRAN 77 PARAMETER) whose value is greater than or
equal to the value of AD_PMAX. In this case, we choose to set PMAX to 2.

2. Initialize the seed matrix. In order to compute the Jacobian of the function defined by
func, the gradient object for the independent variable x should be initialized to a 2 x 2 identity
matrix. This initialization amounts to saying that the derivative of each independent variable
with respect to itself is 1.0.

3. Call the ADIFOR-generated top-level subroutine. The ADIFOR-generated subroutine
computes both the function value and the value of the derivatives. So, in our example, we can
replace the calls to func and fprime by a single call to g_func.

In the call to the ADIFOR-generated top-level subroutine, the parameter g_p_ should be set
equal to the length of the gradient objects, and all of the 1dg_ variables should be set equal
to the leading dimension with which the corresponding gradient objects (g_ variables) were
actually declared. Thus, for our simple example, the call would look like

call g_func(2, x, g_x, PMAX, y, g_y, PMAX)

4. Call the intrinsics error reporting routine. ehrpt provides a summary report on FOR-
TRAN 77 intrinsics that have been called at points where they are not differentiable. See
appendix B for details.

For our example, the new driver is shown in Figure 4.7.! As mentioned above, since ADIFOR-
generated derivative code computes the transpose of the Jacobian, we must retranspose g_y before
passing it to dgesv. Together with the subroutine func and the subroutine shown in Figure 4.6, the
new program replaces the program shown in Figure 4.1.

Step 5: Compile and Link

After a suitable driver has been developed, the ADIFOR-generated code, the driver, and any other
modules necessary to form a complete program should be compiled. Under UNIX, the necessary
commands to compile and link an executable typically look like the following, where £77 is the
Fortran 77 compiler:

ISome comments were removed to fit the program on one page.

24

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

PROGRAM ADNEWTON

C .. Parameters .
INTEGER PMAX
PARAMETER (PMAX=2)

C .. Local Scalars ..
DOUBLE PRECISION DUMMY,TEMP,TOL
INTEGER INFO

C .. Local Arrays ..
DOUBLE PRECISION G_X(PMAX,2),G_Y(PMAX,2),X(2),Y(2)
INTEGER IPIV(2)

C .. External Functions .
DOUBLE PRECISION DLANGE
EXTERNAL DLANGE

TOL = 1.0E-12
WRITE (*,FMT=%) ’Input 2-element starting vector °’
READ (x,FMT=+) X(1),X(2)
CALL FUNC(X,Y)
10 IF (DLANGE(’1’,2,1,Y,2,DUMMY).LT.TOL) GO TO 20

c compute function and Jacobian at current iterate

G_X(1,1) = 1.0
G_X(1,2) = 0.0
G_X(2,1) = 0.0
G_X(2,2) = 1.0

CALL G_FUNC(2,X,G_X,PMAX,Y,G_Y,PMAX)

O

transpose g_y

TEMP = G_Y(2,1)
G_Y(2,1) = G_Y(1,2)
G_Y(1,2) = TEMP

c solve J * s = - f and update x = x + s
Y(1) = -Y(1)
Y(2) = -Y(2)
CALL DGESV(2,1,G_Y,PMAX,IPIV,Y,2,INFO)
X(1) = X(1) + Y1)
X(2) = X(2) + Y(2)

a o0

compute new function value

CALL FUNC(X,Y)
WRITE (*,FMT=1000) ’Current Function Value:’,Y(1),Y(2)
GO TO 10

20 CONTINUE
WRITE (*,FMT=1000) ’Root is approximately:’,X(1),X(2)
CALL EHRPT

1000 FORMAT (a,1x,2 (d15.8,2x))

END

Figure 4.7. The Driver for the Newton Program Using ADIFOR-generated Code

25

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

£77 -c adnewton.f
£77 -c g_func.f
£77 -c dlange.f
£77 -c dgesv.f
£77 -c

£77 -o adnewton adnewton.o g_func.o dlange.o dgesv.o ... \
$AD_LIB/1ib/ReqADIntrinsics-$AD_0S.o \
$AD_LIB/1ib/1ibADIntrinsics-$AD_0S.a

where the module ReqADIntrinsics-$AD 0S.o and archive 1ibADIntrinsics-$AD_0S.a implement
the ADIFOR, 2.0 exception handling packages. If the SparsLinC package is required, then it will be
necessary to link in the archive 1ibSparsLinC-$AD 0S.a, as well.

Under Windows 95/NT, the following commands should compile and link an executable, assum-
ing that £132 is the Fortran 77 compiler:

£132 /c adnewton.f g_func.f \

£132 /c dgemm.f dger.f dgesv.f dgetf2.f \
dgetrf.f dgetrs.f dlange.f dlassq.f \
dlaswp.f dscal.f dswap.f dtrsm.f \
fprime.f xerbla.f func.f idamax.f \
ilaenv.f lsame.f

link *.obj %AD_LIB%\1lib\ReqADIntrinsics.obj \

%AD_LIB%\1ib\ADIntrinsics.1lib /out:adnewton.exe

where the module ReqADIntrinsics.obj and archive ADIntrinsics.lib implement the Win-
dows 95/NT version of the exception handler package. If the SparsLinC package is required under
Windows 95/NT, then it will be necessary to link in the archive SparsLinC.1ib.

See Appendix B for more information on the ADIntrinsics template expander and library. See
Section 8 if you encounter linking problems on a SPARC platform.

26

Chapter 5

Known Deficiencies

In this section we describe several deficiencies in ADIFOR 2.0’s support of full FORTRAN 77. In
each case, it is relatively easy to “work around” each of these deficiencies. The ADIFOR, Preprocessor

flags each of these as being “not supported” any time that they are encountered.

5.1 Intrinsics Passed as Procedure Parameters

The ADIFOR Preprocessor prohibits intrinsics, such as DSIN and DCOS, from being passed as pro-

cedure parameters as shown in the standard-conforming FORTRAN 77 code:

subroutine bad(x0, x1)
double precision x0, x1
external integrate
intrinsic dsin

call integrate(dsin,x0, x1)
end

This deficiency can easily be circumvented by introducing a wrapper function for each intrinsic,
which is to be passed as a procedure parameter, and by then passing that wrapper routine as the
procedure parameter instead of the intrinsic. For example, the following code performs the same
computation as the code shown above by using a wrapper function MYDSIN for intrinsic DSIN:

subroutine good(x0, x1)
double precision x0, x1
external integrate, mydsin
call integrate(mydsin, x0, x1)
end

function mydsin(x)
double precision x
intrinsic dsin
nydsin = dsin(x)
end

27

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

5.2 Intrinsics Overridden by External Functions

The ADIFOR Preprocessor prohibits external routines from overriding intrinsic functions as shown

in the standard-conforming FORTRAN 77 code:

subroutine bad(x,y)
external cos
double precision x, y, cos

C call user defined function with name "cos'"
y = cos(x0)
end

function cos(x)

end

Again, this deficiency can easily be circumvented by renaming the external function so that it
does not collide with the name of any intrinsic function, as follows:

subroutine good(x,y)
external mycos

double precision x, y, mycos
y = mycos(x0)

end

function mycos(x)

end

5.3 I/0O Statements That Contain Function Invocations

ADIFOR, Preprocessor prohibits I/O statements, i.e., READ, WRITE, and PRINT, from invoking func-
tions and statement functions as shown in the standard-conforming FORTRAN 77 code:

subroutine bad(y)

double precision y(10)

integer f

external f

read (3, 50) x, y(£(x))
50 format (...)

end

Modifying code that invokes functions from within I/O statements is very easy, but may change
the meaning of the I/O statements in ways that require other I/O statements in the program to be
changed as well. For example, the function call in the READ statement above can be removed from
an I1/0 statement by rewriting the code as follows:

28

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

subroutine okay(y)
double precision y(10)
integer f, i
external f
read (3, 50) x
i=f(x)
read (3, 51) y(i)

50 format (...)

51 format (...)
end

Notice, however, that in the original code, the two elements that are read come from the same
input file record, while in the new code, the two elements come from different records.

29

Chapter 6

Advanced Topics

Normally, the ADIFOR, Preprocessor assumes that independent variables are passed into the top-
level routine TOP, and dependent variables are passed back out to the procedure that invoked TOP.
Furthermore, it is assumed that the values of the independent variables will be assigned before TOP
is invoked. “Passing” is either via procedure parameters or via global variables in common blocks.
So, the normal ADIFOR 2.0 interface cannot compute derivatives of the following:

e variables that are declared and computed in the main program,

e variables that are declared locally in the top-level routine or variables declared in a routine
transitively invoked by the top-level routine,

e variables that are assigned values during evaluation of AD_TOP and then overwritten, and

e variables that are initialized by a READ statement.

This section describes some workarounds for these situations.

6.1 Computation Is Not Encapsulated in Procedure

Consider the following example:

program main

read (*x,*) x(1)

t= result of some computation involving x(1)
read(x,*) x(2)

y= result of some computation involving x(1) and x(2)
end

To extract a procedure suitable for using ADIFOR 2.0 to generate code for % and %, you

should rearrange the computation so that both x(1) and x(2) are initialized first, then invoke a
new procedure that computes y from x(1) and x(2) and then returns the value of y as follows:

30

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

program main

read(*,*) x(1)
read(*,*) x(2)

y = compute(x(1), x(2))
end

function compute(xl, x2)
y = result of some computation involving x1 and x2
end

6.2 Variables Other Than Parameters and Globals in AD _TOP

Consider the following program:

program main
call foo(x,y)
end

subroutine foo(x,y)

a = x+1
y = Xx*x
b =x/2
end

If we want the derivative of y with respect to variable x, the code is appropriate as is. But, if we
want the derivatives of

e y with respect to variable a,
e b with respect to variable x, or

e b with respect to variable a,

we tun into a problem. Specifically, we cannot nominate a local variable of subroutine foo as
dependent or independent, since it is not visible outside of foo. To avoid this problem, we make all
“interesting” variables in subroutine foo visible through parameter passing or common blocks. For
example, program MAIN could be rearranged to:

program main
call foo(x,y,a,b)
end

subroutine foo(x,y,a,b)

a = x+1
y = Xx*x
b =x/2
end

or, alternatively,

31

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

program main
call foo(x,y)
end

subroutine foo(x,y)
common /globals/a,b

a = x+1
y = Xx*x
b =x/2
end

An alternative to this workaround is the buddy system discussed below.

6.3 Variables That Are Overwritten

Consider the following program:

program main
call foo(x,y)
end

subroutine foo(x,y)
10 y = x*x
20 y =y ¥ X

end

Say we want to compute the derivatives with respect to x of variable y at both the statement
with label 10 and the statement with label 20. Nominating variable y as the dependent variable,
will generate code that computes only the derivative of y at the statement with label 20.

In order to avoid this problem, we can expand y into an array and modify the code to the code
that follows:

program main
real y(2)
call foo(x,y)
end

subroutine foo(x,y)
real y(2)

10 y(1) = x * x

20 y(2) = y(1) * x
end

6.4 Variables Involved in I/O Statements

Sometimes the values of independent variables are read or computed within the active subtree (that
is, within the subtree of procedures below the top-level subroutine). This procedure does not pose
a problem, as long as the independent variables are parameters or global variables in AD_TOP, and
I/0 functions are handled properly. Unfortunately, we cannot automate the proper handling of /0O

32

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

functions involving active variables because, in general, we have no way to trace the flow of data
values that are read or written to files.

Without this information, we have no way of knowing whether the gradient object for a variable
that is involved in a READ statement should be set to 0.0 or initialized by reading in derivative values
from the file system. Similarly, we have no way of knowing whether we should write the values of
the gradient objects for variables involved in a WRITE statement to the file system. Therefore, the
ADIFOR Preprocessor currently just echoes I/O statements like READ and WRITE without introducing
code to initialize or propagate the derivatives of variables involved in the I/O statement. Because of
the problems that this approach may cause, the preprocessor generates a warning message whenever
it processes a source file that contains an I/O statement involving an active variable. The warning
message is printed out to stderr as the code is processed, and embedded as a comment just before
the suspect 1/0 statement.

Fortunately, in most of the cases that we have encountered, 1t is possible to use a scheme based
on “buddy variables” to modify the original function code in a manner that makes it possible for the
ADIFOR, Preprocessor to generate correct derivative code in the presence of I/O of active variables.
This workaround was originally suggested by Andreas Griewank.

As an example, consider trying to process the following code to compute the derivative of e at
the statement with label 20 with respect to h at the statement with label 10:

program main
real lambda
read *, lambda
call foo(lambda)
end

subroutine foo(lambda)
real lambda, e, h
10 read *, h
e = h *x lambda
20 write *, e
end

One approach to modifying this code would be to extract the READ statements in foo into main,
and to convert variables e and h into parameters to foo. As an alternative, consider modifying the
original code into the following code:

33

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

program main
real lambda, hbuddy, ebuddy
common /buddyvar/ hbuddy, ebuddy

read *, lambda
call foo(lambda)
end

subroutine foo(lambda)
real lambda, e, h, hbuddy, ebuddy
common /buddyvar/ hbuddy, ebuddy

h=0
10 read *, h
h = h + hbuddy

e = h *x lambda
ebuddy = e
20 write *, e

end

and then nominating hbuddy as the independent variable, and ebuddy as the dependent variable.
Initialization of hbuddy to 0.0 and g_hbuddy to 1.0 in the derivative driver for g_foo then results in
g-ebuddy being assigned the derivative of e with respect to h. Notice that nominating hbuddy and
ebuddy as the independent and dependent variables forces variables h and e to be active. Since h
is assigned the value 0.0 prior to the read statement, g_h will be assigned the value 0.0. Therefore,
since g_hbuddy is initialized to 1.0, g_h will be assigned the value 1.0 just after the READ, as required
to compute the derivative of e with respect to h. Finally, the value of the computed derivative can
be returned via the global variable g_ebuddy.

The scheme that we just described has three key components. The first component forces vari-
ables in T/O statements that depend on the independent variables and that are used to compute
dependent variables to be identified as active variables. The second component forces the derivatives
of variables appearing in READ statements to be initialized properly. Finally, the third component
makes 1t possible to retrieve the values of the derivatives for variables that appear in WRITE state-
ments.

34

Chapter 7

Pitfalls of Differentiating
FORTRAN 77

Some operations that are allowed in FORTRAN 77 do not have any (or, at least not the expected)
mathematical meaning with respect to differentiation. Among these are:

¢ Derivatives of integers and characters

The derivative of an integer or character 1s meaningless. As a consequence, if an integer is
assigned a value from an active variable the integer variable does not become active. Thus,
the gradient objects of any variables that depend on these integers may not have the expected
values. The same holds true for characters.

¢ Equivalencing of variables of different types

The process of equivalencing variables that have different types such as in the following code
fragment

real r(10)

double precision d(5)
complex z(5)
equivalence(r,d)
equivalence(r,z)

has no real mathematical meaning. Thus, if a program performs this operation, ADIFOR, 2.0
will generate the corresponding equivalences for the gradient objects of the equivalenced
variables, but they (and any gradient objects which depend on them) may have meaningless
values. Note that this form of equivalencing is nonportable anyway, since its results depend
heavily on the floating-point representation.

¢ Introducing points of nondifferentiability

Sometimes, for the sake of improving efficiency, a program tests the value of a variable to see
whether a function is being evaluated at a special point in space, and then computes the value

of the function based on that knowledge. For example, the following piece of code computes

y =zt

35

Revision D

ADIFOR 2.0 User’s Guide

February 16, 1998

if ((x .eq. 0.0d0)

y =X
else
t = x*x
y = t*xt
endif

.or. (x .eq. 1.0d0)) then

If automatic differentiation is used to compute Z—Z, then the value of g—g|x:0 will be 1.0 (because

dz

the statement y = z implies that 9% = 92 = 1) rather than the expected 0.0. Similarly, the
dx

dx

value of Z—i|x:1 will be 1.0 rather than 4.0. This “anomaly” stems from the fact that automatic
differentiation differentiates the statements executed in the course of program execution. This
issue, as well as other subtle pitfalls, is discussed in [16].

