
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-194
A Davis-Putnam Program andIts Application to Finite First-Order Model Search:Quasigroup Existence ProblemsbyWilliam McCuneMathematics and Computer Science DivisionTechnical Memorandum No. 194

September 1994This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, under ContractW-31-109-Eng-38.

ContentsAbstract 11 The Davis-Putnam Procedure 11.1 Implementation : 11.2 Pigeonhole Problems : 31.3 Using ANL-DP : 32 The First-Order Model-Searching Program 42.1 Additional Constraints : 52.2 Using the Program to Search for First-Order Models : : : : : : : : : : : : : : : : 52.3 Using Otter to Generate the Flat Clauses : 62.4 The Order Relation : 72.5 Application to Quasigroup Problems : 72.5.1 Cyclically Generated Quasigroups : 92.5.2 Quasigroups with Holes : 102.5.3 Open Quasigroup Questions Answered : 11References 13

ii

A Davis-Putnam Programand Its Application to Finite First-Order Model Search:Quasigroup Existence ProblemsWilliam McCuneAbstractThis document describes the implementation and use of a Davis-Putnam procedure forthe propositional satis�ability problem. It also describes code that takes statements in �rst-order logic with equality and a domain size n then searches for models of size n. The�rst-order model-searching code transforms the statements into set of propositional clausessuch that the �rst-order statements have a model of size n if and only if the propositionalclauses are satis�able. The propositional set is then given to the Davis-Putnam code; anypropositional models that are found can be translated to models of the �rst-order statements.The �rst-order model-searching program accepts statements only in a attened relationalclause form without function symbols. Additional code was written to take input statementsin the language of Otter 3.0 and produce the attened relational form. The program wassuccessfully applied to several open questions on the existence of orthogonal quasigroups.1 The Davis-Putnam ProcedureThe Davis-Putnam procedure is widely regarded as the best method for deciding the satis�abilityof a set of propositional clauses. I'll assume that the reader is familiar with it. I list here somefeatures of our implementation.1. There are no checks for pure literals. Experience has shown that such checks are usuallymore expensive than they are worth.2. Deletion of subsumed clauses is optional. Again, experience has shown that it is tooexpensive.3. The variable selected for splitting is the always �rst literal of the �rst, shortest positiveclause.1.1 ImplementationThe data structures for clauses and for propositional variables and the algorithms are similar tothe ones Mark Stickel uses in LDPP [8].Variables are integers � 1. Associated with the set of variables is an array, indexed by thevariables, of variable structures. Each variable structure contains the following �elds.1

� value. The current value (true, false, or unassigned) of the variable.� enqueued_value. A �eld to speed the bottleneck operation of unit propagation (see be-low).� pos_occ. A list of pointers to clauses that contain the variable in a positive literal.� neg_occ. A list of pointers to clauses that contain the variable in a negative literal.Each clause contains the following �elds.� pos. A list of variables representing positive literals.� neg. A list of variables representing negative literals.� active_pos. The number of positive literals that have not been resolved away.� active_neg. The number of negative literals that have not been resolved away.� subsumer. A �eld set to the responsible variable if the clause has been inactivated bysubsumption.Assignment. When a variable is assigned a value, say true, by splitting or during unit prop-agation, unit resolution is performed by traversing the neg_occ list of the variable: for eachclause that has not been subsumed, the active_neg �eld is simply decremented by 1. Ifactive_pos+active_neg becomes 0, the empty clause has been found and backtracking occurs.If active_pos+active_neg becomes 1, the new unit clause is queued for unit propagation. Inaddition, if subsumption is enabled, (back) subsumption is performed by traversing the pos_occlist of the variable: for each clause that is not already subsumed, the subsumer �eld is set tothe variable. Variables must be unassigned during backtracking, and the process is essentiallythe reverse of assignment.Unit Propagation. A split causes an assignment. The unit propagation queue is then pro-cessed (causing further assignments and possibly more units to be queued) until empty or theempty clause is found. Each split typically causes many assignments, so unit propagation mustbe done e�ciently. To avoid duplicates in the queue, and to detect the empty clause duringthe enqueue operation rather than during assignment, we set the �eld enqueued_value of thevariable when the corresponding literal is enqueued. That way we can quickly tell whether aliteral or its complement is already in the queue.Unit Preprocessing. If the set of input clauses contains any units, unit propagation is ap-plied. During assignment, back subumption is always applied, because assignments made duringthis phase are never undone.Selecting Variables for Splitting. The variable selected for splitting is the �rst literal inthe �rst, shortest nonsubsumed positive clause. After the unit preprocessing, pointers to all ofthe non-Horn clauses (i.e., clauses with two or more positive literals) are collected into a list.In order to select a variable for splitting, the list is simply traversed. Subsumed clauses must2

