
ARGONNE NATIONAL LABORATORY9700 South Cass AvenueArgonne, IL 60439ANL/MCS-TM-196Fortran 77 Interface Speci�cationto the SparsLinC 1.0 LibrarybyChristian H. Bischof, Alan Carle,� and Peyvand KhademiMathematics and Computer Science DivisionTechnical Memorandum No. 196May 1995This work was supported by the Mathematical, Information, and Computational Sciences Division subpro-gram of the O�ce of Computational and Technology Research, U.S. Department of Energy, under ContractW-31-109-Eng-38; by the National Aerospace Agency under Purchase Order L25935D and CooperativeAgreement No. NCCW-0027; and by the National Science Foundation, through the Center for Research onParallel Computation, under Cooperative Agreement No. CCR-9120008.ANL authors' email addresses: bischof@mcs.anl.gov khademi@mcs.anl.gov�Address: Center for Research on Parallel Computation, Rice University, 6100 S. Main St., Houston, TX77005; email: carle@cs.rice.edu.

ContentsAbstract 11 Introduction 12 Handling C Pointers from Fortran Programs 12.1 Valid Pointer Values : 22.2 Initialization of C Data Structures : 22.3 Representation of Fortran Precisions in C : 22.4 Linking C and Fortran Modules : 32.5 Handling Mixed-Precision Codes : 33 Uninitialized Vectors and Template Expansion 44 Naming Conventions 45 Representing Sparsity 46 Interface Routines 56.1 Value Insertion and Extraction Routines : 56.2 Arithmetic Routines : 56.3 Conversion Routines : 66.4 Initialization, Con�guration, and Inquiry Routines : : : : : : : : : : : : : : : : : : : 6Appendix: Detailed Interface Speci�cation 7A.1 Value Insertion and Extraction Routines : 8A.2 Arithmetic Routines : 14A.3 Conversion Routines : 21A.4 Initialization, Con�guration, and Inquiry Routines : 25References 30
iii

Fortran 77 Interface Speci�cation to theSparsLinC 1.0 LibrarybyChristian H. Bischof, Alan Carle, and Peyvand KhademiAbstractThe SparsLinC library, written in C, has been developed for exploiting sparsity in automaticdi�erentiation of codes. Issues pertaining to the proper interface to the library from Fortranprograms are discussed, including the interpretation of Fortran INTEGERs as C pointers, andthe representation of Fortran precisions in C. The Appendix contains the full set of FortranInterfaces to the SparsLinC library.1 IntroductionA fundamental kernel in numerical linear algebra and also in automatic di�erentiation (see, e.g., [2])is the computation of a linear combination of some vectors, namely,w = kXi=1 �ivi;where each �i is referred to as a \multiplier," w as the \left-hand side vector," and any of the vi's asa \right-hand side vector." Following Golub and Van Loan [4], we call this operation a GAXPY.In the cases of interest for automatic di�erentiation, the number k of vectors on the right-hand sideis usually moderate, with k � 3 forming the bulk of computations.The SparsLinC (Sparse LinearCombinations) library has been developed to support this kernelcomputation for sparse vectors in REAL, DOUBLE PRECISION, COMPLEX, and DOUBLE COMPLEX arith-metic. A sparse vector contains a signi�cant number of zero entries, and SparsLinC exploits thisstructure to save both on oating-point operations as well as on storage. SparsLinC employs apolyalgorithm in which a sparse vector is represented by one of three data structures, depending onthe number and clustering of the indices corresponding to the nonzero entries in a vector. SparsLinCis mainly written in ANSI C with some Fortran 77 \wrapper" routines.This document discusses how to access this library from a Fortran program and how to initializeand manipulate the C data structures that support sparse vectors from a Fortran program. Alsodiscussed are the requirements on the Fortran implementation in this context.2 Handling C Pointers from Fortran ProgramsSince Fortran 77 does not have pointer variables, INTEGER variables are used to house the memoryaddresses of the C structures implementing sparse vectors. We adopt the convention that the FortranINTEGER variable VPTR acts as a pointer to a sparse vector object, called sparse object(VPTR).1