36

Chapter 8

Potential Problems

Users may encounter several problems while trying to process programs with ADIFOR 2.0. We
provide a brief explanation of each and possible solutions.

e ADIFOR 2.0 may complain about errors in the original FORTRAN 77 source code

As discussed in Section 3.3, ADIFOR 2.0 may report that errors are present in your FOR-
TRAN 77 program that typical FORTRAN 77 compilers will not detect. Inconsistencies in
subroutine interfaces and common blocks are the most frequently reported errors (see Sec-

tion 3.3).
¢ ADIFOR 2.0-generated code fails to link on a SPARC

Sun changed the interface to the internal I/O routines provided in 1ibF77.a between versions
SC1.0 and SC2.0 of the £77 compilation system. The default version of the ADIntrinsics library
(suffix Sun0S-4.x) that we provide has been compiled using version SC2.0. Unresolved refer-
ences for entries beginning with three underscores, such as __do_1_in, ___do_1_out, ___e rsle,
___s_rsle, and ___flushio, will be reported if you attempt to compile your source files with
version SC1.0 and link against the Sun0S-4.x libraries we provide. In this case, you should
recompile the libraries (see section 2.2) and then link against them to build your executable.

¢ ADIFOR 2.0 may generate subscripted variables with more than 7 dimensions

If the source code being differentiated contains active variables that are declared as arrays with
7 dimensions, then ADIFOR, 2.0, when generating dense derivative code, will insert gradient
objects with 8 dimensions. FORTRAN 77 limits the number of dimensions for arrays to 7. It
is unlikely that you will run into this problem, but if you do, then check your compiler to see
whether it has an option that will extend its limits.

e ADIFOR 2.0 may generate variable names longer than 6 characters

ADIFOR 2.0 generates names for new variables that may be more than 6 characters long.
FORTRAN 77 limits the number of characters in a name to 6, but all compilers we have
worked with extend this limit. It is unlikely that you will run into this problem. If you do,
then check your compiler to see whether it has an option that will extend its limits.

e ADIFOR 2.0 generates DO-ENDDO loop statements instead of introducing a labeled
CONTINUE statement to end each loop

The DO-ENDDO statement is not standard FORTRAN 77, but is accepted by all compilers that
we have encountered.

37

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

¢ Unneeded labels and CONTINUE statements appear in the ADIFOR-generated sub-
routines

In addition to creating new labels and CONTINUE statements, ADIFOR preserves those present
in the original programs. There are two reasons for this functionality. The first reason is to
ensure that any references to these labels (by a computed GOTO, for example) in the original
program remain properly defined. Labels are also preserved to facilitate cross-referencing
between the original and ADIFOR-generated code. If a certain algorithm is present near
a particular label in the original program, it will be at the same location in the ADIFOR-
generated code.

e By default, ADIFOR 2.0 inserts variables whose names contain ‘_’ characters

Some compilers may not permit ‘.’ characters to appear in variable names. This problem can
be avoided by setting the option AD_SEP to a character other than ‘_ .

38

Chapter 9

ADIFOR Preprocessor Options

This section provides short descriptions of each of the ADIFOR Preprocessor options. Default values
for options are presented within square brackets. Options that can be defined with a list of values
are identified with a “x” superscript.

9.1 Mandatory Options

e AD DVARS*

List of names of the FORTRAN 77 variables that contain the dependent variables of the
function to be differentiated. Synonym for AD_DVARS.

e AD_IVARS*

List of names of the FORTRAN 77 variables that contain the independent variables of the
function to be differentiated.

e AD_OVARS*®
AD_OVARS is a synonym for AD DVARS. At least one of AD_OVARS and AD DVARS must be defined.

e AD_PMAX (MANDATORY if AD_FLAVOR is dense)

Maximum number of independent variables of the function to be differentiated. The value
of this option is compiled into each of the dense derivative code files and is used as the first
dimension of gradient objects for local and global variables.

e AD_PROG

Name of composition file.

e AD_TOP

Name of the top-level routine, the routine whose invocation is responsible for evaluating the
function that is to be differentiated.

9.2 Other Options

o AD_ACTIVATE.ALL [0]
If AD_ACTIVATE_ALL is true, then all floating point variables will be treated as being active.

39

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

e AD_ALL _SAVED [0]

If your code assumes that all storage will be treated as static storage by your compiler, 1.e., as
if they had been listed in SAVE statements, then you must set AD_ALL_SAVED to true to generate
correct derivative code. In this case, the ADIFOR, Preprocessor will also treat all local and
global variables in your program as being static variables, Many FORTRAN 77 compilers treat
all local and global storage as being static, which means that variables always retain their value
between invocations of procedures. Use of this option will increase the time required for the
preprocessor to generate derivative code.

e AD_CACHE [AD_cache]
Name of directory in which the ADIFOR Preprocessor stores information about your program
as analysis is performed. Permits incremental reanalysis of your code after changes to the
source code or changes in options.

e AD_CHECK_COMPOSITION [false]
If set to true, the ADIFOR Preprocessor will check your program for syntax errors and
inconsistent interfaces and then stop. Derivative code will not be generated.

e AD_DUMP_CALLGRAPH [false]
If set to true, causes the ADIFOR Preprocessor to print out a callgraph for the program.

e AD_DUMP_INTERFACE [false]
If set to true, then the ADIFOR Preprocessor will print out a description of each of the
procedure interfaces in the program.

e AD_DUMP_INTERFACE2 [false]

If set to true, then the ADIFOR Preprocessor will print out a description of each of the
procedure interfaces in the program. The output format generated using AD_DUMP_INTERFACE2
is somewhat differerent than that generated using AD DUMP_INTERFACE.

e AD EXCEPTION FLAVOR [reportonce]
May be set to terse, verbose, counting, performance, or reportonce to control level of
exception handler error reporting. See Appendix B for more information.

e AD_EXCLUDE_PROCS ||

The ADIFOR Preprocessor ignores invocations of procedures listed in AD_EXCLUDE_PROCS, a
comma-separated list of procedure names. Derivative code will not be generated for these
procedures. Only use this option if the procedures you list are known not to impact the values
of derivatives you want computed.

e AD FLAVOR [dense]

The ADIFOR Preprocessor generates dense derivative code (i.e., expressing gradient objects
loops as normal FORTRAN 77 loops) if AD_FLAVOR is set to dense, and sparse derivative code
(i.e., calls to the SparsLinC library) if it is set to sparse.

e AD NAMESHIFT _CALLED PROCS |[]

The ADIFOR Preprocessor “shifts” the names of invoked procedures that appear in
AD NAMESHIFT CALLED PROCS, a comma-separated list of procedure names. The shifting oper-
ation appends a suffix to the name of each listed procedure that encodes the type of each of
its arguments.

40

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

e AD NAMESHIFT DEFINED_PROCS ||

The ADIFOR Preprocessor “shifts” the names of defined procedures that appear in
AD NAMESHIFT DEFINED_PROCS, a comma-separated list of procedure names. The shifting op-
eration appends a suffix to the name of each listed procedure that encodes the type of each of
its arguments.

e AD_NO_CLEANUP [false]

If AD_NO_CLEANUP is true then the ADIFOR Preprocessor will skip its “cleanup” phase. This
1s useful if you want to understand the hybrid mode of automatic differentiation, and code
transformation, used by ADIFOR.
e AD NUM_RHS_VARS [5 if AD_FLAVOR is sparse, 500 if AD_FLAVOR is dense]
The ADIFOR Preprocessor transforms each assignment statement whose right-hand side ex-
pressions has more than AD_NUM_RHS_VARS into a sequence of simpler assignment statements.
e AD_QUTPUT DIR [output_files]
Directory into which the ADIFOR Preprocessor places the augmented source code files.

e AD_PREFIX [g]
Character that serves as initial character of gradient object names and derivative computing
procedure names. For example, by default, the gradient object for foo is g_foo.

e AD_SCALAR_GRADIENTS [false]
If set to true and AD_FLAVOR is “dense”, then the ADIFOR Preprocessor will generate code
that assumes that g_pmax_is 1. Executing this code provides an efficient means of generating
J * v, where J is the Jacobian of the function being differentiated, and v i1s a vector.

e AD_SCRIPT []

Name of file containing additional definitions of bindings.

o AD_SEP []
Character that is used to separate components of generated variable names. If AD_SEP is
changed to ’$’ then the gradient object for foo will be named g$foo.

e AD_SPARSLINC_USE_64 PTR [false]

If AD_FLAVOR is sparse, then setting AD_SPARSLINC USE_64 PTR to true will cause the ADIFOR
Preprocessor to declare derivative objects as INTEGER#8 values instead of INTEGER values.
INTEGER*8 type variables should be able to contain all valid addresses on a 64-bit machine.

e AD_SUPPRESS_LDG [false]

If set to true and AD_FLAVOR is “dense”, then the ADIFOR Preprocessor will generate code that
assumes that all gradient objects are allocated with first dimensions set to g_pmax_. Leading
dimension arguments will not be passed as parameters throughout derivative code. Use of this
option may allow the generated code to be vectorized efficiently.

e AD_SUPPRESS NUM_COLS [false]

If set to true and AD_FLAVOR is “dense”, then the ADIFOR Preprocessor will generate code
that assumes that g_p_ is g_pmax_, and hence does not pass g_p_ as a parameter throughout
derivative code. Use of this option may allow the generated code to be vectorized efficiently.

e AD_TEMPLATE DIR []

Specifies an additional directory in which to search for ADIntrinsic template files. Only a
single additional directory may be specified. See Appendix B for more information.

41

Appendix A

Seed Matrix Initialization

A.1 Introduction

This appendix focuses on the proper and efficient use of ADIFOR-generated codes through detailed
examination of seed matrix initialization for the following cases:

e Dense Jacobian, one independent, one dependent variable
e Dense Jacobian, multiple independent, multiple dependent variables
e Sparse Jacobian, one independent, one dependent variable
e Sparse Jacobian, two independent variables; one dependent variable

e Partially separable functions

In most of these cases, a “variable” denotes an array; thus, we shall be dealing with vector-valued
functions.

Note: The examples presented in Appendix A correspond to seed matrix initialization for the
default or “nonsparse” flavor of ADIFOR 2.0 (see AD_FLAVOR in Chapter 9). The differences between
the sparse and nonsparse ADIFOR 2.0-generated codes, which are discussed in Appendix C, impose
differences in the mechanics of seed matrix initialization in each case (see Section C.4.4 for details).
Nonetheless, the general seeding ideas presented here for the nonsparse case apply equally as well
to the sparse case.

A.2 Case 1: Dense Jacobian, one independent, one depen-
dent variable

Our first example is adapted from Problem C2 in the STDTST set of test problems for stiff ODE
solvers [15] and was brought to our attention by George Corliss of Marquette University. The routine
FCN2 computes the right-hand side of a system of ordinary differential equations ¥ = yp = f(x,y)
by calling a subordinate routine FCN:
C File: FCN2.f

SUBROUTINE FCN2(M,X,Y,YP)

INTEGER N

42

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

DOUBLE PRECISION X, Y(M), YP(M)

INTEGER ID, IWT
DOUBLE PRECISION W(20)
COMMON /STCOM5/W, IWT, N, ID

CALL FCN(X,Y,YP)
RETURN
END

C File: FCN.f

SUBROUTINE FCN(X,Y,YP)

¢ ROUTINE TO EVALUATE THE DERIVATIVE F(X,Y) CORRESPONDING TO THE
¢ DIFFERENTIAL EQUATION:
I DY/DX = F(X,Y)
¢ THE ROUTINE STORES THE VECTOR OF DERIVATIVES IN YP(*). THE
¢ DIFFERENTIAL EQUATION IS SCALED BY THE WEIGHT VECTOR W(*)
¢ IF THIS OPTION HAS BEEN SELECTED (IF SO IT IS SIGNALLED
¢ BY THE FLAG IWT).

DOUBLE PRECISION X, Y(20), YP(20)

INTEGER ID, IWT, N

DOUBLE PRECISION W(20)

COMMON /STCOM5/W, IWT, N, ID

DOUBLE PRECISION SUM, CPARM(4), YTEMP(20)

INTEGER I, IID

DATA CPARM/1.D-1, 1.DO, 1.D1, 2.D1/

IF (IWT.LT.0) GO TO 40

DO 20I =1, N

YTEMP(I) = Y(I)
Y(I) = Y(I)*W(I)
20 CONTINUE
40 IID = MOD(ID,10)

¢ ADAPTED FROM PROBLEM C2

YP(1) = -Y(1) + 2.DO
SUM = Y(1)*Y(1)
DO50I =2, N
YP(I) = -10.0DO*I*Y(I) + CPARM(IID-1)%*(2%%I)*SUM
SUM = SUM + Y(I)*Y(I)
50 CONTINUE

IF (IWT.LT.0) GO TO 680
DD 660 I =1, N
YP(I) = YP(I)/W(I)
Y(I) = YTEMP(I)
660 CONTINUE
680 CONTINUE
RETURN
END

Most software for the numerical solution of stiff systems of ODEs requires the user to supply a
subroutine for the Jacobian of f with respect to y. Such a subroutine can easily be generated by

43

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

ADIFOR. For the purposes of automatic differentiation, the vector Y i1s the independent variable,

and the vector YP is the dependent variable. Then ADIFOR produces
subroutine g_fcn2(g_p_, m, x, y, g_y, 1dg_y, yp, g_yp, ldg_yp)

C
C ADIFOR: runtime gradient index
integer g_p_
C ADIFOR: translation time gradient index

integer g_pmax_
parameter (g_pmax_ = 20)

C ADIFOR: gradient iteration index
integer g_i_

C

integer 1ldg_y

integer 1dg_yp

integer n

double precision x, y(m), yp(m)

integer id, iwt

double precision w(20)

common /stcomb/ w, iwt, n, id
C
C ADIFOR: gradient declarations

double precision g_y(ldg_y, m), g_yp(ldg_yp, m)

if (g_p_ .gt. g_pmax_) then

print %, "Parameter g_p is greater than g_pmax."
stop

endif

call g_fen(g_p_, x, y, g_y, 1dg_y, yp, g_yp, 1dg_yp)

return

end
subroutine g_fcn(g_p_, x, y, g_y, ldg_y, yp, g_yp, ldg_yp)

C
C ADIFOR: runtime gradient index

integer g_p_
C ADIFOR: translation time gradient index

integer g_pmax_
parameter (g_pmax_ = 20)

C ADIFOR: gradient iteration index
integer g_i_

integer 1ldg_y

integer 1dg_yp

ROUTINE TO EVALUATE THE DERIVATIVE F(X,Y) CORRESPONDING TO THE
DIFFERENTIAL EQUATION:

DY/DX = F(X,Y)

THE ROUTINE STORES THE VECTOR OF DERIVATIVES IN YP(*). THE
DIFFERENTIAL EQUATION IS SCALED BY THE WEIGHT VECTOR W(*)
IF THIS OPTION HAS BEEN SELECTED (IF S0 IT IS SIGNALLED

BY THE FLAG IWT).