be ignored; if subsumption is enabled, the subsumer �eld is checked; otherwise the clause isscanned for a literal with value true. (If all clauses in the list are subsumed, a model has beenfound.)1.2 Pigeonhole ProblemsThe pigeonhole problems are a set of arti�cial propositional problems that are used to test thee�ciency of propositional theorem provers. See the sample input �les that come with ANL-DPfor examples. Table 1 lists the performance of ANL-DP on several instances of the pigeonholeproblems. The jobs were run on a SPARC 2.Table 1: ANL-DP on the Pigeonhole ProblemsBranches Seconds7 pigeons, 6 holes 719 .158 pigeons, 7 holes 5039 1.149 pigeons, 8 holes 40319 9.1610 pigeons, 9 holes 362879 88.4311 pigeons, 10 holes 3628799 916.621.3 Using ANL-DPPropositional input to ANL-DP is a sequence of clauses. (See Sec. 2.2 for input to the �rst-ordermodel-searching program.) Literals are nonzero integers (negative integers represent negativeliterals), and each clause is terminated with 0. (Hence, the entire input is just a sequence ofintegers.) The input is taken from stdin (the standard input).ANL-DP accepts the following command-line options.-s. Perform subsumption. (Subsumption is always performed during unit preprocessing.)-p. Print models as they are found.-m n. Stop when the n-th model is found.-t n. Stop after n seconds.-k n. Allocate at most n kbytes for storage of clauses.-x n. Quasigroup experiment n. See Section 2.5.-B �le. Backup assignments to a �le.-b n. Backup assignments every n seconds.-R �le. Restore assignments from a �le. The �le typically contains just the last line of a backup�le. Other input, in particular the clauses, must be given exactly as in the original search.-n n. This option is used for �rst-order model searches. The parameter n speci�es the domainsize, and its presence tells the program to read �rst-order attened relational input clausesinstead of propositional clauses. 3

2 The First-Order Model-Searching ProgramThe �rst practical program for searching for small models of �rst-order statements was FINDER[6]. Another model-searching program is MGTP [7], which uses a somewhat di�erent approach.The third class of programs, including LDPP [8], SATO [8], and the one described here, arebased on Davis-Putnam procedures. None of these programs is clearly better than the others,and each has answered open questions about quasigroups (see Sec. 2.5).The Davis-Putnam approach is quite elegant, because the computational engine|the Davis-Putnam code|is in no way tailored to �rst-order model searching. First-order clauses and adomain size n are input; then ground instances (over the domain) of the �rst-order clauses aregenerated and given to the Davis-Putnam code. Any propositional models that are found canbe easily translated to �rst-order models (e.g., an n � n table for a binary function).The steps, which are summarized in Figure 1, are as follows.FO formula FO clauses FO at clauses Prop. clausesProp. modelsFO models-(1) -(2) -(3) ?(4)� (5)?Figure 1: Searching for First-Order Models(1) Take an arbitrary �rst-order formula (possibly involving equality), and produce a set ofclauses. Otter's clausi�cation code is su�cient for this.(2) Take a set of �rst-order clauses, and produce a set of attened, relational clauses thatcontain no constants or function symbols|all arguments of the literals are variables. Thesteps are as follows:a. For each n-ary function symbol (including constants), an n + 1-ary predice symbolis introduced. For the examples, function symbols are lower-case letters, and newpredicate symbols are the corresponding upper-case letters.b. To atten the clauses, the following kind of equality transformation is applied tononvariable terms (excepting arguments of positive equalities): P [t] is rewritten tot 6= x j P [x].c. A clause containing a positive equality � = �, where both arguments are nonvariable,is made into two clauses: L j � = � becomes L j � 6= x j � = x and L j � 6= x j � = x.d. Each functional literal, say f(x; y) = z, is rewritten into its relational form, sayF (x; y; z). (The resulting clauses may contain ordinary equality literals as well.)For example, the equality f(g(x); x) = e produces the two clauses:G(x; y) j :E(z) j F (y; x; z):G(x; y) j E(z) j :F (y; x; z)(3) Take a set of attened relational clauses and a domain size, and generate a set of propo-sitional clauses. For each relational clause, the set of instances over the domain is con-structed. (With domain size n, a clause with m variables produces nm instances.) Each4

