
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-195Using ADIFOR 1.0 to Compute HessiansbyPaul Hovland�Mathematics and Computer Science DivisionTechnical Memorandum No. 195April 1995This work was supported by the Mathematical, Information, and Computational Sciences Division subpro-gram of the O�ce of Computational and Technology Research, U.S. Department of Energy, under ContractW-31-109-Eng-38; through NSF Cooperative Agreement No. CCR-8809615; by a U.S. Department of DefenseNDSEG Fellowship; and by NASA Purchase Order L25935D.�Current address: Dept. of Computer Science, University of Illinois at Urbana-Champaign, 2412 DigitalComputer Lab, 1304 W. Spring�eld Ave., Urbana, IL 61801

ContentsAbstract 11 Introduction 12 Procedure 13 Discussion 24 Initialization 35 Example 46 Conclusions 8Appendix: ADIFOR-generated Subroutine for Computing Hessians 9References 12

iii

Using ADIFOR 1.0 to Compute HessiansbyPaul HovlandAbstractADIFOR provides a simple means to produce code for the �rst derivatives of functionsthrough the technique of automatic di�erentiation. However, the fact that ADIFORcurrently cannot produce code to compute second derivatives limits its usefulness forcertain applications. This paper describes how ADIFOR and related tools can be usedto produce code that does compute second derivatives and discusses how to use thiscode. Conclusions are presented about the limitations of this method and how it mightcompare with second-derivative code produced directly by ADIFOR.1 IntroductionWhen a scientist wishes to compute the gradient of a function for optimization or sensitivityanalysis, ADIFOR provides a simple means to produce derivative code via automatic di�erentiation[1]. However, many optimization methods require the Hessian of the objective function. Currently,ADIFOR does not produce code for second derivatives. But, by applying ADIFOR twice, it ispossible to produce code for the Hessian. The next section outlines a procedure for creating code forsecond derivatives. Section 3 provides more detailed discussion of why certain steps are required andhow they should be executed. Section 4 discusses seed matrix initialization as it applies to this secondderivative code. Section 5 provides a simple example of the technique. The �nal section discussessome of the limitations of the technique and describes how the resultant code might resemble anddi�er from the code that would be produced by a future version of ADIFOR.2 ProcedureThis paper assumes that the user is already familiar with ADIFOR and the various �les involvedin its use. Those readers not familiar with ADIFOR are referred to [3,4] for an introduction.The procedure required to produce code capable of computing second derivatives is as follows:1. Create an ADIFOR script (.adf) �le. Be sure to include a \SEP " line.2. Create a composition (.comp) �le.3. Run ADIFOR (adifor func.adf func.comp).4. Run make on the ADMake�le.5. Create a main program to call the new top-level subroutine.6. Create a new composition �le, including the new main program, all ADIFOR-generated sub-routines, and, if necessary, intrinsic.f. 1

7. If intrinsic.f is not needed (there are no intrinsic functions requiring the exception handler),skip to Step 11.8. Run adpre using this composition �le.9. Edit the resulting *.ad.f �les so that $ is changed to .10. Change the .ad.f extension to .f, or modify the composition �le to use the new �le names.11. Create a new ADIFOR script �le, changing the separator (for clarity), and prefacing the OUTvariable(s) with g .12. Run ADIFOR again (adifor g func.adf g func.comp).13. Run make on the ADMake�le.14. Create a new main program that does the proper initializations and calls g$g func.3 DiscussionThe reason for some of the steps in Section 2 may not be obvious. This section explains themotivation behind these procedures. It also includes brief notes about the tools being used.ADIFOR employs a two-stage process to produce derivative code. In the �rst step, ADIFORanalyzes the program, stores intermediate information, and creates a make�le. This make�le invokesAdtrans, the ADIFOR translator, which translates the intermediate information into source code.The default separator character of $ causes problems for the make utility. This is normally not aproblem, because of the naming convention for the �les created by ADIFOR, basically the originalsubroutine name followed by an extension. However, when ADIFOR is applied twice, the subroutinenames from the �rst application contain the separator character. Thus, the separator character forthe �rst application of ADIFOR must be something other than $. For this reason, we suggest aseparator character of in Step 1.The exception-handling routines [2] provide an impediment to applying ADIFOR a second timebecause these routines are implemented as functions, but ADIFOR currently deals only with sub-routines. Steps 8{10 describe how the ADIFOR preprocessor, Adpre, can be used to overcome thisproblem. However, if the exception-handling routines, found in the �le intrinsic.f, are not neededthese steps can be omitted, as mentioned in Step 7. The ADIFOR preprocessor is described in [4],but its use can be summarized by three steps:1. Set the RN HOME environment variable using setenv RN HOME /anydir.2. Create a composition �le, as with ADIFOR.3. Execute Adpre, specifying the composition �le name, as for example, adpre -P g func.comp.For similar reasons to those discussed above, the $ character that occurs in the �les produced byAdpre (which have the .f extension replaced by .ad.f) must replaced by another character, suchas .The Hessian is essentially the derivatives of the gradient with respect to the independent variable.Thus, the ADIFOR script �le for the second application of ADIFOR should specify the top-levelADIFOR-generated subroutine as TOP, the gradient as OUT, and the same IN variables(s). Inorder to make it easier to distinguish between the gradient objects of the �rst pass and the gradientobjects of the second pass, and also to prevent name conicts, a di�erent separator character (suchas $) should be used. 2