double precision x, y(20), yp(20)

integer id, iwt, n

double precision w(20)

common /stcomb/ w, iwt, n, id

Qoo

double precision sum, cparm(4), ytemp(20)
integer i, iid

44

Revis

20
99999
40

50
99998

ion D ADIFOR 2.0 User’s Guide

data cparm /1.4-1, 1.40, 1.d1, 2.41/

ADIFOR: gradient declarations
double precision g_y(ldg_y, 20), g_yp(ldg_yp, 20)
double precision g_sum(g_pmax_), g_ytemp(g_pmax_, 20)
if (g_p_ .gt. g_pmax_) then
print %, "Parameter g_p is greater than g_pmax."
stop
endif
if (iwt .1t. 0) then
goto 40
endif
do 99999, i =1, n
ytemp(i) = y(i)
do g i_ =1, g_p_
g_ytemp(g_i_, 1) = g_y(g_i_, 1)
enddo
ytemp(i) = y(i)
y(i) = y(1) * w(i)
do g i_ =1, g_p_

g_y(g_i_, 1) = w(i) * g_y(g_i_, i)
enddo
y(i) = y(i) * w(i)
continue
continue

iid = mod(id, 10)
ADAPTED FROM PROBLEM C2
yp(1) = -y(1) + 2.40
do g i_ =1, g_p_
g_yplg_i_, 1) = -g_y(g_i_, 1)
enddo
yp(1) = -y(1) + 2.40
sum = y(1) * y(1)
do g i_ =1, g_p_
g_sum(g_i_) = y(1) * g_y(g_i_, 1) + y(1) * g_y(g_i_, 1)
enddo
sum = y(1) * y(1)
do 99998, i = 2, n
yp(i) = -10.0d0 * i * y(i) + cparm(iid - 1) * (2 ** i) * sum
do g i_ =1, g_p_
g_yp(g_i_, i) = cparm(iid - 1) * (2 ** i) * g_sum(g_i_) + -1
*0.0d0 * i * g_y(g_i_, i)
enddo
yp(i) = -10.0d0 * i * y(i) + cparm(iid - 1) * (2 ** i) * sum
sum + y(i) * y(i)

sum
do g i_ =1, g_p_
g_sum(g_i_) = g_sum(g_i_) + y(i) * g_y(g_i_, i) + y(i) * g_y
*(g_i_, 1)
enddo
sum = sum + y(i) * y(i)
continue
continue
if (iwt .1t. 0) then
goto 680
endif

45

February 16, 1998

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

do 99997, i =1, n
C yp(i) = yp(i) / w(i)
do g i_ =1, g_p_
g_yp(g_i_, 1) = (1 / w(i)) * g_yp(g_i_, 1)

enddo
yp(i) = yp(i) / w(i)
¢ y(i) = ytemp(i)

do g i_ =1, g_p_
g_y(g_i_, i) = g_ytemp(g_i_, 1)

enddo
y(i) = ytemp(i)
660 continue
99997 continue
680 continue
return

end

The derivative objects g_y and g_yp are declared as matrices with 20 columns (since both y and
yp were declared as vectors of length 20) and leading dimension 1dg_y and 1dg_yp, respectively. The
parameter g_p denotes the actual length of the gradient objects in a call to g_fcn2. Since Fortran
77 does not allow dynamic memory allocation, derivative objects for local variables are statically
allocated with leading dimension pmax, whose value was selected by the user during the invocation
of ADIFOR. A variable and its associated derivative object are treated in the same fashion; that is,
if x is a function parameter, so is g_x. Derivative objects corresponding to locally declared variables
or variables in common blocks are declared locally or in common blocks as well.

Subroutine g_fcn2 relates to the Jacobian

dypr .. dypa
oY1 Y,
Jyp = : :
OYpm ... OYpm
oY1 Y,

as follows: Given input values for g p_, m, x, y, gy, 1dgy, and 1ldg_yp, the routine g_fcn2
computes both yp and g_yp, where

gyp(1:gp,1:m) = (Jy,(gy(tigp,t:m)’))".

The superscript T denotes matrix transposition. The user must allocate g_yp and g_y with leading
dimensions 1dg_yp and 1dg_y that are at least g.p_. While the implicit transposition may seem
awkward at first, this is the only way to handle assumed-size arrays (like real a(*)) in subroutine
calls.

Assume that m and g_p are 20 and that 1dg_yp and 1dg_y are at least 20. Then we can compute
the derivative matrix Jy, simply by initializing g_y to the identity:

ok ok o oK ok ok ok KoK K
* Approach 1 *
ok ok o oK ok ok ok KoK K
DO10I =1, M
D05 J=1, H
G_Y(I,J) =
5 CONTINUE
G_Y(I,I) = 1.0DO
10 CONTINUE
call g_fcn2(20, m, x, y, gy, 1dg_y, yp, g_yp, ldg_yp)

0.0D

46

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

On exit from g_fcn2, the variable g_yp contains the transpose of the Jacobian Jy,. Note that for
this program to work, g_fcn2 must have been generated with AD_PMAX at least 20.

Alternatively, we could have computed the Jacobian one column at a time:

Rokokokokokok ok ok ok ok ok ok ok
* Approach 2 *
Rokokokokokok ok ok ok ok ok ok ok

DO 10 I =1, M

initialize first row of G_Y to i-th unit vector

DO5J=1, M
G_Y(1,J) = 0.0D
5 CONTINUE
G_Y(1,I) = 1.0D0

call ADIFOR-generated derivative code

call g_fcn2(1, m, x, y, g_y, ldg_y, yp, g&_yp, 1dg_yp)
store ith column of the Jacobian in ith row of Jactrans array

DO 15 J = 1,M
JACTRANS(I,J) = G_YP(1,J)
15 CONTINUE
10 CONTINUE

Even though g yp(i,j) as computed in Approach 1 equals jactrans(i,j) computed in Ap-
proach 2, the second method is significantly less efficient. This inefficiency arises from the fact that
the value of yp itself is computed once in the first approach, but m times in the second approach.
Thus, it is usually best to compute as large a slice of the Jacobian as memory restrictions will
allow. However, in this case, AD_PMAX = 1 is sufficient, and, as a result, the memory requirements
of the ADIFOR-generated code can be expected to be more modest, roughly 1/20th of the memory
requirements of the previous code. In this fashion, the ADIFOR interface provides a mechanism
for accomodating memory /runtime tradeoffs. An example of a parallel “derivative stripmining”
technique based on this approach is presented in [9].

A.3 Case 2: Dense Jacobian, multiple independent and mul-
tiple dependent variables

The second example involves a code that models adiabatic flow [25], a commonly used module in
chemical engineering. This code models the separation of a pressurized mixture of hydrocarbons into
liquid and vapor components in a distillation column, where pressure (and, as a result, temperature)
decrease. This example was communicated to us by Larry Biegler of Carnegie-Mellon University.

In 1ts original version, the top-level subroutine

subroutine aifl(kf)
integer kf

47

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

has only one argument. All other information i1s passed in common blocks. For demonstration
purposes, we changed the interface slightly to

subroutine aifl(kf,feed,pressure,liquid,vapor)
integer kf
real feed(*), pressure(*), liquid(*), vapor(*)

copying the values passed in those arguments into the proper common blocks in aifl. As our first

example, assume that we are interested in Z04%e and 9varor 1 1y this case, ADIFOR generates
’ O feed d feed ’

subroutine g_aifl(g_p_, kf, feed, g_feed, ldg_feed, pressure,
$ liquid, g_liquid, ldg_liquid,
$ vapor, g_vapor, ldg_vapor)

integer g_p_, kf, 1ldg_feed, ldg_liquid, ldg_vapor

real feed(*), g_feed(ldg_feed,*), pressure(*),
$ liquid(*), g_liquid(ldg_liquid,*),
$ vapor(*), g_vapor(ldg_vapor,x*)

In our example, the feed was a mixture of the hydrocarbons N-butane, N-pentane, 1-butene,
cis-2-butene, trans-2-butene, and propylene, so the length of feed, 1iquid, and vapor was six, with
feed(1) corresponding to the N-butane feed, and so on. If we set g_p =6 and initialize g_feed to a
6 x 6 identity matrix, then on exit g_liquid(i,j) contains

J (component j in liquid)

J (component 7 in feed) ’

which predicts by what amount the liquid portion of substance j will change if the feed of component
¢ changes.

Suppose that we also wish to treat the pressure at the various inlets as being independent, and
(because of the conservation law) decide not to declare “vapor” as being dependent, ADIFOR gen-
erates

subroutine g_aifl(g_p_, kf, feed, g_feed, ldg_feed,
$ pressure, g_pressure, ldg_pressure,
$ liquid, g_liquid, ldg_liquid, vapor)

The initialization is a little more complicated this time. Assuming that we have 3 feeds (so
pressure has three elements), the total number of independent variables is 6 + 3 = 9. g liquid
measures the sensitivity of the 6 substances with respect to changes in the 9 independent variables.

Thus,
Oliquid 0 liquid
Jiquid = ;
Opressure’ 0 feed

is a 6 x 9 matrix. ADIFOR computes

T T
g-liquid = (Jliquid< gLeed T)))

g-pressure

If we wish to compute the whole Jacobian J, then
g_feedT
g _pressure’

I Actually, it is sufficient to compute one or the other, since, because of conservation laws,

A ligquid + duvapor
O feed 9 feed

equals

the identity matrix.

48

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

must be initialized to a 9 x 9 identity matrix. Thus, g_feed” must contain the first six rows of a
9 x 9 identity matrix (since there are six variables in the feed), and g_pressure’ must contain the
last three rows of a 9 x 9 identity matrix. This configuration is achieved by initializing

g feed = , and g_pressure =

OO oo oo o O
OO oo oo o —O
OO oo oo~ OO
OO oo o~ O oo
O o oo, OO oo
OO O OO o oo
OO R OO oo oo
O, OO oo o oo
—_ o oo oo o oo

A.4 Case 3: Sparse Jacobian, one independent, one depen-
dent variable

From the previous discussion, ADIFOR may seem to be well suited for computing dense Jacobian
matrices, but rather expensive for sparse Jacobians. A primary reason is that the forward mode
of automatic differentiation upon which ADIFOR is mainly based (see [7]) requires roughly g-p-
operations for every assignment statement in the original function. Thus, if we compute a Jacobian
J with n columns by setting g_p_ = n, its computation will require roughly n times as many opera-
tions as the original function evaluation, independent of whether J is dense or sparse. However, it
is well known [13, 17] that the number of function evaluations that are required to compute an ap-
proximation to the Jacobian by finite differences can be much less than n if J is sparse. Fortunately,
the same idea can be applied to greatly reduce the running time of ADIFOR-generated derivative
code as well. This section suggests a technique for exploiting sparsity in derivative computations ¢f
the sparsity pattern is known a priori. Appendix C describes the the SparsLinC library, which, in
conjunction with ADIFOR 2.0, allows exploitation of sparsity without a priori knowledge, and even
computes the sparsity pattern of the Jacobian as a byproduct of the derivative computation.

The idea is best understood with an example. Assume that we have a function

bil
Ja
F= f3 zeR*—yeR’
Ja
Is

whose Jacobian J has the following structure (symbols denote nonzeros, and zeros are not shown):

O
O o
o

> > >

O
O

That is, the function f; depends only on x1, fo depends only on z; and x4, and so on. The key idea
in sparse finite difference approximations is to identify structurally orthogonal columns j; of J— that
18, columns whose inner product is zero, independent of the value of . In our example, columns 1

49

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

and 2 are structurally orthogonal, and so are columns 3 and 4. This means that the set of functions
that depend nontrivially on x1, and the set of functions that depend nontrivially on x5 are disjoint.

To exploit this structure, recall that ADIFOR (ignoring transposes) computes J - .S, where S is
a matrix with g_p_ columns. For our example, setting S = I4«4 will give us J at roughly four times
the cost of evaluating F', but if we exploit the structural orthogonality and set

o O = =
o O

the running time for the ADIFOR code is roughly halved. Note that the ADIFOR-generated code
remains unchanged.

As a more realistic example, we consider the swirling flow problem, part of the MINPACK-2
test problem collection [3], which was made available to us by Jorge Moré of Argonne National
Laboratory. Here we solve a nonlinear system of equations F(x) = 0 for F : R” — R”. The swirling
flow code has the form

subroutine dswirl3(nxmax,x,fvec,fjac,ldfjac,job,eps,nint)
integer nxmax, ldfjac, job, nint
double precision x(*), fvec(*), fjac(ldfjac,*), eps

Like all codes in the MINPACK-2 test collection, it is set up to compute the function values (in
fvec) and, if desired, the analytic first-order derivatives (in fjac) as well. The vectors x and fvec
are of size nxmax = 14#nint. For example, for nint = 4, the Jacobian of F is of size nxmax = 56
and has the structure shown in Figure A.1.

Figure A.1. Structure of the swirling flow Jacobian, n = 56
The derivative subroutine produced by ADIFOR is

subroutine g_dswrl3 (g_p_, nxmax, x, g_x, ldg_x,
$ fvec, g_fvec, ldg_x,
$ fjac, ldfjac, 1, eps, nint)

50

ADIFOR 2.0 User’s Guide February 16, 1998

Revision D

If we initialize g_x to a 56 x 56 identity matrix, and let g_p_-=>56, and if 1dg_x is at least 56, then on
exit from g_dswrl3, g fvec will contain the transpose of %, stored as a dense matrix. As it turns
out, less than 7 % of the total operations performed with gradient objects in the ADIFOR code
involve nonzeros. On the other hand, by using a graph-coloring algorithm designed to identify
structurally orthogonal columns (we used the one described in [12]), we can determine that this
Jacobian can be grouped into 14 sets of structurally orthogonal columns, independent of the size
of the problem. In our example, columns 1, 16, 31, and 51 were in the first group; columns 2, 17,
37, and 43 were in the second group; and so on. We can take advantage of this fact by initializing
the first column of g x” such that it has 1.0 in rows 1, 16, 31, and 51; by initializing the second
column of g_x” such that it has 1.0 in rows 2, 17, 37, and 43; and so on. The structure of g_x” thus
initialized is shown in Figure A.2 together with the resulting compressed Jacobian g_fvec’. Note
that instead of g_p_-= 56 we now can get by with g_p_= 14, a sizable reduction in cost.

o

o
o

°

o
000000
0000000
0000 0 0000000
00000 00000000
o o000
=) oooo

°

°
oo00000
0000 0 000O000O

o

o

o
oo o
00000 0OCOO0000000 OOCO0C000000

000000
oco

ooo

o ooocoo

°
0000 © 0oCOO0O

00000
0000000000 00000000

°

ooooo
000000
000000
000000

°
o
°

0000

Figure A.2. Left: Structure of (gx)T Right: Structure of (g_fvec)?’

Assuming that color(i) is the “color” of column ¢ of the Jacobian and that nocolors is the
number of colors (in our example we had 14 colors), the following code fragment properly initializes
g-x, calls g_dswrl3 to compute the compressed Jacobian, and then extracts the Jacobian.

n = 14*nint
doi=1,n
do j = 1, nocolors
g_x(j,i) =0
enddo
g_x(color(i),i) =1
enddo

call g_dswrl3 (nocolors, nxmax, X, g_x, pmax,

+ fvec, g_fvec, pmax,
+ fjac, 1ldfjac, 1, eps, nint)
c job = 1 indicates that only the function value is to be computed in
dswrl3.

51

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

c nonzero(j,i) is TRUE if the (j,i) entry in the Jacobian is nonzero,
c and FALSE otherwise.

doi=1,n
do j=1, n
if (nonzero(j,i)) then
jac(j,i) = g_fvec(color(i),j)
else
jac(j,i) = 0.0
endif
enddo
enddo

Experimental results using this approach on a suite of problems from the MINPACK test set
collection are presented in [4, 10].

A.5 Case 4: Sparse Jacobian, two independent variables, one
dependent variable

The coating thickness problem, conveyed to us by Janet Rogers of the National Institute of Standards
and Technology, presents many alternatives for using ADIFOR-generated subroutines. The code for
this problem is (in abbreviated form) shown below:

SUBROUTINE fun(n,m,np,nq,

+ beta,xplusd,ldxpd,
+ £,1df)
¢ Subroutine Arguments
c ==>n number of observations
c =>m number of columns in independent variable
c ==> np number of parameters
c ==> nq number of responses per observation
c ==> beta current values of parameters
c ==> xplusd current value of independent variable, i.e., x + delta
c ==> ldxpd leading dimension of xplusd
c == f predicted function values
c ==> 1df leading dimension of f

¢ Variable Declarations
INTEGER i,j,k,1df,ldxpd,m,n,np,nq,numpars
INTEGER ia, ib
DOUBLE PRECISION beta(np),f(1ldf,nq),xplusd(ldxpd,m)

double precision par (20),fn(2)

do 10 k=1,np
par(k) = beta(k)
10 continue

do 100 i=1,n
do 20 j=1,m
par (np+j) = xplusd(i,j)
20 continue

52

Revision D ADIFOR 2.0 User’s Guide

¢ compute function values (fn) given parameters (par)
call fnc(par,fn)

£(i,1)
£(i,2)

fn(1)
fn(2)

100 continue
return
end

subroutine fnc(x,fn)

integer m,np,nq

parameter (np=8,m=2,nq=2)

integer i

double precision x(np+m),fn(nq)
double precision beta(np),xplusd(m)

do 10 i=1,np
beta(i) = x(i)
10 continue
do 20 i=1,m
xplusd (i) = x(np+i)
20 continue

¢ compute first of multi-response observations

fn(1) = Dbeta(l)
+ + beta(2)*xplusd (1)
+ + beta(3)*xplusd(2)
+ + beta(4)*xplusd (1) *xplusd(2)

c¢ compute second of multi-response observations

fn(2) = Dbeta(b)
+ + beta(6)*xplusd (1)
+ + beta(7)*xplusd(2)
+ + beta(8)*xplusd (1) *xplusd(2)
return
end

February 16, 1998

The special format of this code is due to its embedding in the ODRPACK software for orthogonal
distance regression. We are interested in the derivatives of £ with respect to the variables beta and

xplusd. We shall explore various ways to do this in some detail.