Table 1: Default Assumptions on Correspondence of Fortran and C Floating-Point TypesFortran 77 CREAL floatDOUBLE PRECISION doubleCOMPLEX float [2]DOUBLE COMPLEX double [2]2.1 Valid Pointer ValuesWe require that the Fortran INTEGER value \0" and the C pointer value \NULL " are identical.This assumption is critical in deciding whether VPTR contains a valid address of a sparse derivativeobject. We assume that a VPTR of zero value implies that no sparse vector object has previouslybeen associated with VPTR and that we must allocate one. Note, in particular, that a zero VPTR doesnot represent the sparse vector containing all zeros, although in \quiet" mode (see section 3) thecorrect representation for the vector of all zeros will be quietly allocated.In our implementation a Fortran INTEGER representing a pointer to a sparse vector object cantake the following values:0 : Uninitialized pointer to a sparse vector object.-1: Special value denoting a sparse vector of all zeros in the [REAL, DOUBLE PRECISION] to[COMPLEX, DOUBLE COMPLEX] conversion routines (see sections 6.3 and 6.4).A valid pointer to a sparse data structure: Such a valid address is assigned only by one ofthe routines in the SparsLinC library.If one cannot rely on the fact that a positive value for VPTR contains a valid pointer to a sparsedata structure, one must resort to memory authentication schemes to be able to answer this question(see, for example, [1, Problem 2.12]).2.2 Initialization of C Data StructuresSparsLinC employs data structures that have to be initialized before any of the other SparsLinCroutines can be called. The user must call the XSPINI routine to initialize these data structures.2.3 Representation of Fortran Precisions in CWe make the default assumptions shown in Table 1 (which can be changed by rede�ning somemacros) concerning the correspondence of C and Fortran data types. In particular, we assume thatcorresponding data types have the same word length and are aligned the same way. We furtherassume that for Fortran COMPLEX or DOUBLE COMPLEX variables, the �rst and second entries in thecorresponding C float or double array of length two contain, respectively, the real and imaginaryparts of a complex number. 2

2.4 Linking C and Fortran ModulesTwo issues arise in the context of linking Fortran and C modules. One is the passing of strings be-tween Fortran and C. Because this is notoriously di�cult and nonuniform across di�erent platforms,we avoid it. The only instance where we need to pass a string is for error-reporting purposes in the\verbose" routines (see section 3). These routines, as well as a few others, are provided as Fortranwrappers that perform the necessary string processing and then call the appropriate C routines.The other issue is that of matching load module entry names generated by the C and Fortrancompilers. For example, we must consider what case (upper or lower) entry names are supposed tobe in or whether the Fortran compiler generates entry names with leading or trailing underscores.SparsLinC provides a macro expansion utility to easily address this issue when installing SparsLinC.2.5 Handling Mixed-Precision CodesAll arithmetic routines are de�ned to handle the case where the multipliers and sparse vectorsarguments are of the same type | any other use of the routines is wrong! Consequently, for eacharithmetic computation | for example, GAXPY of arity 5 | four subroutines are provided (onefor each of the precisions, REAL, DOUBLE PRECISION, COMPLEX, and DOUBLE COMPLEX).One way to handle mixed-precision computations (e.g., a GAXPY where some of the vectors andmultipliers are stored in di�erent precisions) is as follows:1. Convert all multipliers to have the same precision as their corresponding vector, by using theFortran conversion functions REAL(), DBLE(), CMPLX(), and DCMPLX().2. Accumulate all the vectors of the same type into temporary variables, by using the sparsearithmetic routines.3. Convert all vectors to the \highest" precision, by using the sparse conversion routines. Theusual hierarchy, in ascending order, is REAL, DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX.4. Accumulate these into a (possibly temporary) vector of that precision, by using the sparsearithmetic routines.5. If necessary, truncate this vector to the precision desired for the left-hand side, by using thesparse conversion routines.As an alternative, the following scheme has been suggested by Goldberg [3, p. 31]. Assume thatan expression is represented as an expression tree, with the �nal result at its root. Then proceed asfollows:Step 1: Assign each operation a tentative precision, which is the maximum of its two operands,proceeding from the leaves to the root.Step 2: Proceeding from the root to the leaves, assign to each operation the maximum of thetentative precision and the precision expected by the parent.This would involve more conversion than the current rule, but could also easily be implemented.In any case, the responsibility for enforcing consistent input types to the sparse vector routines restswith the user of these routines. 3

3 Uninitialized Vectors and Template ExpansionDuring the execution of a program, we may try to access sparse object(VPTR) for a VPTR that is NULL.Our routines check all VPTR 's corresponding to vectors on the right-hand side to see whether theyare NULL. A NULL pointer indicates that the gradient that is being passed has not been initialized topoint to a valid sparse representation of a gradient.This case may happen, for example, if the code passed to the automatic di�erentiation toolcontains an uninitialized variable X (perhaps arising from the fact that the user knows that hisparticular compiler blanks all variables before program execution). Then the occurrence of X on theright-hand side of an assignment statement may lead us to try to access sparse object(VPTR) for aVPTR that is NULL, where VPTR is the pointer to the sparse derivative object associated with X.All routines where the case of uninitialized right-hand sides can occur are provided in two versions:Verbose version: Initialize VPTR to point to a representation of the vector of all zeros; report the�le name, line number, and position of VPTR in the argument list to an error unit (defaultis stdout); and optionally halt the program. The routine XSPUIV can be called to customizethese options. If a particular call refers to more than one NULL pointer, all occurrences ofNULL pointers will be reported.Quiet version: Initialize VPTR to point to a representation of the vector of all zeros, and proceedquietly.4 Naming ConventionsWe adopt the following naming conventions for SparsLinC routines:� The �rst letter will be an \S", \D", \C", \Z", or \X," indicating, respectively, whether the rou-tine manipulates vectors in REAL, DOUBLE PRECISION, COMPLEX, and DOUBLE COMPLEX pre-cision or whether it is a nonnumeric utility routine.� The second and third letters will be \SP", to denote that the routine is in the SparsLinClibrary.� For routines that may encounter uninitialized right-hand sides and are provided in a verboseand quiet version, the fourth and �fth letter are an abbreviation of the task performed by theroutine, and the sixth letter will be a \V" or \Q," respectively. For other routines, the last twoor three letters will be an abbreviation of the task performed by the routine.Unless otherwise speci�ed, an identi�er ending in \PTR" refers to an INTEGER variable containingthe pointer to a sparse derivative object. By virtue of the side e�ects associated with the handlingof uninitialized variables, derivative objects corresponding to entries on the right-hand side of aGAXPY may be modi�ed in such a call (from zero to a valid pointer).5 Representing SparsityA sparse vector with nonz nonzeros can be represented in Fortran by an INTEGER array of lengthnonz containing the indices of nonzero entries, and a oating-point array of appropriate precisioncontaining the corresponding values. For example, the 7-vector(11:0; 0; 33:0; 44:0; 0; 0; 77:0)4