4 InitializationThe initialization of seed matrices is nontrivial even for �rst-derivative programs [3]. In the caseof second derivatives, the situation can become even more complex. The code produced by themethod outlined above is capable of computing the matrix product S1 � H � ST2 , where H is theHessian. The two seed matrices, S1 and S2, arise from the double application of ADIFOR. If x isthe only independent variable, these seed matrices will have the names g x and g$x. If all that isdesired is the Hessian, these seed matrices should be initialized to an identity matrix, for exampleby using the code shown in Figure 1.If only an m � p region of the Hessian is desired, this can be computed by initializing g$x andg x such that the appropriate p elements of g$f and m elements of g f are computed. A specialcase of this situation arises when a particular column or row of the Hessian is desired. The thirdcolumn of the Hessian could be computed by using the initialization in Figure 2. Note that this isthe transpose of the column because of the way ADIFOR stores derivatives. Since the Hessian issymmetric, this is less important.The ability to compute one column at a time can be used to exploit the symmetry of the Hessian.An example of how this might be accomplished is shown in Figure 3. However, it is important tonote that the overhead of recomputing the function and a portion of the gradient on each iterationimplies that this method will not be signi�cantly more e�cient than the full Hessian computationand may even be more expensive.Perhaps the most promising application for seed matrix initialization is when the pre- and post-multiplication of the Hessian by a vector or pair of vectors is desired. For example, if we wish tocompute zTHy, the simple initialization is su�cient. This capability may be particularly useful foroptimization techniques like the conjugate gradient method.do i=1, ng$x(1,i) = z(i)g_x(1,i) = y(i)enddogi = 1g_i_ = 1do i = 1, ndo j = 1, ng_x(j, i) = 0.0g$x(j, i) = 0.0enddog_x(i, i) = 1.0g$x(i, i) = 1.0enddog$p$ = ng_p_ = nFigure 1: Seed matrix initialization using identity matrices to compute the Hessian3

do i = 1, ndo j = 1, ng_x(j, i) = 0.0enddog_x(i, i) = 1.0g$x(1, i) = 0.0enddog$x(1,3) = 1.0gp = 1g_p_ = nFigure 2: Seed matrix initialization using n�n and 1�n matrices to compute a columnof the Hessiando k = 1, ndo i = 1, ndo j = 1, kg_x(j, i) = 0.0enddog_x(i, i) = 1.0g$x(1, i) = 0.0enddog$x(1,k) = 1.0gp = 1g_p_ = kcall g$g_func(....)enddoFigure 3: Algorithm using column computations to exploit the Hessian's symmetry5 ExampleConsider the example program in Figure 4. This program simply computes the functionf = sqrt(nYi=1xi):An ADIFOR script �le for this program isIN xOUT fTOP funcPMAX 5SEP _ 4