A.5.1 Approach 1 — Generate derivatives only for fnc

The easiest approach is to generate the derivative code only for fnc, since it is clear from the code
that £(i,1:2) depends only on beta(1:np) and xplusd(i,1:m). ADIFOR then produces

subroutine g_fnc(g_p_, x, g_x, ldg_x, fn, g_fn, ldg_fn)

integer m, np, nq
parameter(np = 8, m = 2, nq = 2)

53

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

double precision x(np+m), fn(nqg), g_x(ldg_x,np+m), g_fn(ldg_fn,nq)

If inside fun we replace the call to £nc with a call to g_fnc, always initializing gx to a 10 x 10
identity matrix before the call, then

L 0f(,3) _
gfn(k, j) = abeta(k),k_1,...8,3_1,2.
and 5
£(4.:
g tn(k, j) = (3,3) k=9,10.

~ Oxplusd(i,k —np)

Closer inspection reveals that the 10 x 2 array g_fn always has the following structure (numbers
are used to uniquely identify nonzero elements):

1 0
2 0
3 0
4 0
0 5
0 6
0o 7
0 8
9 10
11 12

In other words, fn(i,1) depends only on beta(1:4), and fn(i,2) depends only on beta(5:8).
Hence, we can compute a compressed version of g_fn at reduced cost by merging rows 1 and 5, 2
and 6, 3 and 7, and 5 and 8 of g_fn. Keeping in mind that g_fn is the transpose of the Jacobian,
this is an especially simple case of the compression strategy outlined in the preceding section. This
is achieved by initializing

1 0 0O 01 0 O 0 O O
0O 1 0 0 01 0 0 0 O
_0010001000
&X=10 00 1 00 0 1 0 0|
0O 0 0 0 0 0 0o 0 1 O
O 0 0 0 0 0 0o 0 0 1
which results in
1 5
2 6
3 7
g_fn_48
9 10
11 12

All the nonzero values of the Jacobian are now computed at roughly 60% of the cost of the previous
approach.

On a SPARC-compatible Solbourne 5E/900 with a clock resolution of 0.01 seconds, executing fun
took 0.01 seconds, computing derivative values using g fnc without compression took 0.06 seconds,
and exploiting the structure of g_£n through the initialization of g_x shown above reduced that time
to 0.03 seconds.

54

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

A.5.2 Approach 2 — Generate derivatives for fun

An alternative method of applying ADIFOR is to process subroutine fun. ADIFOR detects the
interprocedural data dependence between fun and fnc and therefore generates g fun as well as
g-fnc, with g_fnc called properly within g_fun. We obtain

subroutine g_fun(g_p_,n,m,np,nq,beta,g_beta,ldg_beta,
$ xplusd,g_xplusd,ldg_xplusd,ldxpd,f,g_f,ldg_£f,1df)
integer g_p_, n, m, np, ng, ldg_beta,ldg_xplusd,ldxpd,ldg_f,1df
double precision beta(np), g_beta(ldg_beta,np),
$ xplusd(1ldxpd,m), g_xplusd(ldg_xplusd,ldxpd,m),
$ f£(1df,nq), g_f(ldg_f,1df,nq)

Now we have three-dimensional derivative objects, which somewhat complicates the initialization of
gxplusd and the interpretation of the results in g_f. However, this is not too difficult if we keep in

mind that we wish to initialize
g_betaT
g_xplusdT

to an identity matrix. The number of elements in xplusd is n*m, and the number of elements in
beta is np. For the coating thickness problem, n=63, m=2, and np=8. Hence, the identity matrix
should be 134 x 134. This is also the value we shall use for g_p_. Initialization of g_beta follows the
scheme outlined in Section A.3; that is, the first 8 rows should be an 8 x 8 identity matrix, and the
remaining 126 rows should be initialized to zero. How to initialize g_xplusd is less readily apparent,
for i1t is not immediately obvious how to form a 126 x 126 identity matrix from a three-dimensional
structure. However, if one looks at the way Fortran stores two-dimensional structures in memory,
a simple scheme for storing the Jacobian develops. In Fortran, element (j,¢) in an n X m array
is stored as if it were element n * (¢ — 1) 4+ j of a one-dimensional array. Thus, we can apply this
technique to map the 126 columns of the Jacobian that should be initialized to the identity onto
g-xplusd. Specifically, element (np + k, j, ¢) is initialized to 1 if and only if K = 63 % (¢ — 1) + 7. The
following code segment accomplishes this initialization.

¢ n=63, m=2, np=8

g_p_ = np + m¥n
do 44 i =1, np

do 144 j =1, g_p_
g_beta(j,i) = 0.0
144 continue
g_beta(i,i) = 1.0

44 continue
do 45 i =1, m
do 145 j =1, n
do 245 k =1, g_p_
g_xplusd(k,j,i) = 0.0

245 continue

g_xplusd(np+((i-1)*n)+j,j,i) = 1.0
145 continue
45 continue

When initialized in this manner, ADIFOR computes

55

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

of Of 4
f=(Ji=—— ——— .
& (! (3beta’3xplusd))
However, the performance of this approach is poor, since we totally ignore the sparsity structure
of the Jacobian. As a result, the computation of J; takes 0.77 seconds on a Solbourne 5E/900. A

better way to find the Jacobian of £ using g_fun is to take note of the structures used by fun. From

Py i
) 7 Is nonzero only when ¢ = k. As a consequence, we may

this, 1t becomes obvious that Fepias R T]

change the

g_p = np + m*n

g_xplusd(np+ ((i-1)*n)+j,j,i) = 1.0
to the much simpler

g-p=np+m

g_xplusd(np+i,j,i) = 1.0

0115,k] E This is equivalent to

with the understanding that g_f (np+i,j,k) (i = 1..m) represents Taphesdl]

initializing

g-beta= , and g xplusd[n] =

OO oo R oo o oo
O oo OO oo oo
OO R OO oo oo
O, OO oo oo oo
—_ O oo oo oo oo

OO OO o oo oo o
OO oo oo o o —oO
OO oo oo o~ oo
O o oo oo, oo o
O oo oo, oo oo

This implementation is much more efficient than that described in the preceding paragraph and more
closely mimics the behavior of the original subroutine fun. As a consequence, the time required to
execute g_fun using this initialization is 0.07 seconds.

As discussed in Section A.5.1, only half of the derivatives of £ with respect to beta are nonzero.

Specifically, aij;[tiég] is nonzero for j = 1..4 and zero for 7 = 5..8, while % is zero for j = 1.4

and nonzero for j = 5..8. This information can be used to further compress the Jacobian. The
initialization

10 0 01 0 0 0 0 0
01 00 0 1 00 0 0
0 01 00 010 0 0
g-beta= 00010001 and g_xplusd[n] = 0 0
0 0000 0O O 1 0
0 0000 0O O 0 1

56

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

compresses the Jacobian into only 6 columns. Columns 1 through 4 represent the nonzero derivatives
of £ with respect to beta, while columns 5 and 6 correspond to the derivatives of £[i,j] with
respect to xplusd[i,1..2], as above. This initialization may be accomplished with the following
code fragment.

¢ n=63, m=2, np=8
halfnp = 4
gp_-=4+nmn
do 44 i = 1, halfnp
do 144 j =1, g_p_
g_beta(j,i) = 0.0
g_beta(j,ithalfnp) = 0.0
144 continue
g_beta(i,i) = 1.0
g_beta(i,i+halfnp) = 1.0
44 continue

do 45 i =1, m
do 145 j =1, n
do 245 k =1, g_p_
g_xplusd(k,j,i) = 0.0
245 continue

g_xplusd(halfnp+i,j,i) = 1.0
145 continue
45 continue

This approach is efficient, capable of computing all derivatives in 0.03 seconds. However, it has the
disadvantage that the initialization routine might have to be changed if £nc or np is altered.

A.6 Computing Gradients of Partially Separable Functions

A particular class of functions that arises often in optimization contexts is that of the so-called
partially separable functions [14, 19, 20, 21, 22]. That is, we have a function f : R™ — R that can

be expressed as
nf

F@) =3 fila).

i=1
Usually each f; depends on only a few (say, n;) of the z’s, and one can take advantage of this fact
in computing the (sparse) Hessian of f.

As was pointed out to us by Andreas Griewank, now at the University of Dresden, this structure
can be used advantageously in computing the (usually dense) gradient Vf of f.

Assume that the code for computation of f looks as follows:
subroutine f(n,x,fval)
integer n
real x(n), fval, temp

fval = 0

call f1(n,x,temp)
fval = fval + temp

57

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

call fnb(n,x,temp)
fval = fval + temp

return
end

If we submit £ to ADIFOR, it generates
subroutine g_fn(g_p_,n,x,g_x,ldg_x,fval,g _fval,ldg_fval).

To compute Vf, the first (and only) row of the Jacobian of f, we set g_p_ = n and initialize g_x to
a n x n identity matrix. Hence, the cost of computing V f is of the order of n times the function
evaluation.

As an alternative, we realize that with f : R? — R"® defined as
fi
9= :
fnb
we have the identities
f(x) = eTg(x), and hence Vf(z) = eTJg,

where ¢ is the vector of all ones, and J,; is the Jacobian of g. We can get the gradient of f by
computing J, and adding up its rows. The corresponding code fragment for computing f is

subroutine f(n,x,fval)
integer n
real x(n)

integer nf, 1
parameter (nf = <whatever>)

real gval(nf)

call g(n,x,gval)

fval = 0
do i = 1,nb
fval = fval + gval(i)
enddo
return
end

It may not appear that we have gained anything, since J, is nf x n. If we initialize g_x in
subroutine g_g(g_p_,n,x,g_x,ldg_x,gval,g_gval,ldg_gval)

to an n x n identity matrix, then the computation of J, still takes about n times as long as the
computation of ¢ (or f).

58

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

The key observation is that the Jacobian J, is likely to be sparse, since

(V)T
Jg = :)
(vfnb)T

and each of the f;’s depends only on n; of the #’s. By using the graph coloring techniques described
in Section A.4, we can compute J; at a cost that is proportional to the number of columns in the
compressed Jg, and then add up its (sparse) rows. As a result, we can compute V f at a cost that is
potentially much less than n times the evaluation of f. Alternatively, we can employ the SparsLinC
library (see Appendix C), which will exploit sparsity even if the Jacobian contains a few dense rows
(in this case, its chromatic number is n, and nothing has been gained). Experimental results with
partially separable functions from the MINPACK test set collection are presented in [5].

59

Appendix B

ADIntrinsics 1.5: Exception
Handling Support for ADIFOR 2.0

B.1 Introduction

In ADIFOR parlance, an “exception” is an event that occurs when an elementary function is eval-
uated at a point where the function result is defined, but the derivative is not. For instance, the
square root of zero is zero, but the derivative of the square root function at zero is not defined.
For most functions, there are several reasonable interpretations of what should be done when an
exception occurs.

ADIFOR 2.0, by default, chooses the approach that was deemed appropriate for most cases, based
on the arguments presented in [8, 23]. However, only a person familiar with the code can decide
whether this choice 1s the correct one for a particular given instance. Hence, when an exception
occurs, one should examine the derivative code generated by ADIFOR 2.0 to make sure that the
default values had the desired effect. Section B.2 describes what every user should do to be
aware of the occurrence of such exceptions. Section B.3 defines exceptional occurrences in
ADIFOR 2.0 and the default action taken.

In dealing with FORTRAN 77 intrinsics, the ADIFOR 2.0 system relies on the ADIntrinsics
system which has been developed mainly so that a user can easily customize the behavior of ADIFOR
in the cases where the default option turns out to be inappropriate. It allows the user to specify
alternative strategies through directives in the code to be differentiated and alternate template files,
thereby documenting the changes and obviating the need to manually post-process the ADIFOR-
generated code. The ADIntrinsics system also allows one to switch between different error reporting
flavors. To achieve this flexibility, derivative code generation in ADIFOR, 2.0 is split into two phases:

1. ADIFOR 2.0 generates code containing invocations of “templates” at call sites of FORTRAN 77
intrinsics. This code is contained in the files with the .A suffix in the AD_OUTPUT DIR directory.

2. The purse postprocessor expands the templates into explicit Fortran code.

These two steps are usually transparent to users as these two components are invoked directly by
the Adifor2.0 command. Section B.4 describes the different exception handler modes in details.

To link ADIntrinsics into your executable, you must add one of the following to your link line:

... $AD_LIB/1ib/ReqADIntrinsics-$AD_0S.o \
-L $AD_LIB -1ADIntrinsics-$AD_0S # in UNIX

60

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

or

. $AD_LIB/1ib/ReqADIntrinsics-$AD_0S.o \
$AD_LIB/1ib/1libADIntrinsics-$AD_0S.a # in UNIX

or

. %AD_LIBY\1lib\ReqADIntrinsics-%AD_0S%.obj \
%AD_LIB%\1ib\1libADIntrinsics-%AD_0S%.1lib # in Windows~95/NT

The reason for not combining the two files in one archive is that the .o file contains some block data
initializations which may not get linked into your executable if they are contained in the archive.

In section B.5, we describe how to change the exception reporting options, such as, for example,

—_

. changing the exception handler output unit,
resetting the exception handler counts,
dynamically changing between different levels of exception reporting, or

ignoring exceptions in particular regions of code.

U e W N

Section B.6 describes how to redefine the exceptional values returned at points of nondiffer-
entiability, either by changing globally the definitions of default values for certain exception
classes, or by changing the behavior associated with a particular intrinsic.

Lastly, in Section B.7, we present an example of employing some of these features. We also
mention that the user can go beyond what is described here in redefining the behavior of the
exception handler by redefining the templates governing the purse translation. These issues will be
described in a forthcoming edition of this user guide.

B.2 What Every User Should Do

To obtain a summary report on intrinsic exceptions, one should always call the routine ehrpt (for
exception handler report) after the call to the ADIFOR-generated procedure derived from the
top-level subroutine.

program main

...]

call ADIFOR_GENERATED_CODE ()
...]

call EHRPT

return

end

B.3 Definition of Intrinsic Exceptions and Default Behavior

Some of the FORTRAN 77 intrinsics are not globally differentiable at all points of their domain,
such as, for example, %h:o. However, the propagation mechanism employed in automatic differ-
entiation requires that some value be returned for that derivative. Table B.1 lists the five types of
exceptional values employed, their default value (in brackets), and their interpretation.

61

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

Exceptional Value [Default] | Interpretation

JumpVal[0] The function is discontinuous at this point.
NoLimit[0] The directional derivatives do not agree.
TieVal[0.5] The case z = y for min and max.

InfVal[0] The derivative approaches infinity.

NaNVal[0] Not even a generalized interpretation makes sense.