could have the following sparse representation using two arrays of length 4 each:Index Array: 1 3 4 7Value Array: 11.0 33.0 44.0 77.0We will refer to this two-array representation of the vector as the Fortran Sparse Format.The corresponding nonsparse representation, which we will call the Fortran Nonsparse Format,would be a oating-point array of length 7, containing zeros in entries 2, 5, and 6. Lastly, there isthe SparsLinC Sparse Format, which is the internal SparsLinC representation of the vector.6 Interface RoutinesThe following sections give an overview of the functionality provided by SparsLinC. A completedescription is provided in the appendix.6.1 Value Insertion and Extraction RoutinesWe provide the following routines to insert/extract values into/from the sparse vector representa-tions:[S,D,C,Z]SPSD: Convert a sparse vector stored in Fortran Sparse Format into the SparsLinCSparse Format vector (used for initializing the SeeD matrix).[S,D,C,Z]SPXD[Q,V]: EXtract a SparsLinC Sparse Format vector into a Fortran Nonsparse(Dense) Format vector.[S,D,C,Z]SPXS[Q,V]: EXtract a SparsLinC Sparse Format vector into a Fortran Sparse Formatvector.[S,D,C,Z]SPXM[Q,V]: EXtract a SparsLinC Sparse Format vector, Multiply it by a scalar andadd the result to a Fortran Nonsparse Format vector.[S,D,C,Z]SPXA[Q,V]: EXtract and Add a SparsLinC Sparse Format vector to a Fortran Non-sparse Format vector.[S,D,C,Z]SPPR[Q,V]: PRint a sparse vector.6.2 Arithmetic Routines[S,D,C,Z]SPCP[Q,V] : CoPy a vector.[S,D,C,Z]SPZRO: Assign the vector of all ZeROs to a sparse vector.[S,D,C,Z]SPVZR: Assign to each entry in an array of sparse vectors the Vector of all ZeRos.[S,D,C,Z]SPG1[Q,V], : : :, [S,D,C,Z]SPG5[Q,V]: Perform a GAXPY with 1 to 5 vectors.[S,D,C,Z]SPGX[Q,V]: Perform a GAXPY with more than 5 vectors. Unlike the \special-case"GAXPY implementations, this routine assumes that pointers to right-hand-side vectors as wellas multipliers are packed into a vector. The particular choice of 5 for the cuto� was motivated,on the one hand, by the fact that in our experience the great majority of GAXPY's occurring5