atom is encoded into a unique integer that becomes the propositional variable. Also, wemust assert that the (n+ 1)-ary predicates introduced above represent total functions, sofor each, we assert two sets of propositional clauses. For example, for ternary relation F ,we must say that the last argument is a function of the others,:F (x; y; z1) j :F (x; y; z2), for z1 < z2 (well-de�ned)and that the function is total and its value always lies in the domain (elements of thedomain are named 0; 1; � � � ; n� 1):F (x; y; 0) j F (x; y; 1) j � � � j F (x; y; n� 1) (closed and total).If the attened relational clauses contain any equality literals, the n2 units for the equalityrelation are asserted. Nothing special needs to be done for ordinary predicate symbols.(4) The Davis-Putnam procedure searches for models of the propositional clauses.(5) For each propositional model, we generate the corresponding �rst-order model. The clausesgiven in (3) above ensure that from the propositional model, we can build a function foreach function symbol (including constants).2.1 Additional ConstraintsFor various reasons, the most important being to reduce the number of isomorphic modelsthat are found, the user can specify part of the model by supplying ground clauses over thedomain. For example, if a noncommutative group is being sought, with constants a and b asnoncommuting elements, the user can assign 0 to the identity, 1 to a, and 2 to b. In this case,nothing is lost by making them distinct.Symbols can be given the following properties.quasigroup. This can be applied to ternary relations that represent binary functions. Themultiplication table of a quasigroup has one of each element in each row and each column.bijection. This can be applied to binary relations that represent unary functions.equality. This can be applied to binary relations. It is just equality of domain elements.order. This can be applied to binary relations. This is just the less-than relation on thedomain elements.holey. This can be applied to ternary relations that represent binary functions. See Sec. 2.5.2.hole. This can be applied to binary relations. See Sec. 2.5.2.2.2 Using the Program to Search for First-Order ModelsThe �rst-order searcher is part of ANL-DP, and it is invoked as described in Sec. 1.3. Thecommand-line option \-n n" speci�es the domain size and indicates that the input will be givenas �rst-order at clauses. Here is an example input specifying a noncommutative group.5

function F 3 quasigroupfunction E 1 -----function G 2 bijectionfunction A 1 -----function B 1 -----end_of_symbols-E v0 F v0 v1 v1 .-E v0 -G v1 v2 F v2 v1 v0 .E v0 -G v1 v2 -F v2 v1 v0 .-F v0 v1 v2 -F v3 v2 v4 -F v3 v0 v5 F v5 v1 v4 .-F v0 v1 v2 F v3 v2 v4 -F v3 v0 v5 -F v5 v1 v4 .-F v0 v1 v2 -B v0 -A v1 -F v1 v0 v2 .end_of_clausesE 0A 1B 2end_of_assignmentsSymbol Declarations. In the �rst section of the input, each symbol is declared with fourstrings: type (function or relation), symbol, arity (n+1 for functions), and properties(equality, order, quasigroup, bijection, or -----).Clauses. Flat relational clauses appear in the second section. Variables can be any strings.Whitespace is required before the periods that terminates clauses.Assignments. Ground units (without periods) can appear in the third section.2.3 Using Otter to Generate the Flat ClausesOtter 3.0.2 [5] and later versions can take ordinary formulas or clauses and produce the atrelational clauses for input to ANL-DP. Here is an Otter input �le for a noncommutative groupthat will produce something like the �le in Sec. 2.2.set(dp_transform).list(usable).f(e,x) = x.f(g(x),x) = e.f(f(x,y),z) = f(x,f(y,z)).f(a,b) != f(b,a).end_of_list.list(passive).properties(f(_,_), quasigroup).properties(g(_), bijection).assign(e, 0).assign(a, 1). 6