Table B.1. Exceptional Derivative Values

Intrinsic fr undefined Default Value
AINT(x) r=41,£2, ... JumpVal
ANINT(x) and DNINT z =odd multiples of 1/2 JumpVal
ABS(x) =0 NoLimit
MOD(x,y) r = n * y for an integer n JumpVal
SIGN(x,y) z=0o0ry=0 JumpVal
DIM(x,y) r=y NoLimit
MAX(x,y) r=y TieVal
MIN(x,y) r=y TieVal
SQRT(x) real-valued x =0 Infval
SQRT(x) complex-valued x | # =0 NaNVal
ASIN |z |>1 InfVal
ACOS |z |>1 InfVal

Table B.2. Points of Nondifferentiability and Default Values of Partial for unary FORTRAN 77
Intrinsics

These default exceptional values are employed as shown in Tables B.2 and B.3. We employ the
shorthand f, and f;, to denote the partial derivative with respect to the first and second argument,
respectively.

In case of a complex-valued argument, abs(x) is treated like sqrt(re(x)**2 + im(x)*#*2), and
hence has the same exceptional behavior like the real-valued square root.

The following principles were considered in designing the ADIFOR exception-handling mecha-
nism (see [8, 23] for more background information):

Generalized Gradient: Many algorithms for optimizing nonsmooth functions use generalized gra-
dient values. A generalized gradient is any value in the convex hull of derivative values in the
neighborhood of the point of nondifferentiability. For univariant functions, one may obtain
any value in the interval [liminf ', lim sup f']. For example, a generalized gradient for |z| at
0 is any number in [—1, 1]. The values we choose to return as “derivative” values at points of
nondifferentiability are generalized gradient values, provided that the chain rule for generalized
gradients holds as a set inequality, rather than as an inclusion [11].

Continuity of Catastrophe: The value at the point of nondifferentiability should in some sense
be the limit of what happens in a neighborhood. For example, the derivative of asin (#) at
1 should be INFINITY. For some functions, the mathematical limit may be different from the
computational limit, as a result of finite precision or denormalized numbers.

Extreme Point: A necessary condition for the existence of an extreme point is f = 0. A point of

62

Revision D

ADIFOR 2.0 User’s Guide

February 16, 1998

Intrinsic fr undefined Default for f, | f, undefined Default for f,
MOD(x,y) | * = n * y for an integer n JumpVal never N/A
SIGN(x,y) | x=0o0ry=0 JumpVal never N/A
DIM(x,y) |z =y NoLimit r=y same as for [,
MAX(x,y) |z =y TieVal r=y y=1—fo
MIN(x,y) |z =y TieVal r=y fy=1—fo
TH*Y r=0and 0<y<1 InfVal z<0or(x=0andy=0) NoLimit

Table B.3. Points of Nondifferentiability and Default Values of Partials of binary FORTRAN 77
Intrinsics

nondifferentiability 1s usually at least a local extreme point, so returning a value of 0 as the
derivative may signal an optimization algorithm that an extreme point has been found.

Evaluation of Undefined Functions: In some computing environments, execution may continue
after an attempt to evaluate a function at a point outside its domain (perhaps with a value
of NaN). If the program has not crashed while evaluating +/—2.0 (in real arithmetic), then our
derivative evaluation should not crash, either.

Scaling: It is critical to scale many applications appropriately before applying an optimization or
ODE-solving algorithm. In many calculations, variable vectors are scaled by their L; norm
or Le norm (i.e., the sum or maximum of the component moduli). Later on, this scaling
is undone so that the overall calculation is mathematically smooth, even when some of the
components are zero or their absolute values are tied at the maximum. The derivative is locally
not defined, but the entire computation is globally differentiable. We have attempted to return
derivative values that make sense in connection with commonly used scaling techniques.

These principles often conflict with one another and have different implications regarding the
values that should be returned at points of nondifferentiability. We made trade-off choices that we
think can be justified.

For sqrt, at the point of nondifferentiability x = 0, the default for InfVal = 0 is a generalized
gradient value if we assume that sqrt(z) := sqrt(abs(z)). Further, it makes expressions like
sqrt(X*X*X*X + Y*Y*Y*Y) have the correct derivative. However, it violates the principle of
continuity of catastrophe. Alternatively, the value of InfVal = INFINITY makes the one-sided limit
correct. For asin and acos, at the points of nondifferentiability # = %1, the default for InfVal
= 0 indicates an extreme point. However, it violates the principle of continuity of catastrophe.
Alternatively, the value of InfVal = INFINITY makes the one-sided limit correct. If || > 1, usually
the user’s original code will have already crashed while evaluating asin(z). If it has continued
execution (perhaps with value NaN), we should continue execution also. No value is reasonable since
the function 1s not defined, so we choose to return the same value as at # = +1. Alternatively, we
could return whatever was assigned to the value of asin(z).

For the sign function, at the point of nondifferentiability # = 0, the default value of 0 for
NoLimit is a generalized gradient value equal to the average of the two limits from each side. Using
NoLimit = 0 also provides a generalized gradient for abs at the point of nondifferentiability « = 0
and indicates an extreme point. This choice also satisfies the generalized gradient requirement for
dim at the points of discontinuity, x = y.

The derivatives of aint and anint are set to JumpVal at the points of nondifferentiability, and
0 elsewhere. The default value for JumpVal is 0, the limit from each side. The derivative of mod is
also set equal to JumpVal at points of discontinuity. Although the default value of 0 is not equal to

63

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

the limit from both sides, which is 1, 1t does signal an extreme value, important for optimization.

The default value for TieVal is 1/2. This value has the benefit that it is a generalized gradient
and implies that if x = y then f, = f,. However, Fortran’s max and min functions accept more than
two arguments. Consequently, the current implementation of ADIFOR breaks all calls to min and
max into a series of binary calls. Thus, if many arguments are equal, their slopes are weighted 1/2,

1/4,1/8, ...

B.4 Exception Handler Modes

The exception handler operates in five modes: verbose, report-once, counting, terse, and perfor-
mance. The default mode is reportonce. Note, however, since reportonce requires the compilation
of some C libraries, if your system does not support a C compiler, you will need to override this
default by setting AD_EXCEPTION FLAVOR to one of performance, terse, counting, or verbose.

In verbose mode, every time an exceptional condition occurs, a message is written to the pro-
gram’s error unit (by default unit number zero, which usually outputs to the screen) indicating the
function, the arguments to the function, and the file name and line number containing this function
evaluation. A sample output line is shown in Figure B.1. This information allows one to track down

Exception: ABS (0.000000000000000000E+00)
Occurred in g_func.f at line # 93

Figure B.1. Verbose Mode Sample Error Report

exactly where the exception is occurring and decide whether it i1s generating appropriate results.
However, this option may generate a significant amount of output.

Report-once mode combines all of the exception reports for a source line into a single report, as
shown in Figure B.2.

In addition, counting, terse, and performance modes provide a decreasing amount of information
about exceptions that occur.

Note: Unless you invoke the exception handler reporting routine ehrpt after
the execution of the ADIFOR-generated code, you will not see any of the
reports generated by the report-once, counting, and terse modes.

Counting mode maintains a running total of each type of exception that occurs, as shown in
Figure B.3. It avoids the work associated with tabulating exceptions in report-once mode, and
hence should execute faster.

Terse mode indicates whether any exceptions of a given type occurred. This mode may be useful
for vectorizing compilers, where the recurrence required for counting may inhibit vectorization. A
sample terse mode output is given in Figure B.4.

Performance mode contains only a minimal amount of exception-checking code. It makes no
subroutine calls and always assigns the default value when an exception occurs. We suggest that
one should only use performance mode after running the code with report-once or verbose mode and
convincing oneself that either no exceptions occur or the default exception handling is appropriate.
The following sections describe how to change the default handling in case it is not. No report is
made, since no exceptions are tracked.

64

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

At line 100 in file "g_func.f", while executing routine "foo",
an exception occurred evaluating ABS : 50 times.

At line 3 in file "g_misc.f", while executing routine "bar",
an exception occurred evaluating ABS : 1 time.

At line 7 in file "g_misc.f", while executing routine "bar",
an exception occurred evaluating POWER: df/dx : 5 times.

At line 17 in file "g_misc.f", while executing routine "bar",
an exception occurred evaluating ACOS first deriv : 17 times.

At line 920 in file "g_misc.f", while executing routine "bar",
an exception occurred evaluating ABS : 49 times.

Figure B.2. Report-once Mode Error Report

Double precision exception(s) occurred evaluating:

ABS : 100 times.
POWER: df/dx : 5 times.
ACOS first deriv : 17 times.

Figure B.3. Counting Mode Error Report

Double precision exception(s) occurred evaluating:
ABS

POWER

ACOS first deriv

Figure B.4. Terse Mode Error Report

65

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

The exception handling mode may be chosen at the time ADIFOR 2.0 1s executed by setting the
AD_EXCEPTION_FLAVOR variable to one of: performance, terse, counting, reportonce, or verbose.

B.5 Changing Exception Reporting Options

B.5.1 Redirecting Exception Handler Output

Two different routines are provided for report-once mode and the remaining exception handling
modes. Two different routines are necessary as report-once mode is generated by a C subroutine,
whereas all other output modes are generated by Fortran code.

Report-once Mode — ehofil: To direct the output of report-once mode to a file, call ehofil
with the name of the output file, e.g.,

call ehofil (’reportonce.out’)

All Modes but report-once — ehsup: To direct the exception handler output for all modes
but report-once to a different unit, open the unit in your driver program, and then call ehsup with
two parameters: -1, and then the unit number. The driver is also responsible for closing this unit
before the program terminates. Failure to do so may result in a loss of output that has been buffered
but not written to the file.

call ehsup (-1, UNIT-NUMBER)
A segment of the user code might resemble this fragment.

open (UNIT=13, FILE=’adifor-errors.out’)
call ehsup (-1, 13)

[... Useful Work ...]

close(13)

B.5.2 Resetting Exception Counts

The routine ehrst causes all counts of exceptions to be reset to zero. An example of use 1s

call ehrst()

B.5.3 Fine-Grained Control of Exception Handler Modes

Fine-grained control over exception handler modes is achieved by embedding directives in the user’s
code.

Change of Verbosity Level: The verbosity level can be dynamically set with the
AD_EXCEPTION_LEVEL() directive. Valid levels are verbose, counting, terse, reportonce,
performance, and default, which restores the exception level to the one with which ADIFOR 2.0
was run. For example, to guarantee verbose exception reporting around a certain region, the user
might use the following code:

66

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

C AD_EXCEPTION_LEVEL(VERBOSE)

[... Interesting Code Here ...]
C AD_EXCEPTION_LEVEL(DEFAULT)
Warning:

Terse mode is incompatible with both counting mode and verbose mode in the sense that
switching from verbose or counting mode to terse mode anywhere in your program leads
to incorrect summary information being reported by ehrpt.

If you intend to use the report-once mode anywhere in your program, you must run
ADIFOR 2.0 with the AD_EXCEPTION FLAVOR=reportonce binding. Otherwise, report-
once mode will not function properly.

Ignoring Exceptions in a Region: To ignore exceptions in a region, bracket the region with
the directives AD_EXCEPTION_BEGIN_IGNORE and AD_EXCEPTION_END_IGNORE. “Ignoring” exceptions
simply means that no exceptional information is printed out; it does not mean that the exception
handler is disabled.! Truly disabling the exception handler (that is, using performance mode)
should be done with caution, because at exceptional points the performance mode may return a
value different than that returned by the exception handler for a user-configured value.

C AD_EXCEPTION_BEGIN_IGNORE()
[... Exceptions to be Ignored Here ...]
C AD_EXCEPTION_END_IGNORE()

Warning: These directives do not nest. This means that any AD_EXCEPTION_END_IGNORE
cancels all previous AD_EXCEPTION_BEGIN_IGNORE commands, regardless of how many
preceded the end ignore.

Here 1s an example showing how the ignore directives do not nest.

C AD_EXCEPTION_BEGIN_IGNORE()
[... Exceptions are Ignored Here ...]
C AD_EXCEPTION_BEGIN_IGNORE()
[... Exceptions are Ignored Here ...]
C AD_EXCEPTION_END_IGNORE()
[... Exceptions are REPORTED Here ...]
C AD_EXCEPTION_END_IGNORE()
[... Exceptions Continue to be Reported Here ...]

Syntax of Directives: The syntax of the directives is intended to be reasonably intuitive:

e any comment character (C, ¢, or *) may be used to begin the comment line;

e spaces cannot appear in the middle of a keyword, but may appear around parentheses and
commas;

e the directives can appear in upper or lower case, as can the keywords (arguments) given; and

I Currently, the “ignore” mode is implemented by placing the exception handler in counting mode for the given
region.

67

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

e zero or more whitespace characters may appear between the comment character and the be-
ginning of the directive, but no other spurious characters should appear in the line, even after
column 72.

Warning: Directives affect only the parts of the program that are literally after them.
In particular, a directive cannot change the mode in which an invoked procedure runs.
The example below shows incorrect usage of the AD_EXCEPTION_LEVEL directive.

C This is an incorrect use of the AD_EXCEPTION_LEVEL directive.
C it has no effect on the subroutine "slow_func".
C
C AD_EXCEPTION_LEVEL(PERFORMANCE)
call slow_func
C AD_EXCEPTION_LEVEL(DEFAULT)

B.6 Modifying Exceptional Behavior

For each of the FORTRAN 77 intrinsics that are not globally differentiable, purse requires a default
value to be inserted for the first (and sometimes also second) partial derivatives at the point of
nondifferentiability.

It is possible to override the default behavior for the exceptions. This overriding is precision-
specific, and is done through the routines ehsev* and ehsup#*, where * is one of s, d, ¢, or z, for
single, double precision, complex, or double complex, respectively. The first one changes the values
associated with the symbolic exception values InfVal, etc. (see section B.3), the second changes the
exceptional behavior associated with a particular intrinsic function.

B.6.1 Changing Exception Class Default Values

The routines ehsev*, where * is one of s, d, ¢, or z, for single, double precision, complex, or double
complex, respectively, allow the user to set the symbolic exceptional values “ Infval”, “ NaNval”,
“ NoLimit”, “ TieVal”, and “ JumpVal”.

The usage is
call ehsev* (SYMBOLIC-NUMBER, NEW-VALUE)

where SYMBOLIC-NUMBER is the integer number of the symbolic exceptional value from Table B.4,
and NEW-VALUE is the floating point numerical value to set. So for example, to set TieVal to zero

Symbolic Name | Number
InfVval 1
NaNval 2
NoLimit 3
TieVal 4
JumpVal 5

Table B.4. Numbering of Symbolic Exceptional Values

for double precision, one would execute

68

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

call ehsevd(4,0.0d0)

It is important that the numerical value be of the right type, as there is, in general, no guarantee
that the compiler would convert it to the right type.

B.6.2 Changing Exceptional Behavior for a Particular Intrinsics

To override the exceptional behavior of a particular intrinsic, one needs to know two facts: the
integer that represents the intrinsic for which the exception is occurring, and the integer “offset” of
the exceptional condition whose return value is to be altered. The integer representing the intrinsic
can be found in Table B.5.

Intrinsic Numerical Value
AINT 1
ANINT 2
DNINT 2
ABS 3
MOD 4
SIGN 5
DIM 6
MAX 7
MIN 8
SQRT 9
currently not used 10
currently not used 11
* % 12
ASIN 13
ACOS 14
SQRT4CABS 15

Table B.5. Numbering of Intrinsic Functions

Note: The SQRT4CABS “function” is a dummy intrinsic generated by ADIFOR 2.0 to
handle the complex ABS function. Let z = # + ¢y. The complex ABS(z) function is
rewritten as

abs(z) = SQRT4CABS(z? + y*)
By default, SQRT4CABS has the same exceptional behavior as SQRT.

Single Exceptional Condition

All intrinsics except for the power operator xx have only a single exceptional condition (see Tables B.2
and B.3) and therefore have an offset of one. Suppose one wishes to change the exceptional value of
ABS at zero (for both real and double precision) so that the partial derivative of ABS(x) with respect
to x at zero is one. First, one would look in Table B.5 to find that the integer representing ABS is 3.
Hence, one would use the following two calls to set the desired partials of ABS.