in the automatic di�erentiation context involve no more than �ve vectors and, on the otherhand, by the fact that every special GAXPY implementation adds eight new entries to the(already rather large) library.[C,Z]SPIM[Q,V]: Extract the IMaginary part of a COMPLEX or DOUBLE COMPLEX sparse vector intoa REAL or DOUBLE PRECISION sparse vector. Corresponds to IMAG().[C,Z]SPCJ[Q,V]: ConJugate a COMPLEX or DOUBLE COMPLEX sparse vector. Corresponds to CONJG().6.3 Conversion Routines[S,D,C,Z]SP2S[Q,V]: Sparse vector conversion to REAL (Single Precision). REAL or DOUBLEPRECISION conversion to REAL, or extraction of real part of COMPLEX or DOUBLE COMPLEX sparsevector into a REAL sparse vector. Corresponds to REAL().[S,D,C,Z]SP2D[Q,V]: Sparse vector conversion to DOUBLE PRECISION. REAL or DOUBLEPRECISION conversion to DOUBLE PRECISION, or extraction of real part of COMPLEX or DOUBLECOMPLEX sparse vector into a DOUBLE PRECISION sparse vector. Corresponds to DBLE().[S,D]SP2C[Q,V]: Sparse vector conversion of [REAL, DOUBLE PRECISION] to COMPLEX. TheCMPLX() Fortran intrinsic can take one or two arguments. We adopt the convention thatif VPTR equals -1, then the corresponding vector is taken to be the zero vector. We use a valueother than 0 to distinguish this case from the one where a vector is uninitialized.[S,D]SP2Z[Q,V]: Sparse vector conversion of [REAL, DOUBLE PRECISION] to DOUBLE COMPLEX(Z). Various Fortran vendor compilers support the REAL to DOUBLE COMPLEX conversion, usu-ally by adding an intrinsic DCMPLX() or ZCMPLX(). Hence, we also provide the equivalentvector conversion, for completeness. We adopt the convention that if VPTR equals -1, then thecorresponding vector is taken to be the zero vector. We use a value other than 0 to distinguishthis case from the one where a vector is uninitialized.6.4 Initialization, Con�guration, and Inquiry RoutinesXSPINI: INItialize C data structures. Must be called before calling the derivative code employingother SparsLinC library calls, and must be called only once. When called more than once, allbut the �rst call act as no-ops.XSPCNF: CoNFigure certain internal SparsLinC parameters.XSPUIV: Con�gure action to be taken upon encountering UnInitialized Variables.XSPMEM: Report amount of MEMory used for representing sparse vectors.XSPFRA: FRee All memory for C sparse vector data structures. After a call to this routine, allVPTR's are left dangling. The purpose of this routine is to free memory when derivativecomputation is completed. 6

Appendix: Detailed Interface Speci�cationTo allow for detailed error reporting when encountering uninitialized sparse derivative objects, weprovide a template expansion mechanism that maps calls to templates into calls to actual routines(which may or may not pass line number and �le name), in the fashion outlined in section 3. Routinesfor which such a functionality is provided have the optional arguments [line,�le] in their parameterlist, where the variable \line" is declared as INTEGER and \�le" as CHARACTER*(*) , and both areinput parameters. Additionally, for these routines (such as the dense extraction routine which weuse here as a prototypical example), we use the following notation in the header of the routinedescription:SUBROUTINE SSPXD[Q,V] (XVEC, INLEN, VPTR, OUTLEN, INFO, [line, file])as a shorthand for the following:SUBROUTINE SSPXDQ (XVEC, INLEN, VPTR, OUTLEN, INFO)SUBROUTINE SSPXDV (XVEC, INLEN, VPTR, OUTLEN, INFO, line, file)We also utilize variable names with up to eight characters, although all subroutine names are nolonger than six characters.Again, we adopt the term sparse object(VPTR) as a shorthand for \the sparse object() pointedto by VPTR." To save space, we provide only the calling sequence for one particular oating-pointprecision.

7

A.1 Value Insertion and Extraction RoutinesSSPSD, DSPSD, CSPSD, ZSPSDSUBROUTINE SSPSD (VPTR, INDVEC, VALVEC, LEN)PurposeConversion of a vector in Fortran Sparse Format into a vector in SparsLinC Sparse For-mat. The Fortran Sparse Format vector is given by the two arrays, INDVEC(1:LEN) andVALVEC(1:LEN), representing the indices and values of a sparse vector x (say), respectively.x is copied into sparse object(VPTR) which is the vector in SparsLinC Sparse Format. Theindices in INDVECneed not be in any particular order (internally, SPSD performs an ascendingorder sort). However, INDVEC and VALVECmust be identically aligned, i.e., if in the FortranNonsparse Format x has a nonzero entry at index i with value v, then for some J, INDVEC(J)= i and VALVEC(J) = v. SPSD performs a destructive copy, i.e., if sparse object(VPTR) hadbeen previously allocated (via SPSD or as a result of being an output argument of someother SparsLinC routine), the previous information in sparse object(VPTR) is lost, and thedynamically-allocated memory where that information resided is deallocated.ArgumentsVPTR (output) INTEGERUpon exit, sparse object(VPTR) contains a copy of the sparse vector repre-sented by INDVEC and VALVEC.INDVEC (input) INTEGER array, dimension (LEN)Indices of the nonzero values of the sparse vector. (We assume that indicesare � 1, therefore, INDVEC entries � 0 would be incorrect and would resultin a runtime error.)VALVEC (input) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array, di-mension (LEN)Nonzero values of the sparse vector.LEN (input) INTEGERLEN � 0 is the number of nonzeros in the sparse vector. If LEN equals zero,VPTR is initialized to point to the vector of all zeros and INDVEC and VALVECare not referenced.
8