assign(b, 2).end_of_list.The command set(dp_transform) tells Otter to generate input for an ANL-DP search andthen exit.The output of Otter contains extraneous text, so it must be passed though a �lter beforeANL-DP can receive it. See the example �les and scripts in the distribution directories.2.4 The Order RelationThe ordered semigroup example in the FINDER 3.0 manual [6, Sec. 4.1.5] motivated me to haveANL-DP recognize the less-than relation on domain elements. The input (in Otter form) forthe ordered semigroup problems is as follows.set(dp_transform).list(usable).f(f(x,y),z) = f(x,f(y,z)).-(f(x,y) < f(x,z)) | y < z.-(f(y,x) < f(z,x)) | y < z.end_of_list.(Otter recognizes < as the order relation and gives it the property \order" in its output.)Table 2 compares the results of FINDER and ANL-DP, both run on SPARC 2 computers, onthe ordered semigroup problems. FINDER's search algorithm was developed with this type ofproblem in mind; ANL-DP simply adds the n2 unit clauses for the less-than relation. I believethis distinction explains most of the disparity of the times.Table 2: Ordered Semigroup Problems { FINDER vs. ANL-DPOrder Models FINDER ANL-DP3 44 0.1 0.14 386 0.6 2.65 3852 9.2 58.02.5 Application to Quasigroup ProblemsIn the multiplication table of an order-n quasigroup, each row and each column are a permutationof the n elements. For these problems, we are interested only in idempotent (i.e., xx = x) models.Additional constraints are given for the seven problems listed in Table 3. (Notes: (1) For QG1and QG2, the disjunction to the right of the implication is ordinarily a conjunction; the formsare equivalent for quasigroups, and models are found more easily with disjunction. (2) Thesecond and third equalities for QG5 and the second equality for QG7 are dependent.) See [2]and [7] for details on the quasigroup problems.We also used the following cycle constraint on the last column to eliminate some isomorphicmodels [7]::f(x; n; z), for z < x � 1. 7

Table 3: The Quasigroup ProblemsName ConstraintsQG1 xy = u ^ zw = u ^ vy = x ^ vw = z ! x = z _ y = wQG2 xy = u ^ zw = u ^ vx = y ^ vz = w! x = z _ y = wQG3 (xy)(yx) = xQG4 (xy)(yx) = yQG5 ((xy)x)x = y ^ x((yx)x) = y ^ (x(yx))x = yQG6 (xy)y = x(xy)QG7 ((xy)x)y = x ^ ((xy)y)(xy) = xThe constraint requires that cycles in the last column be made up of contiguous elements. Thisconstraint is speci�ed to ANL-DP with the command-line option \-x1"; the quasigroup operationmust be f (lower-case) for this to work.Table 4 gives summaries of the performance of ANL-DP (C, list structure), SATO-2 (C, triestructure), and LDPP0 (Lisp, list structure) on some cases of the quasigroup problems. TheSATO and LDPP �gures are taken from [8]. All runs were made on a SPARC 2 or similarcomputer. All programs used the cycle constraint and similar selection functions for splitting.I believe that di�erences in the number of branches are due mostly to the order of clauses andliterals. Search time is given in seconds.Table 4: Quasigroup Problems { ComparisonANL-DP SATO-2 LDPP0Problem Models Branches Search Branches Search Branches SearchQG1.7 8 388 2.05 376 1 389 26.8 16 100731 852.81 102610 379 101129 3463QG2.7 14 361 2.23 340 1 205 8.8 2 77158 810.75 80245 341 33835 1358QG3.8 18 1017 2.82 1072 3 573 5.9 - 39461 155.12 48545 157 24763 208QG4.8 - 891 2.40 925 2 602 4.9 178 52939 209.76 52826 168 27479 228QG5.9 - 14 .22 19 .2 15 .4.10 - 37 .52 62 .5 38 .9.11 5 112 2.16 111 2 125 5.12 - 369 6.61 369 7 369 15.13 - 9588 242.54 10764 224 12686 639QG6.9 4 17 .25 24 .2 18 .4.10 - 58 .54 150 .7 59 .8.11 - 537 5.36 519 6 539 11.12 - 7306 95.41 5728 92 7288 177QG7.9 4 7 .19 7 .2 8 .3.10 - 39 .38 54 .4 40 .7.11 - 291 2.98 254 3 294 6.12 - 1578 17.87 1281 22 1592 38.13 64 33946 493.67 27988 592 34726 10508