C Set single precision partial of abs
call ehsups (3,1,1.0e0)

69

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

xabs = abs(x)

yabs = abs(y)

w = max(xabs,yabs)

if (w .eq. 0.0) then

z=20.0
else

z = wxsqrt((xabs/w)**2 + (yabs/w)**2)
endif

Figure B.5. Computation of Euclidean Norm with Scaling

C Set double precision partial of abs
call ehsupd (3,1,1.0d0)

Handling of the POWER operator (*x):

As indicated in Table B.5, the integer representing the power operator is 12. The partial with respect
to x 1s associated with an offset of 1, the partial with respect to y is associated with an offset of 2,
for example:

C Set single precision partial w.r.t. x of **
call ehsups (12,1,1.0e0)
C Set double precision partial w.r.t. y of *x*

call ehsupd (12,2,1.0d40)

B.7 Examples of the Use of ADIntrinsics

As an example, consider the computation of the Euclidean norm z = \/z2 + y2. A numerically
sensible way of doing this is shown in Figure B.7. This function is differentiable except for z = y = 0.
However, automatically differentiating with respect to x and y, we note that we might attempt to
compute the derivatives of abs() when its argument is zero, and of max() when both its arguments
have the same value, even when x and y are not both zero. By default, the ADIntrinsics system
would invoke the error handler, which would report these exceptions to the user. However, we know
that, unless z = y = 0, this computation represents a differentiable function and that, independent
of the value of w, we will obtain the same result.

Thus, as shown in Figure B.7, we go into “performance mode” in the part of the code that
generates exceptions that are merely caused by our use of scaling, thus avoiding invocation of the
error handler altogether. Also, since the value w did not have an impact on the computed value, the
value for the derivative of w will not matter, either. For # = y = 0, we trigger an invocation of the
ADintrinsics error handler at the point of nondifferentiability by replacing z = 0 with z = sqrt(w).
When translated by ADIFOR, the generated derivative code will report a “SQRT” exception only
at z =y =0.

70

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

C AD_EXCEPTION LEVEL(PERFORMANCE)
xabs = abs(x)
yabs = abs(y)
w = max(xabs,yabs)
C AD_EXCEPTION LEVEL(DEFAULT)
if (w .eq. 0.0) then
C the sqrt(0.0) call triggers exception reporting
z = sqrt(w)
else
C AD_EXCEPTION LEVEL(PERFORMANCE)
z = wxsqrt((xabs/w)**2 + (yabs/w)**2)
C AD_EXCEPTION LEVEL(DEFAULT)
endif

Figure B.6. Computation of Fuclidean Norm Annotated for Subsequent Automatic Differentiation

71

Appendix C

Sparse Derivative Support for

ADIFOR 2.0 through the
SparsLinC 1.1 Library

C.1 Introduction

SparsLinC 1.1 (Sparse Linear Combinations) is a library of C routines that provide an implemen-
tation of the “vector linear combination”:

k
w:Zai*vi, (C.1)
i=1

employing sparse data structures. Here w and the v; are vectors, the a; are scalar multipliers, and
k 1s referred to as the arity. This operation is the fundamental computational kernel for first-order
automatic differentiation.

To link SparsLinC into your executable, you must add one of the following to your link line:
. -L$AD_LIB/1ib -1SparsLinC-$AD_0S # in UNIX
or
... $AD_LIB/lib/libSparsLinC-$AD_0S.a # in UNIX
or
... %AD_LIB%\1ib\libSparsLinC.lib # in Windows~95/NT
SparsLinC utilizes dynamic data structures to represent only the nonzero information contained
in each vector and performs the vector linear combinations on these sparse representations of the

vectors. By doing so, it avoids storing zero values and performing computation with zeros, at the
cost of introducing some overhead associated with maintaining sparse data structures.

One way of representing a sparse vector with nnz nonzeros in Fortran is by means of two arrays,
each of length nnz, one an integer array containing the indices of the nonzero entries, and the other

72

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

a floating-point array of appropriate precision, containing the corresponding values. So, for example,
the 7-vector

(11.0, 0, 33.0, 44.0, 0, 0, 77.0)
would be represented by

Index Array: | 1 | 3 | 4 | 7 |
Value Array: | 11.0 | 33.0 | 44.0 | 77.0 |

We will refer to this 2-array representation of the vector as the Fortran Sparse Format. The
corresponding nonsparse representation, which we will call the Fortran Nonsparse Format, would
be a floating-point array of length 7, containing zeros in entries 2, 5, and 6. Lastly, there is the
SparsLinC Sparse Format, which is the internal SparsLinC representation of the vector.

In addition to reducing the space required to store derivative values and the time required to
compute derivatives, SparsLinC is also useful for uncovering the sparsity features of a problem. For
example, the detection of the sparsity pattern of Jacobians is of interest in a number of computations.
The computation of the Jacobian using SparsLinC yields the sparsity pattern of the Jacobian as
a natural consequence of the work it does in computing the Jacobian, and thus provides all the
information needed for a sparse equation solving routine, for example. We anticipate that this
feature of SparsLinC will be further strengthened in future releases with the addition of diagnostic
capabilities about the “sparsity behavior” of a computation.

From the user’s point of view, using SparsLinC is very simple. Much of the task of interfacing
ADIFOR 2.0-generated code and SparsLinC is done automatically and is transparent to the user.
Section 77 describes how to invoke ADIFOR 2.0 to generate derivative code that uses the SparsLinC
library. Such code will be referred to as “sparse derivative code.” We will refer to derivative code
generated by ADIFOR 2.0 in the default case (i.e., with do-loop implementation of vector linear
combinations, rather than calls to SparsLinC routines) as “nonsparse derivative code.”

Section C.2 provides some background information necessary to understand the use of SparsLinC
with ADIFOR, 2.0. Section C.3 defines the notion of sparsity and discusses computational scenarios
where sparsity exists and can be exploited by SparsLinC for faster, less memory-intensive code. In
the tutorial example given in Chapter 4, Step 4 describes, for the nonsparse (default) case, how to
incorporate the ADIFOR 2.0-generated derivative code in the derivative code driver. Section C.4
outlines how this is done in the sparse derivative code driver by calling the appropriate SparsLinC
Access Routines. These routines are the subset of SparsLinC routines that allow the user to set
up and configure SparsLinC, pass data to it, and extract results and performance measures from it.
Section C.5 describes how to build a sparse derivative code by using ADIFOR 2.0 and SparsLinC.
Section C.6 contains detailed description of the SparsLinC access routines.

C.2 Background

In ADIFOR 2.0, an active variable is one that lies on a dependency path from the independent
to the dependent variables (the independents and dependents themselves are also considered to be
active). Active variables are the ones for which we compute directional derivatives with respect
to a set of (not necessarily normalized) directions specified via the seed matrix. In the simplest case,
each unit direction is defined by one of the independent variables, which is equivalent to setting the
seed matrix to be the identity.

We define the term directional gradient vector to be the set of directional derivatives of any
scalar active variable with respect to all directions specified in the seed matrix. The term scalar
active variable here refers both to active variables declared as scalars in the user’s Fortran source

73

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

code and to the individual elements of active variables that are declared as arrays. The directional
gradient vectors appear as vector operands in the vector linear combinations equation (C.1).

C.3 Where Is SparsLinC Useful?

The main rationale for the development of SparsLinC is to make derivative computation run faster
and use less memory. But not every problem will result in faster code if SparsLinC is used. The
potential gain depends, to a large extent, on the inherent sparsity present in any particular derivative
computation.

C.3.1 Definition of Sparsity

In a nonsparse representation, a directional gradient vector V would be declared as an array of
length p, where p is the number of directions (i.e., the number of columns in the seed matrix).!
We denote the number of nonzeros in V' at a given point ¢ during the execution by V; .. The
percentage of zero entries or sparsity of V; is defined as

Vennzy 1009, (C.2)

Vt.sparsity = (1 -

A good measure for the overall sparsity present in a derivative computation is the median of
the sparsities of all directional gradient vectors during the entire execution of the derivative code.

A necessary (but not sufficient) condition for SparsLinC to improve the runtime performance of
derivative computation is that the number of directions with respect to which we wish to compute
derivatives be “large”. This is perhaps an obvious, but nonetheless significant, point, since if the
number of directions is small, directional gradient vectors will be short and any strategy to exploit
sparsity will be defeated by the overhead associated with implementing that strategy. The determi-
nation of what is considered a large sparse problem is to a great extent dependent upon the nature
of the problem; however, in our experience, the threshold at which our strategy becomes effective is
20-30 directions.

Another important issue concerning sparsity in derivative computations is that the sparsity of the
final result (the nonzero structure of the final directional gradient vectors of the dependents) is only
a lower bound on the sparsity of the intermediate directional gradient vectors; that is, the overall
sparsity of the problem may be (and often is very) much higher than that of the final derivative
result. In general, sparsity diminishes as the computation proceeds, because for all vector linear
combinations, the nonzero index set of the resulting left-hand-side vector i1s the union of index sets
of the right-hand-side vectors.? As a consequence, in many problems, there may be a lot of “hidden”
sparsity that can be exploited by using SparsLinC.

C.3.2 Sparse Derivative Problem Types

The numerical computation of gradients and Jacobians is an important step in the solution of many
nonlinear problems, such as constrained optimization, mesh computations, and the solution of sys-
tems of stiff differential and algebraic equations. In many instances, these problems require deriva-

I For the sake of clarification, we note that p denotes the same quantity as the Fortran variable g_p_, used elsewhere
in this document.

2This discussion precludes the possibility of the occurrence of numerical zeros resulting from exact cancellation
(e.g., @ + (—a)) and zero multipliers. In our experience, exact cancellation rarely occurs in derivative computation,
and currently, SparsLinC does not check for it (i.e., numerically zero vector entries are treated like nonzero entries).
SparsLinC does, however, check for zero multipliers, and vectors with zero multipliers are not referenced.

74

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

tive computations that have inherent sparsity. Two examples are gradients of partially separable
functions and sparse Jacobians.

A function is partially separable if it can be represented as
fz) =) filw), (C.3)
i=1

where m is the number of partitions, and where each component function, f;(z), is typically a
function of just a few of the elements of =, implying that each of the corresponding directional
gradient vectors, V f;(x), will be sparse, even though the aggregate f depends on all of #, leading
to a dense final gradient V f(x). Any f with a sparse Hessian belongs to this class of problem [19],
regardless of whether the partially separable structure is expressed explicitly in the code.

For many Jacobian computations, the final Jacobian is itself sparse, implying that there is much
sparsity to be exploited in the intermediate computations. As discussed above, every intermediate
directional gradient vector is at least as sparse as (and often much sparser than) the final Jacobian.

C.4 Usage of SparsLinC Access Routines

This section outlines the SparsLinC access routines and their use in the derivative code driver. These
routines allow the user to set up and configure SparsLinC, pass data to it, and extract results and
performance measures from it.

C.4.1 About SparsLinC 1.1 Routines and Their Names

SparsLinC provides multiprecision arithmetic support, meaning that the underlying vectors can
be represented in REAL, DOUBLE PRECISION, COMPLEX, or DOUBLE COMPLEX precision. The routines
involving a vector or vectors have a prefix letter designating the “precision” of the operation. For
each precision-dependent SparsLinC routine, all instantiations of the routine have the same interface,
meaning that they have the same arguments, in the same order, and with identical declarations
except for the types of the vectors and multipliers (as an example, see the declaration of VALVEC in
the definition of the [S,D,C,Z]1SPSD routines in Section C.6).

Here 1s a summary of the naming conventions we have adopted for SparsLinC routines:

o The first letter will be an “S”, “D”, “C”, “Z”, or “X” indicating, respectively, whether the routine
manipulates vectors in REAL, DOUBLE PRECISION, COMPLEX, or DOUBLE COMPLEX precision or
whether it 1s a nonnumeric utility routine.

e The second and third letters will be “SP”, to denote that the routine is in the SParsLinC
library.

e The last two or three letters will be an abbreviation of the task performed by the routine.
We use the shorthand, “[S,D,C,Z]name” to refer to all four precision instantiations of a routine
name.
C.4.2 Declaration of Sparse Variables

In Section C.2 we introduced the concept of directional gradient vectors. In the case of the non-
sparse invocation of ADIFOR 2.0, these vectors are implemented as Fortran arrays. In the following
examples in this and subsequent sections (C.4.2 - ?77?), assume that x is the independent variable

75

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

(i.e., all 1000 entries of x are independent variables), £ is the dependent variable, and w is an active
variable we need to access in the derivative code driver:

REAL x(1000), £(5), w

In the nonsparse case, the derivative code generated by ADIFOR 2.0 (assuming the ADIFOR 2.0
options AD_PREFIX and AD_SEP have the default bindings of “g” and “_”| respectively) will con-
tain the following declarations:

REAL g_x(g_pmax_,1000), g_f(g_pmax_,5), g_w(g_pmax_)

By contrast, in the sparse case, the derivative code generated by ADIFOR 2.0 will contain the
following declarations:

INTEGER g_x(1000), g_f(5), g_w

Note that the Fortran interface to SparsLinC declares each directional gradient vector to be an
INTEGER. This is because each Fortran INTEGER gradient variable will be interpreted by SparsLinC
to be a pointer to the sparse representation of the corresponding vector.

It is usually possible to clip-and-paste the declarations for the directional gradient vectors, and
possibly the declarations of COMMON blocks that contain directional gradient vectors, from the code
generated by ADIFOR 2.0. This is true for both nonsparse and sparse applications of ADIFOR 2.0.
Just be aware that the declarations for the directional gradient vectors in the nonsparse and sparse
codes are different.

Parenthetically, if you want to compare the sparse and nonsparse approaches for a particular
problem, it 1s often good coding practice to write one driver for both, with preprocessor directives
specifying the parts where the two differ. For example, for the above declaration, the following code
could appear in the driver:

#ifdef NON_SPARSE

REAL g_x(g_pmax_,1000), g_f(g_pmax_,5), g_w(g_pmax_)
#elif SPARSE

INTEGER g_x(1000), g_£(5), g_w
#endif

We use this format, wherever applicable (i.e., wherever corresponding sparse and nonsparse
codes are present), in the rest of this discussion. (On most Unix systems, filenames ending with
“.F” are interpreted by makefiles as Fortran files with preprocessor statements. Users unfamiliar
with preprocessor directives can consult the “man” pages for “cpp”, the C preprocessor.)

C.4.3 Initializing and Customizing SparsLinC

SparsLinC data structures must be initialized before any computation can be performed. To this
end, the user must call the routine XSPINI before all other calls to any SparsLinC (except for calls
to XSPCNF, which must precede the call to XSPINI, as described below) or ADIFOR. 2.0-generated
routines. XSPINI takes no arguments and is called as follows:

CALL XSPINI

The routine XSPCNF provides a means of tuning SparsLinC data structures for a particular
problem at hand. Most sparse vectors maintained by SparsLinC are stored in what 1s commonly
referred to as the “single subscript” and “compressed subscript” scheme. The single subscript

76

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

scheme is the one already introduced in the Fortran context in Section C.1. In the compressed
subscript scheme, in contrast, we keep track of nonzero index ranges. Thus the compressed subscript
representation of the vector of Section C.1 would be as follows:

Index Array: [[1,1] [[3,4] [[7,7] |
Value Array: | 11.0 | 33.0 | 44.0 | 77.0 |

This representation i1s more efficient than the single-subscript representation when sparse vectors
contain a good portion of contiguous nonzero index ranges. A contiguous nonzero index range is a
range of indices wherein all the corresponding values are nonzeros. For example, for our vector above,
the largest such range has size 2 and contains elements 3 and 4. This scenario commonly arises when
computing Jacobians with banded structure or gradients of partially separable functions. SparsLinC
automatically converts a vector from the single-subscript to the compressed-subscript representation
when the number of nonzeros in the vector exceeds a certain threshold, called switch_threshold,
say.