SSPXD[Q,V], DSPXD[Q,V], CSPXD[Q,V], ZSPXD[Q,V]SUBROUTINE SSPXD[Q,V] (XVEC, INLEN, VPTR, OUTLEN, INFO, [line, file])PurposeExtracts sparse object(VPTR) into the Fortran Nonsparse Format vector XVEC.ArgumentsXVEC (output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array,dimension (INLEN)On exit, if INFO equals zero, XVEC(1:INLEN) will contain a dense rep-resentation of sparse object(VPTR). If OUTLEN is less than INLEN thenXVEC(OUTLEN+1:INLEN) is initialized to all zeros. If INFO <> 0, XVEC isnot referenced.INLEN (input) INTEGERLength of XVEC.VPTR (input/output) INTEGERPointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it isinitialized to point to the vector of all zeros (which is why it might be anoutput argument).OUTLEN (output) INTEGERLargest index in the nonzero index set in sparse object(VPTR). This valuewill always be returned, whether XVEC is initialized or not. See the descrip-tion of INFO below.INFO (output) INTEGERIf INLEN < OUTLEN, INFO will be set to -1, and XVEC is not referenced.Otherwise, INFO is set to 0, and XVEC(1:INLEN) is initialized to a FortranNonsparse Format copy of sparse object(VPTR).
9

SSPXS[Q,V], DSPXS[Q,V], CSPXS[Q,V], ZSPXS[Q,V]SUBROUTINE SSPXS[Q,V] (INDVEC, VALVEC, INLEN, VPTR, OUTLEN, INFO, [line, file])PurposeExtracts sparse object(VPTR) into the Fortran Sparse Format vector represented by the twoarrays, INDVEC and VALVEC.ArgumentsINDVEC (output) INTEGER array, dimension (INLEN)On exit, if INFO equals zero, INDVEC(1:OUTLEN) contains the indicesof the nonzero entries of sparse object(VPTR). If INFO <> 0, INDVECis not referenced. If INFO = 0 and OUTLEN is less than INLEN thenINDVEC(OUTLEN+1:INLEN) is not referenced.VALVEC (output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array,dimension (INLEN)On exit, if INFO equals zero, VALVEC(1:OUTLEN) will contain the nonzeroentries of sparse object(VPTR). If INFO <> 0, VALVEC is not referenced. IfINFO = 0 and OUTLEN is less than INLEN then VALVEC(OUTLEN+1:INLEN) isnot referenced.INLEN (input) INTEGERLength of INDVEC and VALVEC.VPTR (input/output) INTEGERPointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it isinitialized to point to the vector of all zeros (which is why it might be anoutput argument).OUTLEN (output) INTEGERNumber of nonzeroes in sparse object(VPTR). This value will always be re-turned, whether INDVEC and VALVEC are initialized or not. See the descrip-tion of INFO below.INFO (output) INTEGERIf INLEN < OUTLEN, INFO will be set to -1, and INDVEC and VALVEC arenot referenced. Otherwise, INFO is set to 0, and INDVEC(1:OUTLEN) andVALVEC(1:OUTLEN) are initialized to the Fortran Sparse Format copy ofsparse object(VPTR).
10

SSPXM[Q,V], DSPXM[Q,V], CSPXM[Q,V], ZSPXM[Q,V]SUBROUTINE SSPXM[Q,V] (XVEC, INLEN, MULT, VPTR, OUTLEN, INFO, [line, file])PurposeAdds the weighted contents of sparse object(VPTR) to the Fortran Nonsparse Formatvector XVEC, where MULT is the multplicative weight (i.e., XVEC = XVEC + MULT �sparse object(VPTR)). For example, say XVEC is a vector of length 7 containing all ones,MULT is equal to 2.0, and sparse object(VPTR) is as follows:Index Array: 1 3 4 7Value Array: 11.0 33.0 44.0 77.0Subsequent to the call to this routine, XVEC would contain the following:(23:0; 1:0; 67:0; 89:0; 1:0; 1:0; 154:0)ArgumentsXVEC (input/output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX]array, dimension (INLEN)On exit, if INFO equals zero, XVEC(1:INLEN) will have added to it theweighted contributions of the values in sparse object(VPTR), with MULT spec-ifying the weight. If INFO <> 0, XVEC is not modi�ed.INLEN (input) INTEGERLength of XVEC.MULT (input) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX]Multiplier.VPTR (input/output) INTEGERPointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it isinitialized to point to the vector of all zeros (which is why it might be anoutput argument).OUTLEN (output) INTEGERLargest index in the nonzero index set in sparse object(VPTR). This valuewill always be returned, whether XVEC is modi�ed or not. See the descrip-tion of INFO below.INFO (output) INTEGERIf INLEN < OUTLEN, INFO will be set to -1, and XVEC is not modi�ed. Other-wise, INFO is set to 0, and XVEC(1:INLEN) is modi�ed as described above.11