program examplereal x(5),finteger ix(1) = 1.0x(2) = 3.0x(3) = 2.0x(4) = 6.0x(5) = 4.0call func(x,f,5)do i=1,5write(*,*) 'x(',i,') = ',x(i)enddowrite(*,*) 'f = ',fend
subroutine func(x,f,n)integer n,ireal f,x(n)f=1.0do i=1,nf=f*x(i)enddof = sqrt(f)returnendFigure 4: A simple example programand an appropriate composition �le isfunc.fmain.fApplying ADIFOR yields a subroutine g func 3 (listed in the Appendix) capable of computingthe gradient of this function. An appropriate main program for this subroutine is shown in Figure5. A composition �le for the gradient program isg_main.ffunc.3.fintrinsic.fIf Adpre is executed on this composition, several changes occur. The most signi�cant changesinvolve converting the functions in intrinsic.f to subroutines and modifying the calls in g func 3accordingly. For example, the linefbar = g$sqrt(f, r_1)in g func 3 becomescall g_sqrtsubr(f, r_1, fbar)after processing with Adpre and the global replacement of $ by .5

program examplereal x(5), f, g_x(5, 5), g_f(5)integer i, jx(1) = 1.0x(2) = 3.0x(3) = 2.0x(4) = 6.0x(5) = 4.0do i = 1, 5do j = 1, 5g_x(j, i) = 0.0enddog_x(i, i) = 1.0enddocall g_func_3(5, x, g_x, 5, f, g_f, 5, 5)do i = 1, 5write (*, *) 'x(', i, ') = ', x(i)enddowrite (*, *) 'f = ', fdo i = 1, 5write (*, *) 'g_f(', i, ') = ', g_f(i)enddoendFigure 5: An example program using the ADIFOR-generated gradient subroutine
6

program examplereal x(5),f,g_x(5, 5),g_f(5),g$x(5,5),g$g_f(5,5),g$f(5)integer i, jx(1) = 1.0x(2) = 3.0x(3) = 2.0x(4) = 6.0x(5) = 4.0do i = 1, 5do j = 1, 5g_x(j, i) = 0.0g$x(j, i) = 0.0enddog_x(i, i) = 1.0g$x(i, i) = 1.0enddocall g$g_func_3$32(5,5,x,g$x,5,g_x,5,f,g$f,5,g_f,g$g_f,5,5,5)do i = 1, 5write (*, *) 'x(', i, ') = ', x(i)enddowrite (*, *) 'f = ', fdo i = 1, 5write (*, *) 'g_f(', i, ') = ', g_f(i)enddodo i = 1, 5do j = 1, 5write (*, *) 'Hess(', i, ',',j,') = ', g$g_f(j,i)enddoenddoendFigure 6: An example program using the ADIFOR-generated Hessian subroutine7

With an ADIFOR script �le such asIN xOUT g_fPMAX 5TOP g_func_3SEP $ADIFOR can be applied a second time to yield the Hessian code. As was discussed in Section 4, thedriver code for this subroutine can initialize variables in a number of di�erent ways. The simplestscheme, where the entire Hessian is computed at once, is used in the main program in Figure 6.6 ConclusionsEven though ADIFOR does not currently support second derivatives, it is possible to producecode to compute a Hessian by using two passes of ADIFOR. This approach is applicable to all sorts ofsecond derivatives, not just Hessians, but the example of a Hessian has been used for simplicity. Theapproach described su�ers from certain limitations. Foremost is the restriction that the symmetry ofthe Hessian is not exploited, and unneeded computations are performed. Additional overhead comesfrom computing the gradient twice. When second-derivative capabilities are built into ADIFOR, itis desirable that this overhead be eliminated. At the same time, there are certain characteristics ofthe code generated by this procedure that would be desirable in an ADIFOR implementation. Inparticular, the ability to compute a rectangular region of the Hessian or a matrix-Hessian-matrixproduct via special seed matrix initializations could be of great bene�t to a computational scientist.