Table 5 lists some additional statistics for ANL-DP on the quasigroup problems. \Generated"and \Searched" are the number of propositional clauses generated and the number remainingafter subsumption and the initial unit propagation. \Create" is the time (in seconds) used toconstruct the propositional clauses.Table 5: Quasigroup Problems { ANL-DP Full StatisticsProblem Models Branches Generated Searched Memory Create SearchQG1.7 8 388 120954 8952 886 K 4.79 2.05.8 16 100731 267805 28877 2061 K 10.85 852.81QG2.7 14 361 120954 9830 886 K 4.72 2.23.8 2 77158 267805 30902 2061 K 10.88 810.75QG3.8 18 1017 9757 3830 303 K 0.26 2.82.9 - 39461 15670 6966 601 K 0.39 155.12QG4.8 - 891 9757 3830 303 K 0.25 2.40.9 178 52939 15670 6966 601 K 0.37 209.76QG5.9 - 14 28792 9694 894 K 0.85 0.22.10 - 37 43946 17274 1193 K 1.39 0.52.11 5 112 64428 28488 1786 K 2.05 2.16.12 - 369 91363 44302 2674 K 2.93 6.61.13 - 9588 125984 65790 3562 K 4.02 242.54QG6.9 4 17 22231 7653 601 K 0.66 0.25.10 - 58 33946 13579 900 K 1.02 0.54.11 - 537 49787 22332 1493 K 1.54 5.36.12 - 7306 70627 34662 2088 K 2.24 95.41QG7.9 4 7 22231 5838 601 K 0.61 0.19.10 - 39 33946 11038 900 K 1.04 0.38.11 - 291 49787 18944 1493 K 1.48 2.98.12 - 1578 70627 30309 2088 K 2.14 17.87.13 64 33946 97423 45967 2683 K 3.14 493.672.5.1 Cyclically Generated QuasigroupsThe command-line option -x2 constrains models of quasigroup f to have the property f(x +1; y + 1) = f(x; y) + 1, where addition is (mod n); that is, all the diagonals count up (moddomain-size).The command-line option -xi, where 11 � i � 19, constrains models of quasigroup f in thefollowing way. Consider the square of size x = i�10 in the lower right corner and the remainingsquare of size m = n� x in the upper left corner. The diagonals of the upper left square countup (mod m), except for diagonals that consist of the same element in m; � � � ; n�1. Also, the �rstm elements of the last x rows and columns count up (mod m). For example (see [2, Example8.1] with the input (note that the only upper left corner is idempotent)set(dp_transform).list(usable).% (3,1,2)-COLSf(x,y)!=u | f(z,w)!=u | f(v,x)!=y | f(v,z)!= w | x=z | y=w.9

end_of_list.list(passive).properties(f(_,_), quasigroup).assign(f(0,0),0).end_of_list.and the options \-n 10 -x13 -p", we getModel #1 at 333.47 seconds (SPARC 10):f | 0 1 2 3 4 5 6 7 8 9---------------------------0 | 0 4 1 7 9 2 8 3 6 51 | 8 1 5 2 7 9 3 4 0 62 | 4 8 2 6 3 7 9 5 1 03 | 9 5 8 3 0 4 7 6 2 14 | 7 9 6 8 4 1 5 0 3 25 | 6 7 9 0 8 5 2 1 4 36 | 3 0 7 9 1 8 6 2 5 4|7 | 1 2 3 4 5 6 0 7 8 98 | 2 3 4 5 6 0 1 8 9 79 | 5 6 0 1 2 3 4 9 7 8The -xi option can also be used when searching for quasigroups with holes.2.5.2 Quasigroups with HolesWe simply list an example. The input (compare with above input)set(dp_transform).list(usable).same_hole(x,x) | f(x,x) = x.% (3,1,2)-COLSf(x,y)!=u | f(z,w)!=u | f(v,x)!=y | f(v,z)!= w | x=z | y=w.end_of_list.list(passive).properties(f(_,_), quasigroup_holey).properties(same_hole(_,_), hole).% The program makes same_hole symmetric and transitive.assign(same_hole(7,8), T). assign(same_hole(8,9), T).end_of_list.with the command-line options \-n10 -x13 -p" produces the following:10