SSPXA[Q,V], DSPXA[Q,V], CSPXA[Q,V], ZSPXA[Q,V]SUBROUTINE SSPXA[Q,V] (XVEC, INLEN, VPTR, OUTLEN, INFO, [line, file])PurposeAdds the contents of sparse object(VPTR) to the Fortran Nonsparse Format vector XVEC(i.e., XVEC = XVEC + sparse object(VPTR)). (SPXA is identical to the SPXM routine with MULTequal to one; see the documentation for SPXM.)ArgumentsXVEC (input/output) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX]array, dimension (INLEN)On exit, if INFO equals zero, XVEC(1:INLEN)will have added to it the valuesin sparse object(VPTR). If INFO <> 0, XVEC is not modi�ed.INLEN (input) INTEGERLength of XVEC.VPTR (input/output) INTEGERPointer to the SparsLinC Sparse Format vector. If VPTR equals NULL, it isinitialized to point to the vector of all zeros (which is why it might be anoutput argument).OUTLEN (output) INTEGERLargest index in the nonzero index set in sparse object(VPTR). This valuewill always be returned, whether XVEC is modi�ed or not. See the descrip-tion of INFO below.INFO (output) INTEGERIf INLEN < OUTLEN, INFO will be set to -1, and XVEC is not modi�ed. Other-wise, INFO is set to 0, and XVEC(1:INLEN) is modi�ed as described above.
12

SSPPR[Q,V], DSPPR[Q,V], CSPPR[Q,V], ZSPPR[Q,V]SUBROUTINE SSPPR[Q,V] (VPTR, EXT, [line, file])PurposeWrites number of nonzeros as well as index/value pairs of sparse object(VPTR) onto stdoutor a �le, with the following format:Number of nonzeros = . . .Index Value||{ ||{.ArgumentsVPTR (input/output) INTEGERPointer to the SparsLinC Sparse Format vector. If VPTR is NULL, it isinitialized to point to the vector of all zeros (which is why it might be anoutput argument).EXT (input) INTEGERMust be in the range [0,999]. If EXT equals zero, output written is tostdout. Otherwise EXT is converted to its ASCII equivalent and used as theextension appended to the �lename \SPPR." and output is written to this�le.

13

A.2 Arithmetic RoutinesSSPCP[Q,V], DSPCP[Q,V], CSPCP[Q,V], ZSPCP[Q,V]SUBROUTINE SSPCP[Q,V] (DESTPTR, SRCPTR, [line, file])PurposeCopies sparse object(SRCPTR) into sparse object(DESTPTR).ArgumentsDESTPTR (output) INTEGERPointer to sparse vector object.SRCPTR (input/output) INTEGERPointer to sparse vector object.

14

SSPZRO, DSPZRO, CSPZRO, ZSPZROSUBROUTINE SSPZRO (VPTR)PurposeInitializes sparse object(VPTR) to the vector of all zeros.ArgumentsVPTR (input/output) INTEGERPointer to sparse vector object.

15

SSPVZO, DSPVZO, CSPVZO, ZSPVZOSUBROUTINE SSPVZO (VPTRS,n)PurposeInitializes sparse object(VPTRS(i)) to point to the vector of all zeros for i = 1; : : : ;N.ArgumentsVPTRS (input/output) INTEGER array, length (N)Array of pointers to sparse vector objects.N (input) INTEGERLength of VPTRS array.

16

SSPG1[Q,V], : : :, SSPG5[Q,V], DSPG1[Q,V], : : :, DSPG5[Q,V],CSPG1[Q,V], : : :, CSPG5[Q,V], ZSPG1[Q,V], : : :, ZSPG5[Q,V]SUBROUTINE SSPG1[Q,V](DESTPTR, ALPHA1, V1PTR, [line, file])....SUBROUTINE SSPG5[Q,V](DESTPTR, ALPHA1, V1PTR, : : :, ALFA5, V5PTR, [line, file])PurposeComputes sparse object(DESTPTR) =Pki=1 ALPHAi � sparse object(ViPTR)for values of k from 1 to 5. It is assumed that all ViPTR are pointers to sparse vectorobjects representing the same precision (REAL , DOUBLE PRECISION , COMPLEX , or DOUBLECOMPLEX) and that all the multipliers ALPHAi are of the same precision as well.ArgumentsDESTPTR (output) INTEGERPointer to sparse vector object.ALPHAi (input) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] .Multipliers of sparse object(ViPTR).ViPTR (input/output) INTEGERPointers to sparse vector object.

17

SSPGX[Q,V], DSPGX[Q,V], CSPGX[Q,V], ZSPGX[Q,V]SUBROUTINE SSPGX[Q,V] (DESTPTR, ARITY, ALPHAVEC, VPTRVEC, [line, file])PurposeComputessparse object(DESTPTR) =PARITYi=1 ALPHAVEC[i] � sparse object(VPTRVEC[i]).It is assumed that all VPTRVEC[i] are pointers to sparse vector objects representing thesame precision (REAL , DOUBLE PRECISION , COMPLEX , or DOUBLE COMPLEX) and that all themultipliers ALPHAVEC[i] are of the same precision as well.ArgumentsDESTPTR (output) INTEGERPointer to sparse vector object.ARITY (input) INTEGERNumber of sparse derivative objects on the right-hand side.ALPHAVEC (input) REAL [DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX] array, di-mension (ARITY)Scalar multipliers.VPTRVEC (input/output) INTEGER array, dimension (ARITY).Array of pointers to sparse vector objects.