For either representation, since the size to which vectors can grow is not known a priori,
SparsLinC must provide, for the value and index arrays, a data structure capable of represent-
ing vectors of arbitrary size. The data structure currently employed in SparsLinC is a linked list
of arrays each of which has a fixed number of entries. Let us denote this number of entries with
SSbucket _size for the single subscript scheme and CSbucket_size for the compressed subscript
scheme.

SparsLinC allows the user to adjust these values using the XSPCNF routine. For example, the
sequence of calls

CALL XSPCNF(1,10)
CALL XSPCNF(2,500)
CALL XSPCNF(3,20)

sets SSbucket_size to 10, CSbucket _size to 500, and switch_threshold to 20. This would be
appropriate, for example, for computing the gradient of a partially separable function (see Sec-
tion C.3.2), where each Vf; usually contains about 20 nonzeros, and the number of independent
variables is greater than 500.

While XSPINTI assigns default values to these parameters and hence there is, from a functional
perspective, no need to call XSPCNF, we encourage experimenting with these parameters and welcome
feedback. Our experiments have shown that SparsLinC performs best if CSbucket _size is close in
value to the size of the largest contiguous nonzero index range present in the problem. The tradeoff
is between runtime and memory, where a larger value of CSbucket _size is likely to result in faster
runtime, but also the dynamic allocation of more memory. In all cases, SSbucket _size should be set
smaller (and usually much smaller) than CSbucket _size and should not exceed switch threshold.
We are working on a facility to trace and assimilate SparsLinC runtime information to aid with
SparsLinC performance tuning.

The user should pay heed to the following important note: XSPCNF may be called only before
calling XSPINI to set SSbucket size and CSbucket _size. This is because once XSPINI is called,
the array dimensions set via these options cannot be modified. Calling XSPCNF to set SSbucket size
and CSbucket _size, after a call to XSPINI, will result in a runtime error. Calls to XSPCNF to set
switch_threshold can be made at any time.

77

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

C.4.4 Initializing the Seed Matrix

Each of the precision-specific SparsLinC routines [S,D,C,Z]SPSD converts a precision-specific sparse
vector stored in the Fortran Sparse Format into a corresponding vector in the SparsLinC Sparse For-
mat. In the following example, for the purpose of demonstration, we initialize columns 19 and 20 of
g_x (corresponding to the derivatives of x(19) and x(20)), in both the nonsparse and sparse ways
(assume that the arrays, INDVEC and VALVEC are declared appropriately):

#ifdef NON_SPARSE

g_x(7,19) = 2.0
g x(19,19) = 1.0
g_x(20,20) = 1.0

#elif SPARSE
INDVEC(1) =7

VALVEC(1) = 2.0
INDVEC(2) = 19
VALVEC(2) = 1.0

CALL SSPSD(g_x(19),INDVEC,VALVEC,2)
CALL SSPSD(g_x(20),20,1.0,1)
#tendif

Note also that a vector must be initialized in a “one-shot” fashion; hence, for example, the fol-
lowing piece meal approach would be an incorrect initialization of g_x(19):

INDVEC(1) 7

VALVEC(1) 2.0

CALL SSPSD(g_x(19),INDVEC,VALVEC,1)
INDVEC(1) = 19

VALVEC(1) = 1.0

CALL SSPSD(g_x(19),INDVEC,VALVEC,1)

Because of the “destructive copy” feature of SPSD (see Section C.6), the above would be equivalent
to having made only the second of the two calls.

C.4.5 Extracting Directional Gradient Vectors from SparsLinC
SparsLinC provides two sets of precision-specific interfaces for extracting vector results:
[S,D,C,Z]SPXDQ (XVEC, INLEN, VPTR, OUTLEN, INFO)

extracts sparse_object(VPTR) into the Fortran Nonsparse Format vector XVEC. INLEN is the size of
XVEC. The returned value OUTLEN is the largest index in the nonzero index set in sparse_object(VPTR).
The value of INFO is used to indicate whether XVEC was sufficiently large to store all of the nonzero
elements in sparse_object(VPTR). If OUTLEN is less than INLEN, then XVEC(QOUTLEN+1:INLEN) is set
to zero.

[s,D,C,Z]SPXSQ (INDVEC, VALVEC, INLEN, VPTR, OUTLEN, INFO)

extracts sparse_object(VPTR) into the Fortran Sparse Format vector represented by the two arrays
INDVEC and VALVEC. INLEN is the size of the arrays INDVEC and VALVEC. The returned value OUTLEN
is the number of nonzeros in sparse_object(VPTR). The value of INFO is used to indicate whether
XVEC was sufficiently large to store all of the nonzero elements in sparse_object(VPTR). If OUTLEN is
less than INLEN, then VALVEC(OUTLEN+1:INLEN) and INDVEC(OUTLEN+1:INLEN) are not referenced.

78

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

In the following code segments, we show examples of the usage of these extraction routines along
with the corresponding necessary declarations (there is no equivalent ADIFOR 2.0 nonsparse ex-
traction, since in that case the output variables are already in Fortran Nonsparse Format).

SPXDQ Example

PARAMETER (in_len_xd = g_pmax_)
INTEGER out_len_xd(5), info_xd(5)
REAL g_f_xd(in_len_xd,5)

D0Oi=1,5
CALL SSPXDQ(g_f_xd(1,i), in_len_xd, g_f(i),
out_len_xd(i), info_xd(i))
ENDDO

in_len_xd is a user-defined value specifying the leading dimension of the Fortran nonsparse
column vectors of g_f_xd, i.e., it is the user’s estimate of what is the largest index corresponding
to a nonzero value in the vector to be extracted. In this case, by setting in_len_xd = g_pmax_, we
have ensured ourselves that the SparsLinC Sparse Format vector will always “fit” into the Fortran
Nonsparse Format vector. (In the next example we will discuss the case of underestimating memory
requirements.)

Note that as specified above, g_f_xd is defined identically to the nonsparse g_f in Section C.4.2.
Given Fortran’s column order array storage, the above call to SSPXDQ causes g_f_xd to be aligned
exactly with the nonsparse g_f£.

SPXSQ Example

PARAMETER (in_len_xs = 40)
INTEGER g_f_ind_xs(in_len_xs,5), out_len_xs(5), info_xs(5)
REAL g_f_val_xs(in_len_xs,5)

D0Oi=1,5
CALL SSPXSQ(g_f_ind_xs(1,i), g_f_val_xs(1,i), in_len_xs, g_£f(i),
out_len_xs(i), info_xs(i))
ENDDO

Here, our choice of in_len_xs = 40 implies that we have made the assumption that there are
at most 40 nonzeros in any row of the Jacobian % (i.e., given our declaration of z in Section C.4.2,
we assumme that the least sparse directional derivative vector is 96% sparse). To make sure that our
memory requirement assumption holds, we add the following code:

max_len_xs = 0
D0Oi=1,5
IF (info_xs(i) .NE. O .AND. out_len_xs(i) .GT. max_len_xs) THEN
max_len_xs = out_len_xs(i)
END IF
ENDDO

Now max_len_xs is encoded with the information we need. That is, if zero, our assumption
was true, else, max_len_xs is equal to the true number of nonzeros in the least sparse row of the
Jacobian and we know how much memory is really needed to extract all nonzero derivative values.

79

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

C.4.6 Adding the Contents of a Sparse Vector to a Dense Vector

Two SparsLinC routines are provided for adding a SparsLinC Sparse Format vector to a Fortran
Nonsparse Format vector.

[S,D,C,Z]SPXMQ (XVEC, INLEN, MULT, VPTR, OUTLEN, INFO)

adds to XVEC the contents of sparse_object(VPTR) multiplied by MULT
(i.e., XVEC = XVEC + MULT * sparse_object(VPTR)).

[s,D,C,Z]SPXAQ (XVEC, INLEN, VPTR, OUTLEN, INFO)

is identical to SPXMQ, except that the multiplier is assumed to be one (i.e., XVEC = XVEC +
sparse_object(VPTR)). Note that SPXMQ and SPXAQ are functionally very similar to the SPXDQ routine,
the only difference being that SPXDQ “assigns to” XVEC while SPXMQ and SPXAQ “add to” XVEC the
contents of the sparse vector. Note also, that the interfaces of SPXAQ and SPXDQ are identical.

C.4.7 Dumping the Contents of a Sparse Vector
SparsLinC provides a set of precision-specific interfaces for dumping a sparse vector to a file.
[s,D,C,Z]SPPRQ (VPTR, EXT)

writes the number of nonzeros as well as index/value pairs of sparse_object(VPTR) to stdout or a file.
EXT is an INTEGER in the range [0,999] and specifies the destination of the output: if zero, output is
written to stdout; otherwise, output is written to the file SPPRQ.EXT.

SPPRQ can be a useful routine during debugging, to quickly check the values of a derivative vector
somewhere in the code. It also has the advantage of not requiring that the user provide memory in
which to extract the nonzero values in the sparse vector.

Admittedly, the interface of SPPRQ is rather crude. This is because we have avoided passing
string arguments, because of the inconsistency of the Fortran-to-C string-passing protocols on dif-
ferent platforms.

SPPRQ Example

DO i=1, 2
CALL SPPRQ(g_f(i), 6)
ENDDO

The above code prints the nonzero derivative information in g_£(1) and g_£(2) into the file
“SPPRQ.6” in the current directory. Assume that g_£(1) and g_£(2) contain 4 and 2 nonzero val-
ues, respectively. Then the following is an example of what might be the contents of “SPPRQ.6’
subsequent to the execution of the above code:

Number of nonzeros = 4

Index Value
4 -4.892400e-01
5 6.523200e+00
6 -1.630800e+00
188 -2.030000e+01

Number of nonzeros = 2

80

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

Index Value
37 3.812800e+00
256 1.000000e+00

Note that the vectors are printed out in the order in which the corresponding SPPRQ was called,
and there is no identification in the file denoting which set of numbers belong to which vector. This
task is left to the user.

C.4.8 Extracting Performance Information

In addition to providing derivative information, SparsLinC can also provide information about its
own performance. Because of the system-specific nature of timing routines, runtime measures, how-
ever, are best arrived at by enveloping the appropriate system calls around the call to the top level
subroutine. For example:

CALL timer(t1)

CALL g_top_foo(x, g_x, ...)
CALL timer(t2)

t_elapsed = t2 - t1

The SparsLinC routine XSPMEM returns how many kilobytes of memory have been dynamically
allocated in the process of computing derivatives:

REAL USEDKB

CALL XSPMEM(USEDKB)

C.4.9 Freeing Dynamically Allocated Memory

The routine XSPFRA frees all dynamically allocated memory in SparsLinC. Freeing memory might be
useful if after finishing the derivative computation, the user wishes to perform some further memory-
intensive computation. There are no arguments, and the call is simply

CALL XSPFRA

XSPFRA has the effect of leaving “dangling pointers” | meaning that the Fortran INTEGER gradient
variables, which are interpreted by SparsLinC as pointers, will retain the values (addresses) they
contained before XSPFRA was called. However, after the call to XSPFRA, the memory pointed to by
these pointers will no longer be under SparsLinC control. Any attempt to use these variables as
pointers (e.g., by using them as pointer arguments to some SparsLinC routine) will likely cause a
segmentation fault. For this reason, no calls to any SparsLinC routine should be made after XSPFRA.

C.5 A Brief Tutorial Example

SparsLinC is designed to be easy to use. First, apply ADIFOR 2.0 to generate sparse derivative
code by specifying AD FLAVOR=sparse in your script file. Then, create a “Sparse” derivative code
driver. The derivative code driver is a user-generated Fortran program that invokes the derivative
code generated by ADIFOR 2.0. In general, the sparse derivative code driver is analogous to the
nonsparse derivative code driver and differs from the latter in only a few places. The following is an

81

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

example derivative code driver, based on the code fragments shown throughout Section C.4:

PROGRAM DRIVER
REAL x(1000), £(5), w

#ifdef NON_SPARSE
REAL g_x(g_pmax_,1000), g_f(g_pmax_,5), g_w(g_pmax_)
#elif SPARSE
INTEGER g_x(1000), g_£(5), g_w
PARAMETER (in_len_xs = 40)
INTEGER g_f_ind_xs(in_len_xs,5), out_len_xs(5), info_xs(5)
REAL g_f_val_xs(in_len_xs,5)
REAL USEDKB
#endif

CCC We assume some statements at this point initialize the independent
CCC variables.

#ifdef SPARSE
cce Tuning of SparsLinC parameters (optional) and mandatory initialization
CALL XSPCNF (1, 10)
CALL XSPCNF (2, 500)
CALL XSPCNF (3, 20)
CALL XSPINI
#endif

CCC Initializing the seed matrix as identity.

#ifdef NON_SPARSE
DO i=1,1000
DO j=1,1000
g_x(i,j) = 0.0do
ENDDO
g_x(i,i) = 1.040
ENDDO
#elif SPARSE
DO i=1,1000
CALL SSPSD(g_x(i),1,1.d0,1)
ENDDO
#endif

#ifdef NON_SPARSE
CALL g_top_foo(g_p_, x, g_x, ldg_x, £, g_f, 1ldg_f*f,
+ w, g_w, ldg_w, non_active_var)
#elif SPARSE
CALL g_top_foo(x, g_x, £, g_f, w, g_w, non_active_var)
#endif
CALL EHRPT

#ifdef SPARSE

82

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

D0Oi=1,5
CALL SSPXSQ(g_f_ind_xs(1,i), g_f_val_xs(1,i), in_len_xs, g_£f(i),
out_len_xs(i), info_xs(i))

ENDDO
max_len_xs = 0
DOi=1, 5

IF (info_xs(i) .NE. O .AND. out_len_xs(i) .GT. max_len_xs) THEN
max_len_xs = out_len_xs(i)
ENDIF
ENDDO

CALL XSPMEM(USEDKB)
#tendif

Taking a close look at the calls to the top level routine, g_top_foo, in the driver code, we note
that the sparse call differs from the nonsparse call in that there is never a need to pass a leading
dimension argument along with each gradient variable argument, and also in that there is no need to
pass a value for g_p_, the runtime nonsparse directional gradient vector size. Note that, regardless of
whether ADIFOR, 2.0 is invoked in the sparse or nonsparse mode, it generates the same subroutine
name (assuming the ADIFOR 2.0 options AD_PREFIX and AD_SEP had the same bindings on both
cases).

Finally, link all the generated derivative code and your driver with the SparsLinC 1.1 as described
at the beginning of this chapter.

C.6 Detailed Specification of Access Routines

This section contains the detailed description of the SparsLinC 1.1 access routines discussed in
Section C.4.

We adopt the convention that for a Fortran INTEGER variable VPTR, acting as a pointer
to a SparsLinC Sparse Format vector, the sparse derivative object pointed to by VPTR is called
sparse_object(VPTR). Also, to save space, only the calling sequence for one particular floating-point
precision is provided.

83

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

SSPSD, DSPSD, CSPSD, ZSPSD

SUBROUTINE SSPSD (VPTR, INDVEC, VALVEC, LEN)

84

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

Purpose

Conversion of a vector in Fortran Sparse Format into a vector in SparsLinC Sparse For-
mat. The Fortran Sparse Format vector is given by the two arrays, INDVEC(1:LEN)
and VALVEC(1:LEN), representing the indices and values of a sparse vector = (say),
respectively. z is copied into sparse_object(VPTR), which is the vector in SparsLinC
Sparse Format. The indices in INDVEC need not be in any particular order (in-
ternally, SPSD performs an ascending order sort). However, INDVEC and VALVEC
must be identically aligned. That is, if in the Fortran Nonsparse Format z has a
nonzero entry at index @ with value v, then for some J, the following must hold:
INDVEC(J) = ¢ and VALVEC(J) = wv. SPSD performs a destructive copy. That is,
if sparse_object(VPTR) had been previously allocated (via SPSD or as a result of be-
ing an output argument of some other SparsLinC routine), the previous information in
sparse_object(VPTR) is lost, and the dynamically allocated memory where that information
resided is deallocated.

Arguments

VPTR (Output) INTEGER
Upon exit, sparse_object(VPTR) contains a copy of the sparse vector repre-
sented by INDVEC and VALVEC.