Model #1 at 50.07 seconds (SPARC 2):f | 0 1 2 3 4 5 6 7 8 9--------------------------0 | 0 6 7 5 8 9 3 1 2 41 | 4 1 0 7 6 8 9 2 3 52 | 9 5 2 1 7 0 8 3 4 63 | 8 9 6 3 2 7 1 4 5 04 | 2 8 9 0 4 3 7 5 6 15 | 7 3 8 9 1 5 4 6 0 26 | 5 7 4 8 9 2 6 0 1 37 | 3 4 5 6 0 1 2 - - -8 | 6 0 1 2 3 4 5 - - -9 | 1 2 3 4 5 6 0 - - -2.5.3 Open Quasigroup Questions AnsweredOrthogonal Mendelsohn Triple Systems (OMTS). Corollary 5.2 of [3] statesThe necessary condition for the existence of a pair of OMTS(v), that is, v � 0 or 1(mod 3), is also su�cient except for v=3,6 and possibly excepting v 2 f9; 10; 12; 18g.See [3] for de�nitions. The inputset(dp_transform).list(usable).f(x,x) = x.h(x,x) = x.f(x,f(y,x))=y.h(x,h(y,x))=y.f(x,y)!=u | f(z,w)!=u | h(x,y)!=v | h(z,w)!=v | x=z | y=w.end_of_list.list(passive).properties(f(_,_), quasigroup).properties(h(_,_), quasigroup).end_of_list.with the options \-n9 -x1 -p" produces the following quasigroups, which correspond to a pairof orthogonal Mendelsohn triple systems of order 9.Model #1 at 54.58 seconds (SPARC 2):f | 0 1 2 3 4 5 6 7 8 h | 0 1 2 3 4 5 6 7 8------------------------ ------------------------0 | 0 8 5 2 7 4 3 6 1 0 | 0 2 6 4 3 1 8 5 71 | 8 1 7 6 3 2 5 4 0 1 | 5 1 0 8 2 3 7 6 42 | 3 5 2 8 6 0 4 1 7 2 | 1 4 2 6 7 8 0 3 53 | 6 4 0 3 8 7 1 5 2 3 | 4 5 7 3 0 6 2 8 14 | 5 7 6 1 4 8 2 0 3 4 | 3 8 1 0 4 7 5 2 65 | 2 6 1 7 0 5 8 3 4 5 | 7 0 8 1 6 5 3 4 26 | 7 3 4 0 2 1 6 8 5 6 | 2 7 3 5 8 4 6 1 07 | 4 2 8 5 1 3 0 7 6 7 | 8 6 4 2 5 0 1 7 38 | 1 0 3 4 5 6 7 2 8 8 | 6 3 5 7 1 2 4 0 811

An analogous search for OMTS(10) ran for several days without �nding a model.QG3(28). A quasigroup of type hn has order h �n and n holes of size h. Frank Bennett posed[1] the question of the existence of QG3(28). (Mark Stickel had already answered positively thequestion of the existence of QG3(26) [1].) The ANL-DP inputrelation = 2 equalityrelation same_hole 2 holefunction f 3 quasigroup_holeyend_of_symbolsf v0 v0 v0 same_hole v0 v0 .-f v0 v1 v2 -f v1 v0 v3 f v3 v2 v1 .-f v0 v1 v2 -f v0 v2 v1 = v0 v1 .-f v0 v1 v2 -f v2 v1 v0 = v0 v1 .end_of_clausessame_hole 0 7same_hole 1 8same_hole 2 9same_hole 3 10same_hole 4 11same_hole 5 12same_hole 6 13same_hole 14 15end_of_assignmentswith the options \-n16 -p" produces the following holey quasigroup.Model #1 at 76086.21 seconds (i468 DX2/66):f | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15--0 | - 2 3 12 1 4 5 - 10 11 14 15 13 8 6 91 | 3 - 6 5 15 0 14 12 - 4 11 7 10 2 9 132 | 11 15 - 0 10 14 12 13 7 - 5 6 3 4 1 83 | 2 13 1 - 9 7 4 15 11 12 - 0 14 5 8 64 | 5 10 7 1 - 6 9 8 14 3 15 - 2 0 13 125 | 13 4 11 14 0 - 8 6 15 7 9 10 - 1 2 36 | 4 0 15 9 14 11 - 3 12 5 2 8 7 - 10 17 | - 6 8 13 2 9 15 - 5 14 4 12 1 11 3 108 | 14 - 4 6 3 2 10 9 - 0 13 5 15 7 12 119 | 15 3 - 11 6 8 7 1 13 - 12 14 0 10 4 510 | 6 5 14 - 7 15 11 2 9 1 - 13 8 12 0 411 | 8 12 10 2 - 1 3 14 6 13 7 - 9 15 5 012 | 10 9 0 8 13 - 1 11 4 15 6 3 - 14 7 213 | 9 14 12 15 5 3 - 10 2 8 0 1 4 - 11 714 | 1 7 13 4 12 10 0 5 3 6 8 2 11 9 - -15 | 12 11 5 7 8 13 2 4 0 10 1 9 6 3 - -(In case the reader is wondering why the holes are irregular in the lower right corner, the reasonis that preliminary runs on QG3(26) ran faster with a similar hole con�guration than with aregular con�guration.) 12