18

CSPIM[Q,V], ZSPIM[Q,V]SUBROUTINE CSPIM[Q,V] (DESTPTR,VPTR, [line, file])PurposeReturns the imaginary part of sparse object(VPTR) in sparse object(DESTPTR).CSPIM: sparse object(VPTR) is assumed to be in COMPLEX format andsparse object(DESTPTR) will be in REAL format.ZSPIM: sparse object(VPTR) is assumed to be in DOUBLE COMPLEX format andsparse object(DESTPTR) will be in DOUBLE PRECISION format.ArgumentsDESTPTR (output) INTEGERPointer to sparse vector object in REAL [DOUBLE PRECISION] format.VPTR (input/output) INTEGERPointer to sparse vector object in COMPLEX [DOUBLE COMPLEX] format.

19

CSPCJ[Q,V], ZSPCJ[Q,V]SUBROUTINE CSPCJ[Q,V] (DESTPTR,VPTR, [line, file])PurposeReturns the conjugate complex of sparse object(VPTR) in sparse object(DESTPTR).ArgumentsDESTPTR (output) INTEGERPointer to sparse vector object in COMPLEX [DOUBLE COMPLEX] format.VPTR (input/output) INTEGERPointer to sparse vector object in COMPLEX [DOUBLE COMPLEX] format.

20

A.3 Conversion RoutinesSSP2S[Q,V], DSP2S[Q,V], CSP2S[Q,V], ZSP2S[Q,V]SUBROUTINE SSP2S[Q,V] (DESTPTR, VPTR, [line, file])PurposeSSP2S: sparse object(VPTR) is copied to sparse object(DESTPTR).DSP2S: A copy of sparse object(VPTR) is truncated to REAL format and copied intosparse object(DESTPTR).CSP2S: The real part of sparse object(VPTR) is copied into sparse object(DESTPTR).ZSP2S: A copy of the real part of sparse object(VPTR) is truncated to REAL format andcopied into sparse object(DESTPTR).ArgumentsDESTPTR (output) INTEGERPointer to sparse vector object in REAL format.VPTR (input/output) INTEGERPointer to sparse vector object in REAL [DOUBLE PRECISION, COMPLEX,DOUBLE COMPLEX] format.

21

SSP2D[Q,V], DSP2D[Q,V], CSP2D[Q,V], ZSP2D[Q,V]SUBROUTINE SSP2D[Q,V] (DESTPTR, VPTR, [line, file])PurposeSSP2D: A copy of sparse object(VPTR) is converted to DOUBLE PRECISION format andcopied to sparse object(DESTPTR).DSP2D: sparse object(VPTR) is copied into sparse object(DESTPTR).CSP2D: A copy of the real part of sparse object(VPTR) is converted to DOUBLEPRECISION format and copied into sparse object(DESTPTR).ZSP2D: The real part of sparse object(VPTR) is copied into sparse object(DESTPTR).ArgumentsDESTPTR (output) INTEGERPointer to sparse vector object in DOUBLE PRECISION format.VPTR (input/output) INTEGERPointer to sparse vector object in REAL [DOUBLE PRECISION, COMPLEX,DOUBLE COMPLEX] format.

22

SSP2C[Q,V], DSP2C[Q,V]SUBROUTINE SSP2C[Q,V] (DESTPTR, VRLPTR, VIMPTR, [line, file])Purposesparse object(VRLPTR) and sparse object(VIMPTR) correspond to the real and imaginarypart of the complex vector to be built. It is assumed that sparse object(VRLPTR) andsparse object(VIMPTR) are stored in the same format (REAL or DOUBLE PRECISION).SSP2C: sparse object(DESTPTR) is assigned to have the values ofsparse object(VRLPTR) as its real part, and the values of sparse object(VIMPTR) asits imaginary part.DSP2C: Copies of sparse object(VRLPTR) and sparse object(VIMPTR) are truncated toREAL format, and these values are assigned to sparse object(DESTPTR) as the realand imaginary parts, respectively.ArgumentsDESTPTR (output) INTEGERPointer to sparse vector object in COMPLEX format.VRLPTR (input/output) INTEGERPointer to sparse vector object in REAL [DOUBLE PRECISION] format. Thecase of VRLPTR equal -1 is treated as if sparse object(VRLPTR) was the vectorof all zeros but is not considered an occurrence of an uninitialized pointer.VIMPTR (input/output) INTEGERPointer to sparse vector object in REAL [DOUBLE PRECISION] format. Thecase of VIMPTR equal -1 is treated as if sparse object(VIMPTR) was the vectorof all zeros but is not considered an occurrence of an uninitialized pointer.
23