INDVEC (input) INTEGER array, dimension (LEN)
Indices of the nonzero values of the sparse vector. (We assume that indices
are > 1; therefore, INDVEC entries < 0 would be incorrect and would result
in a runtime error.)

VALVEC (input) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array, di-
mension (LEN)
Nonzero values of the sparse vector.

LEN (input) INTEGER

LEN > 0 is the number of nonzeros in the sparse vector. If LEN = 0, VPTR
is initialized to point to the vector of all zeros and INDVEC and VALVEC are
not referenced.

SSPXDQ, DSPXDQ, CSPXDQ, ZSPXDQ

SUBROUTINE SSPXDQ (XVEC, INLEN, VPTR, OUTLEN, INFO)

Purpose
Extracts sparse_object(VPTR) into the Fortran Nonsparse Format vector XVEC.
Arguments
XVEC (Output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array,
dimension (INLEN)
On exit, if INFO = 0, XVEC(1:INLEN) will contain a dense representation
of sparse_object(VPTR). If OUTLEN < INLEN, then XVEC(OUTLEN+1:INLEN) is
initialized to all zeros. If INFO # O, XVEC is not referenced.
INLEN (input) INTEGER

Length of XVEC.

85

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

VPTR (input/output) INTEGER
Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is
initialized to point to the vector of all zeros (which is why it might be an
output argument).

OUTLEN (Output) INTEGER
Largest index in the nonzero index set in sparse_object(VPTR). This value
will always be returned, whether XVEC is initialized or not. See the descrip-
tion of INFO below.

INFO (Output) INTEGER
If INLEN < OUTLEN, INFO will be set to -1, and XVEC is not referenced.
Otherwise, INFO is set to 0, and XVEC(1:INLEN) is initialized to a Fortran
Nonsparse Format copy of sparse_object(VPTR).

SSPXSQ, DSPXSQ, CSPXSQ, ZSPXSQ
SUBROUTINE SSPXSQ (INDVEC, VALVEC, INLEN, VPTR, OUTLEN, INFO)

Purpose

Extracts sparse_object(VPTR) into the Fortran Sparse Format vector represented by the two
arrays, INDVEC and VALVEC.

Arguments

INDVEC (output) INTEGER array, dimension (INLEN)
On exit, if INFO = 0, INDVEC (1:0UTLEN) contains the indices of the nonzero
entries of sparse_object(VPTR). If INFO = O and OUTLEN < INLEN then
INDVEC (OUTLEN+1:INLEN) is not referenced. If INFO # 0, INDVEC is not
referenced.

VALVEC (Output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array,
dimension (INLEN)
On exit, if INFO = 0, VALVEC(1:0UTLEN) will contain the nonzero en-
tries of sparse_object(VPTR). If INFO = 0 and OUTLEN < INLEN then
VALVEC (OUTLEN+1: INLEN) is not referenced. If INFO # 0, VALVEC is not
referenced.

INLEN (input) INTEGER
Length of INDVEC and VALVEC.

VPTR (input/output) INTEGER
Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is
initialized to point to the vector of all zeros (which is why it might be an
output argument).

OUTLEN (Output) INTEGER

Number of nonzeroes in sparse_object(VPTR). This value will always be re-
turned, whether INDVEC and VALVEC are initialized or not. See the descrip-
tion of INFO below.

86

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

INFO (Output) INTEGER
If INLEN < OUTLEN, INFQO will be set to -1, and INDVEC and VALVEC are
not referenced. Otherwise, INFO is set to 0, and INDVEC(1:0UTLEN) and
VALVEC(1:0UTLEN) are initialized to the Fortran Sparse Format copy of
sparse_object(VPTR).

SSPXMQ, DSPXMQ, CSPXMQ, ZSPXMQ
SUBROUTINE SSPXMQ (XVEC, INLEN, MULT, VPTR, OUTLEN, INFO)

Purpose
Adds the weighted contents of sparse_object(VPTR) to the Fortran Nonsparse Format
vector XVEC, with MULT being the multplicative weight (i.e., XYEC = XVEC + MULT =
sparse_object(VPTR)). For example, say XVEC is a vector of length 7 containing all ones,
MULT = 2.0, and sparse_object(VPTR) is as follows:

Index Array: | 1 | 3 | 4 | 7 |
Value Array: | 11.0 | 33.0 | 44.0 | 77.0 |

Subsequent to the call to this routine, XVEC would contain the following:

(23.0, 1.0, 67.0, 89.0, 1.0, 1.0, 155.0)

Arguments

XVEC (input/Output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX]
array, dimension (INLEN)
On exit, if INFO = 0, XVEC(1:INLEN) will have added to it the weighted
contributions of the values in sparse_object(VPTR), with MULT specifying the
weight. If INFO # 0, XVEC is not modified.

INLEN (input) INTEGER
Length of XVEC.

MULT (input) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX]
Multiplier.

VPTR (input/output) INTEGER
Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is
initialized to point to the vector of all zeros (which is why it might be an
output argument).

OUTLEN (Output) INTEGER
Largest index in the nonzero index set in sparse_object(VPTR). This value
will always be returned, whether XVEC is modified or not. See the descrip-
tion of INFO below.

INFO (Output) INTEGER

If INLEN < OUTLEN, INFO will be set to -1, and XVEC is not modified. Other-
wise, INFO is set to 0, and XVEC(1:INLEN) is modified as described above.

87

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

SSPXAQ, DSPXAQ, CSPXAQ, ZSPXAQ
SUBROUTINE SSPXAQ (XVEC, INLEN, VPTR, OUTLEN, INFO)

Purpose
Adds the contents of sparse_object(VPTR) to the Fortran Nonsparse Format vector XVEC
(i.e., XVEC = XVEC + sparse_object(VPTR)). (SPXA is identical to the SPXMQ routine with MULT
= 1.0; see the documentation for SPXMQ.)

Arguments

XVEC (input/output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX]
array, dimension (INLEN)
On exit, if INFO = 0, XVEC(1:INLEN) will have added to it the values in
sparse_object(VPTR). If INFO # 0, XVEC is not modified.

INLEN (input) INTEGER
Length of XVEC.

VPTR (input/output) INTEGER
Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is
initialized to point to the vector of all zeros (which is why it might be an
output argument).

OUTLEN (Output) INTEGER
Largest index in the nonzero index set in sparse_object(VPTR). This value
will always be returned, whether XVEC is modified or not. See the descrip-
tion of INFO below.

INFO (Output) INTEGER

If INLEN < OUTLEN, INFO will be set to -1, and XVEC is not modified. Other-
wise, INFO is set to 0, and XVEC(1:INLEN) is modified as described above.

SSPPRQ, DSPPRQ, CSPPRQ, ZSPPRQ
SUBROUTINE SSPPRQ (VPTR, EXT)

Purpose

Writes number of nonzeros as well as index/value pairs of sparse_object(VPTR) onto stdout
or a file, with the following format:

Number of nonzeros = . . .
Index Value

Arguments

88

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

VPTR (input/output) INTEGER
Pointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it is
initialized to point to the vector of all zeros (which is why it might be an
output argument).

EXT (input) INTEGER
Must be in the range [0,999]. If EXT = 0, output written is to stdout. Oth-
erwise EXT is converted to its ASCII equivalent and used as the extension
appended to the filename “SPPR.” and output is written to this file.

XSPCNF

SUBROUTINE XSPCNF (OPT, VAL)

Purpose

Allows user to customize SparsLinC for each run. The following table specifies for each
parameter its name, option number, default value, and range of allowable values. “SS-
bucket_size” and “CSbucket_size” are the number of entries per array in the linked list
representation of a single-subscript and compressed-subscript vector respectively. For all
vector linear combinations, if at the conclusion of the computation the left-hand-side vector
has an SS representation and the number of its nonzero entries exceeds “switch_threshold”,
the vector is converted to a CS representation.

Name OPT Default Range
SSbucket _size 1 8 >1
CSbucket _size 2 32 >1
switch_threshold 3 16 >1

XSPCNF with OPT = 1 or OPT = 2 may be called only before calling XSPINI. Calling
XSPCNF with OPT = 1 or 2 after a call to XSPINI will result in a runtime error. Calls to
XSPCNF with OPT = 3 can be made at any time.

Arguments
O0PT (input) INTEGER
Specifies the option number associated with a given parameter as given in
the above table.
VAL (input) INTEGER

The new value for the parameter specified by 0OPT.

XSPMEM

SUBROUTINE XSPMEM (USEDKB)

89

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

Purpose

Reports how many kilobytes of memory have been allocated dynamically in SparsLinC.
Arguments

USED (output) REAL.

The number of kilobytes of storage allocated for SparsLinC data structures.

90

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

XSPINI
SUBROUTINE XSPINI

Purpose

Initializes the sparse data structures by dynamically allocating memory for some SparsLinC-
internal global variables. It must be called before any of the other SparsLinC routines
(except for calls to XSPCNF with OPTs 1-2) and needs to be called no more than once (when
called more than once, all but the first call act as no-ops).

Arguments

none

XSPFRA
SUBROUTINE XSPFRA

Purpose

Frees all memory allocated for C sparse vector data structures. Note: all pointers to
sparse directional gradient variables (VPTR’s) are left dangling.

Arguments

none

91

Appendix D

Installation, Configuration and Use
of ADIFOR 2.0 on
Windows 95/NT

D.1 Installation
D.2 Configuration

D.3 Use

The use of ADIFOR 2.0 under Windows-95/NT is practically identical to its use under Unix — you first
create a composition and an ADIFOR script file, then you invoke the ADIFOR Preprocessor which is named
Adifor21 passing it the same options as previously, and then you link your code against the generated
derivative code and against the ADIntrinsics and SparsLinC libraries. Note that the appropriate Windows
95/NT libraries and components are named ADIntrinsics.lib, ReqADIntrinsics.obj and SparsLinC.1lib.

For each of the examples that we have provided, you will find a script adANDrun.bat that can be used to
invoke ADIFOR and then run the genererated derivative code.

92

Acknowledgments

We thank Andreas Griewank of the University of Dresden and George Corliss of Marquette Uni-
versity for their invaluable contributions in getting the ADIFOR project started. We are grateful
to the users of ADIFOR 1.0 for putting up with the shortcomings of this system and for providing
us with valuable feedback. In particular we acknowledge Larry Green and his colleagues at the
Multidisciplinary Optimization Branch at NASA Langley, Joe Manke of Boeing Computing Ser-
vices, Gordon Pusch at Argonne National Laboratory, and Janet Rogers of the National Institute
for Science and Technology. We are also indebted to John Dennis of Rice University, Jorge Moré of
Argonne National Laboratory, Ken Kennedy of Rice University, Gerald Marsh of Argonne National
Laboratory and Mani Salas and Tom Zang, both of NASA Langley, for their support of our work.
We also acknowledge the contributions of Heike Baars, Brad Homann, Ernesto Diaz, Fred Dilley,
Moe El-Khadiri, Tim Knauff, Aaron Ross, and Vitaly Shmatikov during their student internships
at Argonne National Laboratory. Lastly, we thank Judy Beumer, Mike Fagan, and Gail Pieper for
their careful reading of the manuscript and their suggestions for improving the presentation of this
document.

93

Bibliography

(1]

[2]

[3]

[4]

[5]

[11]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK User’s Guide. SIAM,
Philadelphia, 1992.

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK User’s Guide Release 2.0.
SIAM, Philadelphia, 1994.

B. M. Averick, R. G. Carter, J. J. Moré, and G. L.. Xue. The MINPACK-2 test problem collec-
tion. Preprint ANL-MCS-P153-0692, Mathematics and Computer Science Division, Argonne
National Laboratory, 1992.

Brett Averick, Jorge Moré, Christian Bischof, Alan Carle, and Andreas Griewank. Computing
large sparse Jacobian matrices using automatic differentiation. SIAM Journal on Scientific

Computing, 15(2):285-294, 1994.

Christian Bischof, Ali Bouaricha, Peyvand Khademi, and Jorge Moré. Computing gradients in
large-scale optimization using automatic differentiation. Preprint MCS-P488-0195, Mathemat-
ics and Computer Science Division, Argonne National Laboratory, 1995.

Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. ADIFOR:
Generating derivative codes from Fortran programs. Scientific Programming, 1(1):11-29, 1992.

Christian Bischof, Alan Carle, Peyvand Khademi, and Andrew Mauer. ADIFOR 2.0: Automatic
Differentiation of Fortran 77 Programs. IEEE Computational Science & Engineering, 3(3):18—
32, Fall, 1996.

Christian Bischof, George Corliss, and Andreas Griewank. ADIFOR exception handling. Tech-
nical Report ANL/MCS-TM-159, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory, 1991.

Christian Bischof, Larry Green, Kitty Haigler, and Tim Knauff. Parallel calculation of sen-
sitivity derivatives for aircraft design using automatic differentiation. In Proceedings of the
Gth AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Oplimization,
ATAA 94-4261, pages 73-84. American Institute of Aeronautics and Astronautics, 1994.

Christian Bischof, Peyvand Khademi, Ali Bouaricha, and Alan Carle. Computation of gradients
and Jacobians by transparent exploitation of sparsity in automatic differentiation. Preprint
MCS-P519-0595, Mathematics and Computer Science Division, Argonne National Laboratory,
1995.

Frank H Clark. Optimization and Nonsmooth Analysis. John Wiley and Sons, New York, 1983.

94

Revision D ADIFOR 2.0 User’s Guide February 16, 1998

[12] Thomas F. Coleman. Large Sparse Numerical Optimization, volume 165 of Lecture Notes in
Computer Science. Springer-Verlag, New York, 1984.

[13] Thomas F. Coleman, Burton S. Garbow, and Jorge J. Moré. Software for estimating sparse
Jacobian matrices. ACM Transactions on Mathematical Software, 10(3):329-345, 1984.

[14] A. R. Conn, N. I. M. Gould, and P. L. Toint. An introduction to the structure of large scale
nonlinear optimization problems and the LANCELOT project. Report 89-19, Namur University,
Namur, Belgium, 1989.

[15] Wayne H. Enright and John D. Pryce. Two FORTRAN packages for assessing initial value
methods. ACM Trans. Math. Software, 13(1):1-22, 1987.

[16] Herbert Fischer. Special problems in automatic differentiation. In Andreas Griewank and
George F. Corliss, editors, Automatic Differentiation of Algorithms: Theory, Implementation,
and Application, pages 43 — 50. STAM, Philadelphia, Penn., 1991.

[17] D. Goldfarb and P.L. Toint. Optimal estimation of Jacobian and Hessian matrices that arise
in finite difference calculations. Mathematics of Computation, 43:69-88, 1984.

[18] Andreas Griewank. On automatic differentiation. In Mathematical Programming: Recent De-
velopments and Applications, pages 83-108, Amsterdam, 1989. Kluwer Academic Publishers.

[19] Andreas Griewank and Philippe L. Toint. On the unconstrained optimization of partially
separable objective functions. In M. J. D. Powell, editor, Nonlinear Optimization 1981, pages
301-312, London, 1981. Academic Press.

[20] Andreas Griewank and Philippe L. Toint. Partitioned variable metric updates for large struc-
tured optimization problems. Numerische Mathematik, 39:119-137, 1982.

[21] M. Lescrenier. Partially separable optimization and parallel computing. Ann. Oper. Res.,

14:213-224, 1988.

[22] J. J. Moré. On the performance of algorithms for large-scale bound constrained problems. In
T. F. Coleman and Y. Li, editors, Large-Scale Numerical Optimization. STAM, 1991.

[23] Gordon Pusch, Christian Bischof, and Alan Carle. On automatic differentiation of codes with
complex arithmetic with respect ot real variables. Technical Report ANL/MCS-TM-188, Math-
ematics and Computer Science Division, Argonne National Laboratory, 1994.

[24] Louis B. Rall. Automatic Differentiation: Techniques and Applications, volume 120 of Lecture
Notes in Computer Science. Springer Verlag, Berlin, 1981.

[25] J. M. Smith and H. C. Van Ness. Introduction to Chemical Engineering. McGraw-Hill, New
York, 1975.

95