QG7(17,5). Frank Bennett posed [1] the question of whether the the quasigroup identity(QG7a) x(yx) = (yx)y implies either (xy)x = x(yx) or xy(yx) = y. He suggested looking atmodels of order 17 with a hole of size 5, if they exist, as possible counterexamples. The identity(QG7b) ((xy)x)y = x, which is conjugate-equivalent [2] to (QG7a), is much easier to work with,so we put ANL-DP to work with the inputrelation same_hole 2 holefunction f 3 quasigroup_holeyend_of_symbolsf v0 v0 v0 same_hole v0 v0 .-f v0 v1 v2 -f v2 v0 v3 f v3 v1 v0 .end_of_clausessame_hole 12 13same_hole 13 14same_hole 14 15same_hole 15 16end_of_assignmentsand the options \-n17 -x1 -p", which produced the followingModel #1 at 172914.77 seconds (SPARC 2):f | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16---0 | 0 2 1 16 13 11 12 8 5 15 14 7 4 6 9 10 31 | 16 1 3 2 10 13 9 12 15 4 6 14 5 7 8 11 02 | 3 16 2 0 15 9 14 10 12 7 5 13 11 8 4 6 13 | 1 0 16 3 8 15 11 14 6 12 13 4 10 9 5 7 24 | 8 13 10 15 4 6 5 16 2 14 0 12 9 3 11 1 75 | 13 9 15 11 16 5 7 6 14 3 12 1 8 2 10 0 46 | 11 12 9 14 7 16 6 4 13 0 15 2 3 10 1 8 57 | 12 10 14 8 5 4 16 7 1 13 3 15 2 11 0 9 68 | 15 6 5 12 14 1 2 13 8 10 9 16 0 4 7 3 119 | 7 15 12 4 0 14 13 3 16 9 11 10 1 5 6 2 810 | 5 14 13 6 12 3 0 15 11 16 10 8 7 1 2 4 911 | 14 4 7 13 2 12 15 1 9 8 16 11 6 0 3 5 1012 | 10 11 4 5 3 2 8 9 7 6 1 0 - - - - -13 | 9 8 6 7 11 10 3 2 0 1 4 5 - - - - -14 | 4 5 8 9 1 0 10 11 3 2 7 6 - - - - -15 | 6 7 11 10 9 8 1 0 4 5 2 3 - - - - -16 | 2 3 0 1 6 7 4 5 10 11 8 9 - - - - -The conjugate-equivalent quasigroup corresponding to (QG7a) was then generated and foundto falsify the two identities in question, giving a counterexample to the problem.References[1] F. E. Bennett. Correspondence by electronic mail, 1994.[2] F. E. Bennett and L. Zhu. Conjugate-orthogonal Latin squares and related structures. InJ. H. Dinitz and D. R. Stinson, editors, Contemporary Design Theory: A Collection ofSurveys, pages 41{96. John Wiley & Sons, 1992.13

[3] F. E. Bennett and L. Zhu. Self-orthogonal Mendelsohn triple systems. Preprint, 1994.[4] M. Fujita, J. Slaney, and F. E. Bennett. Automatic generation of some results in �nitealgebra. In International Joint Conference on Arti�cial Intelligence, 1993.[5] W. McCune. Otter 3.0 Reference Manual and Guide. Tech. Report ANL-94/6, ArgonneNational Laboratory, Argonne, Ill., 1994.[6] J. Slaney. FINDER version 3.0 notes and guide. Tech. report, Centre for Information ScienceResearch, Australian National University, 1993.[7] J. Slaney, M. Fujita, and M. Stickel. Automated reasoning and exhaustive search: Quasigroupexistence problems. Computers and Mathematics with Applications, 1994. To appear.[8] H. Zhang and M. Stickel. Implementing the Davis-Putnam algorithm by tries. Preprint,1994.

14