SSP2Z[Q,V], DSP2Z[Q,V]SUBROUTINE SSP2Z[Q,V] (DESTPTR, VRLPTR, VIMPTR, [line, file])Purposesparse object(VRLPTR) and sparse object(VIMPTR) correspond to the real and imaginarypart of the complex vector to be built. It is assumed that sparse object(VRLPTR) andsparse object(VIMPTR) are stored in the same format (REAL or DOUBLE PRECISION).SSP2Z: Copies of sparse object(VRLPTR) and sparse object(VIMPTR) are converted toDOUBLE PRECISION format, and these values are assigned to sparse object(DESTPTR)as real and imaginary parts, respectively.DSP2Z: sparse object(DESTPTR) is assigned to have the values ofsparse object(VRLPTR) as its real part and the values of sparse object(VIMPTR) asits imaginary part.ArgumentsDESTPTR (output) INTEGERPointer to sparse vector object in DOUBLE COMPLEX format.VRLPTR (input/output) INTEGERPointer to sparse vector object in REAL [DOUBLE PRECISION] format. Thecase of VRLPTR equal -1 is treated as if sparse object(VRLPTR) was the vectorof all zeros but is not considered an occurrence of an uninitialized pointer.VIMPTR (input/output) INTEGERPointer to sparse vector object in REAL [DOUBLE PRECISION] format. Thecase of VIMPTR equal -1 is treated as if sparse object(VIMPTR) was the vectorof all zeros but is not considered an occurrence of an uninitialized pointer.
24

A.4 Initialization, Con�guration, and Inquiry RoutinesXSPINISUBROUTINE XSPINIPurposeInitializes the sparse data structures by dynamically allocating memory for some SparsLinC-internal global variables. It must be called before any of the other SparsLinC routines(except for calls to XSPCNF with OPTs 1-15) and needs to be called no more than once (whencalled more than once, all but the �rst call act as no-ops).Argumentsnone

25

XSPCNFSUBROUTINE XSPCNF (OPT, VAL)PurposeAllows user to customize SparsLinC for each run. The following table speci�es foreach parameter its name, option number, default value, and range of allowable val-ues. \SSbucket size" and \CSbucket size" are the number of entries per array in thelinked list representation of a single-subscript and compressed-subscript vector respectively.\switch threshold" is the number of nonzero entries from which on a SparsLinC sparse vec-tor is represented in compressed-subscript form. A more detailed explanation of this issueis provided in Appendix B of the ADIFOR 2.0 User's Guide, Section B.4.3.Name OPT Default RangeSSbucket size 1 8 >1CSbucket size 2 32 >1switch threshold 3 16 >1XSPCNF with OPT = 1 or OPT = 2 may be called only before calling XSPINI. CallingXSPCNF with OPT = 1 or 2 after a call to XSPINI will result in a runtime error. Calls toXSPCNF with OPT = 3 can be made at any time.ArgumentsOPT (input) INTEGERSpeci�es the Option number associated with a given parameter as given inthe above table.VAL (input) INTEGERThe new value for the parameter speci�ed by OPT.
26

XSPUIVSUBROUTINE XSPUIV (ACTION, VALUE)PurposeCon�gures handling of uninitialized vectors. By default, if XSPUIV is not called, all errormessages are written to standard output, and program execution continues after encoun-tering an uninitialized right-hand side.ArgumentsACTION (input) INTEGERACTION = 1: Speci�es the unit number for error reporting.ACTION = 2: Speci�es the maximum number of errors to be reported.ACTION = 3: Speci�es whether program should continue or abort.VALUE (input) INTEGERIf ACTION = 1, VALUE speci�es the unit number for error reporting.If ACTION = 2,� VALUE = -1 indicates that all errors are to be reported,� VALUE = 0 indicates that no errors are to be reported, and� VALUE = k > 0 indicates that at most k errors are to be re-ported.If ACTION = 3,� VALUE = 0 indicates that program execution should continue,� VALUE= 1 indicates that the program should halt upon encoun-tering the �rst uninitialized variable, and� VALUE = 2 indicates that the program should halt after printingthe maximum number of error messages.
27

XSPMEMSUBROUTINE XSPMEM (USEDKB)PurposeReports how many Kbytes have been allocated in SparsLinC.ArgumentsUSEDKB (output) REAL .The number of KBytes of storage allocated for SparsLinC data structures.

28

XSPFRASUBROUTINE XSPFRAPurposeFrees all memory allocated for C sparse vector data structures. Note: all pointers tosparse directional gradient variables (VPTR's) are left dangling.Argumentsnone

29

References[1] Alfred Aho, John Hopcroft, and Je�rey Ullman. The Design and Analysis of Computer Algorithms.Addison-Wesley, Reading, Mass., 1974.[2] Christian Bischof, Alan Carle, George Corliss, Andreas Griewank, and Paul Hovland. ADIFOR: Gener-ating derivative codes from Fortran programs. Scienti�c Programming, 1(1):11{29, 1992.[3] David Goldberg. What every computer scientist should know about oating-point arithmetic. ACMComputing Surveys, 23(1):5{48, 1991.[4] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University Press,Baltimore, 2nd edition, 1989.

30