8

Appendix: ADIFOR-generated Subroutine for Computing HessiansC DISCLAIMERCC This file was generated on 05/24/94 by the version ofC ADIFOR compiled on 07/13/93.CC ADIFOR was prepared as an account of work sponsored by anC agency of the United States Government, Rice University, andC the University of Chicago. Neither the author(s), the UnitedC States Government nor any agency thereof, nor Rice University,C nor the University of Chicago, including any of their employeesC or officers, makes any warranty, express or implied, or assumesC any legal liability or responsibility for the accuracy, complete-C ness, or usefulness of any information or process disclosed, orC represents that its use would not infringe privately owned rights.C subroutine g$g_func_3$32(gp, g_p_, x, gx, ldgx, g_x, ldg_x, f,* gf, ldgf, g_f, gg_f, ldgg_f, ldg_f, n)CC Formal g_f is active.C Formal f is active.C Formal x is active.C integer gpinteger g$pmax$parameter (g$pmax$ = 5)integer gireal fbaarreal r$1integer ldg$xinteger ldg$finteger ldg$g_fCCC Formal f is active.C Formal x is active.C integer g_p_integer g_pmax_parameter (g_pmax_ = 5)integer g_i_real r_1real g$r_1(g$pmax$)real fbarreal g$fbar(g$pmax$)integer ldg_xinteger ldg_fC integer n, ireal f, x(n) 9

real g$f(ldg$f), g$x(ldg$x, n)real g_f(ldg_f), g_x(ldg_x, n)real g$g_f(ldg$g_f, ldg_f)real g_sqrtexternal g_sqrtreal g$sqrtexternal g$sqrtif (gp .gt. g$pmax$) thenprint *, 'Parameter g$p is greater than g$pmax.'stopendifif (g_p_ .gt. g_pmax_) thenprint *, 'Parameter g_p is greater than g_pmax.'stopendiff = 1.0do 99979 gi = 1, gpg$f(g$i$) = 0.099979 continuedo 99991, g_i_ = 1, g_p_g_f(g_i_) = 0.0do 99978 gi = 1, gpg$g_f(g$i$, g_i_) = 0.099978 continue99995 continue99999 continue99991 continuedo 99989, i = 1, nC f = f * x(i)C r_1 = x(i)do 99977 gi = 1, gpg$r_1(g$i$) = g$x(gi, i)99977 continuer_1 = x(i)do 99990, g_i_ = 1, g_p_C g_f(g_i_) = r_1 * g_f(g_i_) + f * g_x(g_i_, i)r$1 = g_f(g_i_)fbaar = g_x(g_i_, i)do 99976 gi = 1, gpg$g_f(g$i$, g_i_) = r$1 * g$r_1(g$i$) + fbaar * g$f(gi)*+ r_1 * g$g_f(g$i$, g_i_)99976 continueg_f(g_i_) = r_1 * r$1 + f * g_x(g_i_, i)99993 continue99998 continue99990 continueC f = f * r_1do 99975 gi = 1, gpg$f(g$i$) = r_1 * g$f(gi) + f * g$r_1(g$i$)99975 continuef = f * r_199994 continue99997 continue99989 continue 10

C f = sqrt(f)C r_1 = sqrt(f)r$1 = sqrt(f)fbaar = g$sqrt(f, r$1)do 99974 g$i$ = 1, gpg$r_1(g$i$) = fbaar * g$f(gi)99974 continuer_1 = r$1call g$g_sqrtsubr$7(g$p$, f, g$f(1), ldgf, r_1, gr_1(1), g$pma*x$, fbar, g$fbar(1), g$pmax$)do 99988, g_i_ = 1, g_p_C g_f(g_i_) = fbar * g_f(g_i_)r$1 = g_f(g_i_)do 99973 g$i$ = 1, gpg$g_f(g$i$, g_i_) = r$1 * g$fbar(g$i$) + fbar * g$g_f(gi,*g_i_)99973 continueg_f(g_i_) = fbar * r$199992 continue99996 continue99988 continuef = r_1do 99972 gi = 1, gpg$f(g$i$) = g$r_1(gi)99972 continuereturnend

11

References[1] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. ADIFOR:Generating derivative codes from Fortran programs. Scienti�c Programming, 1(1):11{29, 1992.[2] Christian Bischof, George Corliss, and Andreas Griewank. ADIFOR exception handling. Techni-cal Report ANL/MCS-TM-159, Mathematics and Computer Science Division, Argonne NationalLaboratory, 1991.[3] Christian Bischof and Paul Hovland. Using ADIFOR to compute dense and sparse Jacobians.Technical Report ANL/MCS-TM-158, Mathematics and Computer Science Division, ArgonneNational Laboratory, 1991.[4] Christian H. Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. Get-ting started with ADIFOR. Technical Report ANL/MCS-TM-164, Mathematics and ComputerScience Division, Argonne National Laboratory, 1992.

12

